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a b s t r a c t

We propose a segmentation and feature extraction method for trajectories of moving objects. The meth-
odology consists of three stages: trajectory data preparation; global descriptors computation; and local
feature extraction. The key element is an algorithm that decomposes the profiles generated for different
movement parameters (velocity, acceleration, etc.) using variations in sinuosity and deviation from the
median line. Hence, the methodology enables the extraction of local movement features in addition to
global ones that are essential for modeling and analyzing moving objects in applications such as trajec-
tory classification, simulation and extraction of movement patterns. As a case study, we show how the
method can be employed in classifying trajectory data generated by unknownmoving objects and assign-
ing them to known types of moving objects, whose movement characteristics have been previously
learned. We have conducted a series of experiments that provide evidence about the similarities and dif-
ferences that exist among different types of moving objects. The experiments show that the methodology
can be successfully applied in automatic transport mode detection. It is also shown that eye-movement
data cannot be successfully used as a proxy of full-body movement of humans, or vehicles.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of trajectories of moving objects has recently be-
come the focus of many research projects in the area of geographic
information science (GIS), human–computer interaction (HCI),
ecology, biology, social and behavioral sciences. Simulating human
and animal mobility behavior, or studying human interaction with
computers are emerging into an interesting area of research, which
requires extracting knowledge about the dynamic behavior of dif-
ferent types of agents and thus challenges developing new explor-
atory data analysis methods on massive movement datasets.
Therefore, many spatio-temporal data mining algorithms and ana-
lytical methods have been proposed at the theoretical level, how-
ever few of them have been implemented and applied in practice
to date.

A critical success factor for empirically based research is the
availability of relevant data. The main problem is that data about
moving point objects (MPOs) are not easily available and accessible
due to data cost, security and privacy issues (Giannotti & Pedreschi,
2007). In order to overcome the problem of data scarcity, one may
consider utilizing data that can act as a proxy of ‘physical‘ move-

ment data or benefit from artificial, simulated movement data
(Blythe, Miller, & Todd, 1996). For instance, bank note dispersals
can be considered as a proxy for human movement given that
money is carried by individuals (González, Hidalgo, & Barabasi,
2008), or mouse movement traces as a proxy of eye-movement
data in HCI studies (Chen, Anderson, & Sohn, 2001; Cox & Silva,
2006). Similarly, eye-movement data from human subject experi-
ments on graphic displays is potentially of interest to be used as
a proxy of other types of moving objects, as it is relatively inexpen-
sive to collect and usually not subject to particular privacy issues.

By the same token, the simulation of trajectories is used for di-
verse purposes, such as ecological modeling (Turchin, 1998), spa-
tio-temporal database research (Pfoser & Theodoridis, 2003),
agent-based pedestrian modeling (Batty, 2003), and in the evalua-
tion of data mining algorithms (Laube & Purves, 2006). Therefore,
detailed knowledge of the movement parameters of different
MPOs is crucial in choosing the best representative proxy in trajec-
tory simulation. The better the knowledge about the movement
behavior of the particular objects that is simulated, the more real-
istic the simulation results will be. However, there are still some
open research questions in the field of modeling and simulating
trajectories of moving objects. For instance, how can we efficiently
assess the similarity of the behavior of the simulated or proxy data
in comparison to the original moving object? Is it possible to auto-
matically identify trajectories of unknown objects by applying our
knowledge about the movement behavior of similar known objects
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whose movement characteristics have been previously learned by
the system?

The above issues all point to a need for methods for analyzing
the movement behavior of different MPOs, with the aim of deter-
mining the similarity of trajectories generated by different MPOs.
Similarity search, that is, trying to find similar trajectories of mov-
ing objects, is a fairly new topic in spatial data mining. Most of the
techniques proposed to date are looking for similarities of the geo-
metric shape of the trajectories based on a distance function.
Examples include the Edit Distance on Real sequence (EDR) (Chen,
Özsu, & Oria, 2005), One-Way Distance (OWD) (Lin & Su, 2008),
Euclidean and Time Wrapping distance and Longest Common Sub-
sequence (LCSS) (Vlachos, Gunopulos, & Kollios, 2002). However,
we are more interested in finding similarities in movement behav-
ior of different types of moving objects. Therefore, our motivation is
to take an analytical look at the movement characteristics and dy-
namic behavior of different types of dynamic objects such as hu-
mans, vehicles and eye movements and extract possible
similarities among movement behavior of such objects. Conse-
quently, we want to see whether we can predict the types of un-
known MPOs by similarity to the trajectories of previously
learned MPOs.

This article thus presents a methodology that allows extracting
movement parameters from the trajectories of different types of
moving objects. The key element of the methodology is an algo-
rithm that decomposes the profiles generated for different move-
ment parameters using variations in sinuosity and deviation from
the median line, hence enabling the extraction of local movement
features in addition to global ones.

Our proposed methodology is useful in several respects. It can
inform developers of pattern recognition and data mining algo-
rithms about similar and dissimilar types of moving objects, hence
allowing to design rigorous algorithm evaluation strategies. It can
help answer the question how similar simulated or proxy MPOs are
to the corresponding reference MPOs. The proposed trajectory seg-
mentation algorithm yields sub-trajectories that can facilitate sim-
ilarity search. The methodology generates relevant movement
attributes at the global level of the entire trajectory as well as at
the local level of segments of homogeneous movement character-
istics, enabling more differentiated parameterization of trajectory
simulations. Thus, it can be used to answer to the above-
mentioned research questions in simulation studies. And finally,
it can be used to classify unknown moving objects into previously
learned MPO types, in data mining operations on large trajectory
databases or in real-time applications. For instance, it can be used
in transportation research to detect the transport mode in anony-
mized trajectories of different transportation objects (e.g. cars,
motorcycles, bicycles, pedestrian).

The remainder of the paper is organized as follows. We start in
Section 2 with a brief introduction of moving point objects and a
review of the relevant literature. We continue in Section 3 by
explaining the proposed methodology for feature extraction of
movement parameters. In Section 4, we propound some possible
applications of the proposed methodology. In Section 5, we report
the experiments conducted to validate the three steps of the meth-
odology following the classification process. Section 6 provides a
detailed discussion of the experimental results. We end in Section
7 with conclusions and an outlook.

2. Moving point objects (MPO)

We define moving objects as entities whose positions or geo-
metric attributes change over time. In many applications moving
objects are considered as moving points, ignoring the dimension
of the object. In (Dodge, Weibel, & Lautenschütz, 2008), moving ob-

jects are categorized into two major groups of geo-referenced (i.e.
dynamic objects that move about in geographic space) and non-
geo-referenced (i.e. dynamic phenomena that move in a non-geo-
graphic space) dynamic objects. Accordingly, geographically refer-
enced object such as humans, animals or vehicles belong to the
first group, while gaze point movements in eye-movement studies
can be mentioned as an example for the other group. Each of these
dynamic objects, to a varying degree, shares some similarities but
also exhibits differences to the others in terms of the correspond-
ing data structure, dynamic behavior and nature of movement.

In general, the path of a moving object, named trajectory, is the
subject of interest in moving object data analysis. A trajectory is
defined as a sequence of successive positions of the moving object
over a period of time and thus can be considered as a time series of
spatial data in data mining tasks (Spaccapietra et al., 2008). In or-
der to analyze or simulate the behavior of a moving object we need
to have detailed information about the trajectory of the object as
well as information about the environmental conditions related
to the trajectory (Spaccapietra et al., 2008). In other words, it is
necessary to extract differentiated movement parameters of a tra-
jectory in order to analyze or simulate typical movement behavior
of an object. In this regard many attempts have recently been car-
ried out in the field of modeling and analyzing trajectories and
moving object data mining. Giannotti and Pedreschi (2007) give
an overview of the history of analyzing moving objects from the
initial idea of time geography to the recent advances in knowledge
discovery from moving objects using spatio-temporal data mining
techniques, including latest attempts on data privacy and security
issues. Batty (2003) applied agent-based modeling of individual
and collective behavior of pedestrians to show how randomness
and geometry are important to local movement and how individu-
als respond to locational patterns. Brillinger, Preisler, Ager, and Kie
(2004) developed a stochastic differential equation-based model
for exploratory data analysis of the trajectories of deer and elk to
describe movement behavior of free-ranging animals. They tried
to extract typical parameters of data obtained from animal telem-
etry studies. Laube and Purves (2006) considered modeling relative
movement within groups of objects in order to evaluate extracted
movement patterns by simulation through correlated randomwalk
procedures. Hornsby and Cole (2007) focused on modeling moving
objects from an event-based perspective and tried to detect move-
ment patterns by analysis of different events. Other researchers
have focused on differentiating and modeling moving objects in
movement imagery databases, in order to describe and classify
behavior of moving objects in computer vision systems using se-
quences of images (Agouris, Partsinevelos, & Stefanidis, 2003;
Ozyildiz, Krahnstöver, & Sharma, 2002; Zheng, Dagan Feng, & Zhao,
2005). In Naftel and Khalid (2006) another approach for clustering
and classification of object trajectory-based video clips using spa-
tio-temporal function approximation has been proposed. Bashir,
Khokhar, and Schonfeld (2007) present a classification algorithm
for recognizing object activity using trajectory of objects. In the
proposed classification method, trajectories are segmented at
points of change in curvature and the sub-trajectories are repre-
sented by their principal component analysis (PCA) coefficients
(Bashir et al., 2007). In Bay and Pazzani (2001) a search algorithm
for mining contrast sets has been developed to differentiate be-
tween several contrasting groups (e.g. male or female students,
or the same group over time) from observational multivariate data.

The above-mentioned modeling and classification techniques
have mainly been applied on trajectories obtained from the same
MPO types. Fewer studies exist on the classification and differenti-
ation of trajectories of different kinds of moving objects. One do-
main where the comparison of trajectories from different moving
objects is relevant is the field of transportation studies, specifically
in the analysis of transport behavior in urban environment. In this

420 S. Dodge et al. / Computers, Environment and Urban Systems 33 (2009) 419–434



domain some researchers focused on extracting knowledge from
raw GPS data to detect the mode of transport that people used,
with the aim of understanding user behavior (Zheng, Liu, Wang,
& Xie, 2008). For instance, Zheng et al. (2008) proposed an ap-
proach based on supervised learning to automatically learn the
transportation mode, including walking, taking a bus, riding a bike
and driving. Their method is comprised of a segmentation method
based on change points (i.e. where the mode of transport presum-
ably changes), an inference model (i.e. decision tree, support vector
machine (SVM), Bayesian net, or conditional random field (CRF)),
and a post processing method. In this study the four above-men-
tioned inference models have been evaluated. They show that
the higher accuracy is obtained from the decision tree model. In
another study, Tsui and Shalaby (2006) introduced a fuzzy logic ap-
proach. They applied a segmentation method based on three types
of mode transfer points (MTP). In a similar study, Schüssler and
Axhausen (2009) applied the same method based on speed and
acceleration characteristics to distinguish five modes of transport
(i.e. walk, bicycle, car, urban public transport, and rail). Moreover,
Zheng et al. (2008) and Schüssler and Axhausen (2009) give a sum-
mary of other related research. To the best of our knowledge, al-
most all the proposed methods have difficulty distinguishing
different transport modes in congestion or heavy traffic. They also
do not seem effective in distinguishing the transport mode of vehi-
cles with similar speed range. Finally, they appear having difficul-
ties to detect the correct transport mode when people only take
one kind of transport mode during a trip. Therefore, there is still
a need for more research on more reliable approaches for transport
mode detection.

In Dodge et al. (2008), Giannotti and Pedreschi (2007) and
Laube, Dennis, Forer, and Walker (2007) parameters of a trajectory
generated by a moving object are introduced such as speed, accel-
eration, duration of movement, sinuosity, traveled path, displace-
ment, and direction. These descriptors form fundamental
building blocks for characterizing the movement of an object and
can be defined in an absolute sense (i.e. with respect to the exter-
nal reference system) or in a relative sense, (i.e. in relation to the
movement of other MPOs or to the previous states of the same
MPO). Generally speaking, different types of moving objects,
depending on the particular physics of their movement, to some
degree exhibit different signatures of such movement descriptors.
Each MPO has a typical dynamic behavior, which to some extent is
similar for individuals of the same kind. Consequently, moving ob-
jects can be reproduced (simulated) according to the typical behav-
ior of the similar sort of objects, or objects having the same
dynamic behavior (Laube & Purves, 2006). Likewise, the typical
behavior of different objects can be extracted from the particular
parameters of their trajectories using the above-mentioned
descriptors.

Therefore, we propose a methodology that allows extracting
such movement parameters from the trajectories of different types
of moving objects and classifying trajectories of unknown MPOs by
similarity to the known trajectories. We focus on the characteriza-
tion and classification of different types of moving objects and we
conduct a comparative analysis and classification of the movement
behavior of different objects, manifested through their trajectories.
As a case study, we show how our model can be applied in the clas-
sification and prediction of transport mode of unknown trajecto-
ries of people using a supervised classification method. The
following section describes our methodology in detail.

3. Methodology

Our methodology consists of three steps, shown graphically in
Fig. 1 and expanded on in the remainder of this section: (1) trajec-

tory data preparation; (2) global descriptors computation; and (3)
local feature extraction. The products generated from applying this
procedure can directly be used for other purposes, such as generat-
ing inputs for movement simulators, or trajectory classification as
presented later in Section 4.

3.1. Trajectory data preparation

Raw data captured by movement tracking devices usually to
some degree contain noise, outliers and gaps, depending on the
nominal precision and accuracy of the tracker as well as other fac-
tors that influence the completeness, accuracy and reliability of
fixes. The accuracy of GPS observations, especially in absolute
positioning, is very sensitive to the existence of obstacles that
block GPS signals, multi-path effects, ionospheric and tropospheric
errors, etc. (Hoffmann-Wellenhof, Lichtenegger, & Collins, 2001).
In kinematic GPS surveys used to generate trajectory data of the
type used in this study, it seems reasonable to assume an accuracy
of 5–10 m for practical purposes. Eye trackers have a higher accu-
racy (i.e. 0.5�) and sample eye movements at fine temporal granu-
larity (e.g. about 20 ms). However, raw data generated by eye-
trackers still contain a considerable amount of noise, outliers,
and gaps, which should be remedied in order to achieve better re-
sults. Therefore, in order to remove effects of noise and positioning
errors of the tracking devices and other factors, we recommend
applying data cleaning and pre-processing procedures on the
raw data to achieve more reliable trajectories. The pre-processing
phase consists of three steps including filtering, re-sampling, and
smoothing. During the filtering process outliers are removed from
the raw data, namely those fixes that had a distance from the pre-
vious fix of more than three times the standard deviation (3r) of
the distances between consecutive fixes. The re-sampling proce-
dure then generates a trajectory at regular intervals by linear
interpolation along the trajectory. Finally, the smoothing step
eliminates noise remaining in the data. In order to smooth raw
GPS data several methods can be employed, such as least squares,
spline approximation, moving average, kernel-based smoothing,
and Kalman filtering (Eubank, 2005). In this regard, Jun, Guensler,
and Ogle (2007) developed an analytical study of different
smoothing methods and proposed a modified version of Kalman
filtering to be applied for GPS data containing errors (see Section
5.2.1).

3.2. Computation of global descriptors

Movement parameters (i.e. speed, acceleration, turning angle,
straightness, etc.) can be derived from the trajectory of an object
and thus describe the dynamic behavior of the object. These
descriptors are very different in terms of the values that they can
take for each type of MPO. For instance, eyes can move quickly in
fractions of a second from one end of a picture to the other in an
almost mass-less movement, while the acceleration of human
whole-body motion is governed by greater mass and inertia.

In order to evaluate the movement behavior inherent to the gi-
ven trajectory data sets, various movement parameters can be
computed for each point (fix) along a trajectory: for instance speed
(i.e. rate of change of the object’s position); acceleration (i.e. rate of
change of the object’s speed); turning angle (i.e. direction of the
movement); displacement (i.e. the beeline connector distance be-
tween two consecutive points); traveled path (i.e. the path length
along the trajectory); and straightness index (i.e. the ratio of the
traveled path and displacement); giving an indication of the sinu-
osity of the trajectory at a specific point (Benhamou, 2004; Dodge
et al., 2008; Laube et al., 2007).

To achieve differentiated results in the characterization of tra-
jectories, we propose that the computation of movement parame-
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ters proceeds at consecutive levels of refinement. That is, the pro-
cess should first take a global look, computing descriptive statistics
for the entire trajectory. Then, it should zoom in to extract local
information of the trajectories at finer resolutions. Finally, in order
to reveal more detail in the movement behavior of the selected ob-
jects and make their trajectories comparable, we propose to
decompose the computed profiles of movement parameters to a
set of meaningful subsections (or segments). Sections 3.2.1 and
3.2.2 describe the computation of global descriptors; Section 3.3
describes the extraction of local movement descriptors and the
profile decomposition.

3.2.1. Global descriptive statistics

In order to extract the global movement properties of a given
MPO, the above-mentioned movement parameters are first derived
from the entire trajectory of the object. Next, global descriptive
statistics of the movement parameters are computed such as the
minimum, maximum, mean, median, standard deviation, variance
and skewness over the entire trajectory.

3.2.2. Correlation analysis

In order to assess potential interrelationships between move-
ment parameters, a correlation analysis should be carried out after
extracting the movement parameters of given MPOs. We recom-
mend computing Spearman rank correlation (RHO) as a non-para-
metric measure of correlation, since it has the advantage of making
no assumptions about the frequency distribution of the variables

(Chatfield, 1989). It is used to test the direction and strength of
the relationship between variables. High correlations between
movement parameters suggest that some variables may be
redundant.

3.3. Local feature extraction: profile decomposition

When a dynamic object moves about in space, its movement
parameters (velocity, acceleration, turning angle, etc.) change over
time. If we plot the evolution of a movement parameter over time,
this will result in a profile or function, such as the one shown in
Fig. 2. If we do this for different dynamic objects the resulting pro-
files will exhibit different amplitude and frequency variations,
hence giving clues to the underlying movement physics and behav-
ior. This has lead us to using the movement parameter profiles for
extracting local features that could be used for trajectory simula-
tion and classification, by decomposing profiles into segments (or
sections) of ‘similar movement character’. We propose to use two
measures for characterizing movement from profiles: deviation

from the median line of the profile gives an impression of the
amplitude variation of a movement parameter over time, while
sinuosity acts as a proxy of the frequency variation. In the follow-
ing, we describe the computation of the deviation measure and
the sinuosity measure that we use, as well as the proposed algo-
rithm for profile decomposition. Fig. 2 provides supporting graph-
ical illustrations and Algorithm 1 gives the pseudo-code of the
profile decomposition algorithm.

<Analysis of movement behavior of different MPOs using trajectory decomposition>

‘

Car EyePedestrianBicycleMotorcycle

Fig. 1. Methodology for analyzing and extracting the movement behavior of different MPOs.
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Algorithm 1. Profile decomposition.

Inputs:
� res[]: residuals from median
� st: threshold to distinguish low sinuosity from high

sinuosity
Outputs:
� decomX[]: classified and decomposed profile
Algorithm:
01: n the number of points on the profile
02: dtime time interval between consecutive

points
03: for index of points i = 1–n do

04: dres resi+1 � resi
05: sl[i] sqrt(dtime2 + dres2)
06: end for

07: dt standard deviation of res[]
08: sinuosity[] 0
09: for lag size k = 1–2 do

10: for index of points i = (1 + k) to (n � 1 � k) do
11: beeline_distance length of beeline

connector of pi-k and pi+k
12: profile_distance 

P
sl of pi-k to pi+k

13: sinuosity[i] profile_distance/

beeline_distance + sinuosity[i]

14: end for

15: end for

16: for index of points i = 1–n do

17: sinuosity[i] sinuosity[i]/2

18: sin_scaled scale sinuosity to the length of 1

19: if (sin_scaled < st) AND (res[i] < dt) then
decomX[i] 1 /* low sinuosity, low deviation

20: elseif (sin_scaledP st) AND (res[i] < dt) then
decomX[i] 2 /* high sinuosity, low deviation

21: elseif (sin_scaled < st) AND (res[i]P dt) then

decomX[i] 3 /* low sinuosity, high deviation

22: elseif (sin_scaledP st) AND (res[i]P dt) then

decomX[i] 4 /* high sinuosity, high deviation

23: end if

24: end for

25: return decomX[]

Both deviation and sinuosity are defined for each point on a move-
ment parameter profile. Before we compute these measures, we
transform the profile data in the following way. First, we calculate
the median of the particular movement parameter that was used
to generate the profile. This median then can be seen to form a hor-
izontal ‘median line’ that separates the movement parameter values
into two halves. We then take the residuals from the median for

each point along the original profile. And finally, in order to make
the comparison across objects possible, we normalize all movement
parameter profiles to a common interval [0, 1], as shown, for in-
stance, in Fig. 2.

The deviation of a point p on a profile is easily established: it
simply equates to its residual value from the median and has thus
already been obtained when the residuals were calculated above.
The measure of sinuosity for p is computed as a ratio of the dis-
tance ±k points along the profile to the length of the beeline con-
nector centered at p, as follows:

Sinuosityp;k ¼

Pi¼pþk�1
i¼p�k di;iþ1

dp�k;pþk

where k is the lag parameter. This method was originally introduced
by Dutton (1999) in order to classify the sinuosity of cartographic
lines in map generalization. After some experimentation, in order
to obtain a more reliable measure for the sinuosity, we considered
both 1 and 2 for k as the lag value. Then, the final sinuosity at p is
computed as the average of the Sinuosityp,1 and Sinuosityp,2:

Sinuosityp ¼

Pk¼2
k¼1Sinuosityp;k

2

The sinuosity measure ranges from 1 (if profile points are collinear
about the given point p) to infinity for a winding profile (i.e. a space-
filling curve). The sinuosity values for all points are then trans-
formed to the interval [0, 1], as proposed by (Dutton, 1999). Next,
the profile points are classified into two regimes regarding the level
of the corresponding sinuosity measure, ‘low sinuosity’ and ‘high sin-

uosity’, separated by a user-defined threshold. The same is done
with deviation, where the standard deviation of the residuals is
used to separate ‘low deviation’ from ‘high deviation’. The described
procedure is summarized in Algorithm 1. The classified profile
decomposes trajectory into the segments of homogeneous move-
ment characteristics. The results of employing the Algorithm 1 on
different movement parameter profiles (i.e. velocity, acceleration,
etc.) can be used to compute local movement features for trajectory
classification and simulation purpose.

4. Applications

We suggest that the above methodology, and in particular the
trajectory decomposition algorithm, are useful for a variety of
applications in movement data mining where finding similarities
between the physical movement behavior of different objects is
important. These include applications such as trajectory classifica-
tion (e.g. transport mode detection in mobility analysis studies),
movement pattern detection (e.g. fixation and saccade detection
in eye-tracking research), and trajectory simulation (e.g. in human
mobility behavior studies).

Fig. 2. Basic elements of movement parameter profiles.
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In the remainder of this section, we introduce a procedure for
trajectory classification. In Section 5, we examine the applicability
of the proposed methods in a series of classification experiments
using transportation data as well as in fixation detection in eye-
tracking data.

4.1. Trajectory classification

We are trying to classify trajectories of moving objects in a sys-
tematic way using the features (i.e. variables) extracted by the tra-
jectory decomposition algorithm described above. This procedure
aims at classifying trajectory data generated by unknown moving
objects and assigning them to known types of moving objects,
whose movement characteristics have been previously extracted
and learned. That is, we are assuming to use a supervised classifi-
cation algorithm. We are interested to find out whether trajecto-
ries of different kinds of MPOs can be classified distinctively. The
following subsections introduce our trajectory classification pro-
cess as shown in Fig. 3, which consists of two main steps: (1) Fea-
ture selection (i.e. choosing the variables that provide the input to
the classification process) and dimension reduction using principal
component analysis and (2) the actual classification using the sup-
port vector machine (SVM) classifier algorithm.

4.2. Feature selection and dimension reduction

A great number of global and local statistical descriptors can be
computed for each trajectory. Each of these variables can poten-
tially be selected as features for use in the classification process.
However, as many of these features essentially describe similar
characteristics, there are likely to exist correlations, suggesting
that only a reduced set of features should in fact be used in the
classification. Given the large number of global and local descrip-
tors it would be very difficult to reduce the original set of features
by correlation analysis, merely selecting a subset of the original
features. Hence, we propose using principal component analysis

(PCA) for reducing the number of original features, and hence
dimensions in the feature space (Bozdogan, 2003; Guyon & Andre,
2006; Smith, 2002). PCA yields a (sub)set of synthetic, uncorrelated
features called principal components, which contain the most
important aspects of the original features.

4.3. Classification using SVM

The features that have been generated by the PCA for each MPO
type are considered as a set of attribute categories that form the in-
put for the final step of the classification procedure. This step has
the aim of classifying trajectories by assigning them to different
types of moving objects. Essentially, we are interested in two as-
pects. First, we would like to see whether it is possible to tell apart,
that is, to discriminate the trajectories generated by different types
of moving objects based on the movement parameters that we
have extracted from the trajectory data. Second, assuming that this
is possible, we are interested in classifying dynamic objects of un-
known type to the correct object type, that is, we would like to be
able to reveal the identity of unknown objects. For instance, in
transportation studies analysts are interested in detecting different
modes of transport from unknown GPS trajectories of people.

Given the latter objective, it is advisable to use a supervised
classification method where a training (or learning) stage is fol-
lowed by a classification (or testing) stage that applies the learned
discriminating functions to classify the unknown objects. In princi-
ple, any supervised classification technique could serve our pur-
poses, but we chose to use the support vector machine (SVM)
approach (Cristianini & Shawe-Taylor, 2000; Duda, Hart, & Stork,
2001), which is widely used today in pattern recognition and data
mining. The trajectory classification process then consists of the
training stage where the SVM will learn from a set of trajectory
samples (the training set) how to discriminate between MPO types
by constructing separating hyperplanes in the multi-dimensional
space formed by the input features; and a classification/testing
stage that applies the learned hyperplanes on another set of trajec-
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Fig. 3. Trajectory classification process.
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tory samples (the testing set), thus predicting the object type of
each of these unknown trajectories.

This step concludes our proposed overall methodology. After
the SVM has been trained and validated, it is now ready for use
in data mining operations to detect the MPO type of unknown dy-
namic objects from their trajectories. This could either take place
off-line on large trajectory databases or in real-time.

5. Experiments: trajectory classification

In order to validate our methodology and demonstrate its appli-
cability in the classification of trajectories of different MPOs, we
have conducted a series of experiments that will be reported in this
section and discussed in the next section. The experiments are de-
signed to specifically investigate: (1) automatic mode detection in
transportation analysis and (2) feasibility study of using eye-track-
ing data as a proxy for other MPOs. For these experiments, we con-
sidered different types of MPOs with varying physics and behavior
of movement, expressed through different movement parameters
(Dodge et al., 2008). We have therefore selected different samples
of moving objects from both groups of dynamic objects introduced
in Section 2. From the first group we have chosen movement data
captured from pedestrians, bicycles, cars and motorcycles; from
the second group we considered eye-movement data. Among these
data, bicycles, motorcycles, and cars and to a lesser degree pedes-
trian movements are typically constrained to the transportation
network.

5.1. Experiments – objective

5.1.1. Automatic transport mode detection

Two experiments were designed to validate the applicability of
the proposed methodology using a supervised classification tech-
nique, with the aim of automatically assigning the correct trans-
port mode to trajectories of unknown objects, after training with
a sample of known objects.

5.1.1.1. Experiment #1: classification of objects of different speed

range. For this experiment, we acquired various trajectories from
openstreetmap.org of known object sources from the transporta-
tion domain, including tracks of pedestrians, bicycles, cars and
motorcycles. Fig. 4 illustrates the 2-D plot of exemplar trajecto-
ries generated by the four object types. For each object type about
50,000 GPS fixes from 10 trajectories remained after data
cleaning, filtering and re-sampling to a temporal sampling rate
of 1 s.

Movements of different vehicles and pedestrians are performed
at different ranges of speed. Therefore, classifying objects by sim-
ply taking the different speed range might seem as a straightfor-
ward solution. However, note that speed cannot be considered as
the only parameter to classify objects in transportation since dur-
ing rush hour all vehicles move at similar low speed. Therefore the
proposed classification process takes variations and frequencies of
changes of the other movement parameters (e.g. acceleration) into
account, besides speed variations.

5.1.1.2. Experiment #2: classification of objects of similar speed

range. This experiment aims to investigate detecting the transport
mode of trajectories collected from objects of similar speed range,
exemplified by cars and motorcycles. As mentioned earlier, speed
plays an important role in simulating and classifying trajectories
representing different object types. However, when the speed
range is similar it is indispensable to inspect distinct variations
of other movement parameters such as acceleration and also
examine speed variations at finer detail, in order to be able to dif-

ferentiate between object types. Therefore, this experiment is in-
tended to demonstrate that the proposed classification process is
sufficiently subtle to be able to classify trajectories obtained from
very similarly behaving objects.

5.1.2. Using eye-tracking data as a proxy of other MPOs

5.1.2.1. Experiment #3: classifying trajectories of eyes vs. other object

(non-eye). With this experiment we aimed to assess the suitability
of eye-tracking data as a proxy of other types of moving objects.
For this experiment, similar to the previous experiments, we clas-
sified eye-tracking data collected from an eye tracker against the
data used in the first experiment. We intended to investigate
whether it is possible to analytically tell apart trajectories gener-
ated by eye movement from those of other objects such as motor-
cycles, cars, bicycles and pedestrians that we subsume under the
term ‘‘non-eye” objects. Specifically, we were interested to see
whether it is feasible to use eye-tracking data in order to simulate
other moving objects due to accessibility, privacy and data cost
issues.

The eye-movement data set used here (Fig. 5) was contributed
by Arzu Çöltekin (Eye Movement Laboratory, Department of Geog-
raphy, University of Zurich) and consists of about 50,000 gaze
points from two eye movement trajectories captured by a Tobii
eye tracker at an interval of 16 ms during experiments on a
1600 � 1200 screen.

5.2. Experiments – workflow

For the three experiments we pursued our proposed 3-step
methodology described in Section 3 followed by an additional
phase of trajectory classification suggested in Section 4.1. The
workflow of the three experiments is described in the following
subsection in more detail.

5.2.1. Trajectory data preparation

First, the raw movement data were cleaned in order to remove
outliers. In the case of eye-movement data, points that lay off the
screen were considered as outliers and removed. The data were
then re-sampled to a regular time interval, equal to the minimum
sampling rate of the raw data (16 ms for eye-movement data and
1 s for the other objects). In order to fill gaps linear interpolation
was used, as the underlying movement geometry didn’t suggest
the use of a more elaborate interpolation technique. Finally, we ap-
plied moving average smoothing (window size of 5 s) on the fil-
tered, re-sampled data. For eye-movement data, only the filtering
and re-sampling steps were applied. The reasons for not applying
smoothing are the prevention of data loss and the potential crea-
tion of artifacts, as these types of trajectories exhibit a ‘jagged’
geometry that might be destroyed by the regularizing effect of tra-
jectory smoothing. In the next step, from the entire dataset we se-
lected our sample trajectories, each with a length of 300 points (i.e.
with a duration of 5 min for the transportation objects). All the
sample trajectories were taken from various overland roads and
were visually checked to be consistent and to largely homogeneous
in terms of their path geometry to prevent artifacts in the results of
the trajectory classification. However, in the case of eye-tracking
data it is impossible to avoid having ‘jagged’ geometries, as de-
scribed earlier. Finally, the selected sample trajectories served as
input data for the experiments.

In our study, we initially experimented with two methods for
smoothing of raw GPS data, Kalman filtering (Eubank, 2005) and
moving average smoothing. Both methods yielded similar results
for our data, seemingly contradicting the results reported in Jun
et al. (2007). However, the GPS data obtained from openstreet-
map.org were captured by devices of unknown accuracy. Kalman
filtering requires a model of movement, and not having solid
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knowledge available about the movement of the objects under
study has probably seriously impacted on the performance of this
smoothing method. Further experiments indicated that Kalman fil-
tering does indeed generate superior results when more accurate

data are available, confirming the findings of Jun et al. (2007).
Eventually, however, for reasons of practicability, we chose to
use moving average smoothing, which is a reasonable smoothing
method in the spatial domain.
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5.2.2. Global descriptors

As mentioned before, Figs. 4 and 5 illustrate the 2-D plots of the
trajectories of selected objects. From this figure it becomes obvious
that the trajectory of the motorcycle (Fig. 4a), car (Fig. 4 b), bicycle
(Fig. 4c), and pedestrian (Fig. 4d), are much smoother than the tra-
jectories of eye movement (Fig. 5). Of course, temporal granularity
of the sampling will influence the smoothness and length of the
traveled path. For instance, the overall character of the car and mo-
torcycle movement captured every second appears smoother and
closer to the pedestrian and bicycle movement. However, with a
lower sampling rate (e.g. every hours) the trajectory of the car
and motorcycle movement to some degree would be probably clo-
ser to the eye movement captured every few milliseconds. Tables
1–3 present the descriptive statistics for the straightness index,
velocity and displacement from the previous fix (or step length)
as some examples of the movement parameters that were com-
puted for the trajectories of the selected objects of Figs. 4 and 5.

5.2.3. Correlation analysis

For the four selected MPOs, Table 4 presents the results for the
Spearman rank correlation coefficients for different pairs of move-
ment variables. The straightness index is not used because it is a
compound index using displacement. The results suggest a strong
positive correlation between velocity and displacement from the
previous fix for all studied objects. Moreover, there is no correla-
tion identified between acceleration and turning angle for the se-
lected objects. Outcomes show a negative weak correlation
between velocity and turning angle for car, motorcycle, pedestrian
and bicycle movement. However, for eye movement almost no cor-
relation occurs (Table 4).

5.2.4. Locally extracted features

We generated movement parameter profiles for velocity, accel-
eration, turning angle, and straightness index for our trajectory
data. Using Algorithm 1 we then decomposed the profiles into

the four classes foreseen in the algorithm. After some initial exper-
iments, we found threshold values that yielded consistent results
over all trajectory samples. For sinuosity, we have set the threshold
separating low from high sinuosity at 0.95. For deviation, we use
the standard deviation of the residuals of a particular profile.

The results of the decomposition of the movement parameter
profiles for four of the trajectory samples are depicted in Figs. 6
and 7. Fig. 6 illustrates the results of the decomposition process
on a sample trajectory of a motorcycle on the left and a sample tra-
jectory of a car on the right (from experiments #1 and #2). Simi-
larly, Fig. 7 shows the results of the decomposition process on a
sample trajectory of a bicycle on the left and a sample trajectory
of eye movement on the right (from experiment #3). In order to
save space, we do not visualize the sample result of the decompo-
sition of a pedestrian trajectory, which looks very similar to the re-
sult for the bicycle trajectory. However, as mentioned earlier
trajectory samples of pedestrians have been included in experi-
ments #1 and #3. The individual graphs in Figs. 6 and 7 represent
the normalized profiles of velocity (Figs. 6b and 7b) and accelera-
tion (Figs. 6c and 7c), respectively. At the bottom of each graph
the four decomposition classes are shown as follows:

� Green: low sinuosity – low deviation.
� Blue: high sinuosity – low deviation.
� Red: low sinuosity – high deviation.
� Magenta: high sinuosity – high deviation.

The above results form the input for the remaining steps and
will be discussed in Section 6.

5.2.5. Feature selection and PCA

In our experiments, we selected a total set of 58 features from
the movement parameters previously extracted on the global and
local level from the trajectories, as summarized in Table 5. Follow-
ing the correlation analysis conducted previously, we excluded dis-
placement from the selection of features, as it correlates highly
with velocity. From the global parameters, we further excluded
turning angle, because it does not help to differentiate between ob-
jects. Consequently, we used three movement parameters (i.e.
straightness index, velocity, and acceleration) to compute the
mean and standard deviation at the global level, resulting in six se-
lected global features (Table 5, top row).

The set of local features obtained from the four movement
parameter profiles shown in Section 5.2.4 is made up of the mean
and standard deviation of the segment length per decomposition
class and per descriptor (resulting in 32 features); the number of
changes of decomposition classes along the profile, computed for
each descriptor (4 features); and the percentage that each decom-
position class holds from the total number of points, per descriptor
(16 features).

The above selected 58 features were input to a PCA to form
uncorrelated linear combinations of the original features. Conse-
quently, the number of features was reduced to 15 principal com-
ponents for experiments #1 and #2 and 11 principal components
for experiment #3, which formed the input for the trajectory

Table 1

Descriptive statistics for straightness index.

MPO Min Max Mean Median Stddev Skewness

Motorcycle 1.42 1.60 1.5 1.5 0.02 0.52
Car 1.48 1.60 1.49 1.49 0.11 8.21
Bicycle 1.07 3.3 1.5 1.5 0.08 4.21
Pedestrian 1.03 5.8 1.5 1.5 0.16 14.40
Eye 1 3141.6 8.77 2.60 89.69 26.99

Table 2

Descriptive statistics for velocity (eyes: [pixel/ms], other MPOs: [m/s]).

MPO Min Max Mean Median Stddev Skewness

Motorcycle 0 35.13 31.12 32.8 4.94 �3.11
Car 0 33.49 33.03 31.04 3.13 �3.04
Bicycle 0 15 5.29 5.18 2.29 0.5
Pedestrian 0 2.5 1.65 1.68 0.29 �1.97
Eye 0 20 1.18 0.48 2.36 4.13

Table 3

Descriptive statistics for displacement from the previous state (eyes: [pixel], and
other MPOs [m]).

MPO Min Max Mean Median Stddev Skewness

Motorcycle 0 34.08 29.34 32.18 6.52 �1.94
Car 0 32.83 29.39 30.75 3.88 �2.77
Bicycle 0 17 3.34 2.69 2.48 3.34
Pedestrian 0 2.2 1.17 1.26 0.4 1.17
Eye 0 950 15.29 4.63 46.46 15.29

Table 4

Spearman rank correlation coefficients.

Correlation Motorcycle Car Bicycle Pedestrian Eye

Velocity–acceleration 0.065 0.016 0.07 0.23 0.36
Velocity–turning angle �0.38 �0.25 �0.25 �0.13 �0.06
Velocity–displacement 0.99 1 1 1 0.99
Acceleration–turning angle �0.1 0.002 0.02 0.01 0.06
Acceleration–displacement 0.065 0.016 0.07 0.23 0.36
Displacement–turning angle 0.38 �0.25 0.25 �0.12 0.06
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classification step. Fig. 8 visualizes the 3-D plots of the first three
principal components for the sample trajectories of the different
objects used in these three experiments.

5.3. Experiments – results

For the classification stage of the proposed methodology, we
randomly selected 165 samples of stretches consisting of 300
points from the various trajectories introduced in Section 5.1.
115 samples from eye movement trajectories, 165 frommotorcycle
trajectories, 165 from car trajectories, 165 from bicycle trajecto-
ries, and 165 from pedestrian trajectories. We then ran the decom-
position algorithm for all the samples to compute the

corresponding global and local movement properties. Three exper-
iments were then conducted to evaluate the trajectory classifica-
tion procedure.

The main objective of experiments #1 and #2 was to evaluate
whether the proposed methodology could be applied in automatic
detection of transportation mode. For experiment #1, we used 560
trajectory samples from the four pools of motorcycle, car, pedes-
trian and bicycle trajectories as a training set for SVM learning
(i.e. 4 � 140 samples). The remaining 100 samples from the four
pools (i.e. 4 � 25 samples) were used as a testing set to evaluate
the performance of the classification. The aim of this experiment
was to evaluate how well the different types of transportation
MPOs could be differentiated using the proposed methodology in

(a) Normalized sample trajectory (300 fixes) of motorcycle (on the left) and car (on the right) 

(b) Normalized and decomposed velocity profiles for the sample trajectories of motorcycle (on the left) and car (on the right)

(c) Normalized and decomposed acceleration profiles for the sample trajectories of motorcycle (on the left) and car (on the right)
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Fig. 6. Normalized and decomposed velocity and acceleration profiles for the sample trajectories of motorcycle and car.
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a multi-class classification mode. Conversely, experiment #2 had
the objective of assessing a two-class classification. For this exper-
iment, we used 280 trajectory samples from the two pools of mo-

torcycle and car trajectories as a training set for SVM learning (i.e.
2 � 140 samples). The remaining 50 samples from the two pools
(i.e. 2 � 25 samples) were used as a testing set to evaluate the
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(a) Normalized sample trajectory (300 fixes) of bicycle (on the left) and eye movement (on the right) 

(b) Normalized and decomposed velocity profiles for the sample trajectories of bicycle (on the left) and eye movement (on the right)

(c) Normalized and decomposed acceleration profiles for the sample trajectories of bicycle (on the left) and eye movement (on the right)
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Fig. 7. Normalized and decomposed velocity and acceleration profiles for the sample trajectories of bicycle and eye movement.

Table 5

Original features selected for the classification.

Descriptors # of descriptors

Global Mean and stddev at global level, per movement parameter (3) 6

Local Mean and stddev of segment length, per decomposition class (4), per movement parameter (4) 32
Number of decomposition class changes, per movement parameter (4) 4
Percentage of each decomposition class (4), per movement parameter (4) 16
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performance of the classification. More specifically, in this experi-
ment we intended to assess how well trajectories of motorcycles

and cars, as exemplars of MPOs of similar speed range, could be
differentiated.

Finally, the intention of experiment #3 was to evaluate how
similar (or different) trajectories generated by eye movement are
from trajectories of non-eye objects from the transportation do-
main (i.e. motorcycles, cars, bicycles, and pedestrians) using the
proposed methodology in a multi-class classification mode. Conse-
quently, we ran the SVM learning process with a training set con-
sisting of 90 eye movement trajectories and 90 non-eye movement
trajectories (i.e. 25 motorcycles, 25 cars, 20 pedestrians and 20
bicycles trajectories). We tested the classification performance
using a testing set of 25 eye movement trajectory samples, to-
gether with 25 non-eye movement trajectory samples (i.e. seven
motorcycles, eight cars, five bicycles, five pedestrians).

In order to perform the experiments, we used the LIBSVM tool
(Chang & Lin, 2001). We applied a radial basis function (RBF) kernel
with two parameters: c = 2, which is a penalty function for misclas-
sified sample points of training data; and c = 0.07, which is an
exponent factor in the RBF function (Cristianini & Shawe-Taylor,
2000). They were obtained by trying out different parameter com-
binations and evaluating the classification accuracy by means of
cross-validation. The results of experiments #1 and #2 are pre-
sented in Table 6. From experiment #3, we achieved a classification
accuracy of 100% cleanly separating all eye movement trajectories
from the non-eye trajectories used in this study. Thus, we refrain
from presenting this result in a table.

6. Discussion

In this section we discuss the results presented in the previous
section. We first compare the characteristics of the 2-D trajectories
as well as their associated movement parameters expressed in the
profiles, then discuss the results of the three classification experi-
ments, and finally take a brief look at efficiency considerations.

6.1. Global and local movement descriptors

6.1.1. Trajectories

Not surprisingly, the descriptive statistics of the straightness in-
dex and the 2-D plots of the trajectories (Table 1, Figs. 4 and 5) as
well as the straightness index profiles for the trajectory samples
suggest that the car movement with a mean straightness index va-
lue of 1.49 and standard deviation close to 0.11 represents the
smoothest movements, while eye movement is the most unsteady
movement, with a mean straightness index value of 8.77 and a
standard deviation of 89.69.

The 2-D plots of the exemplar motorcycle, car, bicycle and pe-
destrian trajectories (Fig. 4) suggest that the geometry of such ob-
jects with a sampling rate of one second to some extent is
comparable to each other. However, from the further numerical
analysis and systematic classification that we have done in exper-
iments #1 and #2, it can be concluded that these four moving ob-
jects behave differently in terms of the velocity, acceleration and
straightness index of their paths (Tables 1–3; and Figs. 6 and 7, left
side).

6.1.2. Velocity

As Figs. 6b and 7b and Table 7 show, the velocity of cars, bicy-
cles and pedestrians lies in two classes of high (above 90%) and low
(less than 10%) deviation from the median, always with low sinu-
osity. On the other hand, the velocity profile of motorcycle move-
ment changes between all four decomposition classes. It mostly
lies in two classes of high (72.48%) and low (15.1%) sinuosity, with
low deviation from the median. This means that velocity undulates
very closely around the median and does generally not deviate

−1.5

−1

−0.5

0

0.5

1

−5
−4

−3
−2

−1
0

1
2

3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Non-eye
Eye

−2
−1

0
1

2
3

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5
3

−3

−2

−1

0

1

2

3

4

5

Car
Motorcycle

−1.2−1
−0.8−0.6

−0.4−0.200.20.40.6−1−0.500.511.52
2.5

−1.5

−1

−0.5

0

0.5

1

Bike
Car
Motorcycle
Walk

(c) Experiment #3

(b) Experiment #2

(a) Experiment #1

Fig. 8. 3-D plot of the first three principal components of the sample trajectories.

430 S. Dodge et al. / Computers, Environment and Urban Systems 33 (2009) 419–434



greatly from the trajectory (i.e. only 5.37% of profile points are clas-
sified as high deviation). The results indicate that the velocity pro-
files of the bicycles and pedestrians have the least variations
between classes and the highest proportion of low sinuosity-low
deviation points. However, the velocity profiles of the motorcycle,
car, bicycle and pedestrian trajectories have some small perturba-
tions that can be attributed to the limited accuracy of the GPS and
random noise. In comparison, the profile of eye movement velocity
suddenly increases at certain points (Fig. 7b on the right) when a
saccade (i.e. rapid movement of the eyes) happens, although it
stays close to the median (like the pedestrian movement) for the
remaining part of the profile at fixation points, where the eyes fix-
ate (Salvucci & Goldberg, 2000). This points to the potential of
using our approach to detect fixations and saccades from eye-
movement protocols. As shown in Fig. 9, long segments of low
deviation indicating fixations can be nicely extracted from short
segments of high sinuosity-high deviation with a length of only 1
or 2 points in saccades. This behavior is distinctly different from
the velocity variation of the other objects under study.

6.1.3. Acceleration

In terms of the profile decomposition classes, the acceleration
profiles of the five objects share similarities with the correspond-
ing velocity profiles (Figs. 6 and 7, Table 8). For instance, the accel-
eration profile of cars (and similarly for bicycles and the
pedestrians) mostly varies very close to its median, with only
0.33% of points showing a higher deviation. All profiles show a
higher proportion of high sinuosity-low deviation points than the
corresponding velocity profiles. In the case of motorcycle, car, bicy-
cle and pedestrian movement, there are some small perturbations
that cause higher sinuosity on the corresponding acceleration pro-
files, which are due to the accuracy of the GPS devices used as well
as random noise. This noise could be removed by curve fitting to
profiles (instead of simply smoothing the trajectories). In the case
of the eye movement and motorcycle movement, it is interesting to
see that despite the noise, the high sinuosity-high deviation points
are also picked up in the acceleration profiles. For eye movement,
the match is even perfect; some segments are slightly shorter but
they all occur at the same spot as in the velocity profiles. Therefore,

Table 6

Results of the SVM classification for the experiments #1 and #2.

Experiment Object # Train traj. # Test traj. # Correct class Error of commission Error of omission Kappa coefficient % Correct class

Exp. #1 Motorcycle 140 25 23 0.041 0.08 0.76 82
Car 140 25 21 0.043 0.12
Bicycle 140 25 19 0.34 0.24
Pedestrian 140 25 18 0.25 0.28

Exp. #2 Motorcycle 140 25 23 0.042 0.08 0.88 94
car 140 25 24 0.077 0.04

Table 7

Summary table of the velocity profile decomposition of the sample trajectories.

Obj# Mean Stddev Low Sinuosity–low deviation hiGh Sinuosity–low deviation Low Sinuosity–high deviation High Sinuosity–high deviation

% class Mean
length

Stddev
length

% class Mean
length

Stddev
length

% class Mean
length

Stddev
length

% class Mean
length

Stddev
length

Motorcycle 28.73 6.91 72.48 7.85 6.41 15.1 2.31 0.95 5.37 2.23 0.43 1 1.67 0.58
Car 10.95 3.07 91.27 90.67 84.18 0 0 0 8.72 13 1.41 0 0 0
Bicycle 4.56 3.88 91.94 274 0 0 0 0 8.05 24 0 0 0 0
Pedestrian 3.25 0.56 97.65 97 127.47 0 0 0 2.34 3.5 2.12 0 0 0
Eye 308.34 617.03 73.87 7.42 6.80 17.59 3.18 1.40 0 0 0 8.54 2 0

(b) trajectory for eye movement decomposed based on velocity
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Fig. 9. Extracting saccades and fixations from trajectories of eye movement.
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as stated earlier, the proposed segmentation algorithm can be em-
ployed successfully on velocity and acceleration profiles of eye
movement trajectories as a fixation detection method. The acceler-
ation profile of the motorcycle movement shows longer periods of
high deviation than the eye movement and a more intermittent
pattern of changes between the four different decomposition clas-
ses than any other profile (Fig. 6b).

6.1.4. Straightness index and turning angle

The decomposition results for the straightness index profiles
are not shown graphically, in order to save space. A summary of
decomposition classes is given in Table 9. The results indicate that
motorcycle, car, bicycle and pedestrian movement are very
smooth, with about 98% of the profile points assigned to the low
sinuosity class. In the case of cars, bicycles and pedestrians the pro-
file mostly stays close to the median (about 98% in the high devi-
ation class). However, the motorcycle profiles lie in 10% of the
cases in the high deviation class. In contrast, from the decomposi-
tion results it is obvious that the path of eye movement trajectories
is more sinuous.

By the same token, the decomposition results of the turning an-
gle profiles (not shown here to save space) demonstrated that the
turning angle profiles of eye movement are very rough and exhibit
an irregular, almost violent behavior, in contrast to the turning an-
gle profiles of the other objects.

6.2. Trajectory classification

For experiment #1, the multi-class classification of motorcycle,
car, bicycle and pedestrian trajectories, we achieved an overall
accuracy of 82% and a Kappa coefficient of 0.76 (Table 6). One of
the motorcycle sample trajectories was classified as a car trajectory
and another one was classified as a bicycle trajectory. The same
happened in the case of car movements (three misclassifications).
The other misclassifications were due to pedestrian trajectories
classified as bicycle trajectories, and vice versa. As the discussion
of movement parameter profiles above shows, these misclassifica-
tions were due to the fact that motorcycle and car movements on
the one hand, and bicycle and pedestrian movements on the other
hand, are indeed quite similar. The two confusions of motorcycle
trajectories with a bicycle and a car, respectively, were related to
movement samples at lower speed.

For experiment #2, the motorcycle vs. car classification, we
reached an overall accuracy of 94% and a Kappa coefficient of
0.88 (Table 6). One car movement sample was classified as motor-
cycle, and two motorcycle samples classified as car. These misclas-
sifications were again due to the fact that these particular samples
happened to fall into an extended period of low speed movement.

For experiment #3, the eye vs. non-eye classification, we
achieved an overall accuracy of 100%. This is clearly due to the fact
that the non-eye MPOs used in this experiment are lacking the typ-
ical saccadic movement patterns of eyes. Hence, we can conclude
that generating movement parameters similar to those of other
moving objects is not possible using eye-movement data, and
hence eye-movement data are not suitable as a proxy of other
movement data that are examined in this study.

The above findings are further illustrated in Fig. 8, which shows
a 3-D plot of the first three principal components computed on the
trajectory samples used in the three experiments. Fig. 8.a shows
how the bicycle and the pedestrian samples take the middle
ground between the car and the motorcycle movement samples.
Fig. 8b illustrates the separation of the car and the motorcycle
movement samples. Fig. 8c then illustrates how the eye movement
samples clearly stay apart from the non-eye movement observa-
tions (motorcycle, car, bicycle and pedestrian samples).

From the outcomes of the experiments it can be concluded that
the amplitude and variation of velocity and acceleration are the
most essential features in recognizing a certain travel mode or ob-
ject type. For instance, the following rules, which can also be dis-
covered from Figs. 6 and 7, are learned by the SVM to classify the
trajectories: if the velocity and acceleration profiles are rather
smooth and mostly composed of low sinuosity-low deviation seg-
ments, then the profile may belong to a trajectory of a car or bicy-
cle. If the velocity and acceleration profiles contain a number of
points with high sinuosity, then they may belong to a motorcycle
trajectory. If the velocity and acceleration profiles have a jagged
geometry consisting of a set of low sinuosity-low deviation seg-
ments interrupted by a set of high sinuosity-high deviation points,
then the profiles are indicating the saccadic movement of eyes.

6.3. Efficiency

In order to be useful for data mining our proposed methodology
has to be reasonably efficient for massive databases or for real-

Table 8

Summary table of the acceleration profile decomposition of the sample trajectories.

Obj# Mean Stddev Low sinuosity–ow deviation High sinuosity–low deviation Low sinuosity–high deviation High sinuosity–high deviation

% Class Mean
length

Stddev
length

% Class Mean
length

Stddev
length

% Class Mean
length

Stddev
length

% Class Mean
length

Stddev
length

Motorcycle 0.002 7.4 45.97 8.68 6.45 38.59 6.67 8.05 2.01 1.75 0.5 13.42 1.97 0.16
Car 0.04 1.3 99.32 148 207.89 0.33 1 0 0.33 1 0 0 0 0
Bicycle 0.01 0.22 88.59 52.8 46.67 0 0 0 11.4 4.5 3.25 0 0 0
Pedestrian 0 0.14 90.60 38.57 34.85 0.67 1.5 0.7 8.39 4.16 1.6 0.33 1 0
Eye -0.44 41.15 70.35 7.68 6.64 23.62 2.52 1.34 0.50 1 0 5.52 1.9 0.32

Table 9

Summary table of the straightness index profile decomposition of the sample trajectories.

Obj# Mean Stddev Low sinuosity–low deviation High sinuosity–low deviation Low sinuosity–high deviation High sinuosity–high deviation

% Class Mean
length

Stddev
length

% Class Mean
length

Stddev
length

% Class Mean
length

Stddev
length

% Class Mean
length

Stddev
length

Motorcycle 1.5 0.2 89.26 53.2 56.66 0.33 1 0 10.4 2 0 0 0 0
Car 1.5 0.15 97.99 97.67 88.99 0.67 2 0 1.34 2 1.41 0 0 0
Bicycle 1.48 0.18 96.64 96 61.73 2.01 3 1.41 0.33 1 0 1 1.67 0.58
Pedestrian 1.49 0.16 96.98 96.33 87.75 0.33 1 0 2.68 4 1.41 0 0 0
Eye 5.32 9.27 54.27 5.27 4.15 35.17 3.71 2.55 0.5 1 0 10.05 1.94 0.23
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time applications. Due to lack of a large trajectory database it was
not possible to empirically assess the computational performance
of our methodology under these conditions. Nevertheless, we
would like to briefly touch on efficiency issues here in order to sup-
port the argument that our methodology indeed has the potential
to be used with massive datasets or in a real-time setting.

First, all parts of the methodology including the profile decom-
position algorithm run in linear time, except the PCA and the SVM
classification. Second, the training stage of the SVM classifier,
which is known to have slow computational performance, is run
off-line and on a subset of the data. And finally, it is possible to re-
place the PCA and the SVM classifier by simpler and computation-
ally more efficient techniques.

6.4. Test data used

The test data sets used are relatively large: 660 (4 � 165) trans-
portation tracks for experiments #1 and #2, and another 115 eye
movement tracks for experiment #3. We believe our experiments
to be sufficient to establish the feasibility of the proposed method-
ology. However, the test data are restricted to movement on over-
land and suburban roads (i.e., no urban traffic included) and they
were originally sampled at a similar temporal interval (around
1 s). In order to make conclusive statements about the scope of

applicability of the proposed methodology, the experiments would
have to be extended to data sets of very different moving objects;
to traffic movement in urban situations; and possibly to data that
have been sampled at different temporal resolutions and may con-
tain gaps.

While such experiments still need to be carried out, we expect
that the methodology should be capable of handling tracks with
different transportation modes due to the decomposition of trajec-
tories into segments of homogenous character based on change
points (Zheng et al., 2008). Also, the decomposition algorithm used
is based on simple principles and does not use any extra knowl-
edge, which is why we expect it to be robust also for different mov-
ing object types. The performance of the decomposition, and thus
of the overall methodology, might decrease for very short trajecto-
ries or tracks with similar movement parameters, for instance in
congested traffic situations. However, by considering the history
of the entire trajectories, such track sections may be classified
more accurately. For instance, knowing the velocity characteristics
in uncongested parts of the trajectories involved in a congestion,
bicycles may be distinguished from cars or motorcycles.

7. Conclusions

We have presented a comprehensive, three-stage methodology
that allows extracting movement parameters from the trajectories
of different types of moving objects. As one of the application of the
proposed methodology, we showed how to classify trajectories of
unknown MPOs by similarity to the trajectories of previously
learned MPOs. We have then conducted a series of experiments
that not only demonstrated the feasibility of the proposed method-
ology but also provided interesting empirical results. Our experi-
ments provide evidence about the similarities and differences
that exist among different types of moving objects in the transpor-
tation domain. The results show that using our methodology we
can successfully detect the mode of transport from unknown tra-
jectories of people using different transportation means. It was also
shown that eye-movement data cannot be successfully used as a
proxy of full-body movement of humans, or vehicles. The physics
of movement of virtually mass-less movement processes, such as
eye movement (and possibly also computer mouse movement),
is very different from the movement of objects that are governed

by inertia to a much greater extent. Nevertheless, the methodology
can contribute to finding the most feasible proxies for desired
moving objects in various application domains (e.g. biology, ecol-
ogy). For instance, eye movement could potentially be considered
a proxy of some objects that have a stop-and-go movement behav-
ior such as bees and butterflies.

We see potential for future work in three directions. First, there
is plenty of room for more experiments aiming to further exploit,
enhance and consolidate the proposed methodology. For instance,
experiments with different trajectory datasets; other MPO types;
different transportation data (e.g. movement on urban roads); dif-
ferent sets of movement parameters; fine-tuning of the SVM clas-
sifier (e.g. kernel tuning); and other classification techniques (e.g.
decision trees). Since we have set up the methodology in a stream-
lined, automated process, we are in a good position to conduct
such further experiments. From the point of view of real-time pro-
cessing, experiments with a simpler classifier than SVM, which is
known to have a high computational complexity, may be war-
ranted. Finally, the proposed methodology could be developed fur-
ther to set up an automatic transport mode detection system in
transportation applications.

Second, we are interested in further exploring the method and
results of movement parameter profile decomposition. For in-
stance, as we discussed in Section 6.1, we believe that there is a po-
tential in using the decomposition algorithm as an alternative
technique for fixation detection in the analysis of eye-tracking
data. Also, we are interested in using the results of the profile
decomposition algorithm for trajectory similarity analysis as well
as for more differentiated parameterization of movement
simulators.

Third, our methodology currently does not take into account the
context and constraints that influence movement. Further studies
therefore have to consider how to involve movement context.
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