
 
 

Revealing the ultra-sensitive calorimetric properties of supercon-
ducting magic-angle twisted bilayer graphene 
 
G. Di Battista1, P. Seifert1, K. Watanabe2, T. Taniguchi3, K.C. Fong4, A. Principi5 and D. K. Efetov1* 

 
1. ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 

Castelldefels, Barcelona, 08860, Spain 
2. Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, 

Tsukuba 305-0044, Japan 
3. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 

1-1 Namiki, Tsukuba 305-0044, Japan 
4. Quantum Engineering and Computing Group, Raytheon BBN Technologies, Cambridge, Mas-

sachusetts 02138, United States 
5. Department of Physics and Astronomy, The University of Manchester, M13 9PL Manchester, 

United Kingdom 
 

*E-mail : dmitri.efetov@icfo.eu       

 
The allegedly unconventional superconducting phase of magic-angle twisted bilayer gra-

phene (MATBG)1 has been predicted to possess extraordinary thermal properties, as it is formed 
from a highly diluted electron ensemble with both a record-low carrier density n ~ 1011 cm-2 and 
electronic heat capacity Ce < 100 kB. While these attributes position MATBG as a ground-break-
ing material platform for revolutionary calorimetric applications2, these properties have so far 
not been experimentally shown. Here we reveal the ultra-sensitive calorimetric properties of a 
superconducting MATBG device, by monitoring its temperature dependent critical current Ic 
under continuous laser heating with a wavelength of λ = 1550nm. From the bolometric effect, we 
are able to extract the temperature dependence of the electronic thermal conductance Gth, which 
remarkably has a non-zero value Gth = 0.19 pW/K at 35mK and in the low temperature limit is 
consistent with a power law dependence, as expected for nodal superconductors. Photo-voltage 
measurements on this non-optimized device reveal a peak responsivity of S = 5.8 x 107 V/W when 
the device is biased close to Ic, with a noise-equivalent power of NEP = 5.5 x 10-16 WHz-1/2. Analysis 
of the intrinsic performance shows that a theoretically achievable limit is defined by thermal fluc-
tuations and can be as low as NEPTEF < 10-20 WHz-1/2, with operation speeds as fast as τ ~ 500 ns. 
This establishes superconducting MATBG as a revolutionizing active material for ultra-sensitive 
photon-detection applications, which could enable currently unavailable technologies such as 
THz photon-number-resolving single-photon-detectors.  
 

To date the most sensitive detectors for electro-magnetic radiation are based on super-
conducting materials and exploit local photo-induced heating across their strongly temperature 
dependent superconducting transition3–6. To maximize the temperature increase due to ab-
sorbed radiation, the key requirements for such materials are an ultra-low electronic heat ca-
pacity Ce

7, which is typically achieved by using nano-structured thin films6, as well as a good 
thermal isolation and ultra-low thermal conductance Gth to its surroundings8. Possessing both 
of these attributes, graphene has recently attracted formidable attention9–13. While not an in-
trinsic superconductor, it can be proximitized by superconducting electrodes to form Josephson 
junctions, and as such was successfully used as a GHz bolometer14,15 and mid-IR single-photon 
detector16,17. Furthermore the recently discovered moiré material, magic angle twisted bilayer 
graphene (MATBG) was shown to have an intrinsic, gate tunable superconducting phase with 
a record-low carrier density n < 1011 cm-2 and electronic heat capacity Ce < 100 kB 

1,2, where kB 

is the Boltzmann constant. Since both quantities are by several orders of magnitude lower than 



 
 

for any other superconductor, this establishes MATBG as an extremely promising supercon-
ducting material for next generation calorimetric applications2.  

 
The signature superconducting properties of MATBG are shown in Fig. 1a and b. The 

typical device consists of a van der Waals stack of graphite/hBN/MATBG/hBN where the 
MATBG has a twist-angle of 1.10°±0.03° and is encapsulated into insulating hBN hexagonal 
boron nitride layers (see device image in the inset of Fig. 1a). By applying a gate voltage 𝑉  to 
the metallic graphite layer we can electrostatically tune the carrier concentration in the 
MATBG sheet n. Fig. 1a shows measurements of the longitudinal resistance Rxx vs. electronic 
temperature Te at optimal doping, which reveal a sharp superconducting transition with a crit-
ical temperature of 𝑇  ~ 2.1 K (defined by the temperature at which Rxx equals to 50% of the 
normal state resistance) and a high peak value dRxx/dT > 8 kΩ/K. The superconducting region 
is dome shaped in the n-T phase space and lies in close proximity to a correlated insulating 
state, which occurs at a filling of electrons per moiré unit cell of ν = -2 (Fig. 1b (top)). The 
correlated insulator leads to a Fermi level reset, as is evidenced from measurements of the Hall 
density 𝑛  vs. carrier density n (Fig. 1b (bottom)), which dramatically lowers the density of 
the free carriers. For optimal doping of the superconducting state we extract an ultra-low free 
carrier density of only 𝑛  = -1.96 x 1011 cm-2, which directly translates into a record low elec-
tronic heat capacity per area Ce/A ~ 102 kB µm-2, as is calculated in Fig. 1c for the same param-
eters.  
 

Here we test the thermal and calorimetric properties of MATBG electrons in the super-
conducting regime. For this purpose, we illuminate (spot-diameter ~ 1.9mm) the device with 
laser light at telecom wavelength of λ = 1550nm, and monitor its 4-terminal transport proper-
ties, as shown schematically in Fig. 1d. We use the temperature dependence of the critical 
current Ic to calibrate the electronic temperature Te and this thermometry scheme to accurately 
monitor the heating effects induced by light illumination (see SI for more details). This allows 
us to work out the calorimetric sensitivity of the superconducting state of MATBG and to de-
termine its electronic thermal conductance Gth. In addition, we study the performance of 
MATBG as a photodetector and estimate its noise equivalent power NEP.  
 

While the exact processes which govern light-matter interactions in MATBG are not 
yet experimentally studied, we assume that for our experimental parameters these are very 
similar to those in AB bilayer graphene sheets18, as the schematics in Fig. 1e shows. For the 
near infrared wave-lengths applied here, photons do not couple to phonons in the system and 
are absorbed only by the electrons with an absorption percentage of ~ 4.6% 19, by exciting 
optically electron-hole pairs (e-h) in the higher energy dispersive bands. These assumptions are 
justified for MATBG as the energy of the incident photons of ~ 0.8 eV is orders of magnitude 
larger than the width of the flat-bands20 ~ 10 meV and the size of superconducting gap 
~1meV21. It is in principle also possible that photons are directly absorbed by Cooper pairs, 
which are broken and excited into higher lying bands. However as the k-space of the flat-bands 
does not extend far away from the Dirac points22, this results in a vanishing joint density of 
states for vertical transitions from and to the flat-bands. Moreover, the wavelength of the pho-
tons is an order of magnitude smaller than the size of the moiré unit cell ~ 13nm1,20 , making 
the effect of the super-lattice on this process negligible.  

 
The absorbed photon energy is then subsequently transferred into heat, where the ex-

cited e-h pairs relax down the bands and eventually thermalize with the electrons in the flat-
bands. The transferred heat in this process raises the electronic temperature of the flat-bands Te 
above the device temperature, which is given by the lattice and the leads and is well thermalized 



 
 

with the bath temperature Tb. Since the temperature of the electrons is elevated by ΔTe = Te – 
Tb above the bath temperature, they dissipate heat into their colder surroundings. This cooling 
process is defined by the electronic thermal conductance Gth, which we assume to be predom-
inantly governed by electron-electron (Wiedemann-Franz) interactions for temperatures below 
1K23.  

 
To study the thermal properties of the MATBG device in the superconducting state we 

first calibrate its electronic temperature Te. This can be achieved by transport measurements of 
the critical current of the superconducting state Ic, which is a monotonic function of its elec-
tronic temperature Te. To accomplish this, we perform non-linear resistance measurements 
dVxx/dI vs. source-drain current Idc, where Ic is extracted from the maxima of the dVxx/dI (Idc) 
traces. By heating up the bath temperature of the cryostat Tb, which is in equilibrium with the 
electronic temperature of the MATBG Te, we can define a direct correspondence of Ic (Te), as 
is shown in Fig. 2a (top) and Fig. 2b (left).  

 
Next, we repeat a similar calibration but now by heating the electrons with laser light, 

while keeping the bath temperature constant Tb = 35mK. As discussed earlier, incident radiation 
only couples to electrons and heats these above the bath temperature Te > Tb, which remains 
unchanged under the minute laser power. To estimate the exact power that is absorbed by the 
electrons PL, we carefully calibrate the power that is incident on the device (see SI), and adjust 
the absorption to 4.6%, as is expected for graphene bilayers19. Fig. 2a (bottom) shows the cor-
responding dVxx/dI (Idc) vs. PL measurements and Fig. 2b (right) shows the extracted Ic (PL). 
Overall these measurements show striking similarities to the previous measurements vs. bath 
temperature, and confirm our assumptions that the absorption of radiation primarily induces a 
bolometric effect via heating the electron gas. 
 

The precise measurement of Ic as a function of both, the electronic temperature Ic (Te) 
and absorbed laser power Ic (PL), allows us to infer the bolometric effect of the MATBG elec-
trons. In order to obtain a smooth calibration between Te  and PL we first fit the Ic (Te) data in 
Fig. 2b (left) with the empirical relation: Ic (Te)= Ic (Te = 0)[1 - (Te/Tc)4]3/2, which is expected 
from BCS theory of a superconductor24(see SI for more information). Inserting the Ic (PL) meas-
urements from Fig. 2b (right) into this relation allows us to obtain the dependence of the elec-
tronic temperature on the absorbed radiation Te (PL).  

 
We now apply these methods and measure Te vs. PL as a function of Tb between 35 mK 

and 810 mK, the highest temperature at which we can accurately determine Ic (Fig. 2c). For 
low heating power and small ΔTe the linear response regime holds25, which allows us to define 
the electronic thermal conductance Gth (Tb)  =  PL /ΔTe,  a quantity which is a direct function of 
the bath temperature Tb, as shown in Fig. 3a. For Tb = 35mK we extract a Gth = 0.19 pW/K. 
This extremely low number proves the very good thermal isolation of the electrons in MATBG. 
Considering the theoretical estimation of heat capacity (see SI) of Fig. 1c, we can now also 
predict the thermal relaxation time of MATBG electrons, which for low power excitations is 
given by the ratio25 τth = Ce/Gth. The resulting τth ~ 500 ns are shorter than that for most state-
of-the-art transition-edge sensors5,8 and could enable faster operation speeds2,15.  

 
The temperature dependence of the electronic thermal conductance in the supercon-

ducting state has been famously used to determine the symmetry of the superconducting gap26–

28. In s-wave superconductors, owing to their isotropic superconducting gap, thermal conduct-
ance follows an exponential activation behavior, where thermal excitations are efficiently 
blocked for temperatures Te << Tc. This is in contrast to nodal p- and d-wave superconductors, 



 
 

where the thermal conductance follows a power law temperature dependence27, and the nodes 
of the superconducting gap allow thermal excitations even for Te << Tc. Since the order pa-
rameter of the superconducting state of MATBG has not been measured so far, we attempt to 
shed light on its symmetry, by theoretically modelling the extracted Gth (Tb) behavior. As pho-
nons are typically frozen below Tb < 1K, we assume that electron-phonon scattering can be 
neglected23. Hence the thermal conductance below this temperature is dominated by the 
Wiedemann-Franz law, where only electrons that are thermally excited above the SC gap con-
duct heat, while Cooper pairs do not. We model using the one-dimensional heat transfer equa-
tion for the local temperature 𝑇 (𝑥), as is in detailed described in the SI. 

 
In Fig. 3a we show the modeled Gth (Tb) for the cases of an isotropic s-wave and for a 

p- or d-wave superconducting gap, which are best fits for the experimental data. Here the size 
of the superconducting gap 𝛥  is the only fitting parameter, while we fix the experimentally 
obtained parameters Tc = 2.1K and normal state resistivity ρ = 20kΩ. We note that the two 
cases yield a significantly different thermal conductance for the limit of Te << Tc. Especially 
for Tb < 0.8 K, the thermal conductance for an isotropic superconductor becomes exponentially 
small, while that of a nodal superconductor decays with a much slower power law dependence. 
The later provides a much better fit of the experimental data, which also has non-zero values 
even at the smallest temperatures. Here, the best fit for the isotropic case gives a 𝛥  ~ 0.42 ± 
0.06 meV, while for the nodal case we obtain a 𝛥  ~ 1.0 ± 0.2 meV, which is in very good 
agreement with recent experimental reports on gap size measurements of MATBG of 𝛥  ~ 1 
meV21. These results suggest that the obtained thermal conductance is rather consistent with a 
nodal p- or d-wave symmetry, than with an isotropic s-wave symmetry, showing overall good 
qualitative and quantitative agreement with theory, which reassures the validity of the assump-
tions and findings. 
 

We now estimate the sensitivity of the MATBG superconductor to irradiation with 
light. For this sake we measure the differential photo-voltage Vph vs. dc current Idc as a function 
of absorbed laser power PL, as is shown in Fig. 4a (see Methods). We find that the photo-
voltage monotonically increases as Idc is enhanced and has a pronounced maximum when the 
critical current is reached Idc ~ Ic (Fig. 4a). This is explained by a photo-induced temperature 
increase when the device is biased close to Ic, which drives the MATBG into the resistive state 
and generates a voltage peak, similarly to previously reported superconducting detectors29. Fig. 
4b shows the power dependence of the voltage peaks Vph

max =Vph (Ic) taken at Tb = 35mK. Its 
value is almost constant for the lowest PL, however as PL is increased it follows a linear power 
dependence, which indicates that the detector operates in a linear response regime. From the 
slope we can extract a high responsivity S = 5.8 x 107 V/W. We define the noise level VN as the 
standard deviation of Vph

max at low powers divided by the square root of the equivalent noise 
bandwidth (see SI), where we find a value of VN  ~ 10-8 VHz-1/2. With these experimental find-
ings we can now also estimate the as measured noise equivalent power of the device NEP = 
𝑉 /𝑆 = 5.5 x 10-16 WHz-1/2. This number is already lower than previously proposed graphene 
bolometers9,12,13 but still 3 orders of magnitude higher than the best transition-edge sensors8,30 
reported in the literature. However, neither the measurement circuit nor device were yet opti-
mized for detector applications.  

 
To work out the intrinsic performance limits of a potential MATBG detector we esti-

mate also the theoretically achievable NEPs (see Fig. 4c). First, we compute the NEP which is 
limited by thermal Johnson noise NEPJohnson= 4𝑘 𝑅𝑇  /𝑆, where R is the detector resistance, 
dominated by the contact resistance (typically ~ 10 kΩ). Here for 35mK we obtain NEPJohnson 

= 2.4 x 10-18 WHz-1/2. Using the experimentally extracted thermal conductance we can further 



 
 

estimate the intrinsic NEP limit, which is defined by the thermal fluctuations of the bath. For 

35mK we get NEPTEF = 4𝐺 𝑘 𝑇    = 1.1 x 10-19 WHz-1/2. These estimates allow to imme-

diately propose avenues to optimize the detector design. Correspondingly, scaling the device 
dimensions to reduce Ce and NEPTEF and optimizing the operation scheme31 as in other transi-
tion-edge sensors3,4 can allow to reach lower NEPs.  Proper device engineering can also con-
siderably reduce the contact resistance32 and highly suppress the Johnson noise. These adjust-
ments could allow to reach NEPTEF < 10-20 WHz-1/2 , which is comparable to state-of-the-art 
transition-edge sensors8,30. Specifically, as has been theoretically shown before2, MATBG can 
be used as the active material for THz and sub-THz superconducting bolometers as well as 
photon-number-resolving single photon detectors of low-energy photons2. 

 
In conclusion, the coexistence of record-small carrier density, ultra-low electronic heat 

capacity and thermal conductance, and a highly temperature-sensitive, gate tunable resistance 
in superconducting MATBG makes it a highly promising material platform for sensitive photo-
detection applications. We estimate that MATBG superconductors could reach NEPs < 10-

20WHz-1/2 when operated in the thermal limit and could so enable calorimeters, bolometers, 
transition edge sensors and single photon detectors with unprecedented sensitivity from the 
visible to THz and even GHz frequencies, and with thermal response times as low as 500 ns, 
which is close to the speed of current superconducting qubits readout systems15,33,34. 
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Methods  
 
Device fabrication. 
The fabrication procedure for MATBG devices has two main steps: the first one in which the 
layers are exfoliated and assembled to form a van der Waals heterostructure and the second 
one in which the structure is patterned and the electric contacts are made. The stack was as-
sembled using the cut and stack technique. A hBN flake was picked up at 100 °C with a stamp 
of propylene carbonate (PC)/polydimethyl siloxane (PDMS) mounted on a glass slide. The first 



 
 

half of graphene (pre-cut using an AFM tip) was picked up with the hBN flake. Subsequently, 
the second graphene layer was rotated to an angle of 1.1° and picked up with the hBN/graphene 
stack. The heterostructure was then fully encapsulated with another hBN layer. A graphite layer 
was picked up in the last step to act as local gate. The stack was then deposited melting the PC 
film at 180 °C on an O2-plasma-cleaned Si/SiO2 chip. At this point the structure was patterned 
by Electron Beam Lithography to form a Hall bar and etched with CHF3/O2 mixture to expose 
graphene edges which were then contacted by metal leads Cr/Au (5/50 nm). 
 
Transport and photovoltage measurements. 
The measurements were carried out in a dilution refrigerator (BlueFors-SD250) at a base tem-
perature of 35 mK. Standard low-frequency lock-in techniques (Stanford Research SR860) 
were used to measure the longitudinal Rxx and transverse Rxy resistance in 4-probe configuration 
with an excitation current of 10 nA at a frequency of 17 Hz. For the measurements of the 
differential voltage dVxx/dI, a dc signal (generated using Keithley 2400 source meter) passed 
through a 1/10 voltage divider in series with a 1-MΩ resistor and was combined with an ac 
excitation current of 2 nA. The differential voltage signal was then amplified with a SR560 
low-noise voltage preamplifier and measured at the same frequency of 17 Hz with the Stanford 
Research SR860 lock-in. All the current-bias measurements were performed applying a dc 
voltage (Keithley 2400) signal through a 1/10 divider and a 1-MΩ resistor. In order to shine 
light on the device a single frequency 1550nm laser was brought via a single-mode optical fiber 
into the dilution refrigerator. A collimator was mounted few centimetres on top of the device 
to shine collimated light with a spot diameter of 1.9 mm. The device was carefully centered in 
the middle of the spot. The incident laser power was adjusted using a variable optical attenuator 
(JGR OA5 l). For the differential photovoltage experiments, the laser emission was modulated 
with a sinusoidal profile. The photovoltage was then amplified with a SR560 room-temperature 
voltage preamplifier and measured with the lock-in referenced at the same frequency of the 
modulation.  
 
Twist angle extraction. 
To extract the twist angle between the two graphene layers, we analyze the Hall measurements 
at low magnetic field (Extended Data Figure 1). When we apply a gate voltage Vg to the graph-
ite, the gate-induced carrier density n varies according to the formula n= Vg Cg/e where Cg is 
the gate capacitance of the bottom hBN layer and e the elementary charge of the electron. Since 
near charge neutrality the Hall charge carrier density (nH = −B/(eRxy)) equals the gate-induced 
carrier density n, performing a linear fit we can accurately extract Cg. From the position of band 
insulators (Extended Data Figure 1) we can estimate the charge carrier density corresponding 
to the fully filled superlattice unit cell ns which directly relates to the twist angle θ: 𝑛 =

8𝜃 /√3𝑎 , where a=0.246 nm is the interatom distance in single layer graphene. The twist 
angle we determine is θ=1.10°±0.03°. 
 

  



 
 

 
Fig. 1. Ultra-sensitive calorimetry based on MATBG superconductors. Fig.1 (a) and (b) 
show transport measurements of a typical superconducting MATBG device with twist-angle 
of 1.10° (a) Longitudinal resistance Rxx and numerical derivative dRxx /dTe vs electron temper-
ature Te at a fixed carrier density nH = -1.96x1011 cm-2. Inset shows image of the measured 
device. (b) Top panel: Rxx vs gate voltage Vg and temperature Te, shows a dome shaped super-
conducting region (yellow dashed line) which is flanking a correlated insulating state at a filling 
factor ν = -2 (white dashed line). Bottom panel: low-field Hall density nH extracted at B = 300 
mT as a function of gate-induced carrier density n. At ν = -2 we observe a Fermi level reset, 
which sets the free carrier density of the corresponding superconducting state to an ultra-low 
value of nH = -1.96x1011 cm-2. (c) Calculation of the electronic heat capacity per area of 
MATBG for the same carrier density as in (a) and (b), showing ultra-low values of Ce/A ~ 102 
kB µm-2 at 35 mK. (d) Schematic of the bolometric measurements, which employ four-terminal 
transport measurements under uniform light illumination with a wavelength of λ = 1550nm. 
(e) Schematics of light-matter interactions in MATBG. The absorbed photons generate elec-
tron-hole pairs in the high order bands which thermalize in the flat bands. The cooling process 
is ruled by the electronic thermal conductance Gth. 
 
  



 
 

 
Fig. 2. Calorimeter calibration and bolometric response. (a) Top panel: color plot of the 
longitudinal dVxx/dI vs dc current bias Idc and temperature Te. The dashed line is the fit of the 
critical current with the empirical expression for a superconductor Ic(T)= Ic(T=0)[1-(Te /Tc)4]3/2. 
Bottom panel: color plot of the longitudinal dVxx/dI vs Idc and laser power PL. In both panels 
the white dots are the extracted values of critical current Ic , while the black lines are line-cuts 
at 3 different values of temperature (top panel) and power (bottom panel). (b) Critical current 
Ic versus Te (right panel) and PL (right panel). The blue line is the fit according to the empirical 
formula used in (a). The inset in the right panel displays the method we use to extract the critical 
current (black dots) from the peak of dVxx/dI at different powers. (c) Variation of electronic 
temperature ΔTe as a function of laser power PL for different bath temperatures (Tb) from 35mK 
to 810mK. The blue (yellow) dashed line is the linear fit of the data at 35mK (810mK) from 
which we extract Gth assuming the linear regime approximation. 
 
 
  



 
 

 
Fig. 3. Thermal conductance. (a) Measured thermal conductance Gth at different bath tem-
peratures (Tb). The dashed lines are the best fits to the experimental data of the modeled Gth 
assuming Wiedemann-Franz law, for the case of an isotropic s-wave (violet) and a nodal su-
perconducting gap (orange). This model is obtained fixing Tc = 2.1K, the normal state resistiv-
ity ρ = 20kΩ and using the size of the superconducting gap 𝛥  as the only fitting parameter. 
The shaded regions represent the modeled Gth in the range 𝛥 ~0.42 ± 0.06 meV (for s-wave) 
and 𝛥 ~1.0 ± 0.2 meV (for nodal superconducting gap). As inset, the same data in logarithmic 
scale up to Tc, denoted as the grey-shaded region.  
 
  



 
 

 
Fig. 4. Detector performance and NEP. (a) Top panel: differential photovoltage Vph as func-
tion of dc current bias (Idc), measured at different laser powers. Bottom panel: Current-voltage 
characteristic I/V as function of dc current bias (Idc). Vph shows pronounced peaks at the critical 
current. (b)  Extracted photovoltage peaks Vph

max as a function of PL. From the linear fit (blue 
line) we extract the responsivity S. The red dashed lines mark the standard deviation of Vph

max 
at low powers (ΔV). (c) Noise-equivalent power NEP for different operating temperatures. In 
violet we show the as measured NEP, in blue the theoretically predicted Johnson noise limited 
NEPJohnson and in yellow the ultimate limit imposed by the thermal fluctuations NEPTEF.  
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A. Table of the measured device 
 

MATBG area dimensions (μm) length=4.1, width=3.7 

Twist angle θ 1.10°±0.03 

Vg (V) -1.455 -1.480 -1.495 

Cg/e (cm-2/V) 1.09 1012 

Carrier density n (1012 cm-2) -1.59 -1.61 -1.63 

Hall carrier density nH (1012 cm-2) -0.196 -0.212 -0.231 

Gth (pW K-1) at Tb=35mK 0.19±0.04 0.19±0.05 0.12±0.04 

Responsivity S (V/W) at Tb=35mK 5.8 107 3.0 107 1.7 107 

Thermal fluctuation limited NEP 
(NEPTEF) (WHz-1/2) at Tb=35mK 

1.1 10-19 1.1 10-19 9.0 10-20 

NEPTEF/√Area (WHz-1/2μm-1) at 
Tb=35mK 

2.9 10-20 2.9 10-20 2.3 10-20 

Measured NEP (WHz-1/2) at 
Tb=35mK 

5.5 10-16 6.4 10-16 7.1 10-16 

Tc(K) (50% normal state resistance) 2.1 2.6 2.8 

 



 
 

B. Extended transport data  
 

 

Extended data Figure 1.| Hall density measurements and Landau fan. (a) The light-blue line 
trace shows the Hall carrier density nH versus the gate-induced carrier density n taken at 0.3 T 
and 35 mK. The light green (light red) stripes indicate the position of correlated insulating 
states (band insulating states), at which we observe clear signatures of Hall density resets. The 
orange dashed lines show that the Hall carrier density follows nH = n near charge neutrality, 
nH=n ± ns/2 beyond the half-filling correlated states and nH=n ± ns after the band insulators, 
where ns is the carrier density corresponding to the fully filled superlattice unit cell. (b) Landau 
fan diagram at 1.5 K. The pronounced quantum oscillations demonstrate the quality and the 
cleanliness of the MATBG device. 

 



 
 

 

Extended data Figure 2. | Additional data on the superconducting phase. (a) Longitudinal 
resistance Rxx versus filling factor ν for different temperatures ranging from 35 mK (blue) to 
16 K (green). The zero-resistive state beyond ν=-2 is the superconductor studied in the experi-
ment. (b) Differential resistance dVxx/dI as a function of current bias Idc and magnetic field B 
for ν=-2.24. The ac excitation current used for this measurement is Iac = 2 nA. The supercon-
ducting state is smeared out by magnetic field. (c) Current-voltage characteristics I/V at various 
temperatures for ν=-2.24. At the lowest temperature of 35 mK, the critical current is around 
0.18 μA. 
  



 
 

C. Calorimeter calibration formula 
 
To derive the formula used to fit Ic vs Te we consider that in the BCS theory the upper critical 
current density Jc for the existence of a superconducting phase depends on the product between 
the superconducting gap Δ and the local density of superconducting electrons1 Ns: Jc ~ NsΔ. 
Using the definition of the order parameter, that Ns ~Δ2 we get Jc ~ Ns

 3/2. Since to fit our data 
we need a formula which is valid at all temperatures and not just close to Tc, we use the empir-
ical relation1 for the superconducting electron density Ns(T)=Ns(0)[1-(Te/Tc)4]. From this as-
sumption we obtain the expression: 

 

𝐼 (𝑇 ) = 𝑎 1 −
𝑇

𝑏

/

 

 

 

(C.1) 

Where a and b are two fitting parameters. a is an estimation of Ic(Te =0) while b is an estimation 
of Tc. This qualitative argument provides an empirical formula that reproduces our experi-
mental data and allows us to calibrate the calorimeter, finding an analytical expression to relate 
temperature Te and power PL:  
 

 

𝑇 (𝑃 ) = 𝑏 1 −
𝐼 (𝑃 )

𝑎

/ /

 

 

 

(C.2) 

When calibrating the calorimeter at different bath temperatures Tb, to avoid any artifacts which 
may arise from an offset of Ic between different measurements we write the critical current as 
Ic(PL)=ΔIc(PL)+ Ic(Tb). Ic(Tb) is the critical current predicted from the fit in (C.1) at a certain 
bath temperature Tb. Since Ic is constant for the lowest powers, ΔIc(PL) is defined as the varia-
tion of critical current from the average at low powers given by ΔIc(PL)= Ic(PL)-<Ic>lowP. Thus, 
the final calibration expression reads: 

 

𝑇 (𝑃 ) = 𝑏 1 −
Δ𝐼 (𝑃 ) + 𝐼 (𝑇 )

𝑎

/ /

 

 

 

(C.3) 

Similarly, since Te is constant for the lowest powers to obtain the variation of electronic tem-
perature ΔTe we substract the average at low powers: ΔTe(PL)= Te(PL) -<Te>lowP. 
 

D. Calculation of the laser power on the device 
 
As detailed in the methods section, in our setup we couple a telecom laser which emits an 
output power Pout with a single-mode optical fiber designed for 1550-nm transmission. To cal-
culate the effective power illuminating the MATBG device we consider a Gaussian beam pro-
file. In this approximation, the intensity profile I as a function of the distance from the beam 
center r and distance away from the end of the fiber z reads2:  

 



 
 

 
𝐼(𝑟, 𝑧) = 𝐼

𝑤

𝑤(𝑧)
𝑒 / ( )  

 

(D.1) 

 
Where w0 is the beam radius at the end of the fiber and I0 = 2Pout /(π w0

2) the total irradiance 
coming out of the laser source imposing the Gaussian normalization condition. w(z) is the value 

of the radius at a distance z from the fiber given2 by 𝑤(𝑧) = 𝑤 1 + (𝑧/𝑧 )  where 𝑧  is the 
Rayleigh range. In our case, since we use a collimator, we can consider 𝑤(𝑧) ≃ 𝑤 =0.95 mm. 
Considering our device a rectangle with sizes l1 and l2 placed at the center of the beam we 
estimate the effective power (PL) absorbed by the MATBG as: 
 

𝑃 = 𝜂 𝛼 𝛵 𝐼 𝑑𝑥

/

/

𝑑𝑦

/

/

 𝑒
 

 

 

 

(D.2) 

Where α is the estimated absorption of the MATBG sheet (α=4.6%) for 1550-nm photons, T 
the effective transmission of the fiber and η the variable attenuation we use to control the power 
incident on the device. 
 
 
 
 
  



 
 

E. Extended data on Photovoltage and NEP extraction 
 

We estimate the measured noise-equivalent power (NEPmeas) as the ratio between the experi-
mentally measured noise level VN and the extracted responsivity S: 

𝑁𝐸𝑃 =
𝑉

𝑆
 

 

(E.1) 

For each PL we find the bias at which the detector shows the highest photo-response. In Ex-
tended data Figure 3a we plot the photovoltage maxima (Vph

max) extracted for each power and 
perform a linear fit (black line), which gives the responsivity (in V/W). 

The noise level is defined by the fluctuations of Vph
max

 at low powers, where the detector re-
sponse is too low to be detected. We estimate these fluctuations calculating the standard devi-
ation of Vph

max at low powers: 

 

𝛥𝑉 = < 𝑉 (𝑙𝑜𝑤𝑃 ) > −< 𝑉 (𝑙𝑜𝑤𝑃 ) >  

 

(E.2) 

VN then reads: 

𝑉 =
𝛥𝑉

√𝐸𝑁𝐵𝑊
=

𝛥𝑉

8 ∗ 𝑇
 

 

(E.3) 

Where ENBW is the equivalent noise bandwidth3 which depends upon the time constant (Tconst 

=300 ms) and the filter roll off (12 dB) used in the lock-in during the experiment. We repeat 
this measurement at different Tb to probe the detector performances even at temperatures higher 
than base temperature of the cryostat. 

 

Extended data Figure 3. | Responsivity and noise level at different temperatures. (a) Photo-
voltage maxima Vph

max extracted at each laser power PL. The black line is a linear fit from which 
we extract the responsivity. The red dashed lines indicate the standard deviation of the Vph

max 

at low powers. (b) Noise level measured at different bath temperatures. (c) Extracted respon-
sivity at different bath temperatures.  

 

In Extended data Figure 4a we show the measured photovoltage traces vs bias current at dif-
ferent laser powers for Tb = 35 mK. When the device is biased close to the critical current Idc~Ic 



 
 

it becomes very instable and shows peaks even at very low powers (blue traces in Extended 
data Figure 4a) or without illumination. This results in a relatively high noise floor as shown 
in Extended data Figure 3b, which limits the detector performances. On the contrary for Idc~0, 
there are not such peaks and the noise floor measured is 2 orders of magnitude lower, as in 
Extended data Figure 4b (VN (Idc=0) ~ 10-10 VHz-1/2). This observation confirms that the meas-
urement circuit is not optimized and that a MATBG can reach better performances than the one 
reported in the main text. In analogy to what it is usually done in transition-edge sensors4, a 
possible strategy to reduce this noise close to the transition could be to operate the detector in 
a voltage-bias scheme so that the bolometer is maintained at a fixed temperature through neg-
ative electro-thermal feedback. 

 

Extended data Figure 4.| Extended data on photovoltage and noise level. (a) Photovoltage 
traces vs bias current at different powers. In the projection of the left panel the extracted max-
ima Vph

max which are fitted to extract the responsivity. (b) Noise level measured at different 
bath temperatures when the device is biased at Idc=0. VN is obtained according to the equation 
(E.3). 

  



 
 

F. Gate tunability of the superconducting state 
 
Another novel feature of MATBG is that the physical properties of the superconducting state 
namely the carrier density and the sharpness of the transition can be tuned applying an external 
voltage. Extended data Figure 5a reports the Rxx vs Te and the dRxx/dTe for 5 different gate 
voltages Vg in the superconducting dome. The dots in yellow and red are the maxima of 
dRxx/dTe and the extracted Tc (temperature at which Rxx equals to 50% of the normal state re-
sistance) respectively. Tc ranges from ~2K to 3.5K and peaks at the center of the dome. Strik-
ingly, the transition reaches the steepest point ~10kΩ/K close to the insulating state at Vg=-
1.455V (corresponding to ν=-2) and decreases sharply moving away from it. That doping is 
also the one with the lowest carrier density, meaning that the MATBG calorimeter operates at 
its best as close as possible to the correlated insulating state. As a result, measuring the respon-
sivity of the device at different gate voltages (Extended data Figure 5b) we find that Vg=-
1.455V is the doping which shows the highest responsivity.  
The gate-tunability of the device enables the possibility to finely control the detector perfor-
mances just by applying an external voltage. This represents an important novelty compared 
with traditional 3D transition-edge sensors based on non-gate-tunable metals for which the 
superconducting properties are intrinsic in the material.  
 
 

 
Extended data Figure 5. | Gate tunability of the superconducting state. (a) Longitudinal re-
sistance versus temperature Rxx vs Te (left-axis) and dRxx/dTe vs Te (right-axis) for different 
gate voltages in the superconducting dome. The yellow data projected on the right are the ex-
tracted dRxx/dTe for each gate voltage while the red data projected on the bottom are the critical 
temperatures (defined as the temperature at which Rxx equals to 50% of the normal state re-
sistance). (b) Extracted responsivity S at different gate voltages. 
  



 
 

G. Theoretical Calculations of electronic heat capacity 
 
To determine the electronic heat capacity 𝐶 , we start from the kinetic equation for the distri-
bution function of electrons with momentum 𝒌 and in band 𝜆, 𝑓𝒌, , in the absence of external 
fields and particle flow, i.e. 
 

𝜕 𝑓𝒌, = 𝐼 𝑓𝒌, , (G.1) 

 
where 𝐼 𝑓𝒌,  is the collision integral (for the present calculation, its specific form is not im-
portant). We now multiply the left-hand side of Eq. (G.1) by 𝜀𝒌, −  𝜇, where 𝜀𝒌,  is the elec-
tron band energy and 𝜇 is the chemical potential, and we integrate it over 𝒌 and sum over 𝜆. 
We then identify the resul with 𝐶  𝜕 𝑇 , where the electronic heat capacity reads: 
 

𝐶 =  (𝜀𝒌, −  𝜇

𝒌,

) −
𝜕𝑓𝒌,

𝜕𝜀𝒌,

𝜀𝒌, −  𝜇

𝑇
−

𝜕𝜇

𝜕𝑇
. (G.2) 

 
Here, 
 

𝜕𝜇

𝜕𝑇
=   

∑ −
𝜕𝑓𝒌,

𝜕𝜀𝒌,
𝒌,  

𝜀𝒌, −  𝜇
𝑇

∑ −
𝜕𝑓𝒌,

𝜕𝜀𝒌,
𝒌,

 . 
(G.3) 

 
This equation is obtained by assuming the carrier density to be independent of the electron 
temperature 𝑇  and fixed, e.g., by an external gate.  
 

H. Theoretical Calculations of thermal conductance 
 
We consider a gas of quasiparticles and quasiholes in a superconducting channel of length L 
and width W, heated by an external laser. We assume that the boundaries of the systems 𝑥 =
0, 𝐿 are kept at the initial temperature of the bath 𝑇 , and that quasiparticles can only transport 

and dissipate heat there. The thermal conductance of the channel, 𝐺 = , is defined as the 

coefficient which relates the total input power PL, which is assumed to be constant throughout 
the channel, to the rise in average temperature of electrons, 𝑇 − 𝑇 .  
To find this coefficient we solve the one-dimensional heat equation5,6 for the local electron 
temperature 𝑇 (𝑥) (0<x< L): 

𝜅𝜕 𝑇 (𝑥) +
𝑃

𝑊𝐿
= 0 

 

(H.1) 

where 𝜅 is the quasiparticle (Wiedemann-Franz) thermal conductivity, which is determined in 
the following. We assume that |𝑇 (𝑥) − 𝑇 |/𝑇  ≪ 1, i.e. the input power is sufficiently small as 
to not perturb the superconducting state too much. Solving Eq.(H.1) with the boundary condi-
tions 𝑇 (0) = 𝑇  and 𝑇 (𝐿) = 𝑇 , and averaging over the length of the channel we get: 
 



 
 

𝑇 − 𝑇 ≡
1

𝐿
𝑑𝑥 [𝑇 (𝑥) − 𝑇 ] = −

𝑃

𝜅𝑊𝐿
𝑑𝑥

𝑥(𝑥 − 𝐿)

2
=

𝑃

𝜅𝑊𝐿

𝐿
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(H.2) 

and therefore the channel thermal conductance is identified as: 

𝐺th =
12𝜅𝑊

𝐿
 

 

(H.3) 

i. Model of the superconductor 
 
Since most of the physics at low temperatures occurs in the vicinity of the Fermi surface, we 
will describe electrons in twisted bilayer graphene as an electron gas whose density is coupled 
to a short-ranged quenched scalar disorder. The Hamiltonian is: 
 

ℋ =
1

2
𝑐𝒌,  , 𝑐 𝒌,

𝜉𝒌 𝛥𝒌, ,

𝛥𝒌, , −𝜉 𝒌

𝑐𝒌,

𝑐
𝒌,𝒌, , ′

+ 𝑢𝒌 𝒌 𝑐
𝒌 ,

𝑐𝒌,

𝒌,𝒌′,

  

 

(H.4) 

 
In these equations, 𝑐𝒌,  (𝑐𝒌, ) creates (destroys) an electron of momentum ℏ𝒌, spin σ ∈ { ↑, ↓} 
and energy 𝜉𝒌 = ℏ𝑣F

⋆(𝑘 − 𝑘F) (𝑣F
⋆ is the Fermi velocity and 𝑘F the Fermi wave vector), while 

𝑢𝒌 is the Fourier transform of the electron-impurity interaction 𝑢(𝒓). The latter is chosen to be 
randomly distributed with zero average and short-ranged, i.e. ⟨𝑢(𝐫)⟩ = 0  and ⟨𝑢(𝒓)𝑢(𝒓 )⟩ =
𝑢 𝛿(𝒓 − 𝒓 ). Furthermore, 𝛥𝒌, ,  is the superconducting gap. In the s-wave (p-wave) case, 
𝛥𝒌, ,  is nonzero only if σ ≠ σ (σ = 𝜎). We have checked that a superconducting gap with 
d-wave symmetry produces results effectively undistinguishable from the p-wave case. This in 
turn implies that the dominant feature is the existence or not of a nodal line in the supercon-
ducting order parameter, i.e. of a finite in-gap density of states. In what follows we will con-
sider the following fully-gapped and nodal order parameter: 𝛥𝒌 = 𝛥(𝑇) and 𝛥𝒌 = 𝛥(𝑇)𝑘 /𝑘, 
respectively. These pairings couple quasiparticles with opposite or equal spins, respectively, 
always at opposite ends of the Fermi surface. In both cases, the gap scales according to the 
phenomenological formula: 

𝛥(𝑇) = 𝛥 1 −
𝑇

𝑇
 

 

(H.5) 

In our experiment the temperature of the superconducting transition 𝑇 = 2.1 K is estimated as 
the point at which Rxx equals 50% of the normal state resistance while the zero-temperature gap 
𝛥  is used as a fitting parameter.  

In both cases, the bare Hamiltonian is diagonalized with the introduction of (fermionic) qua-
siparticle operators, 𝛾 ,±, which are connected to the bare electron spinors of Eq.(H.4) via the 
transformation matrix: 
 



 
 

𝑈𝒌 =
1

√2

1 + 𝜉𝒌/𝜀𝒌 − 1 − 𝜉𝒌/𝜀𝒌

1 − 𝜉𝒌/𝜀𝒌 1 + 𝜉𝒌/𝜀𝒌

 
 

(H.6) 

 

The non-interacting quasiparticles spectrum is 𝜀 , = 𝜆𝜀  where 𝜀 = 𝜉 + 𝛥  .  
To find the matrix elements of the interaction between quasiparticles and impurities, we trans-
form electron operators to 𝛾 ,  (𝜆 = ±) with the unitary matrix (H.6). We find: 
 

𝑉𝒌, ;𝒌 , = 𝑛imp𝑢 𝑈
𝒌

𝜏 𝑈𝒌 ,

≃ 𝛿 ,

𝑛imp𝑢

2
1 +

𝜉𝒌 𝜉𝒌 − |𝛥𝒌 ||𝛥𝒌|

𝜀𝒌 𝜀𝒌
 

 

(H.7) 

 
where 𝑛imp is the impurity density and we used that, since the scattering is elastic and conserves 
energy, only intraband processes limit transport. 
We connect the electron-impurity interaction 𝑛imp𝑢  to measurable quantities by using that the 
Drude resistivity of the normal state, within the Born approximation, can be written as: 
 

𝜌 =
ℎ

𝑒

2𝑛imp𝑣

(ℏ𝑣F
⋆)

 
 

(H.8) 

 
As we show below, besides being a function of 𝛥(𝑇), the thermal conductivity depends only 
one the value of 𝜌, and not on 𝑛imp𝑣  and 𝑣F

⋆ separately. Therefore, only two independent 
measurements are needed to determine the theoretical value of 𝜅. The typical measured resis-
tivity is 𝜌 ∼ 20kΩ. 
 

ii. Thermal conductance from kinetic equation 
 
The goal of this section is to derive expressions for the quasiparticle thermal conductivity 𝜅 to 
be used in Eq. (H.3). To derive this quantity, we consider the linearized kinetic equation for 
quasiparticle excitations in the steady state, propagating under the effect of a temperature gra-
dient: 

−
𝜕𝑓𝒌,

𝜕𝜀𝒌,

𝜀𝒌,

𝑇
−

𝜕𝜀𝒌,

𝜕𝑇
𝑣𝒌, ⋅ 𝛻𝒓𝑇 = 𝐼𝒌,  

 

(H.9) 

 
where we assumed that quasiparticles follow a local-quasi-equilibrium Fermi-Dirac distribu-
tion 𝑓𝒌,  characterized by a single temperature 𝑇(𝒓, 𝑡). In Eq. (H.9), 𝑣𝒌, = 𝛻𝒌𝜀𝒌,  is the qua-

siparticle velocity, 𝜆 = ±  labels electron/hole branches and 𝜀𝒌, = 𝜆 𝜉𝒌 + 𝛥  is the qua-

siparticle energy.  
Finally, 𝐼𝒌,  models collisions between quasiparticles and impurities: 
 



 
 

𝐼𝒌, = 𝑁f

𝑑 𝑘

(2𝜋)
𝑓𝒌, 1 − 𝑓𝒌 , 𝑊𝒌, →𝒌 , − 𝑓𝒌 ,, 1 − 𝑓𝒌, 𝑊𝒌 , →𝒌,  

 

(H.10) 

 
where 𝑁f = 4 is the number of spin-valley fermion flavors and the transition probability, calcu-
lated within the Fermi golden rule, reads: 
 

𝑊𝒌, →𝒌 , =
2𝜋

ℏ
𝑉𝒌, ;𝒌 , 𝛿 𝜀𝒌, − 𝜀𝒌 ,  

 

(H.11) 

We solve Eq. (H.9) in the steady state and assuming that perturbations to the distribution func-
tion, in the linear response regime, are concentrated at the Fermi energy and are proportional 
to the applied thermal gradient: 
 

𝑓𝒌, = 𝑓𝒌,
( )

+ 𝜏 −
𝜕𝑓𝒌,

( )

𝜕𝜀𝒌,

𝜀𝒌,

𝑇
−

𝜕𝜀𝒌,

𝜕𝑇
𝑣𝒌, ⋅ 𝛻𝒓𝑇 

 

(H.12) 

 
In this equation, 𝜏 is the electron-impurity heat transport time, which is to be determined via 
the present calculation. By plugging Eq. (H.12) into Eq. (H.9), we obtain an equation that is 
solved via a standard projection on the heat-current mode. The method consists in multiplying 
such equation by the energy current transported by a single quasiparticle, 𝜀𝒌, 𝑣𝒌, , and in sum-
ming it over all possible states, i.e. over 𝒌 and 𝜆. In this way, the integro-differential equation 
(H.9) reduces to an algebraic one, which can be solved to yield 𝜏. As a result, we are able to 
determine the heat transport time and the quasiparticle thermal conductivity. After few manip-
ulations, the latter can be rewritten as:  

𝜅 =
𝑒

𝜌

𝐷 (𝛥(𝑇), 𝑇)

𝐼(𝛥(𝑇), 𝑇)
 

 

(H.13) 

 
where 

𝐷(𝛥(𝑇), 𝑇) = 𝑑𝜉
𝑑𝜑𝒌

2𝜋
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⎢
⎡
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⎦
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⎤
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𝑇
− 𝛥𝒌

𝜕𝛥𝒌

𝜕𝑇
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𝐼(𝛥(𝑇), 𝑇) ≃
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To obtain these equations, as usual in superconductivity, we have approximated: 
 



 
 

𝑁f

𝑑 𝒌

(2𝜋)
→ 𝑁(𝜀F) 𝑑𝜉

𝑑𝜑𝒌

2𝜋

∞

 
 

(H.14) 

 
where 𝑁(𝜀F) is the density of states at the Fermi energy of the normal system. The angle be-
tween the nodal line of the superconducting order parameter and the temperature gradient is 
unknown and may be different in different regions of the sample. Therefore, the quantities in 
Eq. (H.14) and (H.15) have been averaged over the directions of the applied temperature gra-
dient (angles are measured from the direction of the nodal line for convenience). We have 
further approximated the expression of 𝐼(𝛥(𝑇), 𝑇) in Eq. (H.14) by using the fact that perfect 
backscattering is the dominant source of resistivity. Hence, we have set 𝜑𝒌 = 𝜑𝒌 + 𝜋 , which 
in turn implies that |𝛥𝒌| = |𝛥𝒌 |. This, together with the δ-function in Eq. (H.11), constrained 
|𝜉𝒌| = |𝜉𝒌 | and allowed us to perform the integral over  𝒌  analytically. 
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