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Abstract

Single-cell genomics has now made it possible to create a comprehensive atlas of human cells. At 

the same time, it has reopened definitions of a cell’s identity and type and of the ways in which 

they are regulated by the cell’s molecular circuitry. Emerging computational analysis methods, 

especially in single-cell RNA sequencing (scRNA-seq), have already begun to reveal, in a data-

driven way, the diverse simultaneous facets of a cell’s identity, from a taxonomy of discrete cell 

types to continuous dynamic transitions and spatial locations. These developments will eventually 

allow a cell to be represented as a superposition of ‘basis vectors’, each determining a different 

(but possibly dependent) aspect of cellular organization and function. However, computational 

methods must also overcome considerable challenges—from handling technical noise and data 

scale to forming new abstractions of biology. As the scale of single-cell experiments continues to 

increase, new computational approaches will be essential for constructing and characterizing a 

reference map of cell identities.

To understand cells—the basic unit of life—we must not only catalog them and their 

molecular profiles but also determine the factors that shape them. A cell’s identity, which is 

reflected in its molecular profile, is formed by the instantaneous intersection of multiple 

factors. These include its position in a taxonomy of cell types, the progress of multiple time-

dependent processes that take place simultaneously, its response to signals from its local 

environment, and the precise location and neighborhood in which it resides (Fig. 1a). The 

factors that together span the space of possible cell states can be likened to the basis vectors 
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that span a linear space, yet, unlike basis vectors, they may be intricately dependent on one 

another (Fig. 1b and Box 1).

Until recently, most genomic profiling studies have analyzed cell populations, although even 

cells of the same ‘type’ can exhibit substantial heterogeneity, reflecting finer sub-types, 

regulated functional variation, or inherent stochasticity1–6. However, over the past several 

years, rapid technological advances have enabled genome-wide profiling of RNA7–10, 

DNA11–17, protein18–21, epigenetic modifications22–26, chromatin accessibility27,28, and 

other molecular events29 in single cells. The scale and precision of such studies has 

continued to increase, reaching tens of thousands of cells for massively parallel scRNA-

seq30,31 and millions of cells for mass cytometry signature protein measurements32–34. We 

use the term single-cell genomics to describe all genome-scale measurements, from DNA to 

RNA to proteome.

Large-scale single-cell data allow us to address biological questions that were previously out 

of reach. First, we can now explore the identity of an individual cell and the factors 

underlying it through the comprehensive lens of the cell’s unique molecular profile (Fig. 1b). 

By decomposing this profile to its separate components, it should be possible to determine, 

in a data-driven way, the specific physiological and molecular features of each of these 

factors, without relying on prior definitions, hypotheses, or markers. Second, a project to 

construct a comprehensive atlas of all human cell types and sub-types—including their 

activity states, dynamic transitions, physical locations, and lineage relationships through 

development—has become a tangible goal. Even preliminary progress toward such an atlas 

would help elucidate the organization and function of tissues in health and disease. In 

addition, single-cell data allow us to study the regulatory circuitry that governs cells at a 

resolution that had been impossible with data collected from bulk cell populations. Finally, 

single cells are the basic component of complex tissues. Through deconvolution of complex 

samples30, such as tumor biopsies35, one may infer their cellular milieu, and characterize the 

rare5, functionally important1, and unknown36 cell types they contain.

Although the new single-cell data types harbor a wealth of information, they also pose 

specific analytical and technical challenges. The analytical challenges include (1) designing 

experiments and performing power analysis (e.g., how many cells do we need to profile for a 

given task? At what depth?); (2) preprocessing to distinguish biological from technical 

variation, especially false-negative gene detections (dropouts); (3) inferring the key aspects 

of a cell atlas, from discrete sub-types to continuous spatiotemporal ordering of cells; and 

(4) deriving molecular mechanisms from cell-to-cell variation. In each of these areas, we 

must grapple with common technical challenges, such as noise, sparsity, and false negatives; 

ever-increasing scale, which defies many traditional implementations of basic tasks in 

genomics; partial dependencies between the multiple facets of a cell’s identity (its type, 

state, position, etc.), such that variation in one biological dimension may be a confounder for 

another; and the need for accessible and interpretable visualizations. Novel computational 

methods are needed to overcome these challenges and exploit the biological signals in 

single-cell data (Fig. 2, bottom).
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Here we review key questions, progress, and open challenges in the development of 

computational methods in single-cell functional genomics, focusing primarily on scRNA-seq 

(we do not discuss single-cell genome analysis, as it was recently reviewed elsewhere37). We 

first distinguish key sources of variation in single cells, and experimental and computational 

strategies to tease them apart and to mitigate the effects of technical (unwanted) variation in 

order to explore the biological variation in the data. We highlight key current methods that 

can characterize the diverse factors involved in determining cellular identity, including cell 

type taxonomies, continuous phenotypes, temporal progression (on linear, bifurcating, or 

cyclic trajectories), and spatial position in the tissue. We close with areas of substantial 

opportunity and challenges for future research, including emerging methods that harness 

single-cell data to dissect the molecular circuitry, unique challenges associated with studying 

the single-cell epigenome, and open problems associated with the increasing scale of single-

cell experiments, the integration of diverse single-cell assays, and the use of these data to 

illuminate the organization of complex tissues.

Addressing technical variation in single-cell RNA-seq

We distinguish three sources of variation in scRNA-seq (Fig. 2, top). The first is technical 

variation, which is due to factors such as differences in cell integrity and lysis, RNA capture 

and cDNA conversion, and detection38,39. The second is allele-intrinsic variation, namely 

stochastic factors intrinsic to the molecular mechanisms that control gene expression40–42. 

For example, the bursting statistics of transcriptional initiation coupled to variable rates of 

mRNA degradation can lead to fluctuations in transcript levels over time in one cell, and to 

differences between otherwise ‘identical’ cells measured at a single time point. This inherent 

stochasticity does not correlate between two alleles of the same gene. The third is allele-

extrinsic variation, due to factors42,43 extrinsic to the process of transcription, such as the 

presence of certain regulators or differences in stable chromatin state. These factors 

contribute to establishing differences between cell types or states, either stably30 or 

transiently, but are correlated between two alleles of the same gene41.

Although most studies aim to understand allele-extrinsic variation and its function, technical 

and allele-intrinsic variations are major confounders. Some technical variation (Fig. 3) is 

common to both scRNA-seq and bulk (population) RNA-seq, whereas several other factors

— including zero inflation due to false negatives, overamplification, and cell doublets—are 

specific to the technical variation between single-cell profiles. In some cases, the extent of 

technical variation is affected by biological differences, undermining definitions of quality 

and limiting our ability to remove technical variation. For example, because smaller cells 

typically harbor less RNA, they appear to be lower in quality. Similarly, some cell types may 

be harder to capture or lyse. Finally, some cells are characterized by transcriptional profiles 

functionally dominated by very high expression of a few transcripts, whereas others have far 

more complex transcriptomes. Indeed, a recent study44 reported that technical quality 

features were highly correlated with biological cell type.
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Handling known and unknown sources of technical variation

Batch effects and technical variation due to unknown (unmodeled) confounders are common 

in both scRNA-seq and bulk RNA-seq. Batch effects have long been recognized as a source 

of non-biological variation in gene expression profiles between sets of samples that were 

prepared or processed together45. Whenever possible, careful experimental design, such as a 

uniform distribution of replicates across batches or within a plate, can help mitigate these 

effects (Fig. 3a). However, such designs are not always practical in scRNA-seq, where initial 

sample processing steps (e.g., dissociation and sorting) have a major impact and where 

samples must often be processed fresh. As an alternative, statistical methods can model 

batches as known covariates (Fig. 3d), and either remove batch terms46–48 or directly 

incorporate them into downstream analyses (e.g., for detecting differentially expressed 

genes49,50).

As in bulk RNA-seq51, normalization of technical library-to-library differences is a 

prerequisite for further analysis. However, scRNA-seq (where a library equals a cell) faces 

complexities that do not occur in bulk experiments because of technical factors that depend 

on biological differences between cells. In bulk RNA-seq it is generally (yet not always52) 

safe to assume that the starting quantities of RNA are uniform across libraries and to scale 

read counts accordingly with size factors53 or relative expression units, such as RPKM54 

(reads per kilobase of exon per million mapped reads), FPKM55 (fragments per kilobase of 

exon per million mapped fragments), or TPM56,57 (transcripts per million). In contrast, the 

starting quantities of RNA in single-cell libraries depend both on technical factors and on 

biological factors, such as cell size and type. The distribution of transcript levels can also 

vary between cells. For example, the transcriptome of some ‘professional’ secretory cells is 

mostly devoted to a few exceptionally highly expressed transcripts. Such biological factors 

can be considered a nuisance factor in some contexts but part of the relevant biological 

variability in others58. A further complication arises from the 3′-end coverage bias 

characteristic of some of the popular scRNA-seq protocols8,9. When a transcript’s 

expression is normalized by its length, as in the RPKM, FPKM, and TPM units, the bias 

leads to an underestimation of the expression of longer transcripts59.

Several studies have addressed the most prominent cell-to-cell bias60, namely the combined 

effect of the cell-specific library complexity and the amount of cellular RNA, which together 

result in large variations in the number of genes detected in each cell (see below on 

dropouts). One approach is to scale each cell with two alternative59,61 or cumulative62 size 

factors (instead of one as in bulk53) to account for the technical and biological components 

of the bias. However, the high frequency of undetected genes (dropouts) may undermine63 

the utility of standard size factors. Instead, one may pool the counts of multiple cells 

together to decrease the prevalence of undetected genes, obtain robust size factors for the 

cell pools, and finally deconvolve the pools’ size factors into cell size factors63. Some 

approaches directly incorporate the scaling terms in a statistical model for the data rather 

than use them in a separate preprocessing step. For example, BASiCS61,224 incorporates 

scale factors into a Bayesian model of read counts62, MAST58 incorporates the number of 

detected genes, a proxy of this bias, into generalized linear models, and BISCUIT220 models 

and infers cell-specific scaling parameters simultaneously with cell clusters.
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Other approaches correct the biases without explicitly modeling cell-specific size factors. 

The main axes of variation (i.e., first few principal components) in scRNA-seq data are often 

dominated by additional technical factors1,60, such as library complexity64, proportion of 

reads that were successfully aligned to the genome, and proportion of detected transcripts 

(Fig. 3b). While several studies have opted to remove these axes of variation entirely27,65, 

this may result in eliminating important aspects of the biological signal. An alternative 

(N.Y., A.R. and colleagues1) is to define an overall quality score for every cell (taken as the 

first (few) principal component of the matrix of the quality metrics per cell) and explicitly 

remove its effect using global scaling normalization66. A less-supervised strategy (Fig. 3d) 

handles technical confounders as latent (i.e., unobserved) unknown factors, which can be 

inferred from the expression data, using negative control genes that are assumed a priori to 

be uniformly expressed by all the cells in the sample. The main axes of variation over these 

genes are designated as a “technical variability” component that is then either subtracted 

from the data or taken into account in the downstream analysis49,50,67. Finally, when a priori 
control genes are unavailable, but samples from different conditions are available, one may 

regress the data on the biological covariates of interest, and then designate the main axes of 

variation of the residual (i.e., the component of the data that is orthogonal to the biological 

covariates) as the technical variability component67,68.

Alleviating technical biases using experimental cues

Experimental measures, especially spike-in controls, can help capture and account for some, 

but not all, of the technical confounders in scRNA-seq. Spike-ins are exogenous RNA 

sequences (e.g., 92–96 sequences from the External RNA Control Consortium (ERCC)69) 

that are added in known quantities during library preparation and are assumed to be 

unaffected by the biological covariates. They thus constitute a well-defined set of negative 

controls for the purpose of adjusting for the difference in total RNA content between 

cells61,70, as well as for quality diagnostics of libraries71 and experiments72. A series of 

studies38,61,73 decomposed biological from technical variability in scRNA-seq data by using 

spike-ins to learn a model for technical noise. For example, since the technical noise 

affecting a gene depends on its expression (weakly expressed genes are more technically 

noisy8), spike-ins can be used to parametrize a model of this dependence, and in turn to 

construct a statistical test for detecting biologically variable genes61. However, although 

spike-in controls provide important information59, they do not control for any technical 

variation preceding their introduction, especially tissue acquisition, dissociation, sorting and 

lysis30. The utility of the ERCC spike-ins in modeling technical noise is further curtailed by 

differences between them and endogenous RNA59,74, and it has been reported67 that their 

counts may be affected by biological (rather than technical) factors in an experiment and that 

technical covariates may affect spike-ins differently than genes.

Pool/split experimental designs can further assist in evaluating the magnitude of observed 

variation that should be attributed to technical factors70,73. In a typical pool/split design, 

source material (e.g., RNA) from several single cells is pooled together and then is split into 

independently processed libraries, each containing an amount of source material equivalent 

to that normally obtained from a single cell. Whereas the variation between single-cell 

libraries is a combination of biological and technical factors, the variation between the split 
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libraries derived from the same pool of source material is purely technical (assuming that the 

amount of pooled starting material is high enough to make uneven stochastic splitting of 

transcripts between the libraries unlikely). In some cases (such as with relatively big cells), 

splitting can be applied to a single-cell lysate. Notably, studies of allelic gene 

expression75,221 split the lysate of individual cells into two independently processed libraries 

and compared the library pairs to estimate the abundance of biallelic expressed genes that 

are falsely called as monoallelic expressed due to dropouts.

Another vexing challenge in scRNA-seq is posed by ‘doublets’—pairs of cells that are 

analyzed together due to failure of cell sorters76, microfluidics30, or droplets30,31. These can 

manifest as high-quality cells by many measures (more transcripts, more complex libraries) 

and lead to erroneous biological conclusions, such as false detection of ‘hybrids’—cells that 

seem to be an intermediate type between two distinct cell populations but are in fact a 

mixture of RNA from two or more cells (A.R. and colleagues30). Some experimental 

platforms may provide mechanisms for visual inspection2; a general-purpose internal control 

is to mix cells from two species together30,31 to estimate the proportion of characteristics of 

doublets. This, however, can be challenging to implement in some settings due to either cost 

or sample type.

False negatives and overamplification

Imperfections in the capture, conversion, and amplification77,78 of the minute quantities of 

RNA in an individual cell into a cDNA library lead to challenges in regard to both false 

negatives (expressed but undetected transcripts) and false positives (transcripts with inflated 

expression levels) for individual transcripts, which may confound the understanding of 

biological variation. For example, false negatives can be erroneously interpreted as allele-

specific expression38,75 or as evidence for a wild-type homozygote rather than a genetic 

variant (or mutation)77. Inflated expression can lead to a false sense of bimodality in 

expression or misestimation of the amount of actual transcript per cell. While adjustments in 

the experimental protocol for obtaining cDNA from single cells can result in considerably 

improved yields9,79 and mitigation of this technical variation, such variation remains a major 

challenge in single-cell genomics. A combination of experimental and computational 

methods has emerged to address this key challenge.

Massive whole-transcriptome amplification (WTA) inevitably amplifies any source of noise 

already present in the data and can introduce additional sources of noise, such as false-

positive detections due to DNA polymerase errors occurring at an early PCR amplification 

cycle (Fig. 3c). An elegant way to address these is through the use of random molecular tags 

(RMTs), also called unique molecular identifiers (UMIs). RMTs are short random barcodes 

(4–20 base pairs) attached to the 3′ or 5′ end of cDNA molecules before 

amplification3,80–83. After amplification, the number of unique barcodes associated with 

reads aligned to a genomic position, rather than the number of aligned reads per se, serves as 

the count for the presence of each cDNA molecule in the original sample. Thus, RMTs and 

UMIs should provide an absolute molecular count for the number of converted cDNA 

molecules, in contrast to the standard units employed in the absence of UMIs (CPM, FPKM, 

and TPM). Such counting should not be done naively, however: base incorporation errors in 
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PCR can create spurious RMTs, and therefore barcodes with low copy numbers should be 

handled carefully80. In addition, if an RMT-tagged transcript molecule is overamplified, we 

expect it to generate, as a result of sequencing errors, RMT sequences that are close to each 

other (short edit distance) and should be collapsed30 to avoid over-counting of transcripts. 

Finally, in “barcode collision” (i.e., when two copies of a transcript receive the same 

barcode, which makes them appear as a single copy), a highly expressed RNA species with 

copy number n can be associated with only k < n unique barcodes; however, this effect can 

be corrected by explicitly modeling the probability for collision events84. Finally, while 

RMTs are a compelling method, current protocols are limited to ‘end-counting’ and cannot 

provide full-length transcript information. When the main goal is to estimate transcript 

levels, this is acceptable, but when information on transcript sequence (e.g., in tumor 

samples) or splice isoforms is desired, it may be less appropriate. Such cases would benefit 

from the development of new methods for molecular barcoding of full-length transcripts.

At the other end of the spectrum, the limited efficiency of RNA capture and conversion into 

cDNA leads to prevalent dropout events (false negatives): transcripts that are expressed in 

the cell but are entirely undetected in its mRNA profile8 (Fig. 3c). Across a set of cells, this 

manifests as bimodality of gene expression (with one mode at zero). While in some cases 

such bimodality is due to stochastic (‘bursty’) gene expression40 or more stable variation 

between cell types and states3, in many others it is dominated by false negatives70,85. Indeed, 

the number of undetected transcripts is correlated to batch effects60 and other metrics of 

library quality, and transcripts that are weakly expressed when detected are also more 

frequently undetected1.

Several strategies have been proposed to address false negatives, including zero-inflated 

models, false-negative curves, and data imputation. In zero-inflated models (Fig. 3e) gene 

expression is modeled as a mixture of two distributions: one in which the transcript is 

successfully amplified and detected at a level that correlates with its true abundance, and 

another in which the transcript is undetected because of technical effects. These were first 

introduced86 for modeling single-cell quantitative PCR (qPCR) as a mixture of log-normal 

and a point mass at zero with a mixing proportion that is the frequency of expression of the 

gene across all cells. This approach was used for scRNA-seq with a detection threshold (in 

log-space TPM)2 or as a mixture model for read counts in which the first component is a 

negative binomial and the second is a low-magnitude Poisson, rather than a fixed zero, to 

account for background noise85. Notably, the mixing proportion for a gene in the latter 

model depends on its expected expression magnitude across all cells, conforming to the 

empirical observation that highly expressed genes are less prone to dropouts. Other 

studies58,86,87 suggested a hurdle approach88, in which the probability of detecting a gene 

and its measured expression level, conditioned on its detection, are modeled independently 

as generalized linear models (GLMs). The GLMs can readily consider complex 

experimental designs and technical covariates. In this approach, one can independently test 

the association of either detection probability or expression level with a variable of interest, 

or combine the evidence from both tests. Once a zero-inflated model is fitted, it can be used 

for differential expression analysis that accounts for the dropout errors58,85–87, to inform 

other downstream analyses, such as gene set enrichment58,89, and to alleviate the distortions 
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resulting from dropouts when dimensionality reduction is performed on scRNA-seq90 or 

single-cell qPCR91 data (where dropouts manifest as censored values86).

Another strategy, false-negative curves1,2,92 (Fig. 3f), accounts for the fact that false 

negatives are determined both by the gene’s actual expression level and by the individual 

cell’s ‘quality’ in scRNA-seq (which may be affected by lysis, size, WTA success, and other 

unknown factors). This approach uses a set of transcripts that are expected to be expressed in 

all cells (e.g., housekeeping genes) and for each cell c independently plots the binary 

detection outcome (0/1) of those transcripts as a function of their expected expression μ (set 

for a transcript either as its average expression across all cells in which it was detected or as 

its expression in a matching bulk RNA library). The resulting curve is fit well by a logistic 

regression Fc(μ), whose odds quantify the cell’s technical detection efficiency. Given a 

transcript whose expected expression, conditioned on it being detected, is μ*, and that is 

undetected in cell c, the value 1 – Fc(μ*) is the probability that the transcript represents a 

technical dropout. This probability can be used to mitigate dropout effects by weighing 

down the contribution of zero values, for instance when computing covariance between 

genes, when computing principal components of the expression matrix, or in gene set 

enrichment analysis (GSEA) (N.Y., A.R. and colleagues1).

A third approach to address the false-negative problem is through data imputation. Here, 

coexpression patterns across cells are used to learn a model of the expression of a gene of 

interest, and subsequently the predicted estimates from the model are used instead of the 

measured levels, including instead of the zero expression of potential dropouts. Focusing on 

a small subset of ‘landmark’ genes of interest, one study (by A.R. and colleagues93) 

modeled the expression of each gene as a linear combination of the expression of other, 

highly variable genes. The model was trained across all cells in the data set using the least 

absolute shrinkage and selection operator (LASSO) method to guarantee sparseness. Zero 

expression values were then replaced by the predictions of the trained model and used for 

the downstream analysis. While this approach was originally applied for spatial mapping 

(below), it can be generalized in principle to other applications. Bayesian models can 

implicitly perform data imputation when they distinguish between the observed read counts 

of a gene and its latent ‘true’ expression, even when they are not explicitly zero-inflated. For 

example, the BASiCS model62, which generalizes previous work73, allows a gene with 

nonzero expression to have an observed read count of zero due to the combined effects of 

Poissonian sampling noise, capture inefficiency, and low cell-specific mRNA contents.

Revealing the vectors of cellular identity

One of the most exciting applications of single-cell genomics is as a means to identify and 

understand the factors that jointly define a cell’s identity (Fig. 1 and Box 1). These factors 

may not only be the discrete categories that are often assumed when classifying cells into 

major types4,30,94 but may also represent a continuous spectrum1, or a combination of 

discrete and continuous categories36,95–97,227. First, in contexts such as development and 

physiology, some facets of cellular identity are transient in time and space. Temporal 

processes may, for example, progress along one or more trajectories (e.g., differentiation); 

oscillate continuously between cellular states (e.g., the cell cycle98,99 or circadian 
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rhythm100); or be influenced by the physical position and neighborhood of the cell71,93. 

Moreover, even within a type, cells may span a continuous range of functional phenotypes 

(e.g., T cells of a single type, but with a range of inflammatory versus regulatory 

phenotypes, see N.Y., A.R. and colleagues1). While each such facet of a cell’s identity is 

often considered separately, they are at least partly interdependent. Cataloging sources of 

biological variation, and understanding how they combine to determine a cell’s identity, is 

an integral task in the compilation of a human cell atlas. We expect that, eventually, the 

measured genomic profile of a cell will be used not only to assign it to predefined categories, 

but also to quantify its identity with respect to sources of biological variation. By analogy, 

the sources of biological variation that determine a cell’s identity are akin to basis vectors 

that span a linear space—namely, their combinations produce all possible points in the 

space. However, unlike basis vectors in algebra, they can in fact be dependent, which further 

complicates their identification and interpretation, and poses a problem of statistical 

identifiability. For instance, cells in a given position may be more quiescent compared to 

other positions, which complicates the inference of the biological variation that should be 

attributed to cell cycle versus spatial position101.

In the following sections we review current computational methods to infer prominent facets 

of cellular identity, which include discrete cell types, continuous phenotypes, dynamic 

processes, and spatial location.

Distinguishing discrete cell types and subtypes

Whereas cell types were traditionally defined based on criteria such as morphology, 

physiology, and marker protein expression, single-cell analysis provides a means of 

systematically detecting cellular subtypes that cannot be defined by a handful of markers, or 

for which markers are not yet known102. Once a cellular subpopulation has been detected, 

statistical analysis can help identify defining markers, which can subsequently be validated 

by orthogonal experimental approaches, such as profiling of morphology and histology and 

in functional assays. Classification of cells into discrete types from single-cell profiles is a 

problem of unsupervised clustering in high dimensions. The key, inter-related challenges 

include (1) adapting methods to the exponentially increasing scale of single-cell data; (2) 

ensuring that the resulting classification is reproducible across experiments and platforms; 

(3) finding the proper granularity and detecting hierarchies of types and subtypes where they 

exist, especially when cell type frequency varies by multiple orders of magnitude from the 

most abundant to the rarest sub-type; (4) distilling molecular markers and signatures to 

characterize each cell type and/or cluster; (5) matching the resulting classes to legacy 

knowledge, and using semi-supervised methods where such knowledge exists; and (6) 

visualizing, sharing, and comparing classifications. Solutions to many of these challenges 

are only beginning to emerge.

Clustering in high-dimensional space is obstructed by the instability of distance metrics in 

high dimension103 (which is a facet of the ‘curse of dimensionality’). As a result, 

dimensionality reduction with linear or nonlinear approaches has been used extensively as 

an initial step. Among linear approaches, principal-component analysis (PCA) produces a 

deterministic and interpretable projection of the genomic profiles into the lower dimension, 
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and is highly scalable. It has been used repeatedly in single-cell analysis, including 

iteratively104, having its axes inferred from bulk data and then applied to single-cells218, and 

combined with an expectation-maximization (EM) algorithm to fit a finite mixture of 

Gaussians to PCA-reduced expression profiles98. A powerful, nonlinear alternative5,105–107 

is t-distributed stochastic neighbor embedding108 (t-SNE; introduced for single-cell analysis 

as viSNE105), especially when computed with an efficient approximation109 compatible with 

the scale of large genomic data sets110. Unlike PCA, t-SNE does not learn an explicit 

mapping between the high- and low- dimension spaces; points that are close in the high-

dimensional space will be close (with high probability) in the low-dimensionality 

embedding, but more global relations are not directly interpretable, and held-out or 

additional data cannot be simply embedded in the same space in which previous data had 

already been embedded. A t-SNE variant that learns a mapping based on a deep neural 

network has been suggested111; while it is applicable only to massive data sets because of its 

large parameter space, as single-cell data grow it may increase in utility. A related 

alternative, ACCENSE106, down-samples the data in a density-dependent manner (as in 

SPADE94, described below), uses t-SNE to embed only the remaining cells, and finds 

clusters, by applying a kernel density transformation to the t-SNE map and seeking the local 

maxima that represent cluster centers. A post hoc procedure to ACCENSE can embed the 

remaining cells in the t-SNE space112 to verify that they do not change the density map 

substantially.

Finally, PCA and t-SNE can be combined108. For example, a recent study (by A.R. and 

colleagues30) first performed PCA (using only highly variable genes), retained only 

principal components that explained significantly more variance than two null models (and 

were probably less susceptible than raw expression to experimental noise), and then 

projected cells into a two-dimensional t-SNE map on the basis of their principal component 

scores, followed by a density-based approach (DBSCAN113) to discern cell clusters. 

Another study (A.R. and colleagues114) proposed an iterative t-SNE variant. Once t-SNE 

computes a two-dimensional map of the cells, only features whose highest expression is 

obtained in cells that are close to one another in the map, as opposed to cells scattered across 

it, are retained, and then t-SNE is recomputed. A very recent approach, SIMLR222, learns a 

cell-to-cell similarity matrix S that is based on a combination of multiple kernels (rather than 

a predefined distance metric) by assuming that there exist C discernible cell clusters and 

exploiting the nearly block-diagonal structure they induce on S. The learned S is then 

provided to t-SNE (which usually computes similarities in the high-dimension with a 

Gaussian kernel) for dimensionality reduction, followed by clustering and visualization. The 

retained features are the ones that determine the cell relationships captured by the first t-SNE 

map, and consequently the second map has more discernible clusters whose biological 

significance can be further explored. Importantly, the reduced dimensionality data are less 

noisy than the high-dimensional data but lose some of the biological variance. Therefore, 

clustering cells based on their coordinates in two- or three-dimensional PCA or t-SNE maps 

may be insufficient. It is sometimes useful to cluster the cells in a reduced space that still has 

several dozen features (depending on the complexity of the data) and retains more of the 

biological information and then present them in a two- or three-dimensional map for visual 

inspection (A.R. and colleagues115).
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Other studies refrain from dimensionality reduction altogether. BackSPIN4 (based on the 

SPIN) algorithm116) circumvents the lack of useful information in most genes with 

hierarchical biclustering: cells are partitioned into clusters by discerning groups of genes 

that are highly correlated in subsets of the cells. BackSPIN is divisive, such that genes that 

are assigned to a particular cluster are excluded from consideration when determining other 

clusters (nonexclusive biclustering methods have been described in other contexts117). After 

classifying the cells into types, a regression model infers posterior probability distributions 

of gene expression in each class, modeling linear contributions from known covariates (sex, 

age, and cell diameter), the cell type, and negative binomial noise. The PhenoGraph 

algorithm34 takes a different approach, building on the Louvain clustering algorithm from 

network theory118: it finds the k-nearest neighbors of every cell in the high-dimension space 

by Euclidean distance, and constructs a graph in which nodes are cells and the edges 

between them are weighted by the Jaccard similarity of their k-neighborhoods. It then 

partitions the cells by detecting communities119 in the graph—groups of nodes that are more 

densely connected than expected by chance in the same graph; the partition’s modularity120 

is maximized by an efficient greedy heuristic118.

Interestingly, scRNA-seq reads can be used to cluster cells based on features other than 

explicitly quantified gene expression. A recent study proposed a radical redesign of the 

standard RNA-seq workflow121: by replacing read alignment with pseudoalignment, i.e., by 

only identifying the transcripts from which a read could have originated without determining 

the exact sequence alignments between them, the time required to perform quantification 

(assigning expression values to genes) is decreased by two orders of magnitude without 

compromising accuracy. Beyond facilitating the quantification of massive single-cell data 

sets, this redesign paves the way to another idea—doing away with quantification altogether. 

Pseudoalignment divides (under reasonable assumptions121) reads into equivalence classes, 

each consisting of the set of transcripts the read could have originated from. By counting the 

number of reads a cell has in each of the classes (transcript-compatibility counts, TCC), one 

obtains a high-dimensional representation of the cells with features other than explicitly 

quantified gene expression122. While this feature space is not as biologically interpretable as 

gene expression space, it can produce122 a similar cell clustering while sidestepping the 

time-consuming quantification task and avoiding the need to define a statistical model for 

read generation. Therefore, this approach reverses the order of quantification and clustering: 

one first clusters cells in the TCC space, and then quantifies gene expression only from 

representative cells in each cluster, or pooled data from the entire cluster, to assign a 

biological interpretation to the clusters.

A challenge in clustering is posed by the combination of two contradictory factors: (1) the 

massive number of cells profiled, which can lead to spurious small clusters, and (2) the 

orders of magnitude of difference in cell proportions between a common and rare cell type 

in the same tissue (e.g., in the bone marrow, hematopoietic stem cells) are present at 

<1:100,000; neutrophils are >50%). Absent prior knowledge, it can be very challenging to 

distinguish a new rare cell type from a spurious signal. Several strategies have been 

proposed to tackle this challenge. RaceID2223 (an improvement of RaceID5) looks for 

saturation in the decrease of within-cluster dispersion as the number of clusters increases to 

determine the optimal number of clusters, conducts k-medoids clustering, and then 
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systematically searches each cluster for outlier cells—ones in which at least a user-specified 

number of genes are distinctly expressed with respect to the rest of the cluster. These outliers 

are candidate representatives of rare cell types. SPADE94, most often applied to mass 

cytometry data19,21,124, down-samples cells in the dense regions of the high-dimensional 

space (that correspond to abundant cell types), such that rare types become as prevalent as 

abundant types. This increases the probability that rare cell types will form their own 

clusters rather than becoming outliers to clusters of more abundant types, albeit at the cost of 

a decreased biological signal-to-noise ratio. SPADE subsequently clusters the remaining 

cells with an agglomerative hierarchical algorithm, structures the clusters as a minimal 

spanning tree, and visualizes the tree with the Fruchterman-Reingold algorithm125. It 

associates pruned cells with the cluster to which their nearest unpruned neighbor belongs.

Analyzing continuous phenotypic spectra within types

Categorization of cells into discrete types is a powerful abstraction and has been the focus of 

much of the single-cell genomic research thus far4,30,34,36,114,115. However, for some facets 

of a cell’s identity it is more apt to speak of a continuous phenotypic spectrum within a type 

than of discrete cell types (Fig. 1b). Continuous facets can be characterized by combining 

dimensionality reduction with enrichment for functional annotations. For example, scRNA-

seq profiles obtained from T helper 17 (TH17) lymphocytes differentiated in vitro did not 

reveal distinct subtypes, but their first principal component was highly correlated with a 

cell’s ability to trigger an autoimmune response (N.Y., A.R. and colleagues1). In leukemic 

bone marrow105, t-SNE108 embedding of mass cytometry profiles showed that while some 

markers were expressed in distinct clusters, others formed a continuous gradient. Finally, 

even when a cell population partitions into discrete types, hybrid cells—single cells that are 

a mix of two or more types—may be observed95,97 (we refer here to true biological hybrids, 

in contrast to false hybrids resulting from doublets, as discussed above). In normal 

physiological settings, it has been proposed96, following a series of studies126–129, that 

hybrids may be ‘generalist’ cells that balance multiple cellular objectives: in this model 

genomic profiles are confined within a low-dimensional polytope, whose vertices 

correspond to key cellular tasks; cells lying near one of the vertices specialize in its 

corresponding task, whereas hybrids positioned toward the center of the polytope perform 

multiple tasks suboptimally. In pathological settings, especially cancer97,130,131, such hybrid 

states may reflect either transitions (below) or the intrinsic abnormal mixture of different 

functional modules (N.Y., A.R. and colleagues130).

Such continuous states and vertices can be characterized based on prior knowledge. For 

example, given a gene set annotated with some function, PAGODA89 scores each cell with 

respect to that function with its principal component 1 (PC1) score in a PCA limited to that 

gene set. If the variance explained by that principal component is significantly higher than 

expected, then the gene set represents an aspect of heterogeneity in the data. PAGODA 

subsequently combines gene sets that represent similar aspects of heterogeneity (i.e., similar 

PC1 loadings or PC1 cell scores) to form a more succinct representation. Another 

approach’s1,92 input is a gene signature consisting of a set of ‘plus’ and ‘minus’ genes that 

are highly and weakly expressed in a condition of interest. It scores each cell with the 

difference in the average expression of ‘plus’ versus ‘minus’ genes in that cell to reveal the 
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heterogeneity of cells with respect to the gene signature. As in other analyses, this procedure 

can be weighted to control for dropouts.

Prior knowledge on cell states can be used to interpret the biological relevance of the data’s 

main axes of variation. One study of T cell differentiation compiled an extensive set of gene 

signatures associated with relevant cell states and kept only those that significantly varied 

across cells in its data (using a one-versus-all GSEA test). It then computed the correlation 

of the single-cell signature scores with the projection of cells to each principal component, 

allowing annotation of the principal components with respect to functionality. The scored 

signatures provided biological interpretation for the main axes of variation, such as 

reflecting a smooth transition from a naive-like (unexposed) T cell state to an effector 

(exposed) phenotype (N.Y., A.R. and colleagues1). One can similarly interpret a principal 

component by ranking genes according to their loadings and testing which known gene sets 

are enriched at the top or the bottom of the ranked list132. The high co-linearity in gene 

expression data implies that almost all genes will have nonzero loadings in every principal 

component. This motivates a rigorous approach for determining which genes are 

significantly associated with a given principal component133, which has been applied to 

single-cell data (N.Y., A.R. and colleagues2). Similar methods can be applied to interpret the 

biological relevance of the low-dimensional map of the data produced by any projection 

algorithm, such as t-SNE. FastProject (N.Y. and colleague92) scales this process by 

visualizing and statistically testing the behavior of multiple gene signatures across multiple 

projection algorithms, discerning signatures that can illuminate particular projections.

Mapping dynamic processes

Cells undergo dynamic transitions, including short-term responses to environmental signals, 

cell differentiation, and ongoing oscillations. Each dynamic process is typically reflected in 

the cell’s molecular profile, such that single-cell analysis of RNA or protein can position a 

cell in a temporal trajectory. Importantly, a cell participates simultaneously in multiple 

trajectories. For example, in a given moment in time a cell may be responding to an 

environmental signal while being in a certain differentiation state and going through a 

certain phase of the light–dark cycle. It is often assumed (implicitly or explicitly) that some 

of these processes are largely independent, but this may not be the case (e.g., cell cycle and 

differentiation). Studying a continuous dynamic process through bulk genomic assays 

requires to artificially break and measure the process at discrete time points, and also to 

synchronize the population of cells. While this can sometimes be achieved with an external 

stimulus, other cases require sophisticated experimental means134. In contrast, single-cell 

genomics provides a snapshot of the entire dynamic process. Since cells are unsynchronized, 

the set of single cells captured at any time point will stochastically contain cells positioned 

in different instantaneous time points along the temporal trajectory59,135,136 (Fig. 1b). 

Computational analysis can then use these data to infer a near-continuous view of the 

temporal progression.

Pioneering computational methods recovered the temporal ordering by creating a graph that 

connects cells by their profiles’ similarity and finding an optimal path on this graph starting 

from a user-specified source. This path introduces the notion of ‘pseudo-time’—a scalar 
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measure of a cell’s progress along the temporal trajectory (different from real time because 

all cells are sampled at the same time point). The Wanderlust algorithm135 reconstructs a 

linear temporal trajectory in an unsupervised manner. It first builds a graph in which vertices 

are cells, and cells are connected to the k most similar cells (by cosine distance) with edges 

that are weighted by the dissimilarity. The temporal trajectory is based on shortest-path 

distances in this graph from a user-specified origin cell. Since noise accumulates with each 

step, making longer paths less reliable, Wanderlust randomly chooses a set of waypoint 

vertices uniformly to be used in distance computation (below). In addition, to prevent ‘short 

circuits’ due to the occasional proximity in the graph of two temporally distant cells, 

Wanderlust randomizes an ensemble of graphs by randomly choosing only l of each vertex’s 

k neighbors, operating independently on each graph in the ensemble, and then averaging the 

temporal position of each cell across the ensemble; short circuits are expected to appear only 

in a small fraction of the graphs, and their effect is thus averaged out. For each graph 

independently, the trajectory score of cells is initialized to their respective distances to the 

origin cell. Then, Wanderlust updates the trajectory score for every cell based on the average 

of the waypoints’ trajectory scores, weighted by their distance to the cell. This step updates 

the trajectory scores of the waypoints as well, and the algorithm iterates until convergence.

Another algorithm, Monocle137 (extending previous work in microarrays138), reconstructs a 

tree describing the biological process and assigns each cell a pseudo-time. Monocle builds a 

complete graph in which each cell is a vertex and the edge between every pair of cells is 

weighted by their distance in a low-dimensional space (computed with independent 

component analysis, (ICA)). It then constructs a minimal spanning tree (MST) of the graph 

and assumes that the longest path through the MST corresponds to the main temporal 

trajectory. More generally, the k longest backbones (with k specified by the user) correspond 

to the biological branches, whereas the other branches of the tree are considered technical 

noise. Monocle’s implementation relies on a PQ tree139—a concise representation of the 

temporal ordering of cells that allows for uncertainty. StemID223 infers likely edges in a 

differentiation lineage tree by clustering cells in low-dimension and drawing an edge 

between the medoids of every two clusters. For every cell c whose cluster’s medoid is m, the 

vector connecting m to c is projected onto all edges going out from m. The cell is then 

assigned to the edge on which it had the longest projection relative to the edge’s length, and 

the projection’s length is used as a measure of the cell’s progression on the edge. Only edges 

that are significantly more uniformly covered than expected by an empirical null model are 

retained in the final cell fate tree. Several studies140–142 used diffusion maps143 to study 

differentiation trajectories. By representing cells as isotropic Gaussians around their 

measured expression, the interference of these Gaussians created high probability density 

paths between cells, which are interpreted as transition probabilities between cellular states 

along a trajectory. Replacing the Gaussian kernel with a more general form140 allows 

dropouts to be addressed in the resulting statistical model. All these methods assume that the 

temporal transition between cellular states is smooth and that all intermediate cellular states 

are represented in the available cells.

The SCUBA algorithm144 takes a slightly different departure point (taken also by Wave-

Crest218) and assumes that single-cell profiles are available along a time course, such that 

cells are a priori sampled from distinct time points, but still allows for an asynchronous 
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process. SCUBA aims to detect in an unsupervised manner bifurcation events in which 

differentiating cells split between alternative fates. First, SCUBA uses k-means to cluster the 

cells of the first time point, while determining the number of clusters with the gap 

statistic123, and assigns every cell in the second time point to the parental cluster most 

similar to it. To determine whether a split has occurred, SCUBA partitions the progeny of 

every parental cluster in two and uses the gap statistic to decide whether the split explains 

the data better than the original single cluster. The process is iterated until SCUBA 

reconstructs a binary tree of cellular development across all time points, which it refines by 

likelihood maximization. To study the gene expression dynamics associated with a 

bifurcation event, SCUBA reduces the high-dimensional gene expression into the bifurcation 

direction, defined as the one-dimensional line connecting the centers of two clusters 

differentiated from a common parental cluster, and fits a potential function that describes the 

gene expression dynamics along that line. Importantly, this allows SCUBA to predict genetic 

perturbations that bias the proportions of the bifurcation toward one of the branches.

Another approach to capture bifurcations, Wishbone145, extends Wanderlust and allows the 

trajectory to bifurcate once into two alternative fates. Instead of sampling an ensemble, 

Wishbone mitigates the effect of short circuits by projecting the data to low dimension with 

a diffusion map143 and considering only the top diffusion components to define the 

Euclidean distance between nodes. A graph is then constructed based on these distances, and 

waypoints are selected as in Wanderlust, only with a medoid-based refinement to eliminate 

outlier cells from becoming waypoints. Similarly to Wanderlust, Wishbone computes a 

temporal trajectory starting in an a priori known progenitor cell and refines it iteratively 

using the waypoints, but prevents waypoints in one branch from influencing the other. It 

computes the perspective of each waypoint, which is an approximate distance of every cell 

from the progenitor, when the waypoint is taken as anchor. When two waypoints each lie in 

a different branch, their perspectives will diverge. Wishbone capitalizes on this observation 

by constructing a dissimilarity matrix between the waypoints and using a spectral clustering 

approach to identify the branches and their bifurcation point.

The cell cycle is the primary example of an oscillatory process that is readily detected from 

single-cell profiles. In pioneering work based on a few markers, ergodic rate analysis (ERA) 

was used to accurately infer trajectories along the cell cycle from single-cell measurements 

of fixed steady-state populations136. Several studies inferred the cell cycle phase of 

individual cells from single-cell RNA-seq data30,35,97,99, relying on transcriptional 

signatures of discrete phases from earlier bulk profiling experiments146. This is a prime 

example of the power of single-cell profiling: while bulk profiles of cells synchronized for 

the cell cycle have proven challenging to perform and compare across cells and species134, 

single-cell profiles provide a near-continuous sampling and show high conservation across 

cell types and species30,97,99. More recently, the Oscope147 method was developed to detect 

genes that oscillate with time, as in the cell cycle, and to order cells by their phase in the 

cycle. Oscope allows for multiple orthogonal oscillatory processes to take place 

concurrently, each involving different genes, and the relative order of the cells may be 

different with respect to each of the cycles. Oscope assumes that an unsynchronized set of 

cells measured in a scRNA-seq experiment contains a dense sample of time points along any 

cycle. It fits gene pairs with two phase-shifted sinusoidal functions across all cells, retains 
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the best fits as candidate oscillatory genes, and clusters the cells, using the fit errors of gene 

pairs as their dissimilarity and picking the optimal number of clusters by maximizing 

silhouette width. Each gene cluster defines an independent oscillatory process, and cells are 

ordered with respect to their phase in it cycle with the nearest-insertion heuristic of the 

traveling salesperson problem148.

The cell cycle also epitomizes the challenge of dissecting multiple co-occurring processes in 

the same single cell, especially when these processes are not fully independent of each other. 

The cell cycle often has an enormous impact on cellular gene expression146,149,150 (although 

some87 have challenged this view), but this impact can extend to other processes, and in turn 

be affected by them. Thus, the large variation induced by the cell cycle in some scRNA-seq 

experiments may conceal other important sources of biological variation101, especially 

cellular differentiation processes137,141,151,152. On the other hand, removing its impact 

altogether (e.g., regressing it out) may eliminate important facets of biological variation, for 

example, in differentiation processes98. This challenge is likely to affect other processes (in 

addition to cell cycle) as we investigate them further.

Nevertheless, several studies have attempted to handle cell cycle covariates in scRNA-seq 

analysis. In particular, scLVM101, a statistical framework developed to account for unwanted 

and a priori known covariates from scRNA-seq data, has been effectively used to handle the 

cell cycle as a known covariate. scLVM is based on Gaussian process latent variable models 

(GPLVMs)153 and is inspired by the two-step removal of unwanted variation (RUV-2) 

discussed above49. However, instead of using a set of negative control genes, as in RUV-2, 

scLVM uses a set of genes annotated a priori as associated with a confounding factor, such 

as the cell cycle (simple removal of the annotated genes is insufficient since many 

unannotated ones are affected as well). A GPLVM approach maximizes the likelihood of a 

latent cell cycle variable (a one-dimensional variable per cell), derives its cell-to-cell 

covariance structure, and either takes it into account in downstream analyses (e.g., gene–

gene correlations) or eliminates the latent cell cycle factor from the data (before 

visualization or clustering). Applied to T helper 2 (TH2) cell differentiation, scLVM helped 

highlight a set of correlated genes enriched in TH2 cell differentiation and distinguish two 

subpopulations—neither of which is detectable when the cell cycle covariates are present101.

Inference of spatial location

Cells operate within complex tissues where their spatial context – from their physical 

position to the identity of neighboring cells – is critical to their function (N.Y. and A.R.225). 

Unfortunately, most high-throughput single-cell approaches require the dissociation of 

tissues into single-cell suspensions and therefore lose this spatial information. While 

pioneering approaches for in situ sequencing154,155, transcriptome in vivo analysis156, and 

multiplex FISH157–159 of single-cell RNA are emerging (see also a recent review160), their 

throughput and accessibility to the research community have not yet matched those of more 

established protocols. Conversely, spatial information can be readily obtained for a limited 

number of ‘landmark’ genes by traditional experimental methods such as in situ 
hybridization and histochemistry; indeed, for many model systems there are extensive 

catalogs of such information.
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This has inspired the development of two methods, Seurat (A.R. and colleagues)93 and a 

method by Achim et al.71 that combine limited spatial cues for landmark genes with single-

cell RNA-seq of cells from the same type of dissociated tissue to infer the spatial location of 

the dissociated cells through the patterns reflected by the landmark genes. For example, 

Seurat93 takes as input scRNA-seq and in situ hybridization for a small set of spatial 

landmark genes, converted into a spatial reference map of binary assignments (‘on/off’) in 

discrete spatial bins specified by the user. On the basis of the landmark genes, Seurat 

computes a posterior probability for each cell to have originated from each bin. Because of 

the limited number of landmarks expressed at any spatial position, dropouts in scRNA-seq 

could severely compromise the mapping. Seurat addresses this by first learning a (L1-

constrained) linear model for each landmark transcript from the scRNA-seq profiles 

themselves and then imputing the landmark gene value in each cell before mapping. It then 

transforms the imputed continuous values for the landmark genes into binary assignments by 

fitting the distribution of each landmark gene with a mixture of two Gaussians. Finally, it 

constructs a multivariate normal model for the expression of the landmark genes in each bin, 

which it uses to derive the aforementioned posterior probabilities. A similar method was 

developed independently and in parallel71. Starting with a similar, but higher-resolution, 

spatial reference map, and a set of sequenced cells, the method computes a specificity score 

for the expression of each landmark gene m in every cell c, and then a correspondence score 

of each cell–voxel pair: if a landmark gene m is detected in cell c, then the score increases or 

decreases depending on m’s association with this voxel in the reference map, weighted by 

the specificity of the pair (c, m), namely the extent in which m is particularly expressed in c 
relative to the other cells. Given the expected dropouts, no penalty is given when m is 

undetected in scRNA-seq. The statistical significance of the correspondence scores is 

assessed through a permutation test.

Such mapping approaches critically depend on the nature of the reference map. An 

algorithm typically cannot map cells at a resolution better than that of its reference map 

(with some exceptions related to gradients), and it cannot map cells if they do not evince a 

discernible pattern that the map associates with a particular spatial locus. The number of 

required landmarks is related to this spatial complexity, introducing the notion of power to 

detect spatial patterns93. Successful application of reference-based mapping approaches has 

so far been limited to tissues with canonical structure, such as a developing embryo, which is 

faithfully reproduced in replicate samples. This is required in order to obtain both landmark 

gene expression for a reference map (obtained from one or more samples) and scRNA-seq 

profiles (obtained from a separate physical sample). While this is a likely situation in most 

normal tissues (e.g., brain structures71) and physiological processes (e.g., embryogenesis93), 

it is not the case in pathological tissues, such as tumors, where each tissue is idiosyncratic. A 

different hurdle to successful application of such approaches occurs in normal tissues, such 

as the retina161,162, in which functionally similar cells are in fact mosaically organized. 

Higher-order computational approaches will be required to address these challenges.

When a detailed reference map is not available, some spatial information can be gleaned 

from gene markers of spatial axes163. For example, studies of the otocyst164,165, a spherical 

organ, placed gene expression profiles from dissociated cells on a three-dimensional sphere 

by taking each cell’s coordinates in the first three principal components and projecting it to 
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the unit sphere (this approach creates a hollow sphere and does not accommodate 

multilayered spheres). To relate PCA space to real-world geometry, the dorsal–ventral axis 

was defined by the direction of the vector connecting the origin to the centroid of cells 

expressing a dorsal gene marker, and further heuristics determined anterior–posterior and 

medial–lateral axes.

Analyzing cellular circuitry from cell–cell variation

Cellular identity and function are governed by elaborate regulatory circuits, many of which 

act through control of RNA expression166,167. Deciphering circuitry typically relies on 

combining observations across diverse samples with manipulation of one or more regulators 

to observe their effect. Single-cell genomics addresses this challenge in two important ways. 

First, it provides a sheer scale of individual samples (up to tens of thousands single cells in 

one experiment, whereas bulk genomics typically measures several dozens of samples) 

increasing statistical power97. Second, because of both stochastic and regulated differences 

between the cells, each cell forms its own ‘perturbation system’, in which multiple 

regulators are subtly, or more strongly, perturbed, possibly reducing the need for additional 

experimental perturbations3,41.

Leveraging this insight, several studies have analyzed the covariation structure between 

transcripts or proteins across single cells to infer regulatory relations1–3,41,135,137,168–172. In 

analogy to simple observational approaches for inferring gene regulation, correlating the 

expression profiles of genes or proteins opens the way to elucidating the regulatory 

mechanisms that control them2,3,41,169,170. For example, an analysis (N.Y., A.R. and 

colleagues3) of the covariation in the expression of ~600 transcripts across 18 dendritic cells 

detected a module of antiviral gene expression, which included two key transcription factors, 

STAT2 and IRF7. These factors were predicted to control the module because variation in 

their protein expression levels was expected to propagate downstream and create variation in 

their targets’ mRNA expression, as well in as their own mRNA expression through 

autoregulation. Notably, analysis of covariation across cells effectively circumvents many 

challenges associated with dropouts because the probability that a gene will drop out, once 

conditioned on its expression, is independent from biological gene-to-gene covariation. 

Similar approaches have been used in other biological settings1, and enhanced resolution, for 

example from pseudotemporal ordering, has helped recover such dependencies135,137. A 

related strategy to identify co-regulated genes is by comparing their expression between two 

conditions, each of which is represented by multiple individual cells from multiple samples.

As in circuit analysis in bulk genomic profiles, regulatory predictions from observational 

expression profiles can be combined in turn with other mechanistic (e.g., chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) on bulk profiles) or genetic (e.g., 

perturbations followed by RNA-seq) profiles, to increase power to detect regulatory relations 

or to help resolve the molecular basis of interaction or causality. A straightforward approach 

is to first identify subsets of genes of interest (e.g., based on principal components that 

correlate with important biological properties1 or on an inferred ‘pseudo-time’ ordering137) 

and then use other data sets, such as those for cis-regulatory motifs, ChIP-seq, or 
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perturbation followed by RNA-seq, to identify transcription factors whose targets are 

enriched in those sets.

More recent studies have begun to determine regulatory circuit topology beyond pairwise 

interaction. One approach141 uses Boolean models (also used in the past for bulk profile 

analysis173) in which a cell’s state is represented by a binary vector indicating for each gene 

whether it is ‘on’ (1) or ‘off’ (0), and states form nodes in a network in which they are 

connected by an edge if their respective binary vectors differ by exactly one bit. Paths 

through this graph are perceived as gradual transitions through a sequence of cellular states. 

Finally, the network’s paths (or binary state transitions) are used to identify an ‘executable’ 

Boolean model that expresses each gene as a Boolean function (using Boolean operators 

such as AND, OR, NOT) of other genes, using tools from computer program 

synthesis174,175.

Notably, when the number of single cells analyzed becomes very large, the extent of noise in 

the measurement of any given transcript can introduce substantial challenges for simple 

calculations of pairwise covariation, from scatter plots to linear correlation. Two 

complementary methods, DREVI and DREMI32, tackled these challenges through 

visualization and quantification, respectively, in the context of single-cell mass cytometry 

(CyTOF) data for dozens of phosphoproteins across hundreds of thousands of cells. 

Considering a given pair of proteins (say X and Y), it has been observed that a simple 

analysis of their joint density f(X, Y) is dominated by the most common cell types, but 

misses parts of the dynamic range that transpire only in rare subsets of cells but are key to 

uncovering the biologically meaningful signal of the relationship between proteins. 

Therefore, the two methods use a conditional density f(Y|X), which is equivalent to up-

weighting ranges of X values that are represented only by rare subtypes of cells, allowing 

them to have the same effect as the abundant subtypes. To achieve this, DREVI computes a 

two-dimensional kernel density estimation for f(X, Y) via a heat diffusion formulation176, 

derives f(Y|X) from it, and visualizes f(Y|X) as a heat map. DREMI then provides a 

quantitative score for the strength of this (directional) dependence of Y on X by estimating 

their mutual information using the conditional, rather than the joint, distribution. Finally, the 

conditional density distribution is fitted with a curve to obtain a parametric description of 

how Y changes as a function of X, revealing important aspects of their dependence, such as 

activation thresholds or saturation.

There are several crucial impediments to the inference of regulatory networks from single-

cell transcript abundances. First, transcript abundance is affected not only by allele-extrinsic 

factors, but also by allele-intrinsic stochasticity, resulting in its divergence across cells 

exposed to the same extrinsic triggers42,43 (see above and Fig. 2). While the statistically 

strongest correlations are often indicative of underlying regulatory circuits (N.Y., A.R. and 

colleagues1), we expect that novel computational approaches, possibly relying on 

experimental cues41, will emerge to accommodate this challenge. Second, protocols that lyse 

entire cells measure total mRNA, and consequently they mix the fluctuating nuclear RNA 

and the more stable cytoplasmic RNA177,178 and combine transcriptional and post-

transcriptional effects in a single measurement. This can be addressed in the future by 

integrative models that rely on additional experiments, e.g., a combination of RNA-FISH 
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(fluorescence in situ hybridization) and single-cell ATAC-seq27,28 (assay for transposase-

accessible chromatin with high-throughput sequencing) to measure transcription per se; or 

new methods for measuring single-cell nascent RNA levels) and/or by bulk data on RNA 

transcription rates or stability (A.R. and colleagues179). Third, the number of mRNA 

molecules may sometimes not correlate well with the numbers of their protein products at 

the same time point180–184, and consequently regulatory networks ought to be considered at 

both the transcript and the protein levels171. Advances in single-cell proteomics will no 

doubt contribute to studies of regulatory mechanisms. On the other hand, scRNA-seq does 

make it possible to study the mechanisms underlying allele-intrinsic variation by examining 

differences in other moments of the distribution (e.g., variance), which can shed light on the 

kinetics of the transcription process168,171,172.

Challenges in single-cell epigenome analysis

Although most high-throughput single-cell profiling studies to date have focused on RNA 

and protein, recent progress in epigenome analysis185 has included assays for single-cell 

ChIP-seq (Drop-ChIP26), single-cell ATAC-seq27,28, single-cell Hi-C29 (a genome-wide 

derivative of the chromosome conformation capture (3C) technique), and single-cell DNA 

methylation22–25. These methods hold promise for elucidating the epigenetic controls of 

cellular identity186,187. In particular, once haplotypes are resolved188–190, single-cell 

epigenomic profiles should allow correlation of events such as the methylation patterns of a 

gene’s promoters and enhancers, or of enhancers targeted by the same transcription 

factor191. This would not be possible using bulk epigenomic data, which provide averages of 

events recorded in multiple cells. Similarly, single-cell Hi-C can derive a coherent three-

dimensional chromosomal topology29 unattainable from bulk 3C data, which averages the 

chromosomal conformations in millions of cells.

However, single-cell epigenomic data are very sparse: a single cell contains only one copy of 

each allele molecule, and owing to the size of the genome and the limited efficiency of 

current single-cell epigenetics protocols, only a small subset of loci is measured in any given 

cell. This leads to unique computational challenges in detecting signal from very sparse data. 

For example, because the probability of detecting a signal (finding a read) at a particular 

locus is very low, clustering of single-cell ChIP-seq profiles using locus-based correlations 

between them is highly sensitive to algorithm parameters and global technical attributes, 

such as mean single-cell coverage26. Low capture ratios coupled to massive amplification 

would also lead to epihaplotypes, similarly to falsely allelic scRNA-seq, where a gene could 

be erroneously classified as monoallelically expressed because of dropouts38,75, and to 

allelic dropouts77 in single-cell DNA-seq due to which heterozygous variants could be 

falsely classified as homozygous.

To overcome this intrinsic sparseness, several studies26,28 have reasoned that functionally 

related genomic elements, such as all the sites bound by the same transcription factor, would 

co-vary within the same cell (analogous to the observation above on transcript co-regulation 

to infer circuits), providing a higher-order aggregate signal that allows one to group cells by 

their shared inferred state, as well as to determine the extent of variation in the activity of the 

associated factors between cells26,28. As single-cell epigenome studies become more 
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common, more attention will be devoted to developing methods to account for their 

technical noise191, similar to the body of work that had already emerged for scRNA-seq.

Outlook

Single-cell genomics has opened a new frontier for understanding biological systems at 

multiple levels, including cell types and states, underlying molecular circuits, and tissue 

organization. Innovative, efficient, robust, and scalable computational analysis methods are 

essential to delivering on this promise. Pioneering work over the past few years has provided 

an initial toolbox of algorithms. Some of these methods adapt well-established tools 

previously used in bulk genomics to the particular challenges of noise and scale in single-

cell data1,44,89,90,105, whereas others are designed specifically for single-cell 

data71,93,135,137. Despite this progress, the field is still in its infancy. Experimental and 

computational biologists are still learning the characteristics of single-cell data and the 

proper ways to accommodate them, while at the same time these very characteristics change 

rapidly as experimental technologies advance. An important task for the future is to define a 

set of best practices through comparisons of different statistical methods and experimental 

platforms. We anticipate substantial development of computational methods in the next few 

years to tackle challenges such as the growing scale of the data, the need for effective 

visualizations, the emergence of new single-cell assays, and integration of either diverse data 

types219 or multiple levels of biological organization, from single cells to cell–cell circuits to 

tissues.

The challenge posed by increased scale for both processing and visualization should not be 

underestimated. Using the latest protocols for massively parallel scRNA-seq30,31 and mass 

cytometry32–34, a single laboratory can now readily collect tens of thousands to hundreds of 

thousands of single-cell RNA-seq profiles and tens of millions of single-cell protein profiles. 

Data at this scale present difficulties in basic processing192 (e.g., calculating a covariation 

matrix; clustering) and in assessing the statistical significance and robustness of results. It is 

also a challenge to effectively visualize such magnitudes of data, and improved visualization 

methods will be crucial to fully exploit the potential of single-cell data to lead to biological 

discovery. For example, it is standard to visualize the first principal components of the data, 

yet in single-cell data, unlike many other data types, those capture only a minute fraction of 

the variation in the data (note that t-SNE108 too often considers only top principal 

components in high-dimensional data). On the other hand, the increase in scale presents 

computational opportunities. It allows benefitting from ‘big data’ approaches, most notably 

deep learning193, developed in fields such as image and text analysis, in which data sets tend 

to have many more samples than were available in genomics thus far.

Many of the methods described here are applicable across different single-cell data types145. 

However, certain data types require distinct computational strategies. For instance, while 

data sparsity currently characterizes all single-cell assays, it is particularly challenging in 

epigenomic profiles, as discussed above. Another prominent domain that requires specific 

computational methods is genetic variation between cells, whether in normal or pathological 

contexts. While our focus has been on single-cell transcriptomics, important strides have 

also been made in single-cell DNA sequencing77,194 as well as in analysis of copy-number 

Wagner et al. Page 21

Nat Biotechnol. Author manuscript; available in PMC 2017 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variations (CNVs)11 and point mutations15,195 from single-cell DNA data. These methods 

have been used to decipher pathological evolution in tumors11,15,195–197 and somatic 

mosaicism198 in healthy tissues and in non-cancerous disease199–203. Some of the challenges 

highlighted here, including experimental noise16,204, can strongly affect estimates of 

heterogeneity due to false positives, false negatives (including allelic dropouts77), and data 

sparsity; these will require new methods and adaptation of existing ones (e.g., in 

phylogenetic reconstruction205). Notably, the transcript sequences in scRNA-seq data (the 

‘expressed exome’) can also be used to derive valuable genetic information. This includes 

identification of large-scale CNVs, inferred by considering skews in gene expression levels 

along large chromosomal windows97; identification of fusion transcripts206,207; inference of 

T- or B-cell receptors (TcRs or BcRs, respectively) sequences from the respective 

transcripts208,217; and even mutation calling97,226, albeit with similar challenges related to 

dropouts. Genetic inference from scRNA-seq also provides a means of connecting genetic 

and functional states in the same cell.

These possibilities highlight the exciting potential of integrating different molecular profiles 

at the single-cell level, either by direct experimental measurement or by computational 

inference. Emerging experimental frameworks now allow simultaneous measurement of 

multiple omic data types from the same single cell. Early successes include parallel 

measurement of the transcriptome and either the genome (DR-seq209 and G&T-seq210), the 

methylome (scM&T-seq211, an adaptation of G&T-seq), or the proteome212–214. Multiple-

omic protocols will not only allow results to be corroborated by distinct data types (e.g., 

CNV calling from DNA-seq11 and scRNA-seq data97) but also elucidate how information 

flows in biological circuits from DNA to RNA to protein. For example, the framework of 

expression quantitative trait loci (eQTLs215) can be re-cast in single-cell analysis168, where 

every cell is now an individual, and dependencies between single-cell genome variants and 

transcriptome variation allow inferring causality from the former to the latter. This can boost 

the power of eQTL detection168 and analysis of factors that affect expression variance and 

temporal dynamics. It can also provide insight into tumors, as analysis of multiple single 

cells from one tumor sample can be used to identify the genetic basis of transcriptional state 

variation between malignant cells197,226. Similarly, simultaneous analysis of protein and 

RNA or of epigenomic profiles and RNA can provide mechanistic explanations that relate 

variations in the state of regulator proteins3 or cis-regulatory loci27,28 to variation in target 

transcripts.

Even without new experimental methods, computational techniques can help relate distinct 

data types across single cells, as was effectively shown for relating spatially resolved in situ 
hybridization data to scRNA-seq to derive a spatial mapping of cells to positions71,93. This 

suggests a more general framework whereby some types of data (e.g., in situ hybridization, 

protein expression), often available for only a subset of the variables, can be used to link 

individual cells with new metadata (e.g., cell type, spatial position). Extending these 

approaches could help connect, for example, CyTOF profiles and RNA-seq profiles to define 

cell states.

Finally, single-cell genomics will help elucidate how cells are organized into multicellular 

systems, addressing questions such as the spatial organization of tissues and the direct and 
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short-range molecular interactions between cells. Two key experimental and computational 

advances are needed. First, we need to determine the molecular profiles of single cells 

without dissociating them from their tissue context. Single-cell profiles will allow us to 

determine which cells likely interact with each other and through which molecules, and 

additional spatial resolution at the sub-cellular level can help determine direct interactions. 

While experimental methods are emerging for this purpose155,159, they will require 

sophisticated accompanying computational analysis methods. Second, we need to generalize 

methods for studying the intracellular functional circuitry to ones that can infer the 

functional circuitry of interacting cells. Just as for intracellular molecular circuits, a physical 

description is illuminating but insufficient to understand the operation of a circuit and how it 

creates a biological phenotype. By combining single-cell tissue genomics with 

computational models for molecular circuits that relate cells to each other in space and time, 

from their molecular connections and up to their functional impacts, we can build an 

integrated understanding of the way cells fulfill their function in health and disease.
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Box 1

The many facets of a cell’s identity

We define a cell’s identity as the outcome of the instantaneous intersection of all factors 

that affect it. We refer to the more permanent aspects in a cell’s identity as its type (e.g., a 

hepatocyte typically cannot turn into a neuron) and to the more transient elements as its 

state. Cell types are often organized in a hierarchical taxonomy, as types may be further 

divided into finer subtypes; such taxonomies are often related to a cell fate map, 

reflecting key steps in differentiation. Cell states arise transiently during time-dependent 

processes, either in a temporal progression that is unidirectional (e.g., during 

differentiation, or following an environmental stimulus) or in a state vacillation that is not 

necessarily unidirectional and in which the cell may return to the origin state. Vacillating 

processes can be oscillatory (e.g., cell-cycle or circadian rhythm) or can transition 

between states with no predefined order (e.g., due to stochastic, or environmentally 

controlled, molecular events). These time-dependent processes may occur transiently 

within a stable cell type (as in a transient environmental response), or may lead to a new, 

distinct type (as in differentiation). A cell’s identity is also affected by its spatial context 
that includes the cell’s absolute location, defined as its position in the tissue (for example, 

the location of a cell along the dorsal ventral axis determines its exposure to a morphogen 

gradient), and the cell’s neighborhood, which is the identity of neighboring cells.

The cell’s identity is manifested in its molecular contents. Genomic experiments measure 

these in molecular profiles, and computational methods infer information on the cell’s 

identity from the measured molecular profiles (inevitably, the molecular profile also 

reflects allele-intrinsic and technical variation that must be handled properly by 

computational methods before any analysis is done). We refer to this as inferring facets of 

the cell’s identity (or the factors that created it) to stress that none describes it fully, but 

each is an important, distinguishable aspect.

By analogy, we relate the facets to the vectors that span the space of cell identities. In 

many cases, computational analysis methods find such basis vectors directly (as 

discussed in main text) and these indeed relate well to biological facets of identity. 

However, this idealized definition, and the present computational tools, are likely to be 

insufficient to capture the true nature of this space. In particular, basis vectors in algebra 

are defined to be independent of each other, but facets of a cell’s identity that we would 

like to distinguish and identify separately— such as its type, location, and state—may be 

largely dependent on one another. For example, the spatial position of a cell in a solid 

organ is a fixed element of its identity that is usually distinguished from its ‘type’ but is 

nevertheless not independent of cell type. In another example, whereas a cell cycle phase 

may have invariant characteristics across systems30,35,99, the ability of a cell to enter the 

cell cycle and the duration of the phase can depend on cell type and can influence other 

temporal processes like differentiation. As the field of single-cell genomics develops, it 

may be possible to define abstractions, possibly employing data-driven categories rather 

ones imposed by prior conceptions, that both are mathematically precise and reflect the 

key biological components.
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Figure 1. 
(a) A cell participates simultaneously in multiple biological contexts. The illustration depicts 

a particular cell (highlighted in blue) as it experiences multiple concurrent contexts that 

shape its identity simultaneously (from left to right): environmental stimuli, such as nutrient 

availability or the binding of a signaling molecule to a receptor; a specific state on a 

developmental trajectory; the cell cycle; and a spatial context, which determines its physical 

environment (e.g., oxygen availability), cellular neighbors, and developmental cues (e.g., 

morphogen gradients).

(b) The biological factors affecting the cell combine to create its unique, instantaneous 

identity, which is captured in the cell’s molecular profile. Computational methods dissect the 

molecular profile and tease apart facets of the cell’s identity, which are akin to ‘basis 
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vectors’ that span a space of possible cellular identities. Key examples include 

(counterclockwise from top): (1) division into discrete types (e.g., cell populations in the 

retina (A.R. and colleagues30)); cell type frequency can vary by multiple orders of 

magnitude from the most abundant to the rarest subtype; (2) continuous phenotypes (e.g., the 

pro-inflammatory potential of each individual T cell, quantified through a gene expression 

signature derived from bulk pathogenic T cell profiles (N.Y., A.R. and colleagues1)); (3) 

temporal progression (e.g., normal differentiation, such as hematopoiesis); (4) temporal 

vacillation between cellular states (e.g., oscillation through cell cycle; data taken from A.R. 

and colleagues99); (5) physical locations: a schematic representation of an embryo at 50% 

epiboly (only half is shown), divided into discrete spatial bins; independent in situ 
hybridization data of landmark genes allows inferring spatial bins (highlighted) from which 

single cells had likely originated (figure adapted from A.R. and colleagues93). The 

scatterplots represent single cells (dots) projected onto two dimensions (e.g., first two 

principal components or using t-SNE).
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Figure 2. 
Biological and technical factors combine to determine the measured genomic profiles of 

single cells; computational methods remove technical effects and tease apart facets of the 

biological variation. The sources of variation that affect single-cell genomics data are (1) 

technical factors that reflect variance due to the experimental process (e.g., batch effects); 

(2) factors that are intrinsic to the process under study (e.g., transcription) and reflect 

stochastic fluctuations (e.g., transcriptional or translational bursts in mRNA or proteins) that 

do not correlate between two alleles of the same gene; and (3) factors that are extrinsic to the 

process under study, reflecting the presence of different cell types and states (e.g., 

concentrations of key transcription, translation, or metabolic factors). Computational 

methods are needed to remove the nuisance technical variation (although they typically 

cannot completely eliminate it) before the biological variation can be confidently explored. 

Most single-cell studies explore allele-extrinsic factors and can be classified as either cell-

centric or gene-centric. Cell-centric analyses aim to catalog the cells into phenotypic groups, 
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whether discrete (e.g., clustering) or continuous (e.g., temporal ordering). Gene-centric 

analyses aim to understand the dynamics and regulation of the generating mechanism (e.g., 

transcriptional circuits).
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Figure 3. 
Technical confounders of single-cell RNA-seq and computational methods to handle them. 

(a) Batch effects. This source of technical variability can be mitigated by careful 

experimental design. The upper panel shows a design in which two biological conditions 

(“1” and “2”; for example, wild type and knockout) are distributed evenly between two 

technical batches (“Prep a” and “Prep b”). This allows statistical methods to account for the 

batch effect. In contrast, in the lower panel, the biological variation cannot be separated from 

the batch effect. (b) Library quality. The primary principal components of single-cell gene 

expression correlate strongly with quality metrics such as number of aligned reads and 
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library complexity (A.R. and colleagues64). A typical example is provided. The y axis shows 

the –log10 P value of the Spearman correlation between each of 18 quality metrics (color 

coded) and one of the primary principal components of the unnormalized expression data 

(FPKM units; data is taken from N.Y., A.R. and colleagues1, in which the quality metrics are 

described; SZ = size, STD = standard deviation). (c) Dropouts and amplification bias. 

Because of the minute quantities of starting material in single cells, expressed transcripts 

may not be detected because they stochastically failed to amplify; on the other hand, the 

massive amplification exaggerates any source of technical noise. (d) Latent technical 

confounders. These can be identified using matrix factorization (notation follows ref. 49; 

visualization adapted from ref. 216). The observed expression (Y, m samples by n genes) is 

often assumed to be a linear combination of biological and technical factors for statistical 

tractability49,50,67,68. It can be generally modeled as a sum of (a) X: p biological factors 

(either known a priori—for example, genetic background—or latent, in which case p is 

unknown); (b) Z: n known technical covariates (e.g., experimental batches); (c) W: k latent 

factors of technical noise (k is unknown); (d) random noise ε with zero mean. α, β, γ 
determine the influence of each factor on every gene, with β representing the biology of 

interest and α, γ, being nuisance factors that need to be properly handled before β can be 

inferred. (e) The prevalence of dropouts is modeled through a zero-inflated model: gene 

expression is modeled as a mixture of two distributions: the ‘real’ one, observed when a 

transcript is successfully amplified, that reflects the true mRNA abundance (psuccess, in 

orange)) and a ‘dropout’ that occurs when a transcript fails to amplify (pdropout, in teal). 

The mixing ratio π depends on the transcript’s real expression since it has been empirically 

observed that weakly expressed transcripts are more prone to dropouts1. (f) Modeling 

dropout probabilities based on empirical data. Left and middle, false-negative rate curves 

(computed for each cell) describe the probability for a dropout event (y axis) as a logistic 

function of transcript abundance in the corresponding bulk population. Right, the inferred 

rates weigh down the effect of possible dropout events. Each dot represents the expression of 

one gene in two arbitrary single cells (x and y axes). Undetected genes (circled) are weighed 

down when computing the correlation between the expression profiles of the two cells (data 

obtained from N.Y., A.R. and colleagues3).
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