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Image resampling is a common manipulation in image processing. 	e forensics of resampling plays an important role in image
tampering detection, steganography, and steganalysis. In this paper, we proposed an e
ective and secure detector, which can
simultaneously detect resampling and its forged resamplingwhich is attacked by antiforensic schemes.We�nd that the interpolation
operation used in the resampling and forged resampling makes these two kinds of image show di
erent statistical behaviors
from the unaltered images, especially in the high frequency domain. To reveal the traces le� by the interpolation, we �rst apply
multidirectional high-pass �lters on an image and the residual to create multidirectional di
erences. 	en, the di
erence is �t
into an autoregressive (AR) model. Finally, the AR coecients and normalized histograms of the di
erence are extracted as the
feature. We assemble the feature extracted from each di
erence image to construct the comprehensive feature and feed it into
support vector machines (SVM) to detect resampling and forged resampling. Experiments on a large image database show that the
proposed detector is e
ective and secure. Compared with the state-of-the-art works, the proposed detector achieved signi�cant
improvements in the detection of downsampling or resampling under JPEG compression.

1. Introduction

Resampling is a useful image processing tool, such as upscal-
ing in consumer electronics, downscaling in the online store,
social networking, and picture sharing portal. However, some
people intentionally utilize the resampling to create tampered
images and upload these images to social networks to spread
rumors. Due to the abuse in image tampering, resampling
forensics attracts researchers’ attentions [1–12]. Resampling
forensics can also be used to reveal the image’s processing
history or help people select the secure cover for stenogra-
phy; for example, Kodovský and Fridrich analyzed how the
parameters of downscaling a
ect the security of stenography
[13]. Hou et al. utilized the resampling forensics for blind ste-
ganalysis [14].	erefore, resampling forensics is of particular
interest in the multimedia security �eld.

Early works [1–10] of resampling forensics were based on
the periodical artifacts resulting from equidistant sampling
and interpolating. 	ese detectors [1–10] can provide reliable
results in the uncompressed resampled images. However,

their detection accuracies signi�cantly degraded in the case of
resampling with JPEG compression. Recent works [11, 12, 15]
utilized pattern recognition methods to detect resampling.
	ese works extract the features at �rst and then perform
classi�cation by the machine learning tools. Feng et al. [11]
exploited the normalized energy density as the characteristic
of image resampling. 	ey divided the DFT frequency spec-
trum of the second derivative of the image into 19 windows of
varying size and then extracted the normalized energy den-
sity from each window to form a 19D feature. Li et al. [12] uti-
lized a moment feature to reveal the position and amplitude
distribution of resampling in the DFT frequency domain.
	ey �rst divided the DFT frequency spectrum into 20 sub-
bandswith equal interval and then extracted themoment fea-
ture from each subband to form a 20D feature. For the sake of
simplicity, we called the 19D normalized energy density fea-
ture [11] and 20Dmoment feature [12] as FE and FM, respec-
tively. 	e machine learning-based detectors [11, 12, 15] get
better results than periodical artifacts-based detectors [1–10]
for the upsampling with JPEG compression. However, their
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performances on the downsampling with JPEG compression
still need to be improved. Besides, the above detectors
[1–12, 15] have not considered the existence of malicious
adversary, a practicable challenge in real life. For instance,
Kirchner andBöhme [16] proposed an antiforensic scheme by
removing the periodic artifacts with irregular sampling and
successfully defeated the periodicity-based approach [1–10].
In the sequel, we called the resampling antiforensics [16] as
forged resampling for short.

	e appearance of antiforensic technology has been
drawing the researchers’ attentions to the security of the
forensics [17, 18]. Sencar andMemon [18] formally de�ne the
security and robustness of the forensics.	ey pointed out that
the security concerns the ability to resist intentionally con-
cealed illegitimate postprocessing, while the robustness con-
centrates on the reliability against legitimate postprocessing.
In our previous work [19], we employed partial autocorrela-
tion coecient to reveal the artifacts caused by the forged
resampling. Li et al. [15] utilized steganalytic model, SRM,
[20] to detect forged resampling and obtained excellent
performance.

For a test image, we have no knowledge whether it has
been processed by resampling or forged resampling. To avoid
missing detection, an alternative approach is that sequentially
testing the image by the resampling detector and forged
resampling detector. Only if two detectors both predict the
image is innocent is the test image taken as an innocent
image. To simplify the detection procedure, we propose an
integrated detector which can simultaneously detect resam-
pling and its forged resampling. As both the resampled image
and forged resampled image are generated via interpolation,
we employ the histogram and coecients of AR model
on multidirectional di
erences to capture the interpolation
traces. Experimental results indicate that the proposed inte-
grated detector is e
ective and secure.

	e rest of this paper is organized as follows. Section 2
reviews the resampling forensics and the antiforensic scheme
[16]. In Section 3, we introduce a new feature set for resam-
pling forensics. 	e experiments are presented in Section 4.
Section 5 concludes the paper.

2. Background

In this section, we �rst introduce the resampling and its
periodical artifacts and then review the forged resampling
scheme proposed by Kirchner and Böhme [16].

2.1. Resampling. 	e frequently used image resampling oper-
ation, including scaling and rotation, consists of two basic
operations: (1) resampling, which is also called as spatial
transformation of coordinates, and (2) intensity interpola-
tion, which assigns pixel values to the transformed pixels.

Assume that we want to rescale a � × � image �(�, �) to
a � × � image 	(
, �). Generally speaking, 2D image scaling
can be separated into two 1D scaling operations along the row
and column, respectively. Intuitively, image � is �rst rescaled
along the row to get an intermediate image� of size�×�; then
image � is rescaled along the column to get rescaled image 	

B(i, 1) B(i, 2) B(i, 3) B(i, 4) B(i, 5)

E(i, 1) E(i, 2) E(i, 3) E(i, 4) E(i, 5) E(i, 6) E(i, 7)

(1, 0) (1/3, 2/3) (2/3, 1/3) (1, 0) (1/3, 2/3) (2/3, 1/3) (1, 0)

“Unaltered pixel”

“Resampled pixel”

Figure 1: Example of the upscaling ( = 3/2, bilinear) process for the
th row of image B (the �rst line). 	e corresponding interpolated
weights are shown in the bracket.

with size of�×�.	ewhole scaling process can be formulated
as

	 = ����� = ���, (1)

where the matrix ��(� × �) and ��(� × �) determined by the
scaling factor  and interpolation kernel embodies the rescal-
ing process for the row and column, respectively. According
to (1), we can simplify the discussions of 2D scaling to 1D scal-
ing. As image rotation is similar to image scaling, we concen-
trate on the image scaling in the following.

In the resampling phase, for a scaling factor  = V/ℎ (the
greatest common divisor of V and ℎ is 1), the rescaling pixels
are �rst mapped into the original pixel grid with equidistanceℎ/V. 	en the intensities of rescaling pixels are calculated by
the weighted sums of neighboring original pixel intensities.
	e weights are determined by the interpolation kernel
function, which uses the distances between the rescaled grid
and its neighboring original grids as the input.

Due to equidistant sampling, the distance sequences are
periodical; thus the interpolated weights are periodical and
periodic correlation patterns between neighboring pixels are
introduced. Figure 1 shows an example of upscaling ( = 3/2)
with bilinear interpolation in the 
th row of image �. It is
shown that the interpolated weights emerge with periodicity
equal to 3. In this case, the scaling matrix �� is as follows:

�� =

[[[[[[[[[[[[[[[
[

1 13 0 0 0 ⋅ ⋅ ⋅
0 23 23 0 0 ⋅ ⋅ ⋅
0 0 13 1 13 ⋅ ⋅ ⋅
0 0 0 0 23 ⋅ ⋅ ⋅
... ... ... ... ... ...

]]]]]]]]]]]]]]]
]

. (2)

Frommatrix��, we can infer that the 3kth (� = 1, 2, 3, . . .)
column is a linear combination of its 4 neighboring columns,
which reveals that the correlations among adjacent pixels are
periodical.

Early works [1–10] utilized periodical linear correlations
to detect resampling. Popescu and Farid [1] revealed the
periodical correlation by a probability map (p-map), which
is estimated by the expectation maximum algorithm. For an
automatic detector, the periodical artifacts were transformed
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p-map Fourier spectrum

Figure 2: Top row: unaltered image, p-map, and its Fourier spectrum. Second row: upscaled image ( = 3/2, bilinear). 	ird row: forged
upscaled image (attack 1,  = 3/2, bilinear, � = 0.4).

as peaks in the frequency domain as shown in themiddle row
of Figure 2.

2.2. �e Forged Resampling Scheme. As the equidistant sam-
pling mainly results in the periodicity appearing in the
resampled image, Kirchner and Böhme proposed two attacks
to remove that periodicity [16].

(1) 	e �rst attack is based on geometric distortion with
edgemodulation (denoted by attack 1). To disturb equidistant
sampling, the transformed pixel (
, �) was added by a zero
meanGaussian noise, whose standard variance � controls the
attack strength. 	at is, the transformed pixel (
, �) turned
into a distorted pixel (
 + �1, � + �2), where (�1, �2) is the
Gaussian noise. Only geometric distortion severely degraded
the visual quality, especially at the edge of the image. In
order to improve the visual quality, the edge modulation was
employed to tune attack strength. Particularly, the attack at
the edge was weakened. A�er unequal sampling, the forged
resampled image was obtained by applying the interpolation
on the distorted pixel (
 + �1, � + �2).

(2) 	e second attack is dual-path approach (denoted by
attack 2). 	is approach applied attacks to the low and high
frequency components of the resampled image. In the low
frequency path, Kirchner and Böhme applied a nonlinear 5 ×
5median �lter to destroy linear correlations amongneighbor-
ing pixels. In the high frequency path, they �rst obtained the

residual by subtracting a 5× 5median �ltered version from its
source image �(�, �) and then applied attack 1 on the residual
to get the distorted resampled residual. 	e �nal forged
image is obtained by adding the �ltered resampled image and
distorted resampled residual.

Both attacks successfully concealed the periodicity in
the resampled image; meanwhile they preserved the image’s
visual quality. Figure 2 demonstrates that an unaltered image
(�rst row) and its forged resampled image (third row) have
nearly the same p-map and corresponding Fourier spectrum,
which indicates that the periodicity-based detectors [1–
10] probably misclassify a forged resampled image as an
unaltered image.

3. The Proposed Method

	e proposed method aims at classifying the resampled
image and forged resampled image from the unaltered image.
Such a forensic problem can be formulated as the following
hypothesis test:

H0: the test image is an unaltered image

H1: the test image is a resampled image or a forged resam-
pled image
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Figure 3: 	e average histogram for 1500 unaltered images, their
corresponding upscaled images ( = 3/2, bicubic), and forged
upscaled images (attack 1,  = 3/2, � = 0.4, bicubic).

3.1. Traces of Interpolation. Compared with unaltered image,
due to interpolation, resampled and forged resampled image
inevitably leave behind interpolation artifacts. We mainly
focus on blurring artifacts and statistical changes of the
relationships among neighboring pixels.

In the interpolation phase, the intensity of resampled
pixel is a weighted sum of its adjacent original pixels. So, the
interpolation is similar to a low-pass �lter [11]. 	e blurring
artifact is distinct in the upscaled and forged upscaled images.
Figure 3 empirically shows the normalized histograms of
the 1st-order horizontal di
erence (�(�, �) − �(�, � + 1))
estimated fromBOSSRAWdatabase [21] (please see Section 4
for more details about the database). It can be seen that the
upscaled image and forged upscaled image have more bins
than the unaltered image in the range of [−1, 1]. Because the
antialiasing suppresses some high frequency components in
the image, the downscaled image with antialiasing also shows
slightly blurring artifacts [13]. To capture the blurring arti-
facts in the resampled and forged resampled image, we will
employ the normalized histograms of the image di
erence as
a feature subset.

	e interpolation operation also changes the relation-
ships of neighboring pixels. According to formula (1), an
unknown scaled pixel is a linear combination of its adjacent �
known original pixels, where � is kernel width. For a rescaled
image, let us calculate the number of original pixels used
to generate � consecutive rescaled pixels. First, the distance
of these � rescaled pixels is (� − 1)/, so there are ⌊(� −1)/⌋ or ⌈(� − 1)/⌉ original pixels located among these �
consecutive pixels, where ⌊⋅⌋ and ⌈⋅⌉ denote the �oor and ceil
function for the nearest integer. Second, the le� (or right)

�/2 original pixels participate in the interpolation process for
the starting (or ending) rescaled pixel. So, we can infer that
there are ⌈(� − 1)/⌉ + � or ⌊(� − 1)/⌋ + � original pixels
used to generate p consecutive rescaled pixels. For example,
Figure 1 shows that 6 upscaled pixels	(
, 1), 	(
, 2), . . . , 	(
, 6)
are generated by 5 original pixels �(
, 1), �(
, 2), . . . , �(
, 5).
According to the above conclusion, we can infer that the
relationship of � consecutive rescaled pixels re�ects the
relationship of ⌈(� − 1)/⌉ + � or ⌊(� − 1)/⌋ + � consecutive
original pixels and of course di
ers from the relationship of �
consecutive original pixels. For the forged rescaled image, due
to irregular sampling, some forged pixels cluster closely in the
original grid and other pixels located sparsely in the original
grid, which also indicates that the forged rescaled image
behaves di
erent relationships among neighboring pixels
from those of unaltered image. To capture the relationships of
neighboring pixels, we will �t the image di
erence into anAR
model and extract AR coecients as a feature subset.	e AR
feature can characterize high-order correlations of adjacent
pixels, but it has much smaller dimension than SPAM [22]
(Subtractive Pixel Adjacency Matrix).

3.2. Multidirectional Di�erences. As aforementioned, the
interpolation is somewhat similar to low-pass �lter [11]
and thus causes signi�cant statistical changes in the high
frequency components of an interpolated image. In general,
high frequency components (such as texture and edge) of a
natural image are multidirectional. Accordingly, the changes
caused by interpolation are also multidirectional. To capture
these changes, we �rst design multidirectional high-pass
�lters to create multidirectional di
erences and then extract
the proposed feature from these di
erences.

We employ the kernels of the 1st-order di
erence to derive
multidirectional kernels. 	e kernels of commonly used 1st-
order di
erences are shown as follows.

�e Kernel of the 1st-Order Di�erence in the Horizontal (H),
Vertical (V), Diagonal (D), and Antidiagonal (AD) Direction.
It is given as follows:

H

[[
[
0, 0, 0
1, −1, 0
0, 0, 0

]]
]

V

[[
[
0, 1, 0
0, −1, 0
0, 0, 0

]]
]

D

[[
[
1, 0, 0
0, −1, 0
0, 0, 0

]]
]

AD

[[
[
0, 0, 1
0, −1, 0
0, 0, 0

]]
]
. (3)

We utilize combinations of horizontal (H), vertical (V),
diagonal (D), and antidiagonal (AD) kernels to construct the
multidirectional kernels as shown in the following.

Multidirectional Kernel Groups G(1)–G(3). 	ey are given as
follows:

G(1)
H

[[
[
0, 0, 0
1, −2, 1
0, 0, 0

]]
]

V

[[
[
0, 1, 0
0, −2, 0
0, 1, 0

]]
]

H + V

[[
[
0, 1, 0
1, −2, 0
0, 0, 0

]]
]

H + V

[[
[
0, 1, 0
0, −2, 1
0, 0, 0

]]
]

H + V

[[
[
0, 0, 0
0, −2, 1
0, 1, 0

]]
]

H + V

[[
[
0, 0, 0
1, −2, 0
0, 1, 0

]]
]
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G(2)
D

[[
[
1, 0, 0
0, −2, 0
0, 0, 1

]]
]

AD

[[
[
0, 0, 1
0, −2, 0
1, 0, 0

]]
]

D + AD

[[
[
1, 0, 1
0, −2, 0
0, 0, 0

]]
]

D + AD

[[
[
1, 0, 0
0, −2, 0
1, 0, 0

]]
]

D + AD

[[
[
0, 0, 0
0, −2, 0
1, 0, 1

]]
]

D + AD

[[
[
0, 0, 1
0, −2, 0
0, 0, 1

]]
]

G(3)

H + D
[[
[
1, 0, 0
1, −2, 0
0, 0, 0

]]
]
[[
[
0, 0, 0
1, −2, 0
0, 0, 1

]]
]
[[
[
0, 0, 0
0, −2, 1
0, 0, 1

]]
]
[[
[
1, 0, 0
0, −2, 1
0, 0, 0

]]
]

V + D
[[
[
1, 1, 0
0, −2, 0
0, 0, 0

]]
]
[[
[
0, 1, 0
0, −2, 0
0, 0, 1

]]
]
[[
[
0, 0, 0
0, −2, 0
0, 1, 1

]]
]
[[
[
1, 0, 0
0, −2, 0
0, 1, 0

]]
]

H + AD
[[
[
0, 0, 0
1, −2, 0
1, 0, 0

]]
]
[[
[
0, 0, 1
1, −2, 0
0, 0, 0

]]
]
[[
[
0, 0, 1
0, −2, 1
0, 0, 0

]]
]
[[
[
0, 0, 0
0, −2, 1
1, 0, 0

]]
]

V + AD
[[
[
0, 1, 0
0, −2, 0
1, 0, 0

]]
]
[[
[
0, 1, 1
0, −2, 0
0, 0, 0

]]
]
[[
[
0, 0, 1
0, −2, 0
0, 1, 0

]]
]
[[
[
0, 0, 0
0, −2, 0
1, 1, 0

]]
]

.

(4)

Here “+” means the combination of two directional kernels.
From the 1st-order H or V kernel, the 2nd-order H, V,

and H + V kernels (here “+” means the combination of two
directional kernel) are derived to re�ect the interpolation
traces in both H and V directions. Similarly, the 2nd-order D,
AD, and D + AD kernels are generated. We also consider the
combinations between {H,V} and {D,AD} and obtain four
kinds of kernel: H + D, V + D, H + AD, and V + AD. Finally,
we have 28 2nd-order �lter kernels in total. Following the
above way, we can create higher-order kernels. However, the
number of higher-order kernels increases sharply, which will
increase computation burden in the feature extraction phase,
so we only choose aforementioned 28 2nd-order �lter kernels
to create multidirectional di
erences.

Based on the kernel’s direction, we divide all kernels into
3 groups (denoted by G(1)–G(3) in “Multidirectional Kernel
Groups G(1)–G(3)”). It is noted that any kernel within a group
can be obtained by rotating or �ipping other kernels within
the same group. We therefore specify that kernels within a
group share the same pattern. Considering that spatial statis-
tics in natural images are symmetricwith respect tomirroring
and �ipping [22], we can average the feature sets extracted
from the same group to reduce the feature dimension.

To further enhance the interpolation traces le� in the
high frequencies, besides the image itself, a high frequency

spatial residual (denoted by  1(�, �)) is created to construct
multidirectional di
erences. To do this, we �rstly divide the
Discrete Cosine Transform (DCT) frequency into 3 subbands
with equal interval and then select the high frequency
subband as shown in Figure 4 to create a high frequency

spatial residual  1(�, �) by the inverse DCT. 	e whole
process can be formulated as

! (", V) = DCT (� (�, �)) ,
 1 (�, �) = IDCT (! (", V) ⋅ % (", V)) , (5)

where%(", V) is a high-pass �lter.We empirically �nd that the
type of%(", V) (such asGaussian high-pass �lter) and the par-
tition of the subband have tri�ing impacts on the resampling
detector. For the sake of conciseness, we employ the above

proposed method to generate  1(�, �). For notation conve-

nience, an image �(�, �) is denoted as  0(�, �) in the sequel.
Each kernel shown in “Multidirectional Kernel Groups

G(1)–G(3)” is convoluted with an image  0(�, �) and its high
frequency residual  1(�, �) to generate the 2nd-order di
er-
ence (denoted by &(�, �)). Finally, we get 56 kinds of di
er-
ences. Inspired by the richmodel for steganalysis [20], assem-
bling the feature from the multidirectional di
erences is
expected to be bene�cial to the challenging forensic problem,
such as detecting resampling in a JPEG compressed image.

3.3. �e Feature Construction. In this subsection, we �rst
extract the AR feature (FAR) and histogram feature (FH)
from each image di
erence and then assemble FAR and FH
extracted from56 di
erences to construct the �nal feature set.

FAR is extracted based on the direction of &(�, �). (1)
For the di
erences derived from H kernel, as it is mainly
used to re�ect the variations in the horizontal direction,
FAR is extracted in the horizontal direction. (2) Similarly,
for the di
erences created by V kernel, FAR is extracted in



6 Advances in Multimedia

u

�

(0, 0)

Figure 4:	e high frequency DCT subband in red shaded region is
used to create  1(�, �). 	e coordinate (0, 0) is the DC coecient.

the vertical direction. (3) For the di
erences created by other
kernels shown in “Multidirectional Kernel GroupsG(1)–G(3),”
the AR coecients are �rst extracted from the horizontal and
vertical direction, respectively, and FAR are then obtained by
averaging them.

Extracting FAR in the horizontal direction is as fol-
lows. First, concatenate all rows of &(�, �) to generate a

1D sequence ' = [&(1, :), &(LR)(2, :), &(3, :), &(LR)(4, :), . . .],
where &(LR)(�, :) (� is the row index) is a le�-right �ipped
version of the �th row. 	en, input ' into an AR model
formulated to calculate AR coecients [23]. Transposing&(�, �), we can extract FAR in the vertical direction in the
same way. 	e AR model can be formulated as

' (*) = − �∑
�=1
7 (�) ' (* − �) + � (*) , (6)

where �, 7(�), �(*) represent the order, AR coecients, and
prediction error, respectively.

According to the symmetric distribution of the di
erence
as shown in Figure 3, FH is calculated as follows:

FH = [ℎ0, (ℎ1 + ℎ−1)2 ⋅ ⋅ ⋅ (ℎ� + ℎ−�)2 ] , (7)

where ℎ� (or ℎ−�) is the normalized frequency of the di
er-
ence element which is equal to > (or −>).

To reduce the dimensionality, under the assumption that
the kernels within a group belong to the same pattern, we
average FAR and FH within the same di
erence group and

denote them as FAR�� and FH
�
� (group index 
 = 1, 2, 3; resid-

ual index � = 0, 1). 	e proposed feature constructed from
multidirectional di
erences (denoted by FD) is obtained as

in (8) by concatenating the feature subset FD� extracted from

 �(�, �). 	e dimensions of FAR�� and FH�� are � and > + 1,
respectively. 	us, the total dimension of FD is 6 (� + > + 1).
FD� = [FAR�1, FH�1, FAR�2, FH�2, FAR�3, FH�3] ,

(� = 0, 1) ,
FD = [FD0, FD1] .

(8)

We set the parameters � and > based on the distributions
of AR coecients and histograms for unaltered images and
resampled images. Figure 5 shows the distributions of AR
coecients estimated from BOSSRAW database [21] (please
see Section 4 for more details about the database).

For the sake of brevity, we only show the plots for FAR01
and FAR11. Recall that FAR01 and FAR11 are, respectively,
extracted from the di
erences of  0(�, �) and the di
erences
of  1(�, �). 	e subscript “1” represents the fact that the
di
erences are generated by G(1) kernel groups. Both plots
show that 12-order AR feature is able to distinguish the scaled
or forged scaled image from the unaltered image, so we set� = 12. It is shown that FAR01 and FAR11 present di
erent plot
shapes, which indicates that they are complementary in the
resampling forensics. 	e parameter > is empirically set as 5,
because we observed that most of the di
erence elements fall
within [−5, 5], such as the images in the BOSSRAWdatabase.
With � = 12 and > = 5, the dimension of FD is 108.

	e proposed detector is summarized as follows:

(1) Select the high frequency band of DCT as shown in

Figure 4 to create the spatial residual  1(�, �).
(2) Create multidirectional di
erences by performing

the convolution between  �(�, �) (� = 0, 1) and
the kernels in “Multidirectional Kernel Groups G(1)–
G(3).”

(3) Extract FAR and FH from each di
erence&(�, �) and
construct the proposed feature as (8).

(4) Feed the feature set extracted from the training
images into SVM to train the proposed detector.

4. Experimental Results

We test the proposed detector on a composite image database
which is comprised of 3000 never resampled images. 	e
BOSSBase [21] and Dresden Image Database (DID) [24] are
widely used in the image forensics. 	eir raw image source
database is denoted by BOSSRAW and DIDRAW, respec-
tively. We randomly select 1500 raw images from BOSSRAW
and DIDRAW database, respectively, to create the composite
database. Before further processing, all images are converted
to 8-bit gray images.

	e unaltered composite database is provided as the
source database for creating resampled image database. We
created three kinds of resampled database: upscaling, down-
scaling, and rotation. We also used the antiforensic method
proposed by Kirchner and Böhme [16] to create three kinds
of forged resampled database: forged upscaling, forged down-
scaling, and forged rotation.	e commonly used parameters
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Figure 5: 	e distribution of FAR01 (a) and FAR11 (b) for 1500 uncompressed unaltered images and their upscaled ( = 3/2, bicubic) and
forged upscaled (attack 1,  = 3/2, � = 0.4, bicubic) versions. A-coordinate: the index of AR coecient; B-coordinate: averaged value of AR
coecient.

Table 1: Parameters used to create resampled image database.

Database Parameters

Upscaling (3000
images)

Scaling factors: 1.2, 1.4, 1.6, 1.8

Interpolation kernels: bilinear, bicubic, Lanczos3

Downscaling
(3000 images)

Scaling factors: 0.6, 0.7, 0.8, 0.9

Interpolation kernels: bilinear, bicubic, Lanczos3

Rotation (3000
images)

Rotation angle: 5∘, 10∘, 15∘, 20∘
Interpolation kernels: bilinear, bicubic

Forged
upscaling (3000
images)

Scaling factors: 1.2, 1.4, 1.6, 1.8

Interpolation kernels: bilinear, bicubic, Lanczos3

Attack type: attack 1, attack 2

Attack strength (�): 0.3, 0.4, 0.5
Forged
downscaling
(3000 images)

Scaling factors: 0.6, 0.7, 0.8, 0.9

Interpolation kernels: bilinear, bicubic, Lanczos3

Attack type: attack 1, attack 2

Attack strength (�): 0.3, 0.4, 0.5
Forged rotation
(3000 images)

Rotation angle: 5∘, 10∘, 15∘, 20∘
Interpolation kernels: bilinear, bicubic

Attack type: attack 1, attack 2

Attack strength (�): 0.3, 0.4, 0.5

of resampling and forged resampling (depicted in Table 1) are
used to generate various types of resampled images. We use
the same number for each type in the resampled or forged
database. For example, for 12 types of upscaling (four types of
scaling factor, three kinds of kernel), we allot each one with
3000/12 = 250 images. To preclude the in�uence from image
resolution, unaltered, resampled, and forged resampled
images are center-cropped to 512 × 512.

SVM with Gaussian kernel is employed as the classi�er
[25]. To avoid over�tting, we conducted a grid-search for
the best parameters of SVM by �vefold cross validations on
the training set. For training and testing purpose, we created
several training-testing pairs. Each pair owns 6000 images,
which is comprised by unaltered composite database and
its altered version. Training is performed on a random 50%
subset of the pair, and testing is performed on the remaining
50%. Herea�er, the same SVM setups are adopted unless
particularly speci�ed. 	e receiver operating characteristic
(ROC) curves and the detection error C	 are used to evaluate
the SVM-based detector’s performance. In formula (9), FPR
and TPR denote the false positive rate and true positive rate,
respectively.

C	 = min
(FPR + 1 − TPR)2 . (9)

To the best of our knowledge, there are no related works
which simultaneously detect the resampled image and forged
image from the unaltered image. We compare our proposed
FD-based detector with the state of the art in the resampling
forensics: FE-based detector [11] and FM-based detector [12].
As FE-based detector [11] and FM-based detector [12] have
captured some artifacts of interpolation,we suppose theymay
be e
ective in forged resampling detection. Additionally, FE
detector and FM detector are SVM-based, so it is convenient
to compare them with the proposed detector under same
experimental settings. We also note that the steganalysis-
based detectors [15, 26] have achieved excellent performances
in the resampling detection. However, because of huge
dimension (34761-D) of steganalysis feature, extracting the
34761-D feature and training the model by the SVM are very
time-consuming, so we do not directly compare our method
with the steganalysis-based detectors [15, 26].
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Table 2:C	 (%) of each detector on detecting resampled images from
unaltered images. Here “without” means without applying JPEG
compression on test images.	ebest result is displayed by bold texts.

JPEG
compression

Proposed
FD

FM [12] FE [11]

Upscaled versus
unaltered

Without 0.17 6.63 13.63

QF = 95 1.53 10.60 14.53

QF = 80 11.53 16.27 18.07

Downscaled
versus
unaltered

Without 0.77 14.87 12.93

QF = 95 4.37 17.90 17.87

QF = 80 21.07 29.50 29.70

Rotated versus
unaltered

Without 0.70 14.57 23.30

QF = 95 3.13 21.53 23.43

QF = 80 13.10 30.20 28.67

In the following, we �rst evaluate the e
ectiveness of the
proposed composite feature. 	en, we show that the FD-
based detector can not only detect resampled or forged res-
ampled images from unaltered images as traditional method
[11, 12, 26] but also simultaneously detect both resampled
and forged resampled images from unaltered images. Finally,
we give an example of splicing detection using the proposed
detector.

4.1. Evaluating E�ectiveness of the Composite Feature. 	e

proposed feature FD is a composite of subset FD� (� = 0, 1) as
shown in (8). To verify that no subset is redundant, we com-

pared FD with FD0, FD1 through detecting upscaled images
from unaltered images. As aforementioned, the composite of

FD0 and FD1 is expected to be bene�cial for detecting resam-
pling in a JPEG compressed image. To test FD’s robustness
against lossy JPEG compression, both unaltered and upscaled
images are postcompressed by JPEG 80.With SVM testing,C	
of FD, FD0, and FD1 is 7.23%, 8.30%, and 10.57, respectively.
	is result means that FD yields lowest C	, which indicates

that the feature subset FD0 extracted from the di
erence
of image and FD1 extracted from the di
erence of high
frequency residual are collaborative in the resampling clas-
si�cation. In the following, we only reported the result of FD.

4.2. Detecting Unaltered Images from Resampled Images. In
this subsection, the proposed detector is tested by distin-
guishing the unaltered image from the resampled image. To
this end, we create 3 uncompressed training-testing pairs:
upscaled versus unaltered, downscaled versus unaltered, and
rotated versus unaltered and their corresponding JPEG 95
and JPEG 80 version.

Table 2 shows the results for three kinds of feature. Under
the uncompressed scenario, the proposed FD-based detector
achieves nearly perfect performance (C	 < 1%) for the detec-
tions of upscaling, downscaling, and rotation. 	e FD-based
detector performs much better than two other detectors,
especially in the detection of downscaling or rotation. For
example, in the detection of downscaling without JPEG com-
pression, C	 of the FD-based detector is, respectively, 14.10

Table 3: C	 (%) of each detector on detecting forged resampled
images from unaltered images. Here “without” means without
applying JPEG compression on test images. 	e best result is
displayed by bold texts.

JPEG
compression

Proposed
FD

FM [12] FE [11]

Upscaled versus
unaltered

Without 0.13 5.13 3.30

QF = 95 1.40 8.20 6.90

QF = 80 6.10 18.47 15.47

Downscaled
versus unaltered

Without 0.13 11.33 16.60

QF = 95 3.70 16.27 20.20

QF = 80 16.0 32.10 30.80

Rotated versus
unaltered

Without 0.20 8.93 8.13

QF = 95 0.90 12.70 12.30

QF = 80 6.67 26.40 27.47

percentage points and 12.16 percentage points lower than that
of the FM-based detector and FE-based detector. 	e ROC
curves in Figure 6 again verify that the proposed detector
has achieved great improvements in the resampling forensics.
Under JPEG compression scenario, the FD-based detector
also yields lowest C	 in JPEG 90 and JPEG 80 compressed
training-testing pairs.

4.3. Detecting Unaltered Images from Forged Resampled
Images. In this subsection, we test whether the proposed
FD-based detector can resist the malicious attack [16]. 	e
test is designed for distinguishing the unaltered images from
the forged resampled images. 	e FE-based detector [11] and
FM-based detector [12] initially do not aim at detecting the
antiforensic scheme [16], but they have captured some arti-
facts of interpolation in the resampled image, such as energy
density. Hence, we also test whether FE-based detector and
FM-based detector can detect the interpolation artifacts
hidden in the forged resampled image.

Table 3 shows the detailed results. Without JPEG com-
pression, the FD-based detector achieves nearly perfect per-
formance (C	 < 0.2%), which indicates that FD-based detec-
tor can e
ectively resist the attacks from antiforensic scheme
[16]. Figure 7 shows the correspondingROC curves under the
uncompressed scenario. It can be seen that the ROC curve
of the proposed detector is always above that of other two
detectors. 	e advantage of FD-based detector is prominent
when FPR is low. For example, in the downscaling detection,
the TPR of FD-based detector is 99.93% at FPR = 1%, which
is about 59.53 percentage points and 87.63 percentage points
higher than that of the FM-based detector and FE-based
detector. 	e FE-based detector and FM-based detector have
gotten good performances in the detections of forged upscal-
ing and forged rotation. However, their performances deteri-
orate in the forged downscaling detections.Under JPEG com-
pression scenario, the results in Table 3 indicate that the pro-
posed FD-based detector also outperforms two other detec-
tors.
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Figure 6: ROC curves showing detections of (a) upscaling, (b) downscaling, and (c) rotation under uncompressed scenario.

4.4. Detecting Unaltered Images from Resampled Images and
Forged Resampled Images. In applications, we may have no
prior knowledge about the test image. For a more practical
detector, we train the SVM detector by unaltered images
and “ALL” images including resampled images and forged

images. Such a detector requires that the forensic features be
distinguishable between heterogeneous images. To visually
demonstrate the ability of FD, we map FD into a 2D space by
linear discriminate analysis (LDA). Clear distinctions among
three types can be seen in Figure 8.
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Figure 7: ROC curves showing detections of (a) forged upscaling, (b) forged downscaling, and (c) forged rotation under uncompressed
scenario.

We create 3 training-testing pairs in this subsection as
shown in Table 4. “ALL” class is comprised by 1500 resampled
images and 1500 forged resampled images. We randomly
select 500 upscaled images, 500 downscaled images, and 500
rotated images to compose the resampling class in “ALL”

database. 	e forged resampling class is formed by the same
manner.

Table 4 gives the detailed results. Under the uncom-
pressed scenario, it can be seen that FD-based detector
can e
ectively distinguish the altered image (“ALL” class)
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Figure 8: 	e 2D feature of FD (a�er LDA) estimated from 1500
uncompressed images of BOSSRAW database.

Table 4: C	(%) of each detector on detecting “ALL” images from
unaltered images. Here “without” means without applying JPEG
compression on test images.	ebest result is displayed by bold texts.

JPEG
compression

Proposed FD FM [12] FE [11]

ALL versus
unaltered

Without 1.30 15.20 23.03

QF = 95 5.40 21.90 26.63

QF = 80 20.33 32.73 33.93

from the unaltered image, which indicates that the proposed
feature captures the �ngerprints of interpolation which are
le� in the resampled image and forged resampled image.
Either under uncompressed or JPEG compressed scenario,
the proposed FD-based detector performs the best. Figure 9
demonstrates that, with FPR = 1%, the FD-based detector
achieves TPR = 98.3%, which indicates that the proposed
detector is practical in the real applications.

4.5. An Example of Splicing Detection. In this subsection, we
use the proposed detector to detect the spliced tampering.
Since the location of the pasted object is unknown, the ques-
tioned image is divided into nonoverlapped blocks at �rst,
and then each block is predicted by the proposed detector.
	e block size is set to be 64 × 64. Accordingly, the SVM
detector is trained on 64 × 64 blocks.	e training set is com-
posed of 3000 unaltered images and 3000 “ALL” images as
used in Section 4.3.

Figure 10(b) shows an example of spliced image. It is
created by splicing two birds into Figure 10(a). To create
convinced tampering, the forger may repeatedly employ the
resampling to adjust visual quality. To simulate the real cases,
the right bird in Figure 10(b) is �rst downscaled (scaling
factor  = 0.8, bicubic) and then upscaled ( = 1.2, bicubic).
	e le� bird is processed by antiforensic scheme using default
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Figure 9: ROC curves of detecting resampled and forged resampled
image (“ALL”) fromunaltered image under uncompressed scenario.

settings [16] (attack 2, � = 0.4,  = 0.8, bilinear). Figures
10(b) and 10(c) show the tampering detection results for the
uncompressed and JPEG 95 compressed tampering, respec-
tively. 	e 64 × 64 block predicted as tampered is marked in
red color. Although the proposed detector is only trained on
the image blocks with a single scaling operation, it can locate
most of the spliced region, including the region which under-
went multiple scaling operations. As the edge of the inserted
object is a composite of unaltered and altered block, some
missing detections emerge in the edge of two pasted birds.
Note that this tampered example is simple tampering. In real
life, the forgerswill adopt variousways to escape the detection
of forensic tools. Generalized forensic tools, which can
identify usual image operations and their combinations, may
be useful in the detections of complicated tampered images.

5. Conclusion

In this paper, we have proposed a novel integrated detec-
tor for detecting image resampling and forged resampling,
which simultaneously addresses the e
ectiveness and security
concerns. We design multidirectional di
erences to extract
the feature. To capture the traces of resampling and forged
resampling, the feature is extracted from the coecients of
the autoregressive model and histograms. Experiments on
a large composite image database show that the proposed
detector is e
ective and secure and yields great improvements
in the detection of downsampling or resampling under JPEG
compression. 	e tampering detection results illustrate that
the proposed detector is promising in practical applications.
We have found that the lossy JPEG compression a
ects
the performance of the proposed detector. 	e performance
degrades with increasing JPEG compression ratio. Improving
the detector’s robustness against heavy JPEG compression is
our future work.
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(a) (b) (c)

Figure 10: An example showing (a) an unaltered image and tampering detection results for (b) uncompressed and (c) JPEG compressed
(QF = 95) tampering. 	e red box of size 64 × 64 indicates that this box is predicted as tampered by the proposed detector.
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