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Revenue Management: A Real Options Approach

Abstract

Revenue management is the process of actively managing inventory
or capacity to maximize revenues. The active management typically
occurs through managerial levers such as price, promotion or availabil-
ity. We present a novel real options approach to revenue management
that is specifically suited to the car rental business. We illustrate
the concept with actual car rental data. The model produces min-
imally acceptable prices and inventory release quantities (number of
cars available for rent at a given price) as a function of remaining time
and available inventory. The pricing and inventory release recommen-
dations of the developed model confirm earlier empirical analysis that
suggested current practises discount too deeply early in the booking
cycle.

1 Introduction

In this paper we derive a new revenue management procedure for the rental
car industry. This procedure is obtained by considering the operator of a car
rental business to be the holder of a real option very similar to the swing
option used in the energy industry. This analogy allows us to determine,
under reasonable and broad assumptions, both the value of such a business

and the optimal way to manage it.

Revenue management is a process of managing perishable inventories
to maximize the total revenue from these inventories. The concept has its
origins in the airline industry where, upon departure, unfilled seats are lost
revenue opportunities. Revenue management is not limited to airlines, but
suitable for numerous retail and service industries, including advertising, car

rentals, cruise ships and flexible manufacturing (Harris & Peacock, 1995).



In recent years a new theory of pricing and operating assets in the face
of uncertainty and in the presence of some flexibility in operating strategies
has been developed. This is the theory of real options (Dixit & Pindyck,
1994) and (Amram & Kulatilaka, 1999). The theory of real options in turn
uses the framework of modern financial options pricing to frame and solve
its problems. This formulation allows these problems to be framed as partial
differential equations, normally of diffusive type. For general mathematical
references on options pricing see (Merton, 1990), (Hull, 2003) and (Wilmott,
2000).

Different types of real options exist, depending on the flexibility pos-
sessed by the business operator. For example, consider a project with known
start up costs that may be initiated any time in the next year. Such a project
may be modelled as an American call option - the real option holder is al-
lowed to “buy into” the project or exercise his option on any date in the next
year. Pricing such an option requires a decision about the optimal way in

which to exercise it. The two problems are solved in tandem.

We show that the car rental problem corresponds to a different kind of
option. We consider the problem of booking cars for a particular future date.
The price at which cars may be reserved fluctuates with both deterministic
and random components. Now the “exercise” decision occurs at every instant
- should T allow bookings at this price or not? Each exercise decision affects
subsequent ones, for every car that gets reserved decreases the number of
cars which may be rented in the future. It turns out that this problem is
very similar to the problem of pricing the “swing” contracts prevalent in the
electricity and gas industries (Keppo, 2002) and (Jaillet et al., 2001).

As an example of a swing option contract consider a typical natural
gas supply contract. Under such a contract the buyer takes a certain base

supply every week at a preset price. The buyer is also able, at his option, to



decide each week whether or not he would like to buy more gas at another
preset price. If he does decide to take more gas he is said to “swing up”. The
complicating factor here is that the option holder is given only a finite number
of opportunities to swing up. Pricing this option requires an exercise strategy

which tells the option holder how best to deploy these swing opportunities.

In this paper we show how a car rental operator may be considered as
the holder of a swing-like option on car rentals. We are able to solve the
resulting set of equations to determine both the operator’s optimal rental

strategy and the value of the business to the operator.

In §2 we provide a detailed description of revenue management in the
car rental industry. In §3 we derive a partial differential equation model to
describe the financial aspects of a car rental business. A numerical procedure
for extracting generally applicable model solutions is discussed in §4. In §5
we present analytic solutions for some special cases of this model. We use the
analytic results to validate the model of §4. Numerical examples for a general
case are presented in §6. In the final section we discuss model extensions and

future work.

2 Revenue Management in Car Rentals

Revenue management has been a topic of research and practical interest for
airlines since the early 1970’s. Revenue management is a process of control-
ling inventories, enabling the airline to maximize its profits. For an airline,
controlling inventory equates to determining how many seats should be made
available to willing purchasers for reservation, at what prices. In the short
term, most of an airline’s costs are fixed with very little or negligible vari-

able costs. Thus, maximizing revenue becomes a close proxy for maximizing



profit.

The concept of revenue management is not specific to the airline in-
dustry. It has been applied to numerous other businesses which have similar
characteristics. These include: car rental, broadcasting, cruise lines, internet
service provision, lodging, and railways. Common characteristics of yield
management practise are (Kimes, 1989): ability to segment markets, rela-
tively fixed capacity, perishable inventory, product sold in advance, fluctu-
ating demand, and low marginal sales cost/high marginal capacity change

cost.

In 1992, R.L. Crandall, Chairman and CEO of AMR (American’s par-
ent company) estimated that “yield (revenue) management has generated
$1.4 billion in incremental revenue in the last three years” (Smith et al.,
1992). By 1998 Tom Cook, President of SABRE Decision Technologies, had
increased the estimated impact to “almost $1 billion in annual incremental
revenue” (Cook, 1998).

Since the early 1990’s the car rental industry has also given attention
towards revenue management. Most work in the area of car rental revenue
management has been the application of airline revenue management meth-
ods to the car rental setting. Carroll and Grimes (1995) and Geraghty and
Johnson (1997) provide accounts of the state-of-the-art in car rental revenue

management.

One of the distinct differences of car rental revenue management from
its application to airlines is the degree to which price changes. Airlines
typically have several discrete price classes, across which prices are fairly
constant. These price or fare classes have often have restrictions on advanced
booking or Saturday night stay in an effort to segment business and leisure
travellers. Airlines change prices by opening or closing these different fare

classes. Car rental firms also have discrete price classes for the different types



of cars (economy versus luxury) but actively change the prices within these
classes on a daily basis. Blair and Anderson (2002) give an accurate account
of pricing activity at Dollar Rent A Car. The active or dynamic price changes
in car rental revenue management add a new complexity to airline revenue

management.

Weatherford and Bodily (1992) and McGill and VanRyzin (1999) sum-
marize recent research in airline revenue management. Airline revenue man-
agement typically looks at allocating plane capacity across a finite set of fare
classes (across which price is fairly constant). Early methods of application
(Littlewood, 1972) and (Belobaba, 1987) involved newsboy-like heuristics to
partition capacity across fare classes. These methods have been extended
to include other elements of buyer behaviour such as diversion to other fare
classes (Pfeifer, 1989) and (Belobaba & Weatherford, 1996). A second stream
of research has looked at the complexities resulting from hub-and-spoke net-
works. Early mathematical programming approaches (Glover et al., 1982)
included full passenger itineraries from a deterministic standpoint, with later
approaches (Williamson, 1992), (Smith & Penn, 1988), and (Simpson, 1985)

using dual prices in the allocation decision.

More closely related to car rental revenue management is the field of
dynamic pricing. Typically dynamic pricing approaches assume that demand
is a stochastic function of price, and that only one price is available (posted)
at a given time. Gallego and VanRyzin (1994) look at dynamic pricing of
inventories, providing structural results for certain classes of stochastic de-
mand. They later extend their results to network effects (Gallego & Van-
Ryzin, 1997). Feng and Gallego (1995) provide a dynamic pricing approach
that fits the airline model more closely. They model cases with two prede-
termined prices where demand follows a Poisson process. Later they extend

their work to allow for multiple classes (Feng & Xiao, 2000).



We develop a new approach to dynamic pricing, one in which price
itself is a random variable. Current practice assumes prices are set by firms
to control demand. We illustrate that the commodity nature of the rental car
business requires a more detailed approach to modeling price as an exogenous

variable.

3 Pricing Model

The car rental industry is not as price sensitive as the airline industry. Price
changes do generate subtle changes in demand, but what is more important
is one car rental firm’s price against its competition’s (Blair, 2002). Figure
1 is a simplified illustration of price elasticity within the car rental industry.
Price elasticity, the percentage change in demand per percentage change in
price describes the sensitivity of sales volume to price changes. In Figure 1,
demand is relatively inelastic over price changes from P, to P; as very little
additional sales result (Ago is small), while very elastic from Py to Py (Agy
is quite large). Over the range P, to P, the price has crossed a competitor’
price Pg, generating the volume increase (decrease) whereas from P to Pj

it is still priced between two competitors, or already has the lowest price.

For simplicity, we consider a single type of business; car rental for equal
duration (e.g. daily, weekly or over the weekend) on an average daily revenue
basis. All the cars are assumed identical so that at any given time the price is
uniform across all cars available for rent at the same point in the future. The
window over which reservations are accepted is of duration 7', this window is
typically of the order 90 days. We suppose that during the period 0 < ¢ <T
cars can be reserved for use on the first day after ¢ = 0 but that the full rental

cost is paid at the time of reservation. At time ¢t = T reservations stop and



Apy =P — P

Price Apy =Py — Py

@1 (2 @3

Quantity

Figure 1: Car Rental Price Elasticity

no unreserved cars can be rented, representing a lost revenue opportunity:.

We will derive a model of this process. This model will be discrete
in that we divide the time period into I subintervals. For example the pe-
riod of three months may be divided into 12 one week intervals, or more
representative of current practice into 90, daily periods (Geraghty & John-
son, 1997) allowing for daily price changes. We utilize subintervals of equal

length, noting that the hypothesis of equal intervals may be relaxed at little



computational cost. In addition we will separately follow each available car,
solving a subproblem for each car for each subperiod. We require a submodel

for the demand for cars as a function of time.

Given the response to price as shown in Figure 1 we will model price
as a random process, in essence modeling the rental car firm as a price taker,
unable to arbitrarily price, rather having to price relative to competition.
We will assume that the price to rent a car can be modeled by a general

stochastic differential equation of the form

dP = p(P,t)dt + b(P, t)dX, (1)

where P = P(t) is the price of a one day rental, t is the time, and p and b

are given functions of P and t.

In the PDE framework which follows we have wide flexibility to choose
w1 and b to fit the data. The numerical solution of the differential equations
will not be appreciably more difficult for most reasonable choices of 1 and b.

To be concrete in what follows, we choose

u(P,t) = o(L(t) = P), 2)

b(P,t) = oP. (3)

Equation (2) states that the random process governing rental cars is
mean-reverting with rate a to a time-dependent mean price L(t). Mean
reversion appears a reasonable model as, while rental car prices fluctuate
from day to day, they seem to be bounded both below and above. The lower
bound exists because prices cannot stay significantly below the marginal cost

of renting the car for too long or the rental operator would have to exit the



market. The upper bound exists both because of the competitive, winner
take all, nature of the rental car market and because of the price elasticity
of consumers. Both of these effects support a mean reverting price model.
We choose (3) with constant volatility parameter o to represent a constant
relative fluctuation in the prices, 0 may be constant or a function of time
without any change in formulation. This price process is really for the price
of a reservation, the price price paid in the future for a reservation tody. The
model is then similar to a forward price for a commodity, which are also often

modelled as mean reverting.

The only choice which remains is how to represent the mean rental car
price as a function of days before rental. We choose a simple linear increasing
function of time for this. To motivate this choice, we examine Figure 2 which
plots the average realized price per day of single day, three-day and week long
car rentals for Dollar Rent A Car against weeks before pickup. This data,
provided by Dollar, is for economy cars for weekday pickup rented at Denver
International airport during calender year 2001. In every case a subtle but
noticeable upward trend in the average rental price is observed. In any event,
the large fluctuations in the dataset we present make it difficult to justify a

more complicated model for the mean.

Consider a time interval 0 <t < T such that ¢ = 0 corresponds to the
start of the reservation time and t = T to the time of rental. We suppose
that we have M cars to rent and that they can be rented at a daily varying
price given by the stochastic differential equation (1). The number of cars
available at the start of the booking cycle, t = 0, will be both a function
of fleet size and how that fleet is allocated across different lengths-of-rent,
typically determined using linear programming (Geraghty & Johnson, 1997).
Linear programming is used to maximize expected revenue by allocating cars
to the different lengths-of-rent, while constraining the allocation such that

allocated cars (by length-of-rent class) is no more than expected demand,

10
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Figure 2: Average Daily Rental Rates - weekday pickup for Denver economy
cars

and total cars allocated no more than available fleet. We suppose that cars
can only be rented at fixed intervals given by 0 < t; < t5 < ... <ty < T
where ¢; = j * At. The total number of cars that can be rented in a period
(the demand) is a given function of price F'(P). For period j, for generality,

we suppose both additive forms of demand
F(P;) = Bo+ B * P

and multiplicative
F(P;) = By P

with coefficients, 3y and (3; constant or indexed with time.

11



Write the value of the cash flow for the remaining cars as

Vj

m

at the beginning of a time interval 7 where m cars have been rented. We now
consider the interval ¢; <t <t¢;,; where we will be renting cars at ¢ = ¢;4;.
The car rental firm is faced with the decision to accept a reservation or wait
for potential future (higher) revenues. The firm has the option of renting or

holding the car.

Since the price is given by a stochastic differential equation, the cash
value VJ can be considered as a European option starting at ¢t = ¢; with a
payout of ¢ at ¢ = t;41. It is a European option as we are assuming it can
be exercised only at time ¢ = t;,1. If we rent a car at ¢;,; the expected cash
flow is given by

¢ = Vit m+1 T Pj+1a

where Pj;; is the rental price we get when the car is picked up (rented) and
V#lfl is the expected future cash flow from the remaining cars. In general if

we rent k cars the payout is

=Vl + kP,

where m + k < M, i.e. we cannot rent more cars than we have available. If
we do not rent any cars the payout is just the cash flow at ¢4, i.e. VIt

Thus the complete payout at ¢, is
¢ =max(VIT VI + Py, VI, + 2P, o VI + kP), (4)

with m + k < M and k < F(Pj;;), i.e. we cannot rent more cars than
we have, and the number we rent, £, is limited by demand at price P;;,
k< F(Pj) -

12



For the final period 7 = N the payout is just the number of cars that
can still be rented out, i.e.

¢ = kPy,
where m + k < M and k < F(Py).

We can now represent the problem as a collection of subproblems; this
is shown on Figure 3 as a grid with 0 < 7 < 4 and 0 < m < 3. For
each cell in the grid we can derive a Black-Scholes like partial differential
equation. We can use the payout at the right hand side of the cell to calculate
the value at the left hand side. This standard derivation may be found for
instance in Dixit and Pindyck (1994). To illustrate this, consider the cell
that corresponds to j = 3 and m = 1. Here the payout is

¢ = max(Vi', V5' + Py, V5 + 2Py). ()

We use this as the initial condition for an equation for V

W N =D

t t t3 ty T

Figure 3: Subproblem Layout

Now consider a general cell located between t; < t < ¢;;; and 0 <
m < M. Using the pricing model (1) we can develop the governing partial
differential equation for the cash flow V(P,t).

13



Starting with a model for rental prices P,
dP = u(P,t)dt + b(P,t)dX,

the goal is to determine the value of the option to rent the car at time ¢ given
that if it is not rented at time 7' a revenue opportunity is lost, this option
value is V(P t;T).

If this were a financial option we could establish a hedging argument
to price this in a risk-neutral measure. This argument may be expressed in
PDE form by a simple application of Bellman’s principle using a risk-free
discount rate r (Dixit & Pindyck, 1994)

o1,V oV
E—i_ébﬁ—i_ua_P_rv_O. (6)

However, unlike financial options, it is less clear that risk can be hedged
away in this setting. Perhaps something could be done along the lines of
hedging mid-size cars against luxury cars, but there are practical difficulties

with this idea. We can, however incorporate a risk-adjustment as follows.
1%

— to denote the riskiness of the investment,

We use a Sharpe ratio A =
we derive a PDE using Bellman’s principle. Thus pricing in a risk neutral

measure corresponds to A = 0, and recovers the earlier PDE (Equation 6)

oV 1,0°V oV B

In our model of rental car prices b = o P. Now,

ov o1, OV v o

where A is the market price of risk.

14



If we set A = 0 then the solution follows that of a risk neutral or
expected value maximizing decision maker. Note that our numerical results
indicate that the solution is quite insensitive to the choice of \. With A =0
and equation (2) we have u = a(L(t) — P). We will replace the time variable
t with a local time variable 7 within the rectangle which starts at ¢;;; and
ends at ¢;. We also replace the variable ¢ with ¢;;; — 7 in order to get a

forward problem. Thus the governing partial differential equation becomes

ov. 1 , ,0°V ov
E_2UP8P2+04(L—P)8P—TV 9)
)

Here V,,(P, jAt) = VI(P) and for convenience L(t) is expressed as L.

The initial condition for this equation which is obtained from (4) is

V(P7 O) = maX(‘/ﬁj"LJrl? Vr{;—rijl + Pj+17 V'rilj—é + 2Pj+17 (3] V%i]];; + kPj+1)7 <1O>

with m+k < M and k < F(Pjy1).

J

We also require boundary conditions. The situation at P = 0 is quite
interesting and the analysis outlined below is similar to that treated by
d’Halluin and Labahn (2001) in their discussion of the single factor inter-

est rate model.

If we let P — 0, equation (9) becomes
— =al— —1rV. (11)

Since o, > 0 this is a hyperbolic equation with outgoing characteristic, so
we can expect that no boundary condition is required at P = 0. However, for
finite but small values of P equation (9) has a diffusive term and the ques-
tion is whether this term tends to zero sufficiently rapidly that no boundary
condition is required. If it does not, we require a boundary condition. This

question has been answered by Oleinik and Radkevic (1973) who showed that

15



for any equation of the form

9 _
ot

o? 0
()28 +5() 22 + (o),

no boundary condition is required at x = 0 if

lim(b(x) — a'(z)) > 0.

x—0

For (9) this condition is satisfied provided aL > 0 which is always the case.

Thus we see that no boundary condition is required at P = 0 and we

will obtain a finite difference equation there by discretizing (11).

For large values of P it is clear that V' will depend linearly on P, so we

will use
o?V

m—ﬂ) as P — oo. (12)

For the last time interval we can write down an exact solution of the

form

VN(r) = A(T) + B(1) P,
since the initial condition is V%V (0) = K P where K is a given constant.

The next section details numerical solution procedures for the above

model.

4 Numerical Procedure

In general the mathematical model developed above cannot be solved ana-
lytically. To generate pricing recommendations we employ a numerical ap-
proach. We use a standard implicit procedure with P; = jAP and V" =
V(jAP,nAT) for j = 0,...,J and n = 0,...,nt. Here IAP = P, and

16



nA1T = AT where P = P,,,, is the price at which we impose the boundary
condition Vpp = 0, AT is the length of each period and [ is an identity ma-
trix. If we use central difference formulae the resulting difference equations

can be written in the form
(I + (‘)AtA)V"Jr1 = —(1-0)AtA)V" (13)

for 0 < j < J where

r—+ bo —bo
—aq r+a; + bl —bl

—aj-y r+aj_1+bj1 —by
ay r+ay

For j=1.,J—1
o’P}  a(L - P)

“ToAP2 T T 2AP 14
o’P? oL - P))
_ J J
b 9AP? T T 9AP (15)
ol
bO = Ea (16)
a(L — P;
= 2L=P) an

It is possible for a; to be negative for small values of j, i.e. near P = 0;
this corresponds to the governing equation being convection dominated. In
this case the system of difference equations are no longer diagonally dominant
and we can expect their solution to oscillate. In order to circumvent this

problem we will use upstream weighting for the convective term and get

o= 25 (18)
TN
o’P? oL - P))
b = 2 i), 1
i 2AP: T T AP (19)

17



This approximation is only first order, but since it will only be used away

from the region of interest, this should not cause any problems.

We define 0 in (13) to be a parameter between 0 and 1. Setting § = 1/2
gives the standard Crank-Nicolson procedure which is second order in both
At and AP, while § = 1 produces a fully implicit procedure. While it is well
known that in certain cases the Crank-Nicolson procedure has a tendency to
produce solutions with unphysical oscillations, this seems not to be the case

for this problem so we have mainly used 6 = 1/2.

At P =0, ie. j =0 we will discretize equation (11) using an upstream

weighting for the diffusive term. Hence we have

Qg = 07
al
b() = E

For large values of P we truncate the region at P = P,,,, and there we
appeal to boundary condition (12) to set the second derivative to zero. Then

a standard central difference approximation gives
Vien =2V, =V,

yielding
a(L - PJ)
AP

ajy = —

The set of difference equations (13) is tridiagonal so a very fast form of

Gaussian elimination can be applied. For details see Morris (1983).

18



5 Model Validation

As mentioned in §4 our model does not typically admit exact solutions. How-
ever, for special cases we can derive an exact solution. We can use these

different cases to validate our numerical approach.

5.1 Analytic Solution

Let us first derive an expression for the mean as a function of time for our
pricing model. In order to simplify the analysis we will only consider the case
where the mean of the price equals a constant, m. Thus the pricing model
(1), (2) and (3) becomes

dP = a(m — P)dt + o PdX, (20)

with initial condition P(0) = F.

It is well known that the mean of this process follows the path

P(t) = Pyexp(—at) + m(1 — exp(—at)). (21)

We now use this result to derive an exact solution for the situation in
which we are in an unconstrained environment in which we can rent k& cars
per period for N periods, each spaced by time AT. The initial price of the
cars is Fy. There is no optionality here so the present value of the expected

value of the cash flows arising from the business is:

19



V. =kP(0) + kP(AT)exp(—rAT) + ... + kP((N — 1)AT) exp(—r(N — 1)AT)

=k Z;.V:_Ol exp(—jrAT) | Pyexp(—jaAT) + 1 — exp(—jaAT)

=k(Py —m) Z;.V;Ol exp[—j(r + a)AT]| + km Zé\:ol exp(—jrAT)

1—exp [*N(T‘FO[)AT] i 1—exp(—NrAT)
1—exp [*(TJra)AT] 1—exp(—rAT) *

If V is plotted against P, the solution is seen to be a straight line.

5.2 Validation

In order to validate our numerical approach we look at situations in which
the car rental problem can be solved exactly in the form above. Two such

cases follow.

e There is a surplus of cars and the price is large compared with the

mean.

e Small volatility and small values of P

5.2.1 Casel

Let us consider the case where there is a surplus of cars available so that the
full number of cars, say K, can be reserved in every period. In addition we

write the expression for the mean price in the form
L=a+br,

where a and b are positive constants. Then the governing equation for each

period is
1, ,0°V oV
Vi = o P 9P +a(a+br — P)_aP —rV,

20

(22)



where 7 = 0 is the beginning of the period and 7 = AT is the end of the
period.

In the last period we denote the value of the cash flow as Vi (P, 7) and
it is clear that the initial condition is Viy(P,0) = K P so the solution can be
written in the form

VN<P,’7') = AN+BNP

We substitute this into equation (22) for V' to see
b —(a+r)T b —rT
Ay = —K(a+ — + bt)e + K(a+—)e™ ',
a a

and
By = Ke~(etn)7,

In the N — 1 period the cash flow is Viy_; with initial condition Ay(7) +
Bn(7)P+ K P so, using the same procedure as above, we see that the solution

can be written in the form

Vy-1(Pt) = An_1 + By_1 P.

Here
b —(a+r)T b —rT
AN_1=—(BN+K)<G+E+bT)€ +(BN+K)(CL+5)6

and
By = (By + K)e @7,

The subsequent solutions all have the same form.

This is, of course, the same solution we derived in §5.1 using the mean

of the pricing process.

Now consider the case where ¢ = 1, T' = 0.0833, a = 4, the total

number of cars that can be rented out over one period is 10 and the total

21



number of cars available is 20. Thus it is clear that if the total number of
periods is greater than two and if the price at which cars can be rented out
is considerably greater than one, all the cars will be rented out in the first

two periods and the exact solution derived above will be applicable.

Table 1: Validation Case 1 - Excess Supply

P V(P0) V(FP0) V(PO V(PO
N=3 N=6 N=12 Analytic
20.5621 22.1741 24.7186  20.0000
32.3604 32.6211 33.2656 32.3018
44.6130 44.6079 44.8372 44.6036
56.9067 56.9166 56.9557  56.9054

=W N =

Here Table 1 indicates that as price increases from a low of 1 to a
high of 4, the numerical solution approaches the analytical. Similarly as the
number of periods in the numerical solution approaches that of the analytical
solution (2) then the results converge. As expected, as the number of periods
in the numerical solution increases, more opportunities for price increases are
available and the numerical result will diverge from the analytical. These

results are less pronounced as prices increase.

5.2.2 Case 2

The mean reverting pricing model that we are using is not easy to solve.
However, if we assume that the volatility is small compared to the mean

reversion term, we get, as in §5.1 with units selected such that m =1,

P(t)=1— (1 — Py)et

where Py = P(0), and P(t) should now be interpreted as the mean. If we

22



apply this to the case where there is 3 periods, each of length 1/12 years, we
see that
P1 = 1—6_a/12,

P2 =1- (1 — P1)€7Q/12,
P3:1—(1—P2)6_a/12,

where Py = 0. For o = 4 we get that

P, =283 P, = .48 P; = .632.

Thus for the case where, as above, we can rent out 10 cars per period
but only a total of 20 cars, an estimate of the cash flow when r = 0 is
10P, + 10P5; which equals 11.18. The numerical procedure generates the
same result. We can proceed in this manner and for N = 6 we find that an
approximate value for the cash flow at ¢ = 0 is 15.47 while the numerical
result is 16.89. As N becomes larger, it is clear that the expected value of
P tends to 1 so the value of the cash flow should tend to 20. However, the

numerical result for N = 12 is 21.74.

In general these results can be interpreted as at least partial validation

of the numerical procedure.

6 Numerical Example

We require representative values of the different parameters that appear in
the model. Two of these, which originate in the pricing model, are not easy
to estimate with any degree of accuracy. We will show how to get reasonable
values of the parameters and then show that our computational model is not

overly sensitive to reasonable changes in them.
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Let us first consider the volatility o. If we consider the pricing with P

being close to the mean L, we get approximately that
dP = odX,

where X is a Wiener process; one can think of dX as being a random variable,
drawn from a normal distribution with mean zero and variance dt. Since d.X

scales as V/dt we see that an estimate for o is given by

dP

Vit

If we suppose that the change in the price of rental cars over a 1 week
period is 10% and we estimate /52 = 7 this implies that o should be of the
order 70% per year.

In order to get an estimate for «, the rate at which the car rental price
reverts to its mean, let us consider the pricing model with no stochastic noise.
Then

dP = —«a(P — L)dt

where we will assume that the mean price L is constant. This equation can
be integrated to get
P=L+(Py— L)e ™,

where Py = P(0). Approximate e~ by 1 — at so
P=L+(P,— L)(1— at).

Thus we see that the time t* that it takes the price to return to the mean
is given by 1 — at* = 0. The data indicates ¢* is usually of the order of two

days so « is approximately 180 /year.

The remaining parameters are easily found and we will use the set of

parameter values given in Table 2.
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Table 2: Parameter Values - Numerical Example

Parameter Estimate
Number of periods N 12
Length of each period 1 week
Total number of cars 50
Discount rate r 5% per year
Average minimum rental price 25%
Average maximum rental price 30%
Demand at zero price 20 cars
Slope of demand curve —%
Volatility o 1
Return rate o 180

Using these parameters values we generate the plots shown in Figure
4 which shows the number of cars that should be rented out for different
prices at time ¢ = 0, i.e. at the beginning of the first of 12 rental periods
of a week each, in order for the franchise to maximize the total cash flow.
The price model underlying the figure is relatively flat with an average price
at time zero of $25 rising to a maximum (average) of $30 at the end of the
reservation period. Price volatility is moderate, representing about a 12%
change on a weekly basis (0 = 1) with quick price reversion, o = 180. Base
demand is 20 units with elasticity I—; The three series plotted in Figure 4
are for three different levels of risk-adjustment. The series with A = 0 is
equivalent to a risk neutral or expected value approach, whereas A = 5 and
A = 10 represent increasing value in risk. The increased value placed on risk
means the options are worth more to the firm resulting in them holding on

to the options longer, requiring larger rates to rent the cars.

It is important to note that Figure 4 is a merging of supply and demand.

At lower prices the car rental firm is limiting supply, not making cars available
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till prices exceed certain limits. At higher prices, the firm is willing to rent

but sales are capped by a lack of demand.

The interesting part is that even if the mean price is $25 per car, the
risk neutral franchise should not rent cars out for less than about $23 a car.
This confirms earlier results where Anderson and Blair (2004) indicated that
early rentals at deeply discounted rates are costly, from a revenue standpoint,
to the car rental firm, indicating that perhaps car rental firms are discounting

too deeply early in the booking cycle.

12 : : . | |
lambda=0 ——
lambda=5 -------

lambda=10 --------

10 |

8 I =

Number of Cars
o
T

Rental Price

Figure 4: Rates and Availability at Initial booking

Let us now consider the sensitivity of our results to changes in ¢ and
a. If we change o from 0.1 to 2.0 we see that the minimum rental price
changes from $22.60 to $22.80. Similarly if we change « but keep the other
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parameters at the values given in Table 2, we get the results in Table 3.
Table 3 shows that the slower prices tend to revert, the more likely a firm is

to rent early at deeply discounted rates.

Table 3: Sensitivity Analysis - rate of reversion to mean

« First rental price
2 26.0
5 25.5
10 24.0
100 22.8
180 22.8

The procedure is implemented in C** in about 600 lines of code. Exe-
cution time for a problem with 12 periods is about five seconds on a standard
PC (Pentium III, 550 Mhz). Since the routine must be run once per period

the total execution time will be around 35 seconds.

7 Discussion

We have derived a new model for revenue management and applied it to car
rentals. This model is based on the concepts of real option theory and is
related to the swing options used in the power industries. We have derived
some exact results and used these in the validation of a computational model

of the process.

The method provides an approach to including competitive effects in
revenue management settings. For commodity based service businesses, like
car rentals (where customer switching costs are low), a firm’s pricing decisions

may be impacted by their price relative to competition. Our approach to
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modeling price as a stochastic differential equation is a novel approach to

including these competitive effects in revenue management applications.

We suppose that the management of the business has a database which
allows calibration of stochastic models of rental price development. At present
our approach does not include impacts of inventory sharing across multiple
rental periods, i.e. a car may be rented overnight or for three days. Similarly
our model does not include effects created by multiple car classes, i.e. the
ability to rent a higher valued car to a customer desiring a lower valued car.
These limitations may be relaxed by jointly modeling the price process for
different lengths of rent for different classes of cars. These price processes
would need to be correlated as prices would tend to move together across

classes and rental lengths.

While we have illustrated the application of Real Options to revenue
management using car rentals as an example, the general approach is ex-
tendible to any industry with active price changes. Intense competition only

helps to motivate the application of our methods.
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