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Abstract

Customer choice behavior, such as “buy-up” and “buy-down”, is an important phe-
nomenon in a wide range of revenue management contexts. Yet most revenue manage-
ment methodologies ignore this phenomenon - or at best approximate it in a heuristic
way. In this paper, we provide an exact and quite general analysis of this problem.
Specifically, we analyze a single-leg yield management problem in which the buyers’
choice behavior is modeled explicitly. The choice model is perfectly general and simply
specifies the probability of purchasing each fare product as function of the set of fare
products offered. The control problem is to decide which subset of fare products to offer
at each point in time. We show that the optimal policy is of a simple form. Namely, it
consists of 1) identifying the ordered family of “nondominated” subsets S, ..., Sy, and
2) at each point in time opening one of these sets Sy, where the optimal index k is in-
creasing in the remaining capacity . That is, the more capacity we have available, the
further the optimal set is along this sequence. Moreover, we show that the optimal pol-
icy is nested if and only if the ordered sets are increasing, that is S; C S; C ... C S, and
we give a complete characterization of when nesting by fare order is optimal. We then
show that two important models, the independent demand model and the multinomial
logit model (MNL), satisfy this later condition and hence nested-by-fare-order policies
are optimal in these cases. We also develop an estimation procedure for this setting
based on the expectation-maximization (EM) method that jointly estimates arrival rates
and choice model parameters when no-purchase outcomes are unobservable. Numerical
results are given to illustrate both the model and estimation procedure.

Key words. yield management, revenue management, discrete choice theory, airlines,
dynamic programming, maximum likelihood estimation, EM method

*Kalyan Talluri, Department of Economics and Business, Universitat Pompeu Fabra, Ramon Trias Fargas
25-27, 08005 Barcelona, Spain, email: talluri@Qupf.es

tGarrett van Ryzin, Graduate School of Business, Columbia University, New York,
email:gjv1@columbia.edu



Introduction and Overview

Yield (or revenue) management is a practice that dates back to the deregulation of the
U.S. airline industry in the late 1970’s. It was developed as an outgrowth of the need to
manage capacity sold at discounted fares, which were targeted to leisure travelers, while
simultaneously minimizing the dilution of revenue from business travelers willing and able
to pay full fares. Using statistical forecasting techniques and mathematical optimization
methods, airlines developed automated systems to dynamically control the availability of
the many discounted fares that emerged in the post-deregulation era. The practice has
since spread beyond airlines to the hospitality, rental-car, cruise-lines, railways, energy
and broadcasting industries. Significant revenue benefits have been documented from such
techniques - often an improvement of 2-8% in revenue over no revenue management or
ad-hoc, manual controls [37].

Concurrent with the evolution of industry practice, a considerable amount of management-
science literature on yield management has been published over the last twenty years. The
earliest work on capacity control was Littlewood’s [28] analysis of a simple, two-fare-class
model of capacity allocations on a single flight leg. The problem with more than two fare
products (we define a fare product as a fare (rate, price) along with its associated set of
restrictions to qualify for this fare) is considerably more complex, but Belobaba [5], [6], [7]
developed two simple and effective heuristics for the single-leg problem based on the concept
of expected marginal seat revenue (EMSR-a and EMSR-b) that are still in wide-spread use
today.

On a theoretical level, single-leg models in which demand for each fare product is as-
sumed to occur in non-overlapping periods have been developed and analyzed by Brumelle
and McGill [13], Curry [16], Robinson [35] and Wollmer [45]. A key result of this work
is that the optimal policy can be implemented using a set of so-called nested allocations.
(See Brumelle and McGill [13] for a precise definition of nested allocations.) Lee and Hersh
[26] introduced and analyzed a discrete-time, Markov model that allows for an arbitrary
order of arrivals. For further work on single-leg allocation problems, see Brumelle et al.
[14], Kleywegt and Papastavrou [24], Lautenbacher and Stidham [25], Liang [27], Stone and
Diamond [38], Subramanian et al. [39] and Zhao [48]. For analysis of multiple-leg (network)
allocation problems, see Cooper [15], Curry [16], Dror et al. [18], Glover et al. [22], Simpson
[36], Talluri [40], Talluri and van Ryzin [41], [42] and Williamson [43], [44]. A recent sur-
veys of yield management research is provided by McGill and van Ryzin [32]; Talluri and
Barnhart [3] provide an overview of yield management and other airline operation research
areas.

Despite the success of this body of work, most of the above-mentioned models make a
common, simplifying - and potentially problematic - assumption; namely, that consumer
demand for each of the fare products is completely independent of the controls being applied
by the seller. That is, the problem is modeled as one of determining which exogenously
arriving requests to accept or reject, and it is assumed that the likelihood of receiving a
request for any given fare product does not depend on which other fares are available at



the time of the request. However, casual observation - and a brief reflection on one’s own
buying behavior as a consumer - suggests that this is not the case in reality. The likelihood
of selling a full fare ticket may very well depend on whether a discount fare is available at
that time; the likelihood that a customer buys at all may depend on the lowest available
fare, etc. Clearly, such behavior could have important revenue management consequences
and should be considered when making control decisions.

We lay no claim to uncovering this deficiency. Indeed, many researches have tried to
address “buy-up” (buying a higher fare when lower fares are closed) and “buy-down” (sub-
stituting a lower fare for a high fare when discounts are open) effects in the context of
traditional models. Phillips [34] proposed a “state-contingent” approach to yield manage-
ment that adjusts controls based on forecasts that depend on the controls in effect (the
system “state”) at any point in time. Belobaba [5] proposed a correction to the EMSR
heuristics that introduces a probability of buying a higher fare when a low fare is closed.
While conceptually appealing for a two-fare-class model, such pair-wise “buy-up” probabil-
ities are problematic in a multiple-fare-class setting. The probability of buying a given high
fare should depend on which other high fares are also available. Also, one cannot directly
observe “buy-up”, so how does one separate “original” sales from “buy-up” sales? How
are the probabilities (forecasts) adjusted when there are price changes? etc. Despite the
methodological difficulties, several airlines have experimented with consumer choice models
for revenue management. The most significant is the work of Andersson [2] and Algers
and Besser [1], who report a research and development effort at SAS to apply logit choice
models to estimate buy-up and recapture factors at one of SAS’s hubs.

Another stream of work on understanding choice behavior is the passenger origin and
destination simulator (PODS) studies of Belobaba and Hopperstad. (See [9].) PODS is a
detailed simulation model of passenger purchase behavior developed by Hopperstad and col-
leagues at Boeing. It includes factors for airline preference, time preference, path preference
and price sensitivity. While it is a very detailed simulation model, the focus of the PODS
studies is to test the performance of traditional forecasting and optimization methods under
conditions of complex passenger choice behavior rather than to develop new estimation and
optimization methods. Nevertheless, the PODS studies have provided many useful insights
and clearly demonstrate the significant impact that choice behavior has on the performance
of yield management systems.

The only theoretical models and methods that partially address choice behavior issues
are dynamic pricing models, such as those studied by Bitran et al. [12], Feng and Gallego
[19] and Gallego and van Ryzin [20], [21]. While these models allow demand to depend on
the current price (the control in this case), they assume only one product is sold at one
price at any point in time. Thus, customers face a binary choice; to buy or not to buy.
In reality, firms offer many fares simultaneously and customers choose among them based
on price together with their preferences for non-price factors, such as refundability and
whether or not they can meet various restrictions (e.g. Saturday night stay, minimum-stay
and maximum-stay). The above dynamic pricing models do not capture this complexity.



In summary, while many attempts have been made to understand the impact of choice
behavior on traditional yield management methods and to develop heuristics that partially
capture buy-up and buy-down behavior, to date there is no methodology that directly and
completely addresses the problem. In this paper, we develop a methodology that we believe
substantially fills this void. We analyze a single-leg yield management problem in which
we explicitly model consumer choice behavior using a general choice model, which specifies
the probability of purchasing each fare product as a function of the set of available fare
products. The model includes nearly every choice model of practical interest.

Given this general model of consumer choice behavior, we then formulate the single-leg,
multiple-fare-class yield management problem as one of selecting a subset of fare products
to offer at each point in time. We derive optimality conditions for the resulting dynamic
program. While the policy might appear to be potentially complex under this model, we
show that it has a simple form. First, we show that the optimal subsets can be reduced to an
ordered family, Si, ..., Sm, of nondominated subsets (the definition of a nondominated subset
is defined precisely below). Typically, this family of subsets is much smaller than the number
of total possible subsets. The optimal policy then consists of opening one of the sets Sj in
the sequence, where the optimal index k is increasing in the remaining capacity x. That
is, the more capacity we have available at any point in time, the further the optimal set is
along the sequence. Moreover, we show that the optimal policy is a nested allocation policy
(defined precisely below) if and only if the family of nondominated subsets is increasing -
that is S1 C S5 C ... € S,,,- This provides a very complete and general characterization of
the cases in which nested allocation policies are optimal. We also provide conditions that
gaurantee the nesting is by fare class order. We use these conditions to show that for the
traditional, independent-demand model, the optimal policy is nested by fare class order.
The same conditions show that for the classical multinomial logic (MNL) choice model, the
optimal policy is nested by fare class order as well.

We also develop a practical estimation procedure for our model. One major difficulty
in estimating choice models in the yield management setting is that one typically cannot
observe no-purchase decisions. In many industries, sale are conducted remotely and anony-
mously and the only available data are purchase transactions. Thus, it is often impossible
to distinguish between periods with no arrival and periods in which there was an arrival
and the arriving customer decided not to purchase. (An exception is when sales are direct,
e.g. from the firm’s own web site, in which case considerable information on no-purchases
can potentially be gathered). We overcome this incomplete data problem by applying the
expectation-maximization (EM) method of Dempster et al. [17] to the traditional maximum-
likelihood discrete-choice parameter estimation. The method allows us to simultaneously
estimate both the parameters of the choice model and the arrival rates using only trans-
action data on sales. Together, our estimation procedure and optimization model provide
a theoretically sound and quite complete approach to the single-leg problem with choice
behavior.

The remainder of the paper is organized as follows: In Section 1 we define the choice-
based model of the problem. In Section 2 we formulate a dynamic program and analyze the



resulting optimal policy and Section 3 looks at the optimality of nested policies. Section 4
describes our EM-based estimation procedure. Finally, some brief numerical examples are
given in Section 5 and our conclusions are given in Section 6.

1 Model

Time is discrete and indexed by ¢, and the indices run backwards in time (e.g. smaller values
of t represent later points in time). Time ¢ = 0 represents the deadline for the sale of units.
In each period there is at most one arrival. The probability of arrival is denoted by A, which
we assume is the same for all time periods ¢t. While extending the results to time-varying
arrival probabilities is straightforward, it is cumbersome and we omit the details to simplify
the exposition. There are n fare products and N = {1,...,n} denotes the entire set of fare
products. Each fare product j € N has an associated revenue (fare) r;, and without loss of
generality we index fare products so that v > ro > ...r,, > 0.

In each period ¢, the firm must choose a subset S C N of fare products to offer. When
the fares S are offered, the probability that a customer chooses class j € S is denoted
P;(S) and we assume P;(S) = 0if j ¢ S. We let j = 0 denote the no-purchase choice;
that is, the event that the customer does not purchase any of the fares offered in S. Py(S)
denotes the no-purchase probability. It is possible to allow the choice probabilities to be a
function of time t as well, but to keep the notation simple we assume that the probabilities
do not depend on time. The probability that a sale of class j is made in period ¢ is therefore
AP;(S), and the probability that no sale is made is APy(S)+(1—\). Note this last expression
reflects the fact that having no sales in a period could be due either to no arrival at all or
an arrival that does not purchase; as mentioned, this leads to an incomplete data problem
when estimating the model.

The only conditions we impose on the choice probabilities P;(S) it that they define a
proper probability function. That is, for every set S C N, the probabilities satisfy P;(S) > 0
for all j € S and 3,5 P;j(S) + Po(S) = 1. This includes most all choice models of interest.
For example, some psychologists shown that customers can be overwhelmed by more choices,
and they may become more reluctant to purchase as more options are offered (See Iyengar
[23].). Such cases would be covered by a suitable choice of P;(S) that is decreasing in S.
It also includes all discrete choice models used in practice, such as those described in Ben-
Akiva and Lerman [10]. The only real limitation is that we assume the choices are only a
function of the set S of open fares at the time of purchase. In particular, we do not model
potential strategic behavior (e.g. when a buyer’s choice depends on the seller’s policy or the
strategies of other buyers) or history-dependent choice behavior (e.g. when a buyer’s choice
depends on his/her past choices or past events in the system).

We will use the following running example to illustrate the model and analysis:

Example 1: An airline offers three fare products, Y, M and ). These classes differ in terms
of revenues and conditions as shown in Table 1. The airline has 5 segments of customers, 2



Fare Product (Class) | SA Stay 21-Day Adv. Revenue

Y No No $800
M No Yes $500
Q Yes Yes $450

Table 1: Fare product revenues and restrictions for Example 1

Qualifies for restrictions?  Willing to buy?
Segment | Prob. | SA Stay 21-Day Adv. Y Class M Class
Bus. 1 0.1 No No Yes Yes
Bus. 2 0.2 No Yes Yes Yes
Leis. 1 0.2 Yes No No Yes
Leis. 2 0.2 Yes Yes No Yes
Leis. 3 0.3 Yes Yes No No

Table 2: Segments and their characteristics for Example 1

business segments and 3 leisure segments. The segments differ in terms of the restrictions
that they qualify for and the fares they are willing to pay. The data describing each segment
are given in Table 2. The second column of Table 2 gives the probability that an arriving
customer is from each given segment.

Given these data for Example 1, Table 3 describes the choice probabilities that would
result. To see how the probabilities in Table 3 are derived, consider the set S = {Y,Q}.
If S = {Y,Q} is offered, segments Business 1 and Business 2 buy the Y fare, because
they cannot qualify for both the SA stay and 21-day advance restrictions on @), so Py =
0.1 +0.2 = 0.3. Similarly, Leisure 1 cannot qualify for the 21 day advance restriction of
@ and is not willing to purchase Y, so these customers do not purchase at all. Segments
Leisure 2 and 3, however, qualify for both restrictions on @ and purchase ). Hence,
Py =0.240.3 = 0.5. Class M is not offered, so Py = 0. The other rows of Table 3 are
filled out similarly.

Again, this particular method of generating choice probabilities is only for illustration.
Other choice models could be used and in general any proper set of probabilities could be
used to populate Table 3.

2 Optimization

We next formulate a single-leg problem based on this general choice model. Let C' denote
the aircraft capacity, 1" denote the number of time periods, ¢t denote the number of remaining



S Py(S) Pu(S) Po(S) | Q(S) R(S) | Dominated?
g 0.3 0 0] 03 240 No
{M} 0 0.4 0| 04 200 Yes
{Q} 0 0 05| 05 225 Yes
{v, M} 0.1 0.4 0| 05 280 Yes
{Y,Q} 0.3 0 05| 08 465 No
{M,Q} 0 0.4 05| 09 425 Yes
{Y,M,Q} 0.1 0.4 0.5 1 505 No

Table 3: Choice probabilities P;(.S), probability of purchase, Q(S) and expected revenue,
R(S) for Example 1

periods (recall time is indexed backwards) and = denotes the number of remaining inventory
units. Define the value function Vi(z) as the maximum expected revenue obtainable from
periods t,t — ., 1 given that there are x inventory units remaining at time ¢. Then the
Bellman equatlon for Vi(z) is

jes

(z)
Vi(zr) = mazscy {Z AP;(S)(rj + Vici(z — 1)) + (APy(S) + 1 — A)Vt_l(a:)}

= Maxrscn Z )\P — AVt_l(iL‘))} + Vt_l(l‘), (1)
jeS

where AV;_1(z) = Vi_1(z) — V;—1(x — 1) denotes the marginal cost of capacity, and we have
used the fact that for all S,

Z P;(S)+ Py(S) =1.
jeS
The boundary conditions are
Vi(0)=0, t=1,..,7 and W(z)=0, z=1,..,C. (2)

We can write (1) in more compact form as
Vi(x) = mazscn {A(R(S) — Q(S)AVi-1(x))} + Viei (), (3)

where

S) = Y Bi(8) =1- Py(S)

jes
denotes the total probability of purchase and

S) = Z P;(S)r;

jes



denotes the total expected revenue from offering set S. Table 3 gives the values Q(S) and
R(S) for our Example 1.

A sequence of sets achieving the maximum in (3) forms an optimal Markovian policy (cf.
Bellman [4] and Bertsekas [11]). For theoretical purposes, we will also consider allowing
the seller to randomize over the sets S that are offered at the beginning of each time
period. Since the number of subsets is finite, there is always one set S that maximizes
AMR(S) — Q(S)AVi—_1(z)) (there may be ties or course), so randomizing among the sets to
offer provides no additional benefit to the seller (at most they can randomize between two
or more optimal sets and achieve the same revenue as using one of the optimal sets alone).
However, allowing this flexibility in policies will be useful theoretically.

Potentially, each optimization on the right hand side of (3) could require an evaluation
of all 2™ subsets. However, we show next that the search can be reduced to an evaluation
of only nondominated sets. These sets are defined as follows:

Definition 1 A set T is said to be dominated if there exist probabilities a(S),VS C N with
S gen a(S) =1 such that either

QT) > ) a(S)Q(S) and R(T)< ) a(S)R(S),

SCN SCN

or

Q) > > a(S)Q(S) and R(T) < > a(S)R(S).

SCN SCN

A set is said to be nondominated if it is not dominated.

In words, a set T' is dominated if we can use a randomization of other sets S to produce an
expected revenue that is strictly greater than R(T") with no increase in the probability of
purchase Q(T") (or the same revenue R(7T') with a probability strictly lower than Q(7')). For
Example 1, Table 3 shows which sets are nondominated, namely the sets {Y'}, {Y, Q} and
{Y,Q, M}. That these sets are nondominated follows from inspection of Figure 1, which
shows a scatter plot of the value Q(S) and R(S) for all subsets S. Note from this figure and
Definition 1, that a nondominated set is a point that is on the “efficient frontier” of the set
of points {Q(S5), R(S)},S C N, a concept that should be natural to those readers familiar
with mean-variance portfolio theory or data envelopment analysis (DEA). Here, “efficiency”
is with respect to the trade-off between expected revenue, R(S), and probability of sale,

Q(S).

An alternative characterization of a nondominated set, which is useful analytically, is
given by the following proposition:

Proposition 1 A set T is nondominated if and only if, for some value v > 0, T is an
optimal solution to

max{R(S) —vQ(S)}.

SCN
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Figure 1: Scatter plot of Q(S) and R(S) for Example 1 (nondominated points are enclosed
in squares and labeled)

Proof
We first show the “if” part: Suppose for some v > 0, T satisfies R(T) — vQ(T) > R(S) —
vQ(S) for all S C N. This is equivalent to

(R(T) = R(S)) — v (Q(T) - Q(5)) =0, VSCN.

Multiplying each inequality above by «(S) where {«(S) : S C N} are any set of probabilities
with "¢y @(S) = 1 and adding the inequalities, we then have that

(R(T) -y a(S)R(S)) v (Q(T) -y a<s>cz<s>) > 0.

SCN SCN

Now if v > 0 and T is dominated, there exists probabilities «(S) such that R(T) <

Ysen @(S)R(S) and Q(T) > Y gcn a(S)Q(S) (or for which R(T) < Y gcn a(S)R(S)
and Q(T) > Y gcy a(S)Q(S)), which contradicts the above inequality. Therefore 7" must

(43

be nondominated. This proves the “if” part.

To show the “only if” part, we will show that if T is nondominated, there exists a value
v* > 0 such that 7" maximizes R(S) — v*Q(S) over S C N. Since T is nondominated, we



have

R(T)> max Y a(S)R(S) (4)

> a(8)Q(S) < Q(T)

SCN

Z a(S) =1

SCN

a(S) >0, SCN.

If we relax the constraint Y ¢y a(S)Q(S) < Q(T') by adding a Lagrange multiplier v we
have by weak duality
R(T) > min z4(v) (5)

v>0

where the dual function z4(v) is defined by

24(v) = max Y a(S)[R(S) —vQ(S)] +vQ(T) (6)

SCN
Z a(S) =1
SCN
a(S) >0,S CN.

Since the primal (4) is feasible and bounded and the dual (6) is always feasible, by strong
duality for linear programs there exists an optimal dual solution v* > 0 such that R(T) =
zq(v*). Let a*(+) denote the optimal solution to (6) for this value v*. Thus, we have

R(T) = v"Q(T) = Y a”(S)R(S) —v" > a"(5)Q(S)

SCN SCN

We will show that T maximize R(S) — v*Q(S) over S C N. Indeed, suppose it does not;
then there exist a S* with R(S*) —v*Q(S*) > R(T') — v*Q(T") and hence

R(S") —v*(Q(S") = Q(T)) > R(T)
> Y o (9)[R(S) v Q(S)] + v Q(T).

SCN

But this contradicts the fact that o*(S) maximizes (6). Therefore 7" maximizes R(S) —
v*Q(S).

We next show there always exists such a v* > 0. To do so, suppose v* = 0 is the
unique dual solution. Note that in this case z4(0) = maxgcny{R(S)}, which implies that
R(T) = maxscn{R(S)}. Since v* = 0 is the unique solution to the dual, we must have
that for all v > 0, R(T) = z4(0) < z4(v) (else v* = 0 is not the unique minimizer of the
dual). But by (6) this in turn implies that for all v > 0,

R(T) = vQ(T) < ) a"(S)[R(S) —vQ(S)]

SCN

10



where a*(+) is the optimal solution to (6), or equivalently

(R(T) - a*(S)R(S)) —v (Q(T) - a*(S)Q(S)> <0.

SCN SCN

Now since R(T') = maxgscny{R(S)}, the first term is nonnegative and since v > 0, this
means we must have Q(T) > > gcn @*(5)Q(S). But this contradicts the fact that 7' is
nondominated. Therefore v* = 0 can never be the unique dual solution, so we can assume
there always exists a v* > 0. This completes the “only if” proof. O

The significance of dominated sets is that they can be eliminated from consideration
from our optimization problem, as shown by the following proposition:

Proposition 2 If AV;_1(z) > 0, then a dominated set is never an optimal solution to (1).
If AV;_1(z) = 0, then there always exists a nondominated set T that is an optimal solution

to (1).

Proof

The proof for the case AV;_j(x) > 0 follows directly from Proposition 1. For the case
AV;_i(x) = 0, note that an optimal solution 7" to (1) must maximize the expected revenue,
i.e. satisfy R(T') = maxscy{R(S)}. But it is not hard to see from Proposition 1 that there
must be at least one such 7" that is nondominated. O

It will sometimes be useful to have a slightly stronger notion of dominance:

Definition 2 A set T is said to be strongly nondominated if T is the unique solution to
maxgcN{R(S) —vQ(S)} for some value v > 0.

A set that is nondominated but not strongly nondominated could also be eliminated,
because it is never a unique optimal solution. However, this elimination has to be done with
more care since eliminating one such set might make another set strongly nondominated
relative to the remaining sets. In contrast, all dominated sets can be eliminated without
checking the effect on other sets.

We next show that the nondominated sets are used in a quite simple order. Indeed, let
m denote the number of nondominated sets. These sets can be indexed 51, ..., S, such that
both the revenues and probabilities of purchase are monotone increasing in the index:

Proposition 3 If the collection of m nondominated sets is indexed such that Q(S1) <
Q(S2) < ... < Q(Sm), then R(S1) < R(S2) < ... < R(Spm) as well.

Proof
The proof is by contradiction. Suppose we order the sets so that Q(Sk) is increasing but

11



there exist an | < k in this ordering such that R(S;) > R(Sk). (There has to be at least
one such [ and k else the sequence is ordered as claimed.) For this [ and k, we have
R(S;) > R(Sk) and Q(S;) < Q(Sk), which means S, is trivially dominated by .S;. But this
is a contradiction, so we must have that R(Sy) is increasing in k as well. O

For Example 1, we see from Table 3 that there are m = 3 nondominated sets {Y},
{Y,Q} and {Y,Q, M}. These can be ordered S; = {Y'}, S = {Y,Q} and S5 = {Y,Q, M}
with associated probabilities of purchase 1 = 0.3, @2 = 0.8 and Q3 = 1 and revenue
Ry = $240, Ry = $465 and R3 = $505 as claimed.

Henceforth, we assume the nondominated sets are denoted 51, ..., S;, and are indexed in
increasing revenue and probability order. Also, to keep notion simpler we let Ry, = R(Sk)
and Qr = Q(Sk), and note Ry and @y are both increasing in k. So the Bellman equation
can be further simplified to

Vi(@) = mazp=1,..m {AN(Bx — QeAVio1(2))} + Viea(2), (7)

When expressed in terms of the sequence Sy, ..., S, of nondominated sets, we show next
that the optimal policy has a quite simple form. We first need some preliminary lemmas.

Lemma 1 Let [ > k be two indexes of nondominated sets and suppose that R; — Qvg >
Ry — Qrvg for some nonnegative vg. Then, R — Qv > Ry — Qrv for all v < vg.

Proof
Restating the condition, we want to show that if

R; — Ry > (Q — Qp)v

holds for v = vg it holds for all v < v, but this follows trivially from the fact that if [ > k,
R; — R, > 0 and Q; — Q > 0 so the RHS above is increasing in v. a

The next lemma shows that the index of the optimal nondominated set in (7) is decreas-
ing in the value AV;_;(z)

Lemma 2 Let k* denote the index of the nondominated set Sy« that mazimizes (7) (or
greatest such indez if more than one nondominated set mazimizes (7)). Then k* is decreas-
ing in AVi_1(z).

Proof
For ease of notation, let v = AV;_1(x) and note that the optimal index k solves

Jmax {Ry — Qru}.

goo

12



For v = 0, it is clear that k = m is optimal since R,, is the largest revenue (or if there is a
tie, k = m is the largest index of the sets with maximum revenue). Now consider increasing
v from zero. As v is increased, as some value v; a new index ki will become the smallest
optimal index, and clearly k; < m. Increasing v further we reach another value vo where
a new index k9 becomes the largest optimal index. We will show that ko < ki. Indeed,
suppose that ks > k1. Then by Lemma 1, we have that

Ry — Qv > Ry, — Qr,v, Vo < vy,

but this contradicts the fact that kq is optimal for v; < v < vo. Therefore, we must have
that ks < k;. Repeating this argument as v is increased shows that the largest optimal
index k*(v) is always decreasing in v. O

Our next lemma shows that the marginal value is decreasing in the remaining capacity.
Lemma 3 AVi(z) < AVy(z-1), t=1,...T, z=1,...C

Proof

The proof is by induction on t. First, the statement is trivially true for ¢ = 0 by the
boundary conditions (2). Assume it is true for period ¢t — 1. Let S;(x) denote the optimal
solution to (1) and note

AVi(z) = AVi(x —1) = (AVia(z) — AVia(z — 1))
+ Y AP(S{(2))(rj — AViea(2))

jesi(z)

— Y ARSI - D)y — AVia(w— 1))
jeSt(xz—1)

— D AR(Si (@ = 1)(rj — AVi—i(z — 1))
jest (x—1)

+ AP;(St (x = 2))(rj — AVii(z — 2)) (8)
JEST (x—2)

From the optimality of the set defined by S;(-), the following inequalities hold:

Y AP(SH @ - 1)(r — AVima(z = 1)) = Y MRS (@)(rj — AV (z — 1))
jGSt*(mfl) jES*( )
and
Yo AR(Si (@ —1))(rj — AVima(z — 1)) = Y APR(S;(x —2))(rj — AVii(z — 1))
jest(x—-1) jest (x—2)

Substituting into (8) we obtain

AVi(z) = AVi(z = 1) < (AVia(z) — AVia(z - 1))
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+ Y AP(S;(x))(rj — AVi_y(2))
JjESH (2)

= Y AP(S; (2))(rj — AV (z - 1))

jest(z)

— Y AP(S(x—2))(rj — AV (z — 1))
JESH (2—2)

+ Y AR(Sf(z = 2))(rj — AV (2 - 2))
JESF (z—2)

Rearranging and canceling terms yields

AVi(z) = AVy(z —1) < (1= Y AP(S{(2)(AVi-i(z) — AVioi(z — 1))
jes; (z)
+ 3 AR(Si (@ — 2)(AVici(z — 1) — AV (z — 2))
JES] (z—2)

By induction, AV;_;(z)—AVi_1(z—1) < 0and AV,_1(z—1)—AV;_1(z—2) < 0. Therefore,
AVi(z) — AVi(z —1) <0. O
Thus, marginal values are decreasing, which is intuitive. (Nonmonotonicty of the marginal
values could occur if there is demand for multiple inventory units (group requests); See
for example Kleywegt and Papastavrou [24], Lee and Hersh [26] and Young and Van Slyke
[47]).

The marginal values are increasing in the remaining time as well:
Lemma 4 AVi(z) > AV,_4(z), t=1,...,7, =z=1,..,C

Proof
Note that by using (7), we have

AVi(z) = Vi(z) - Vi(z—1)
= maxg {)\(Rk — QkA‘/t_l(:L‘))} — maxy {)\(Rk — QkA‘/t_l(:L‘ — 1))} + A‘/t_l(l‘)

From Lemma 3, AV;_1(z) < AV;_i(x), and therefore for any value k,
ARy, — QpAVi1(2)) — MRy — QuAVi1 () > 0.

Hence
mazy {A(Ry — QrAVi-1(z))} — mazy {M(Ry — QrAVi-1(z))} 2 0
as well, and it follows that AVy(z) > AV;_i(x). O

By combining Lemmas 2, 3 and 4, we obtain our main theorem:
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Theorem 1 An optimal policy for (1) is to select a set k* from among the m nondominated,
ordered sets {Sy : k = 1,...,m} that maximizes (7). Moreover, for a fized t, the largest
optimal index k* is increasing in the remaining capacity x, and for any fired x, k* is
decreasing in the remaining time t.

This characterization is significant for several reasons. First, it shows that the optimal
sets can be reduced to only those that are nondominated, which in many cases significantly
reduces the number of sets we need to consider. Moreover, it shows that these limited
number of sets can be sequenced in a natural way and that the more capacity we have (or
the less time remaining), the higher the set we should use in this sequence. For example,
applying Theorem 1 to Example 1, we see that the nondominated sets S; = {Y'}, S =
{Y,Q} and S3 = {Y,Q, M} would be used as follows: with very large amounts of capacity
remaining, Ss is optimal - i.e. all three fare classes are opened. As capacity is consumed,
at some point we switch to only offering S5 - i.e. Class M is closed and only Y and @ are
offered. As capacity is reduced further, at some point we close Class M and only offer Class
Y (i.e. set S; is used).

3 Optimality of nested allocation policies

The optimization results above have significant implications for the optimality of nested
allocation policies. The notion of dominance from Definition 1 and Theorem 1 can be used
to provide a quite complete characterization of cases in which nested allocation polices are
optimal. They also can be used to provide conditions under which the optimal nesting is
by fare order.

3.1 General nested policies

To begin, we first need to precisely define a nested allocation policy.

Definition 3 A control policy for (1) is called a nested policy if there is an increasing
family of subsets S1 C Sy C ... C Sy, and an index, ki(z), that is increasing in x, such that
set Sy, (z) 8 chosen at time t when the remaining capacity is x.

Though this is a somewhat abstract definition of a nested policy, it is in fact the natural
generalization of nested allocations from the traditional single-leg models. In particular,
it implies an ordering of the classes based on when they first appear in the increasing
sequence of sets Sp. That is, class ¢ is considered “higher” than class j in the nesting
order if class ¢ appears earlier in the sequence. Returning to Example 1, we see that the
the nondominated sets are indeed nested according to this definition because S; = {Y'},
So ={Y,Q} and S5 = {Y,Q, M} are increasing. Class Y would be considered the highest
in the nested order, followed by Class @ and then Class M.
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We will say a policy is nested by fare order if the nesting order is the same as the fare
order. Note that in Example 1 the nested order is not the fare order, since M is the lowest
ranked fare product in nested order but ) has the lowest revenue.

If the optimal policy is nested one can use a nested allocation policy to implement it. A
nested allocation policy is defined as follows: for each set Sy we can define a set of nested
protection levels, pp, k = 1,..,m, with p; < po < ... < p,, such that classes lower than S
are closed if the remaining capacity is less than pi. The protection levels are defined by

pr = max{z : Ry — QpAV—1(z) > Rp1 — Qp1AVi1(2)}, k=1,2,.m—1

where for notational convenience we define py = 0 and p,, = C. The set Si should be used
if and only if pr, > x > pr_1 and the classes S,,, — Si should be closed if x < pi. That is,
there is a critical threshold of capacity below which we close off fares in S;,, — Sk.

We can also define nested booking limits for Class i, b; as follows: Let k(i) denote the
index of the first set in which Class 7 appears in the sequence of nondominated sets. Then
the booking limit

bi=C —prp)-1, 1=1,..,n

where py(;)—1 is the protection limit for the set Sp(;)—1-

We again return to Example 1 to illustrate this concept. Table 4 shows the objective
function value Ry — QxAV;_1(z) for each of the three nondominated set sets k = 1,2,3
(recall S; = {Y}, So ={Y,Q} and S5 = {Y, Q, M }) for a particular marginal value function
AV;_1(z). Capacities are in the range x = 1,2,...,20. The last column of Table 4 gives
the index, k;(z), of the nondominated set that is optimal for each capacity x. Note that
for capacities 1,2 and 3, the set S; = {Y'} is the optimal set, so Class Y is the only open
fare. Once we reach 4 units of remaining capacity, set Sy = {Y,Q} becomes optimal and
we open Classes @) in addition to Class Y. When the remaining capacity reaches 13, set
Ss = {Y,Q, M} becomes optimal, and we open M in addition to Y and Q. As a result,
the protection level for set Si, is p; = 3, and the protection level for set Sy is po = 12. (S
has a protection level equal to capacity, ps = C by definition.) Assuming the capacity is
C = 20, the booking limit for M is b3 = C' — po = 20 — 12 = 8; the booking limit for @ is
bo = C — p1 =20 — 3 = 17; and the booking limit for Y isby =C —py =C - 0=C.

It’s worth emphasizing at this point that the sequence of nondominated sets, whether
they are nested or not, and their nesting order are all a function of the particular choice
model and the revenue values. Thus far, we have assumed these parameters are the same
for all times ¢. But nothing in the analysis prevents us from having a different choice model
and different fares at each time ¢. In this time-varying case, however, the nondominated
sets could change with time, and if they are nested, the nesting order could change as well.
This would make the implementation more complex. However, at each point in time £, the
basic structure of the optimal policy is the one described above.
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Ry — QrAVi_1(x)

z | AVi(z) | k=1 k=2 k=3]k(x)
1 780.00 6.00 -159.00 -275.00 1
2 624.00 | 52.80 -34.20 -119.00 1
3 520.00 | 84.00 49.00  -15.00 1
4 445.71 | 106.29  108.43 59.29 2
) 390.00 | 123.00 153.00 115.00 2
6 346.67 | 136.00 187.67 158.33 2
7 312.00 | 146.40 21540 193.00 2
8 283.64 | 154.91 238.09 221.36 2
9 260.00 | 162.00 257.00 245.00 2
10 240.00 | 168.00 273.00 265.00 2
11 222.86 | 173.14  286.71 282.14 2
12 208.00 | 177.60 298.60 297.00 2
13 195.00 | 181.50  309.00  310.00 3
14 183.53 | 184.94 318.18 321.47 3
15 173.33 | 188.00 326.33  331.67 3
16 164.21 | 190.74  333.63  340.79 3
17 156.00 | 193.20  340.20  349.00 3
18 148.57 | 195.43 346.14  356.43 3
19 141.82 | 197.45 351.55  363.18 3
20 135.65 | 199.30 356.48  369.35 3

Table 4: Illustration of nested policy for Example 1

3.2 Nesting by fare order

Fares provide a natural nesting ordering, and traditionally this is how most revenue man-
agement systems have been conceived and implemented. From a practical standpoint,
therefore, it is important to understand when a particular choice model leads to nesting by
fare order. Yet Example 1 makes clear that nesting by fare order need not be the optimal
policy in general; some choice models have this property, others do not. Next, we derive
conditions that guarantee a given model will always have this property.

Recall the set of products N = {1,...,n} is assumed to be indexed so that r; > ry >
..tp, > 0. We will say a set is complete if it is of the form Ay = {1,...,k} for some k and
incomplete otherwise.

As an aside, note that completeness of the nondominated sets is an important property
if one wants to use a bid price control. In bid price controls, we set a threshold price that
can depend on ¢ and x, denoted m(z), such that j is opened for sale if and only if r; > m(z).
Indeed, the following proposition is easily seen to hold:

17



Proposition 4 A bid price policy is optimal if and only if the nondominated sets Si, .., Sm
are complete.

In other words, if the nondominated sets are complete, then a bid price control can be used
to implement it because a threshold price can be used to separate the fares in Ay, = {1, ..., k}
from those in N — A = {k+1,...,n}. If some nondominated sets are incomplete, this simple
procedure fails.

We next examine the implications of complete sets for nesting by fare order. Recall that
Proposition 1 (slightly rearranged) states that for any value v > 0, nondominated sets are

the only solutions to
n

glcaﬁcjd(rj —v)P;(89).

Let x; = r; — v and note that x1 > z2 > ...z, > 0 if 1 > 19 > ...7, > 0. The following is a
definition of the nested-by-fare-order property:

Definition 4 A choice model P;(S),j =1,...,n,S C N has the nesting-by-fare-order prop-
erty if it satisfies the two conditions:

i) The probability of purchase, Q(S) = 3 ;cs P;j(S), is increasing in S, i.e. Q(T) > Q(S) if
SCT.

i1) For every set of values x1 > x9 > ... > xy, the problem

SCN “
J:

n
max > z;P;(S) 9)
1
has an optimal solution that is complete.

In words, Property ii) guarantees that for any set of fare values 1 > ro > ...r,, > 0, the
nondominated sets are complete, while Property i) insures that when the complete sets are
sequenced in increasing probability and revenue order, the sequence is Ay, Ao, ..., A,. Thus,
by Theorem 1, the optimal policy will be nested by fare order.

A choice model will fail to have the nested-by-fare-class property if there is a vector of
fares r that make an incomplete set one of the strongly nondominated sets. Here is a simple
example where this is the case:

Example 2: Let N = {1, 2,3}, and r1=%410, 72=%110 and r3=3%60 and take v = 10 so that
21=%400, o=%100 and z3=$50. Let the choice probabilities conditioned on the choice set
be given as in Table 3.2. Table 3.2 shows that the set that maximizes > ; z; P;(S) is {1, 3},
an incomplete set. Thus, the nesting-by-fare-order property does not hold for this choice
model. !

'This specific choice system may appear odd, but it can arise if there is a mixture of unidentifiable
passenger types. For instance, suppose customers are Type A or B with probability 0.5. A customer of type
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Choice Set | Probability of purchase | >°7_; z; P;(S)
{3} {0.5} 25
{2} {0.5} 50
{1} {0.5} 200
{1,2} {0.0,0.5} 50
(2,3} {0.5,0.5} 75
{1,3} {0.5,0.5} 225
{1,2,3} | {0.0,0.5,0.5} 75

Table 5: Choice probabilities and objective function for Example 2

The next theorem gives a characterization of choice models for which the nested-by-
fare-order property holds:

Theorem 2 A choice model has the nested-by-fare-order property iff i) The probability of
purchase, Q(S), is increasing, and ii) for every incomplete set T there exist a set of convex
weights aj, j = 1,...,n, satisfying aj > 0 and 377y aj = 1, such that the probabilities
defined by

P](a)—ZakP](Sk), Jj=1, y T
k=1
satisfy '
S B = Y B(T), i=1,...,n—1
j=1 Jj=1
and " "
Y Pila) =) F(T)
j=1 j=1

Readers familiar with the theory of majorization (see Marshall and Olkin [29]) will
note that the above conditions are equivalent to saying that the vector (Pi(), ..., Pu(a))
majorizes the vector (Py(T),...,P,(T)). In words, it says that the nested-by-fare-order
property holds if we can find a convex combination of complete sets that has the same
probability of purchase as the incomplete set T' (i.e. >7_; Pj(a) = Y7, Py(T) = Q(T)).
Yet the convex combination produces at least as high a probability of purchasing each of
the nested sets {1}, {1,2},...,{1,2,..,n — 1}. This later property is sufficient to ensure that
the expected revenue is at least as large since it implies that for all i =1,...,n

<.
|

1 i—1
PAT) = Pi{e) < Y By(a) = 3 Bi(T).

I
—

A is eligible for fare products 1 and 2 only and customer type B can afford only 3. Customer A will buy
fare product 2 if both 1 and 2 are available and fare product 1 if only fare product 1 is available. Then the
resulting mixture probability will be as given in Table 3.2.
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So if we use T rather than the convex combination of complete set, then any increase in the
probability of selling product ¢ (the left hand side) is always less than the loss in probability
of selling one of the higher revenue products 1, ...,i—1 (the right hand side). Stated another
way, if we sell less of product 4 using the convex combination, it is only because we are selling
more of products with even higher revenues. Thus, the convex combination produces at
least as much expected revenue and for the same probability of purchase.

We next give the proof:

Proof
For Part i), the increasing property of the probability model is a requirement from the
definition of the nested-by-fare-order property.

For Part ii), let T be an incomplete set. If the probability model has the nested-by-fare-
order property, then there does not exist a set of values 1 > x2 > ... > x, such that T is
the unique solution to (9). Thus, the following linear system of inequalities (in the variables
x and the scalar u) has no solution

n

u—>» Pi(T)x; < 0 (10)
u— > Pi(A)z; > 0, k=1,..n (11)
k=1
2Zj zj—2x2j41 > 0, j=1,...,n—1L

But by Farka’s lemma, the system (11) has no solution if and only if the dual system (in
variables ay, k = 1,...,n and 2;,j = 0,1,...,n is solvable:

n
Zakpj(Ak)_zj_Fijl = -P](T)7 J=1..n

n

Zak =1
k=1

a>0 , z2>0.

where we define zg = 0 and z,, = 0 to simplify the notation.

We can next eliminate the z variables. Note for j = 1 from the first equation above
together with z; > 0 we have > 1_; axPi(Ag) — Pi(T) = z1 > 0, which implies

k=1

For j = 2,..,n — 1 using z; > 0 we obtain Y ;_; apP;j(A;) — P;(T) + zj—1 = z; > 0.
Substituting for z;_; recursively we obtain

Jj n J
> ) arPi(Ar) ZZ

i=1 k=1
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Similarly, for j = n since z, = 0 by definition this same step gives > » | > 7 ; ax Pi(Ag) =
Yoieq P;(T). Thus, there exists weights o satisfying the conditions of the theorem if and
only if the probability model has the nested-by-fare-order property. a

Although verification of the conditions of the theorem in general involves testing all
incomplete subsets T', verifying it for a specific model or functional form is often simpler.
Indeed, below we apply the basic theory to two special cases - the traditional independent
demand model and the multinomial logit model - and show that the optimal policy in each
case is nested by fare order.

Finally note that while Theorem 2 is stated in terms of the family of complete sets
Ay, Ao, ..., Ay, the proof does not rely on the fact that the sets are complete. Indeed, the
theorem holds fo