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When a keyword-based search query is received by a search engine, a classified ads website, or an online retailer site,

the platform has exponentially many choices in how to sort the search results. Two extreme rules are (a) to use a ranking

based on estimated relevance only, which improves customer experience in the long run because of perceived quality,

and (b) to use a ranking based only on the expected revenue to be generated immediately, which maximizes short-term

revenue. Typically, these two objectives, and the corresponding rankings, differ. A key question then is what middle

ground between them should be chosen. We introduce stochastic models that yield elegant solutions for this situation, and

we propose effective solution methods to compute a ranking strategy that optimizes long-term revenues. This strategy has

a very simple form and is easy to implement if the necessary data is available. It consists in ordering the output items by

decreasing order of a score attributed to each, similarly to value models used in practice by e-commerce platforms. This

score results from evaluating a simple function of the estimated relevance, the expected revenue of the link, and a real-

valued parameter. We find the latter via simulation-based optimization, and its optimal value is related to the endogeneity

of user activity in the platform as a function of the relevance offered to them.
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1. Introduction
Electronic commerce via the Internet has increased and evolved tremendously in recent years. Marketplaces

in which participants can conveniently buy, sell, or rent a huge variety of objects and services are now

common. The Internet has evolved into a complex ecosystem of companies for which various business

models have proved profitable. Among them, we find search engines (SEs) such as Google, that allow
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users to find content of their interest on the web, and use these interactions to create opportunities to sell

ads; online retailers such as Amazon.com that act as intermediaries between producers and consumers; and

classified ad websites such as eBay that allow sellers or service-providers, and buyers or service-consumers,

respectively, to meet and conduct transactions. To be profitable, those marketplaces typically rely on one

or more of the following revenue streams. Some charge a commission equal to a percentage of the agreed

price-tag (e.g., eBay or Airbnb). Some marketplaces provide a basic service for free but charge sellers to

display their items in premium locations or for keeping them on for additional time (e.g., leboncoin.fr in

France, or Mercado Libre in Latin America). Some increase their revenue by offering additional services

such as insurance or delivery for a fee. Finally, some also rely on third-party advertisers that display text,

banners, images, videos, etc., within the pages of the marketplace in exchange for payment.

A common feature in all those platforms is that when a user connects to them and enters a query, the

site provides a list of relevant items (e.g., links, products, services, classified ads) that may match what

the user wants. To provide the best value to users, the platform would ideally present the relevant items by

decreasing order of (estimated) relevance, so the user is more likely to find the most appropriate ones. By

doing this, the site can increase its reputation and attract more user visits. Measures of relevance can be

based on various criteria, which are sometimes selected by the user. For example eBay provides relevance-

based rankings that can account for time until the end of the auction, distance, price, etc. How to assign

a relevance value to each item returned by a query depends on the intrinsic details of the platform. For

example, eBay may use the string distance between the query and the item descriptions as well as the rating

of the seller, Amazon may use the number of conversions for a product and its quality, and Google may

use the Pagerank algorithm (Google 2011). Methods to define and compute relevance indices have been

the subject of several studies, especially for SEs. Examples include Avrachenkov and Litvak (2004), Austin

(2006), Auction Insights (2008), Williams (2010). In this paper, we are not concerned with how to define

and compute these measures of relevance (this is outside our scope); we assume that they are given as part

of the input data.

In addition, each matching item returned by a query has an expected revenue that could be obtained

directly or indirectly by the platform owner when the user visits the item. The platform may have interest

in taking this expected revenue into account when ranking the items, by placing highly-profitable ones in

prominent positions. However, a myopic approach that ranks the items only in terms of expected revenue

and not on relevance would decrease the reputation in the long run, and eventually decrease the number

of user visits and future revenues. A good compromise should account for both relevance and expected

revenue. Our aim in this paper is to offer a model of this situation and an algorithm to compute optimal

rankings that can balance immediate profit with long-term user activity.

A request is abstracted out in our model as a random vector that contains a relevance index and an

expected revenue for each matching item. For the purpose of this study, the distribution of this random
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vector is assumed to be fixed and known (i.e., it is time-stationary and does not depend on any other element

of the model). Estimating (or learning) this distribution from actual data is of course important for practical

implementations, but is outside the scope of this paper. In real applications, this distribution is likely to

change with time, at a slower time scale than the arrivals of requests, and the ranking strategy would be

updated accordingly whenever deemed appropriate. This aspect is also beyond our scope.

In addition to the regular output that includes organic results, most platforms also display paid ads (also

referred to as sponsored results). Our study focuses on the ordering of the organic results only. We assume

that the average arrival rate of search requests is an increasing function of the average relevance of organic

results, and is not affected by the choice and ordering of the sponsored results. This makes sense because

the latter ordering is not likely to have much impact on the future arrival rate of requests. On the other

hand, the total expected revenue from sponsored search depends on the arrival rate of requests. Our model

accounts for this with a coefficient that represents the expected ad revenue per request, which we multiply

by the arrival rate. There is an extensive literature on pricing and ranking sponsored results. For details, we

refer the reader to Varian (2007), Edelman et al. (2007), Lahaie et al. (2007), Athey and Ellison (2011),

Maillé et al. (2012), and the references therein. However, the impact of using alternative rankings to classify

organic results has not yet received a similar level of attention.

The object of our work is to characterize optimal ordering strategies to rank the items returned by a query,

to maximize the long-term expected revenue per unit of time, and to find an effective way of computing such

a strategy. We want a model whose solution has a simple and elegant form, and that can inform the design

of ranking policies, as opposed to a detailed and complicated model whose solution has no simple form. We

propose a ranking policy that relies on a single real-valued parameter. This value can be optimized efficiently

using simulation-based methods. Our model and algorithms also permit one to compare the optimal policy

to other possible rankings—such as those based on relevance only or those based on short-term revenue

only—in terms of expected revenue for the platform, expected revenue for the various content providers,

and consumer welfare which is captured by the resulting relevance.

The expected relevance and expected income per request depend on the ranking policy used to select a

permutation (ranking) of the items returned by a query (request). The ranking can be based on the estimated

relevance and the expected revenue of each matching item. A deterministic ranking policy assigns to each

possible request a single permutation, which is a deterministic function of the request. However, we will

give examples in which no deterministic policy can be optimal. This motivates us to consider a richer

class of randomized ranking policies which to each request assign a probability distribution on the set

of permutations of all matching items. Whenever a request arrives, the platform selects a ranking using

the probabilities specified by the policy for this request. Of course, computing and implementing such

general policies, deterministic or randomized, appears impractical, because the number of possible requests

is typically huge, so there would be way too many permutations or probabilities to compute and store. For
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this reason, we are interested in developing a model for which we can prove that an optimal policy has a

much simpler form, and is easier to implement.

Our main contribution is the characterization of such an optimal ranking policy. We show that for our

model, an optimal policy must always rank the relevant items by decreasing order of their score, where

the score of each item is a real number defined as a linear combination of a function of the estimated

relevance and a function of the expected gain, in which the first coefficient can be taken as 1 and the second

coefficient (the same for all items and requests) can be optimized. If the scores of matching items are all

distinct with probability 1 (i.e., for almost all requests), finding the optimal coefficient specifies an optimal

deterministic policy which has a very simple form, so we have reached our goal. This generally happens

if the requests have a continuous probability density. But one may argue that in reality, the requests have a

discrete distribution, in which case equalities between two or more scores occur with positive probability.

The bad news is that in that case, only randomized policies can be optimal in general. Any optimal policy

would still sort the matching items by order of score, but it must randomize the order of those having the

same score, with specific optimal probabilities. In practice, if the probability of equality is small, to avoid

computing the optimal probabilities for randomization, one may opt to forget the randomization to break

ties and just use an arbitrary ordering in case of equality, as an approximation. We propose a more robust

strategy: add a small random perturbation (uniform over a small interval centered at 0) to the expected

revenue of each item, so scores are all distinct with probability 1. The impact of this perturbation on the

expected long-term revenue can be made arbitrarily small by taking the size of the interval small enough.

The modified model admits a deterministic optimal policy and one can just use this policy. This can also be

viewed as a different (simpler) way of randomizing the policy.

Balancing immediate revenue and long-term impact on future arrivals when choosing a policy has been

discussed by Mendelson and Whang (1990), Maglaras and Zeevi (2003), Besbes and Maglaras (2009). In

those articles, one selects the price of a service (or the prices for different classes) to maximize the long-term

revenue given that each arriving customer has a random price threshold under which she takes the service.

The systems have capacity constraints and there can be congestion, which degrades the service quality. The

strategy corresponds to the selected prices, which can be time-dependent. The derivations in those papers

differ from what we do here in many aspects. The authors use approximations, e.g, by heavy-traffic limits,

to select the prices. Aflaki and Popescu (2014) also compute a continuous policy (for the service level of a

single customer) in a dynamic context, using dynamic programming (DP). Their solutions are algorithmic.

The model considered here obviously simplifies reality, as do virtually all models whose solution has a

simple form. While there are many other “simple” heuristics that platforms may use to factor in profitability

in their algorithms, the one we obtain here is not only clear and simple, but is also proved to be optimal for

a reasonable model. We think this is a nice insight that can inform platforms on how to better position their

results to tradeoff relevance with profits.
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An important motivation of our work is the search neutrality debate: Some argue that SEs should be

seen as a public service and therefore should be regulated to have their organic search results based only on

objective measures of relevance, while others think they should be free to rank items in the way they think is

best and to compete against each other freely. One key issue in this debate is whether platforms use rankings

that depend on revenue-making ingredients (Crowcroft 2007). For example, since Google owns YouTube,

it might favor YouTube pages for the extra revenue they generate. This type of search bias has been amply

documented in experiments (Edelman and Lockwood 2011, Wright 2012, Maillé and Tuffin 2014). In this

context, the framework we introduce can be of interest both to platform owners, to improve their ranking

rules, and to regulators, to study the impact of various types of regulations on users and on overall social

welfare, if they have access to the appropriate data to build the model.

The rest of the article is organized as follows. In Section 2, we present our modeling framework and state

the optimization problem in terms of randomized policies. In Section 3, we derive a general characterization

of the optimal policies and we obtain optimality conditions for the two situations where the requests have

a discrete and a continuous distribution. For the continuous case, in which the requests have a density, we

show that the optimal policy is completely specified by a unique scalar. This number is used to combine

relevance and revenues into scores, which are used to rank the items in decreasing order. This works because

all the matching items for each request have different scores with probability 1. This policy is very easy

to implement and one does not need to consider the exponentially-many possible orderings. We provide

algorithms to appropriately compute or estimate this scalar number. In Section 4, we provide numerical

examples to illustrate the algorithms and what could be done with the model. Finally, we offer concluding

remarks in Section 5.

2. Model Formulation
We define our model in the context of a SE that receives keyword-based queries and generates a list of

organic results using links to relevant and/or profitable web pages. By changing the interpretation, the model

applies to other marketplaces such as electronic retailers and classified-ad websites, as described in the

introduction.

For each arriving request (i.e., a query sent to the SE by a user), different content providers (CPs) host

pages that can be relevant to that request. Let M ≥ 0 be the (random) number of pages that match the

arriving request, i.e., deemed worthy of consideration for this particular request, out of the universe of all

pages available online. We assume that M has a global deterministic upper bound m0 <∞, independent

of the request. When M > 0, each page i = 1, . . . ,M has a relevance value Ri ∈ [0,1], and an expected

revenue per click for the SE of Gi ∈ [0,Γ], where Γ is a positive constant. The variable Ri represents the

SE’s assessment of how page i would please the author of the request. The variable Gi contains the total

expected revenue that the SE might receive directly or indirectly, from third-party advertisement displayed
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on page i if the user clicks on that link. In particular, if the CP of page i receives an expected revenue per

click for page i, and a fixed fraction of this revenue is transferred to the SE, then Gi represents the expected

revenue that the SE receives. If the CP of a page is the SE, then the fraction is 1 and the SE receives all the

revenue generated by it.

Thus, a request can be encoded as a random vector Y = (M,R1,G1, . . . ,RM ,GM) whose components

satisfy the conditions just given. We denote a realization of Y by y= (m,r1, g1, . . . , rm, gm). We have:

ASSUMPTION A. The vector Y has a fixed probability distribution (discrete or continuous) over a com-

pact (closed and bounded) subspace Ω⊆∪m0
m=0({m}× ([0,1]× [0,Γ])

m
).

After receiving a request y ∈Ω, the SE selects a permutation π= (π(1), . . . , π(m))∈Πm of themmatch-

ing pages, where Πm is the set of permutations of {1, . . . ,m}, and displays the links in the corresponding

order. The link to page i is presented in position j = π(i).

The click-through-rate (CTR) of a link that points to a page is defined as the probability that the user

clicks on that link (Hanson and Kalyanam 2007, Chapter 8). This probability generally depends on the

relevance of the link, its position in the ranking, and perhaps on the relevance and positions of other links

as well. For a given request y, we denote the CTR of page i placed in position j by ci,j(y). Our results will

be derived under the following standard assumption:

ASSUMPTION B. The CTR function has the separable form ci,j(y) = θj ψi(y), where 1 ≥ θ1 ≥ θ2 ≥

· · · ≥ θm0
> 0 is a non-increasing sequence of fixed positive constants that describe the importance of each

position in the ranking, and each ψi : Ω→ [0,1] is a measurable function that gives a position-independent

click “probability” for page i for any request y.

This separability assumption of the CTR is pervasive in the e-Commerce literature (Varian 2007, Edelman

et al. 2007, Maillé et al. 2012). We will rely on it to derive optimality conditions in Section 3. In fact, the

usual assumption in the cited works has ψ(ri) instead of ψi(y); that is, this function is the same for all i and

it is a function of ri only. Our assumption is much less restrictive: it allows each ψi to be a function of the

entire vector y, and therefore of the relevance of all other items that are offered. However, it is not allowed

to depend on the rankings of these other items. For any given y, we define a quality-adjusted relevance r̃i :=

ψi(y)ri and a quality-adjusted revenue g̃i := ψi(y)gi, so that we can write ci,j(y)ri = θj r̃i and ci,j(y)gi =

θj g̃i. Similarly, we define the corresponding quality-adjusted random variables R̃i := ψi(Y )Ri and G̃i :=

ψi(Y )Gi.

If we select permutation π for request y, the corresponding expected relevance (the local relevance) is

defined by

r(π, y) :=
m∑
i=1

ci,π(i)(y)ri =
m∑
i=1

θπ(i)r̃i. (1)
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It captures the attractiveness of this ordering π for this particular y, from the consumer’s perspective. The

expected revenue to the SE from the organic links for this request is

g(π, y) :=
m∑
i=1

ci,π(i)(y)gi =
m∑
i=1

θπ(i)g̃i. (2)

A (deterministic) stationary ranking policy µ is a function that assigns a permutation π = µ(y) to each

possible realization y ∈Ω. (We skip the technical issues of measurability of policies in this paper; this can

be handled as in Bertsekas and Shreve (1978), for example.) By taking the expectation with respect to the

distribution of input requests Y , we obtain the long-term value induced by a stationary ranking policy µ.

The expected relevance per request for policy µ (which we use as proxy of the reputation of the SE) is

r := r(µ) =EY [r(µ(Y ), Y )] =EY

[
M∑
i=1

θµ(Y )(i)R̃i

]
(3)

and the expected revenue per request from the organic links for the SE is

g := g(µ) =EY [g(µ(Y ), Y )] =EY

[
M∑
i=1

θµ(Y )(i)G̃i

]
(4)

where EY represents the expectation taken with respect to the distribution of Y . Note that 0 ≤ r ≤

supy∈Ω, π∈Πm

∑m

i=1 ci,π(i)(y)≤m0, where m corresponds to request y, and similarly 0≤ g≤m0Γ.

We also consider randomized policies, motivated by the fact that in some situations they can do better

than the best deterministic policy (we will give an example of that). A randomized stationary ranking policy

is a function µ̌ that assigns a probability distribution over the set of permutations Πm to each y ∈ Ω. One

has µ̌(y) = {q(π, y) : π ∈Πm}, where q(π, y)≥ 0 is the probability of selecting π, and
∑

π∈Πm
q(π, y) = 1.

The expressions for r and g for a policy µ̌ are then

r := r(µ̌) =EY

[ ∑
π∈ΠM

q(π,Y )
M∑
i=1

ci,π(i)(Y )Ri

]
=EY

[ ∑
π∈ΠM

q(π,Y )
M∑
i=1

θπ(i)R̃i

]
(5)

and

g := g(µ̌) =EY

[ ∑
π∈ΠM

q(π,Y )
M∑
i=1

ci,π(i)(Y )Gi

]
=EY

[ ∑
π∈ΠM

q(π,Y )
M∑
i=1

θπ(i)G̃i

]
. (6)

Notice that although r and g depend on µ or µ̌, as defined in (3) and (4) or in (5) and (6), if understood from

the context, we omit the dependency to simplify notation.

ASSUMPTION C. The objective for the SE is to maximize a long-term utility function of the form ϕ(r, g)

where ϕ is a strictly increasing function of r and g, with bounded second derivatives over [0,m0]× [0,m0Γ].

An optimal policy from the perspective of the SE is a stationary ranking policy µ in the deterministic

case, or µ̌ in the randomized case, that maximizes ϕ(r, g). That is, in the randomized case, we have an

optimization problem whose decision variables are all the probabilities q(π, y) that define the distributions
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µ̌(y), for all y ∈Ω. Always ranking the pages by decreasing order of R̃i would maximize r, whereas ranking

them by decreasing order of G̃i would maximize g. An optimal policy must usually make a compromise in

between these two extremes.

Although our results in the paper are derived for a general ϕ that satisfies Assumption C, in our examples

and much of the discussion, we will use the following specific form of ϕ, for the sake of concreteness and

because this is the form of objective that we have in mind for applications. One may suppose that requests

arrive according to a point process whose average arrival rate (per unit of time) is λ(r), where λ : [0,m0]→

[0,∞) is an increasing, positive, continuously differentiable, and bounded function. The expected gain per

request (on average) from the ads and sponsored links placed on the page that provides the organic links,

is assumed to be a constant β that does not depend on the ordering of the organic links. This expected gain

adds up to g, so the long-term expected revenue per unit of time is

ϕ(r, g) = λ(r)(β+ g). (7)

Again, the properties we will derive stand for a more general ϕ and are not a consequence of the separability

in terms of r and g as in (7). The definition of λ(r) implies that it does not depend on the ordering of

sponsored links. That is, sponsored links (paid ads) do not drive users to the website in the long term.

REMARK 1. According to Assumption A, the distribution of Y does not depend on the ranking policy

and does not change with time. This represents a good approximation over a short time scale, although in

real life, the distribution of Y may change over a longer time scale. We also do not distinguish requests

at a finer granularity than the definition of the global distribution of Y (e.g., if Y represents the aggregate

user population, we do not distinguish individual users). The measures r and g are averages across all

queries. Another relevant issue related to the previous point is whether one can assume, as we do, that this

distribution remains (approximately) the same when we change the ordering policy. In real life, the choice

of policy can have an impact on the distribution of Y , e.g., by attracting more queries of certain types only.

To address this situation, one can segment the space of queries (partition by user type, demographics, topic,

etc.) and apply the model to each segment. Then each segment can have its own distribution Y , pair (r, g),

and policy. This can be useful if the optimal policies differ markedly across segments. Developing effective

ways of making this segmentation is a direction of further research. In principle, one could have a very

large number of small segments, even a single IP address or user may be a segment, but in practice one

must also have enough data to estimate the distribution of Y for each segment. So there would be a tradeoff

between the accuracy of the model (more segments) and the ability to estimate the parameters (more data

per segment).

For the model defined so far, implementing a general deterministic policy µ or randomized policy µ̌ in a

realistic setting may appear hopeless, because it involves too many permutations and probabilities. Our goal
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in the next section is to characterize optimal policies and show that they have a nice and simple structure,

under our assumptions. In particular, we show that an optimal policy ranks the relevant pages of a request y

by decreasing value of a score defined as r̃i + ρ∗g̃i, for an appropriate constant ρ∗ ≥ 0 common to all items

and requests, found by optimization. We will show this property for the general randomized policies. The

property will imply that for the optimal ρ∗, randomization should be used only to order the pages having the

same score. If the probability of such an equality is zero, then we can have a deterministic optimal policy.

We will also show how the situations in which equality occurs with positive probability can be handled by

adding a small perturbation to the Gi’s, as mentioned in the introduction.

For the rest of the paper, we suppose that Assumptions A to C hold.

3. Optimality Conditions for Ranking Policies
To characterize an optimal ranking, we reformulate randomized policies so we can rely on convex analysis

techniques.

3.1. Reformulation of Randomized Policies

Recall that a randomized policy assigns a probability q(π, y) to each permutation π ∈ Πm, for each

request y. These m! probabilities q(π, y) determine in turn the probabilities

zi,j(y) =
∑
π∈Πm

q(π, y)I[π(i) = j] ≥ 0 (8)

that page i ends up in position j, for each (i, j). Here, I denotes the indicator function. Let z(y) denote the

m×m doubly stochastic matrix whose (i, j) entry is zi,j(y), for 1≤ i, j ≤m (in this matrix, each row sums

to 1 and each column sums to 1). Using (8), we have

∑
π∈ΠM

q(π,Y )
M∑
i=1

ci,π(i)(Y )Ri =
∑
π∈ΠM

q(π,Y )
M∑
i=1

M∑
j=1

ci,j(Y )I[π(i) = j]Ri =
M∑
i=1

M∑
j=1

zi,j(y)ci,j(Y )Ri,

from which we can rewrite

r= r(µ̌) =EY

[
M∑
i=1

M∑
j=1

zi,j(Y )ci,j(Y )Ri

]
=EY

[
M∑
i=1

M∑
j=1

zi,j(Y )θjR̃i

]
. (9)

Similarly, we can rewrite

g= g(µ̌) =EY

[
M∑
i=1

M∑
j=1

zi,j(Y )ci,j(Y )Gi

]
=EY

[
M∑
i=1

M∑
j=1

zi,j(Y )θjG̃i

]
. (10)

Given that the objective function depends only on r and g and that those can be written directly in terms of

zi,j(y) instead of q(π, y), we can reformulate the optimization problem equivalently with zi,j(y) as decision

variables. The objective is again to maximize ϕ(r, g), where r and g are defined in (9) and (10). This reduces

significantly the number of independent decision variables, since for any given y, we have m!− 1 degrees
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of freedom for choosing the set {q(π, y), π ∈Πm} and only (m− 1)2 degrees of freedom for choosing the

matrix z(y).

In view of this equivalence, we can define a randomized policy as a rule µ̃ that assigns, for each y ∈ Ω,

a doubly stochastic probability matrix µ̃(y) = z(y) ∈ Rm×m. We adopt this definition for the rest of this

paper. Let Ũ be the class of such randomized policies. A deterministic policy µ is just a special case of

this for which the entries of each matrix are all 0 or 1, with a single 1 in each row and each column (such

a matrix defines a permutation). To implement a randomized policy µ̃, for any given request y, one can

easily generate a ranking (a random permutation) that satisfies the probabilities specified in z(y) = µ̃(z)

by first generating the page at position 1 using the probabilities in the first column of z(y), then for each

position j = 2, . . . ,m in succession, select the page at position j using the conditional probabilities given

the selections made at positions before j. To update the conditional probabilities, whenever a page i is

selected for position j, we remove the corresponding row i in the matrix and rescale the remaining entries

in row j+ 1 so their sum equals 1.

The optimization problem for the SE can be summarized as

(OP) max ϕ(r, g)

subject to (9), (10), and z(y) doubly stochastic, for each y ∈Ω.

The decisions variables in OP are the zi,j(y)’s, whose values define a policy. This large-scale nonlinear

optimization problem is not easy to solve directly in this general form, but we can characterize its optimal

solutions via (standard) convex analysis arguments, as follows. Each randomized policy µ̃ can be mapped

to a corresponding pair (r, g) = (r(µ̃), g(µ̃)). Let C be the set of all points (r, g) that correspond to some

µ̃∈ Ũ .

LEMMA 1. The set C is a convex and compact set.

PROOF. If two pairs (r1, g1) and (r2, g2) are in C, they must correspond to two randomized policies µ̃1 and

µ̃2 in Ũ . Suppose µ̃1(y) = z1(y) = {z1
i,j(y) : 1 ≤ i, j ≤m} and µ̃2(y) = z2(y) = {z2

i,j(y) : 1 ≤ i, j ≤m}

for each y ∈Ω. For any given α ∈ (0,1), let µ̃= αµ̃1 + (1−α)µ̃2 be the policy defined via µ̃(y) = z(y) =

{zi,j(y) : 1≤ i, j ≤m}where zi,j(y) = αz1
i,j(y)+(1−α)z2

i,j(y), for all i, j and y ∈Ω. This policy provides

a feasible solution that corresponds to the pair (r, g) = α(r1, g1) + (1−α)(r2, g2), so this pair must belong

to C. This proves the convexity of the set.

To prove that C is compact, we can use the fact that a continuous mapping of a compact set is compact

(Rudin 1974). Consider the mapping which to each policy µ̃ defined by {µ̃(y) = z(y), y ∈ Ω} assigns the

corresponding pair (r, g). This mapping is continuous and maps the compact set of all doubly stochastic

matrices z(y) for all possible requests y ∈Ω to the set C. �



L’Ecuyer et al.: Revenue-Maximizing Rankings
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 11

Even though the tuple (r, g) does not contain decisions variables in our problem, it is convenient to define

the two-dimensional auxiliary problem

(OP2) max ϕ(r, g)

subject to (r, g)∈ C,

whose optimal solutions correspond to optimal policies for OP. Suppose (r∗, g∗) is an optimal solution to

OP2, which means that the pair belongs to C, it can be obtained by an optimal policy for OP, and has optimal

value ϕ∗ = ϕ(r∗, g∗). We know that such an optimal solution always exists, because C is compact and ϕ

is continuous and bounded, from Assumption C. Let ϕr(r, g) and ϕg(r, g) denote the partial derivatives of

ϕ(r, g) with respect to r and g, respectively, and ∇ϕ(r, g) its gradient. Define h(r, g) := ϕg(r, g)/ϕr(r, g)

and ρ∗ := h(r∗, g∗), which is a constant. Note that with our specific objective function ϕ(r, g) = λ(r)(β +

g), we have ρ∗ = h(r∗, g∗) = λ(r∗)/((β+ g∗)λ′(r∗)). Let us define a modified version of OP2, named

OP2-L, in which we replace the objective function ϕ(r, g) by the linear function r+ ρ∗g:

(OP2-L) max r+ ρ∗g

subject to (r, g)∈ C.

PROPOSITION 1. Any optimal solution (r∗, g∗) to OP2 is also an optimal solution to OP2-L.

PROOF. Given that C is convex and ϕ(r, g) is increasing in both r and g, from standard convexity theory,

one must have (r− r∗, g− g∗) · ∇ϕ(r∗, g∗)≤ 0 for all (r, g) ∈ C, otherwise (r∗, g∗) would not be optimal.

Therefore, since it gives 0 (the maximal value over C) for this linear form, the solution (r, g) = (r∗, g∗) for

OP2 remains an optimal solution to the modified problem if we replace ϕ(r, g) in OP2 by the linear function

(r − r∗, g − g∗) · ∇ϕ(r∗, g∗), or equivalently by ϕr(r∗, g∗)r + ϕg(r
∗, g∗)g, which becomes r + ρ∗g after

dividing by the constant ϕr(r∗, g∗). �

The converse of Proposition 1 is not true: an optimal solution (r, g) to OP2-L is not necessarily optimal

for OP2. However, if OP2-L has a unique optimal solution, then it must be optimal for OP2 as well. This

happens if and only if the line (r− r∗, g− g∗) · ∇ϕ(r∗, g∗) = 0 intersects C only at one point (r∗, g∗).

Both an optimal solution (r∗, g∗) for OP2, and the corresponding ρ∗, are also not necessarily unique in

general. For example, multiple optimal solutions would occur if ϕ(r, g) is constant along one segment of the

boundary of C (a finite curve) and the optimum is reached on that segment. Then, any point (r∗, g∗) on that

segment, with the corresponding ρ∗, would satisfy the proposition. For a sufficient condition for uniqueness,

consider the contour curve defined by ϕ(r, g) = ϕ∗ in the r-g plane. If this contour curve represents the

graph of g as a strictly convex function of r, then (r∗, g∗) and ρ∗ must be unique, because the set C is

convex. For ϕ(r, g) = λ(r)(β+ g), if λ(r) = rα with α> 0, for example, then the contour curve obeys the

equation g = g(r) = ϕ∗r−α − β. Differentiating twice, we find that g′′(r) = ϕ∗α(α+ 1)r−α−2 > 0, so the

contour curve represents a strictly convex function of r for 0< r≤ 1, and the solution is unique.
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Proposition 1 does not yet tell us the form of an optimal policy. We will now build on it to provide a

characterization of these optimal solutions to OP.

3.2. Necessary Optimality Conditions Under a Discrete Distribution for Y

Here we consider the situation in which Y has a discrete distribution over a finite set Ω,

with p(y) = P[Y = y] for all y = (m,r1, g1, . . . , rm, gm) ∈ Ω. In this case, the optimization

problem OP can be rewritten in terms of a finite number of decision variables, as follows:

(OP-D) maxϕ(r, g)

subject to r=
∑
y∈Ω

p(y)
M∑
i=1

M∑
j=1

zi,j(y)θj r̃i

g=
∑
y∈Ω

p(y)
M∑
i=1

M∑
j=1

zi,j(y)θj g̃i

M∑
j=1

zi,j(y) =
M∑
i=1

zi,j(y) = 1 for all y ∈Ω, 1≤ i, j ≤M

0≤ zi,j(y)≤ 1 for all y ∈Ω, 1≤ i, j ≤M

in which the zi,j(y) are the decision variables. Since Ω is typically very large, this is in general a hard-to-

solve large-scale nonlinear optimization problem.

Suppose that the current solution µ̃ is optimal for the linear objective r+ ρg for a given ρ > 0. Then we

should not be able to increase r+ ρg by changing the probabilities zi,j(y) in this optimal solution, for any

given request y with p(y)> 0. In particular, if δ := min(zi,j(y), zi′,j′(y))> 0, decreasing those two prob-

abilities by δ and increasing the two probabilities zi,j′(y) and zi′,j(y) by δ gives another feasible solution

(or policy) µ̃′. In view of the expressions for r and g in problem OP-D, we find that this probability swap

would change r and g by ∆r = δp(y)(θj′ − θj)(r̃i− r̃i′) and ∆g = δp(y)(θj′ − θj)(g̃i− g̃i′), respectively.

Since the current solution is optimal for the objective r+ ρg, it cannot increase this objective, so we must

have ∆r+ ρ∆g≤ 0. This translates into the conditions

(θj′ − θj) [(r̃i− r̃i′) + ρ(g̃i− g̃i′)]≤ 0 (11)

whenever min(zi,j(y), zi′,j′(y))> 0, for all i, j, i′, j′, y with p(y)> 0. Without loss of generality, suppose

that j′ > j, so we know that θj′ ≤ θj . If θj′ = θj , the condition is always trivially satisfied (these two

positions are equivalent, so the two pages at these positions can be permuted in any way and this changes

nothing to r and g). If θj′ < θj , one must have

r̃i + ρg̃i ≥ r̃i′ + ρg̃i′ . (12)

That is, if there is a positive probability that page i is ranked at a strictly better position j than the position

j′ of page i′, then Condition (12) must hold. We call a ranking policy that satisfies this property for a given
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ρ≥ 0 a linear ordering (LO) policy with ratio ρ (or LO-ρ policy, for short). Thus, in this discrete distribution

setting, an LO-ρ policy always ranks the pages by decreasing order of their score r̃i+ρg̃i, for some constant

ρ≥ 0 common to all the requests y for which p(y)> 0, with the exception that if θj′ = θj for two positions

j and j′, the order between the pages at these positions does not matter (it can be arbitrary), because these

two positions are equivalent. When ρ= 0, the ordering is based only on r̃i, whereas in the limit as ρ→∞,

the ordering is based only on g̃i.

PROPOSITION 2. In the setting where Y has a discrete distribution, any optimal randomized policy with

corresponding tuple (r∗, g∗) must be an LO-ρ policy with ρ= ρ∗ = h(r∗, g∗).

PROOF. We know from Proposition 1 that any optimal randomized policy must also be optimal for OP2-L,

i.e., for the linear objective r+ ρ∗g. From the argument given in the previous paragraph, this implies that it

must be an LO-ρ∗ policy. �

We emphasize that finding an optimal ρ might not be enough to specify an optimal policy in the case

where, with positive probability, two or more pages have the same score R̃i + ρG̃i. If the way we order

those pages when this happens would not matter, then we could obtain an optimal deterministic ranking

policy simply by choosing an arbitrary deterministic rule to order the pages having the same score. Given ρ,

this would be very easy to implement, just by sorting the m matching pages by decreasing order of their

score, for each y. However, the ordering in case of equality does matter, as illustrated by the following small

example.

EXAMPLE 1. We consider an instance with a unique request type and two matching pages, Y = y =

(m,r1, g1, r2, g2) = (2,1,0,1/5,2) with probability 1. We take ψi(y) = 1 for all i and y, λ(r) = r, (θ1, θ2) =

(1,1/2), and ϕ(r, g) = r(1 + g). At each request we select a ranking, either (1,2) or (2,1). With a random-

ized policy, we select (1,2) with probability z1,1(y) = p and (2,1) with probability 1− p. In this simple

case, one can write r, g, and ϕ(r, g) as functions of p, and optimize. We have

r = p(θ1r1 + θ2r2) + (1− p)(θ1r2 + θ2r1) = (7 + 4p)/10,

g = p(θ1g1 + θ2g2) + (1− p)(θ1g2 + θ2g1) = 2− p,

ϕ(r, g) = r(1 + g) = (7 + 4p)(3− p)/10 = (21 + 5p− 4p2)/10.

This objective function is quadratic and has its maximum at p∗ = 5/8. Evaluating, we obtain r∗ = 19/20,

g∗ = 11/8, and ϕ(r∗, g∗) = 361/160. Note that by taking p = 0 we get (r, g) = (7/10,2) and ϕ(r, g) =

21/10 = 336/160, whereas by taking p = 1 we get (r, g) = (11/10,1) and ϕ(r, g) = 22/10 = 352/160.

Thus, the optimal randomized policy does strictly better than any deterministic one. The feasible set C here

is the line segment that goes from (7/10,2) to (11/10,1). Figure 1 illustrates this line segment.

With the optimal p∗ = 5/8, we also obtain ρ∗ = r∗/(1 + g∗) = 2/5, and it turns out that r̃1 + ρ∗g̃1 =

r̃2 + ρ∗g̃2 = 1. Thus, any ordering (and any randomized policy) satisfies the LO-ρ∗ rule! That is, in this
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Figure 1 The reachable pairs (r, g) for Example 1 (black line), a level curve of the objective (in red) and the

optimal pair (r∗, g∗). Deterministic policies can only reach the two black dots labeled p = 0 and

p= 1.

simple example, the LO-ρ∗ rule (and knowing ρ∗) tells us nothing about the optimal policy. Note that the

entire segment C belongs to the line r + ρ∗g = 1, so maximizing the linear objective is not sufficient to

obtain an optimal solution. �

3.3. A Model With a Continuous Distribution for Y

In this section, we extend the discussion to a model in which the requests Y have a continuous distribution

over Ω⊆ ∪m0
m=1 ({m} × ([0,1]× [0,Γ])

m
). The goal is to have a model for which ρ∗ is unique and not

difficult to compute or estimate, and for which knowing ρ∗ is sufficient to specify an optimal policy. This

type of continuous model can be used as an approximation to a model with discrete distribution. We will

show that the approximation error can be made arbitrarily small.

We suppose that Ω is a measurable set and that Y has a probability measure ν over the class B of

Borel subsets of Ω, so that ν({y}) = 0 for all y ∈ Ω and ν(B) =
∫
B
dν(y) for each B ∈ B. Lemma 1 and

Proposition 1 still apply in this case. However, the argument that led to Proposition 2 in the discrete case

no longer applies, because each y has probability 0. We modify this argument to prove a similar result

for the continuous case. We first adapt the notion of LO-ρ policy to this setting, and we establish that any

optimal randomized policy must be of that form. In the continuous case, a randomized policy µ̃ is called an

LO-ρ policy if for almost all Y (with respect to the measure ν), µ̃ sorts the pages by decreasing order of

R̃i + ρG̃i, except perhaps at positions j and j′ where θj = θj′ , at which the order does not matter (it can

be arbitrary). That is, if page i is at position j, page i′ is at position j′, and θj > θj′ , then one must have

R̃i + ρG̃i ≥ R̃j + ρG̃j .

PROPOSITION 3. In the continuous model, if the tuple (r∗, g∗) corresponds to an optimal policy, then

this policy must be an LO-ρ policy with ρ= ρ∗ = h(r∗, g∗).
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PROOF. Let µ̃ be an optimal randomized policy, with its corresponding values of r∗ and g∗, and let B ∈ B

be a set with ν(B) > 0 such that δ := infy∈B min(zi,j(y), zi′,j′(y)) > 0 for some arbitrary pages i 6= i′

and positions j 6= j′, for this policy µ̃. Suppose we change µ̃ into µ̃′ by decreasing the probabilities zi,j(y)

and zi′,j′(y) by δ, and increasing zi,j′(y) and zi′,j(y) by δ, for all y ∈ B. This gives another admissible

randomized policy. The changes on r and g coming from this probability switch are

∆r = δ

∫
B

(θj′ − θj)(r̃i− r̃i′)dν(y),

∆g = δ

∫
B

(θj′ − θj)(g̃i− g̃i′)dν(y),

and we must have

0≥∆r+ ρ∆g= (θj′ − θj)δ
∫
B

[(r̃i− r̃i′) + ρ(g̃i− g̃i′)]dν(y). (13)

Now take j′ > j such that θj−θj′ > 0. Suppose that there exists ε > 0, δ > 0, andB ∈B such that ν(B)> 0,

for which for all y ∈B,

r̃i + ρ∗g̃i ≤ r̃i′ + ρ∗g̃i′ − ε (14)

and min(zi,j(y), zi′,j′(y)) ≥ δ under policy µ̃. That is, there is a set of positive probability on which the

two pages i and i′ are not placed by decreasing order of R̃i + ρG̃i. We can modify policy µ̃ to a policy µ̃′

that first orders the pages according to policy µ̃, and then if y ∈B, page i is at position j, and page i′ is at

position j′, the pages i and i′ are swapped positions. This swapping occurs with probability at least ν(B)δ2,

and when it occurs it improves

(θj′ − θj) [(r̃i− r̃i′) + ρ∗(g̃i− g̃i′)] (15)

by at least (θj′ − θj)ε. The modification therefore improves the linear objective r + ρ∗g by at least

ν(B)δ2(θj′ − θj)ε > 0, which contradicts the assumption that µ̃ is optimal. �

Proposition 3 tells us that any optimal policy must satisfy the LO-ρ conditions for ρ= ρ∗. But we need

an additional assumption to make sure that knowing ρ∗ and using an LO-ρ∗ rule is sufficient to completely

specify an optimal policy. For the remainder of this section, we make the following assumption for the

continuous model.

ASSUMPTION D. For any ρ≥ 0, and any j > i > 0, P[M ≥ j and R̃i + ρG̃i = R̃j + ρG̃j] = 0. �

Under Assumption D, for any fixed ρ ≥ 0, a deterministic LO-ρ policy µ = µ(ρ) provides a unique

ranking of the pages with probability 1, i.e., for almost any Y ∈ Ω. If ρ = ρ∗ = h(r∗, g∗) for an optimal

solution (r∗, g∗), such a deterministic LO-ρ∗ policy is optimal. We also know that there always exists such

an optimal (r∗, g∗), because C is compact. An LO-ρ policy µ= µ(ρ) has corresponding values of (r, g) =

(r(µ), g(µ)) and of h(r, g) that are uniquely defined. To refer to h(r, g) as a function of ρ, we write h̃(ρ) :=

h(r(µ(ρ)), g(µ(ρ))).
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PROPOSITION 4. In the continuous setting, under Assumption D and with deterministic LO-ρ policies,

we have: (i) The fixed-point equation

h̃(ρ) = ρ (16)

always has ρ∗ as a solution.

(ii) If h̃′(ρ)< 1 for all ρ> 0, then ρ∗ must be the unique fixed point.

(iii) For the particular objective function ϕ(r, g) = λ(r)(β+ g) in (7), if λ(r)/λ′(r) is non-decreasing in r,

then h̃′(ρ)≤ 0 for all ρ> 0 and ρ∗ is the unique fixed point.

PROOF. We know that an optimal policy exists, and from Proposition 3, any optimal policy µ must be an

LO-ρ policy with ρ= ρ∗ = h(r(µ(ρ∗)), g(µ(ρ∗))) = h̃(ρ∗). Thus, the fixed-point equation has at least one

solution ρ∗ ∈ [0,∞) and this proves (i). If h̃′(ρ)< 1 for all ρ > 0, then the function h̃(ρ) cannot cross the

graph of the identity function (the line of slope 1 that crosses the origin) more than once, so the fixed point

must be unique, which proves (ii). Under the conditions of (iii), we have

h̃(ρ) = λ(r(µ(ρ)))/[λ′(r(µ(ρ)))(β+ g(µ(ρ)))].

If λ(r)/λ′(r) is non-decreasing in r = r(µ(ρ)), then it is non-increasing in ρ because r(µ(ρ)) is non-

increasing in ρ. Additionally, since we know that g(µ(ρ)) is non-decreasing in ρ, it follows that h̃(ρ) is

non-increasing in ρ, so h̃′(ρ)≤ 0 and the fixed point must be unique. �

This condition that λ(r)/λ′(r) is non-decreasing is clearly stronger than what we need to guarantee

uniqueness of the root, but it is quite reasonable. To illustrate when this condition is satisfied, take λ(r) =

a0 + b0 ln(c0 + r) for some constants a0 ≥ 0, b0 > 0, and c0 ≥ 1. Then, λ′(r) = b0/(c0 + r), and therefore

λ(r)/λ′(r) = [a0 + b0 ln(c0 + r)](c0 + r)/b0, which is bounded and increasing in r ∈ [0,m0]. Other simple

cases where this condition holds are the monomial forms λ(r) = a0r
b0 for any positive values a0 and b0;

which includes the case λ(r) = r considered in some examples in this paper.

When Gi = 0 for all i, or G̃i is equal to the same constant for all i, the choice of ρ does not matter,

and it is always optimal to sort the pages by decreasing order of R̃i. If we also have that ri ≥ ri′ implies

ψi(y)≥ψi′(y), which seems natural, then it is easy to see that it is always optimal to sort the pages by order

of relevance Ri; i.e., the SE has the incentive to conform to search neutrality. Under this ordering, r takes

its maximal possible value r0 ≤m0. We always have r ∈ [0, r0].

We now provide examples showing why we need Assumption D. In particular, having a density for Y is

not sufficient for the optimal policy to be deterministic and uniquely defined by ρ∗.

EXAMPLE 2. Starting from Example 1, we add a third page with relevanceR3 uniformly distributed over

[0, ε] for some small ε > 0, and revenue G3 = 0. We assume that θ3 = 1/4. Since R3 has a density, p(y) = 0

for all y ∈Ω. For any ρ > 0, if ε is small enough, this third page will always be ranked last, and its impact

on h(r, g) is very small. Then the problem of ranking the first two pages becomes the same as Example 1,

so the optimal policy must be randomized. �
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One might think that if no R̃i or G̃i has a probability mass at a given point, then Assumption D must hold,

but this is also not sufficient, because (unless we assume independence) one may construct an example in

which with positive probability, one has R̃i = R̃j and G̃i = G̃j and then R̃i + ρG̃i = R̃j + ρG̃j .

3.4. Continuous Approximation to the Discrete Case

The continuous model under Assumption D has an important advantage over a discrete model, in terms of

the simplicity of an optimal policy. This motivates the idea that when Y has a discrete distribution, instead

of solving OP-D, we can approximate the distribution by a continuous one by adding a random perturbation

to each Gi for each Y . The perturbations are all independent and uniform over the interval (−ε, ε) for a

very small ε. The perturbed model then satisfies Assumption D, and it suffices to compute ρ∗(ε), an optimal

ρ for this perturbed problem, to obtain an optimal LO-ρ ranking policy for it. Let r∗(ε) = r(ρ∗(ε)) and

g∗(ε) = g(ρ∗(ε)) be the average relevance and gain when using the optimal policy on the perturbed problem.

The next proposition compares the optimal values of the original and perturbed problems, and shows that

by taking ε small enough, an optimal policy for the perturbed problem will be ε′-optimal for the original

problem for an arbitrarily small ε′. Let ϕ∗ and ϕ∗(ε) be the optimal values of the original and perturbed

problem, and let ϕ∗∗(ε) =ϕ(r∗(ε), g∗(ε)) be the value of using the LO-ρ∗(ε) policy on the original problem.

What we lose (per unit of time) by using this policy instead of an optimal one for the original problem is

ϕ∗−ϕ∗∗(ε), which is shown to be bounded in the next proposition.

PROPOSITION 5. For the specific form of ϕ in (7), we have

0≤ϕ∗−ϕ∗∗(ε)≤ϕ∗(ε)−ϕ∗∗(ε)≤ ε′ := λ(r∗(ε))(θ1 + · · ·+ θm0
)ε. (17)

PROOF. For the original problem, applying the LO-ρ∗(ε) policy cannot do better than the optimal policy.

This gives ϕ∗∗(ε)≤ ϕ∗. For the perturbed problem, imagine that Gi is observed both before and after the

perturbation, so we can apply an optimal randomized policy µ̃ for the original problem to the perturbed

problem by ignoring the realized perturbation before making the decision. This would give the same pair

(r(µ̃), g(µ̃)) and the same value ϕ∗ as for the original problem, because the expected value of the pertur-

bation is zero, so adding it does not change g. But this policy ignores some relevant information that is

available in the perturbed problem, namely the perturbed Gi’s, which are the relevant values for the per-

turbed problem. Therefore it cannot beat an optimal policy for the perturbed problem, i.e., we must have

ϕ∗ ≤ϕ∗(ε). To show the last inequality in (17), note that, following the same method, if we take the rankings

(randomized or not) obtained by the LO-ρ∗(ε) policy run on the original requests, and apply them to both

the original and the perturbed problems, the values of r and λ(r) are the same in both cases, and the differ-

ence in g cannot exceed (θ1 + · · ·+θm0
)ε. Therefore the difference ϕ∗(ε)−ϕ∗∗(ε) in ϕ(r, g) = λ(r)(β+g)

cannot exceed λ(r)(θ1 + · · ·+ θm0
)ε. �

Since λ is a bounded function, (17) shows that by using an LO-ρ∗(ε) policy instead of an optimal policy

for the original problem, the loss in value isO(ε), and can be made negligible by taking ε sufficiently small.
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Table 1 Optimal values for Example 3 as a function of ε.
ε p∗(ε) ρ∗(ε) r∗(ε) g∗(ε) ϕ∗(ε) ϕ∗∗(ε)

0.0 0.625 0.4 0.95 1.375 2.25625 2.25625
0.001 0.62491 0.39995 0.94996 1.37521 2.25636 2.256155
0.01 0.62411 0.39950 0.94964 1.37006 2.25736 2.255395
0.1 0.61705 0.39537 0.94682 1.39476 2.26741 2.248697
0.5 0.59771 0.38137 0.93908 1.46240 2.31240 2.230315

In practice, one can estimate ρ∗(ε) for a very small ε, such as 10−10 for example. When implementing the

policy, for each request Y , one would add the random perturbations and use the perturbed values to rank

the pages. In fact, it would also suffice to generate the perturbations only for the pages for which there is an

equality.

As an illustration, we apply this perturbation method to Example 1. In fact, we will add a perturbation

only to G2, since it is sufficient for eliminating equalities.

EXAMPLE 3. In Example 1, suppose now that G2 has the uniform distribution over the interval (2 −
ε,2 + ε). The expectation of G2 is unchanged, but now we obtain slightly more accurate information on the

revenue G2 before making the ranking decision. This modified (perturbed) model satisfies Assumption D,

so finding ρ∗(ε) is sufficient to completely specify an optimal policy for the perturbed model. Since the

perturbed G2 is observed before making the ranking decision and can be used for making the decision, we

expect that ϕ∗(ε)−ϕ∗ > 0 and increases with ε. It also converges to 0 when ε→ 0. Figure 2 confirms this.

For the perturbed model, we can write G2 = 2 + (2V − 1)ε where V ∼ U(0,1). An LO-ρ policy then

selects the order (1,2) if and only if R1 +ρG1 >R2 +ρG2, if and only if V < p= p(ε) := 2/(5ρε)−1/ε+

1/2, which occurs with probability p. We have r= (7 + 4p)/10 as before and

g = 2− p+ ε

∫ p

0

(v− 1/2)dv+ ε

∫ 1

p

(2v− 1)dv = 2− p+ εp(1− p)/2,

ϕ(r, g) = r(1 + g) =
7 + 4p

10
(3− p+ εp(1− p)/2),

∂

∂p
ϕ(r, g) = [5− 8p+ ε(7/2− 3p(1 + 2p))]/10.

We can find the optimal p, say p∗ = p∗(ε), as a root of this equation and we have

ρ= ρ(p) =
2

5(1 + ε(p− 1/2))

from the definition of p. We see that when ε→ 0, p∗ = p∗(ε)→ 5/8 = 0.625 and ρ∗(ε)→ 2/5 = 0.4. Table 1

gives the optimal values as a function of ε. It shows how ρ∗(ε) and ϕ∗(ε) converge to ρ∗ and ϕ∗ when ε→ 0.

Figure 2 pictures the reachable values of (r, g) for this example, for some large values of ε. The upper

curve (in blue) represents the pairs (r, g) for LO-ρ policies for all values of ρ ∈ [0,∞] (or 0≤ p≤ 1), for

ε= 0.5. The optimal point (r∗, g∗) on that curve is marked by a blue dot. The corresponding curve and point

for ε = 0.1 are in green (the middle curve). The lower line (a straight line) represents the pairs (r, g) for

the policies that select the ranking (1,2) with probability p independently of G2. Those are the randomized

policies of Example 1. For any given ε, the region delimited by the lower line and the curve is the set C.
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Figure 2 The upper boundary of C and the optimal solution with an LO-ρ policy for ε = 0.5 (blue line) and

ε= 0.1 (green line) for the perturbed problem in Example 3

3.5. Computing or Estimating ρ∗

We now discuss how to compute ρ∗, an optimal ρ for an LO-ρ policy, under Assumption D. We saw that

the optimal ρ can be written as a function of r and g, which in turn depend on the selected policy µ and are

unknown a priori. In the previous small examples, we were able to derive explicit analytical expressions for

r(ρ) and g(ρ), and use them to find the optimal ρ. Unfortunately, instances of real size do not admit such

closed-form derivations and they would usually have to be estimated through simulation. Then the search

for ρ∗ is a stochastic root-finding problem: estimate a root of h̃(ρ)− ρ= 0 when only noisy estimates of h̃

can be obtained, via simulation. Several algorithms have been designed and studied for this type of problem.

Two prominent classes of approaches are sample average optimization and stochastic approximation; see,

e.g., Pasupathy and Kim (2011) and the references therein. These methods generally assume that a root

exists and is unique, which is typically the case (we gave conditions for that earlier). If h̃ is a contraction

mapping, we can apply a different method which we now describe. It is very simple, easy to implement, and

has worked very nicely in all the examples we tried (including all the numerical examples in this paper). It

requires an estimator of h̃(ρ).

We can define and compute an estimator ĥn(ρ) of h̃(ρ) at any given value of ρ as follows. We generate

n independent realizations Y1, . . . , Yn of Y , with Yk = (Mk,Rk,1,Gk,1, . . . ,Rk,Mk
,Gk,Mk

). For each k,

we order the Mk pairs (Rk,i,Gk,i) by decreasing order of R̃k,i + ρG̃k,i, and let πk be the corresponding

permutation. We then compute the following unbiased estimators of r(ρ) and g(ρ):

r̂n(ρ) =
1

n

n∑
k=1

Mk∑
i=1

θπk(i)R̃k,i and ĝn(ρ) =
1

n

n∑
k=1

Mk∑
i=1

θπk(i)G̃k,i.

They lead to the following estimator of h̃(ρ):

ĥn(ρ) =ϕ(r̂n(ρ), ĝn(ρ)) = λ(r̂n(ρ))(β+ ĝn(ρ)), (18)
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which is biased because ϕ is nonlinear, but is consistent. The bias decreases as O(1/n) and a confidence

interval for h̃(ρ) can be computed via the Delta method; see Asmussen and Glynn (2007).

Recall that ρ→ h̃(ρ) is a contraction mapping if there is a constant γ ∈ [0,1) such that |h̃(ρ)− h̃(ρ′)| ≤

γ|ρ − ρ′| for all ρ, ρ′ ≥ 0. A sufficient condition for this is that |h̃′(ρ)| ≤ γ for all ρ (in the region of

interest). It is very common in our setting that ρ→ h̃(ρ) is a contraction mapping. In particular, it is true

in all the examples considered in this paper. When this holds, we can start from some ρ0 > 0 and iterate:

ρj = h̃(ρj−1), for j = 1,2, . . . . Then, the fixed-point theorem for contraction mappings (Bertsekas and

Shreve 1978) guarantees that ρj→ ρ∗ at a geometric rate: |ρj − ρ∗| ≤ γj|ρ0− ρ∗|, which provides very fast

convergence when γ� 1. In practice, we can replace h̃(ρj) by ĥnj (ρj), and convergence to ρ∗ will occur if

nj→∞ when j→∞. Note that if nj does not increase with j, ρj will generally not converge to ρ∗. If nj is

fixed to some large constant n and we use independent random numbers (IRN) across the different steps j

for the simulations, ρj will never converge but will wander around in a small neighborhood of ρ∗. If we use

common random numbers (CRN) for the simulations (i.e., exactly the same n realizations Yk at all steps j),

it will converge to a value close to ρ∗, but generally different.

3.6. LO-ρ Policies for More General Situations

In situations where the assumptions made in this paper are not satisfied, and for which computing an optimal

policy can be much too difficult, one can still use an LO-ρ policy as a heuristic. The parameter ρ can be

optimized via simulation-based optimization. This can be done even if h̃(ρ) = ρ has multiple roots, by

using random search to approximate the optimal ρ. This type of policy has the advantage of being easy to

implement for any observed request Y once ρ is selected. It constitutes a very attractive heuristic for general

usage.

4. Some Illustrative Examples
This section introduces some examples that, although very simple and stylized, capture some real world

concerns and illustrate our method. To simplify the exposition, our examples assume that ψi(y) = 1 for all i,

which means that the CRT is ci,j(y) = θj and depends only on the position of the page. We take ϕ(r, g) =

λ(r)(β + g) with λ(r) = r, so λ(r)/λ′(r) = r is non-decreasing and h̃(ρ) = ρ always has a unique fixed

point ρ∗. These simple choices are by no means realistic, but they simplify the exposition. Assumption D

is also satisfied in all our examples, so ρ∗ always defines the order uniquely with probability 1. Example 4

illustrates how to apply the methodology in a simple case, while Example 5 illustrates the fact that revenue-

maximizing ranking strategies can have significant economic consequences on other actors, e.g., in terms of

fairness among content providers (the search neutrality debate). Such bias in ranking has been observed in

real life, as mentioned in the introduction. Whether regulators or governments should take action and what

they should do is a political issue which is beyond the scope of this paper.
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4.1. Computing the optimal ranking: an illustrative example

This example shows the results of applying the framework put forward in this paper to an instance inspired

by a platform that has the choice of showing its own or third-party results for which its own content generates

profits while the external content does not. The example illustrates the tradeoffs in terms of total revenue,

relevance and short-term gains when one transitions from a relevance-based ranking into a profit-based

ranking. The final outcome is the coefficient ρ∗ that resolves that tradeoff, which can be used to rank the

results optimally.

EXAMPLE 4. This example depicts a situation in which the SE has a positive expected revenue Gi for a

page for which it is also the CP, and Gi = 0 otherwise. An alternative interpretation is that all the content

is served by other CPs, and some of those CPs agree to pay the SE a fixed price, normalized to 1, for each

click to their pages served from the SE’s output. This price does not depend on the ranking of the link; it

just gives an incentive for the SE to favor links with Gi = 1 in its ranking.

Suppose there are two matching pages (M = 2). For i = 1,2, Ri has a uniform distribution over [0,1],

the revenue Gi is a Bernoulli random variable with parameter p = P[Gi = 1] = 1− P[Gi = 0], and these

four random variables are independent. The density of Y is thus well defined and Assumption D holds.

Let (θ1, θ2) = (1,0), which amounts to assuming that the SE displays only one page. Focusing on LO-ρ

policies, we derive explicit formulas for r= r(ρ), g = g(ρ), and ϕ(r(ρ), g(ρ)). The fixed point ρ∗ can then

be computed from these formulas.

To derive the formula for r = r(ρ), we distinguish two cases for (G1,G2): If G1 = G2, only the most

relevant link is displayed, resulting in conditional expected relevance E[max(R1,R2) |G1 =G2] = 2/3. If

G1 6=G2, we can assume (possibly by swapping the pages) that G1 = 1 and G2 = 0. If R1 + ρ≥R2, link 1

is displayed and the relevance isR1; otherwise, the relevance isR2. If ρ> 1, link 1 is always shown, leading

to an expected observed relevance of 1/2. If ρ≤ 1, the expected relevance conditional on (G1,G2) = (1,0)

is ∫ 1

r1=0

∫ 1

r2=0

r1I[r1 + ρ> r2] + r2I[r1 + ρ≤ r2]dr2dr1 =
2

3
− ρ

2

2
+
ρ3

3
.

By combining all cases, we obtain r= r(ρ) = 2/3+p(1−p)ρ̄2 (2ρ̄/3− 1) where ρ̄ := min(1, ρ). Similarly,

to compute the expected revenue g = g(ρ) per request, we consider the same two cases: If G1 = G2, the

expected revenue is 0 if G1 = 0, and 1 otherwise. If G1 6= G2, we can assume again that G1 = 1 and

G2 = 0. If ρ > 1, link 1 is displayed and the revenue is 1. If ρ ≤ 1, the expected revenue conditional on

(G1,G2) = (1,0) is ∫ 1

r1=0

∫ 1

r2=0

I[r1 + ρ> r2]dr2dr1 = 1− (1− ρ)2

2
.

By regrouping all cases, we obtain g= g(ρ) = p2 + p(1− p) (1− (2− ρ̄)2).

Both r(ρ) and g(ρ) are constant for ρ≥ 1, so we can restrict the search for ρ∗ to the interval [0,1], and

we have ρ̄= ρ in that interval. With λ(r) = r, the expected revenue per unit of time is

ϕ(r(ρ), g(ρ)) = r(ρ)(β+ g(ρ)) =
(
2/3 + p(1− p)ρ2 (2ρ/3− 1)

) (
β+

(
p2 + p(1− p)

(
2− (1− ρ)2

)))
.
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Table 2 Values of ρj at the first six iterations of the contraction mapping for Example 4, with IRN and CRN
Method ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

IRN 0.4444471 0.377720 0.387115 0.3857771 0.3860725 0.3859246
CRN 0.4444471 0.377670 0.387079 0.3857318 0.3859223 0.3858940

Figure 3 depicts the expected revenue as a function of ρ, along with r(ρ) and g(ρ), for β = 1 and p= 1/2.

While g(ρ) increases and r(ρ) decreases with ρ, the maximal revenue is obtained by taking ρ around 0.4.

This optimal ρ uniquely determines the optimal policy (with probability 1).

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

ρ

Revenue ϕ(r(ρ), g(ρ))
Relevance r(ρ)
Gain g(ρ)

Figure 3 Expected SE revenue per unit time for β = 1 and p= 1/2

For this example, with the expressions previously derived for r and g, we get

h̃(ρ) =
2/3 + p(1− p)ρ̄2(2ρ̄/3− 1)

β+ p2 + 2p(1− p)(1− (1− ρ̄)2/2)

and

h̃′(ρ) =−2

3
p(1− p)(1− ρ̄)

(3ρ̄β+ 3pρ̄+ 3pρ̄2− pρ̄3− 3p2ρ̄2 + p2ρ̄3 + 2)

(β+ p+ 2pρ̄− pρ̄2− 2p2ρ̄+ p2ρ̄2)2
.

For β = 1 and p = 1/2, one can verify numerically that for 0 ≤ ρ ≤ 1, h̃′(ρ) is negative and achieves

a maximum absolute value of approximately 0.15 < 1 (although the derivative is not monotone). Hence,

ρj→ h̃(ρj) is a contraction mapping with γ ≈ 0.15 in that area. We applied this contraction mapping for six

iterations, starting with ρ0 = 0, with a fixed sample size of nj = 107 for all j. We did this with both IRN and

CRN. The results are in Table 2. In both cases, ρj provides a good approximation to ρ∗ very quickly. We

find that ρ∗ ≈ 0.3859. Thus, the optimal strategy is to display the page for which the scoreRi+0.3859Gi is

largest. For the pages that provide no direct revenue to the SE (Gi = 0), the score is equal to the relevance,

while for the pages that provide revenue (Gi = 1), the score is determined by adding the constant 0.3859 to

the relevance, which gives a competitive advantage that helps uprank those pages.
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4.2. Applying the methodology to study the impact of non-neutral search engines

The next example illustrates how our method could help answer specific questions about whether regulations

are beneficial or not. The framework we introduced can indeed be of high interest to regulators who study the

impact of search neutrality on users and on overall social welfare. It can help them determine if intervention

is warranted, study the consequences of doing so, and provide arguments for or against non-neutral SEs by

computing welfare measures of all parties involved in the interaction with the platform.

These questions were discussed by the Federal Trade Commission in the US (Brill 2013) and in a Senate

hearing (Rushe 2012). Search biases have been amply documented in experiments (Edelman and Lockwood

2011, Wright 2012, Maillé and Tuffin 2014). Data indicate that a search for a video in Google is likely

to generate more organic links to YouTube pages, which contain ads that directly benefit Google, than in

another SE. Since videos in competitors’ platforms do not generate additional revenue, Google has a finan-

cial interest for the user to click on YouTube content. Similarly, Google’s expected revenue may increase if

a link to a Google map is included in the output instead of a link to MapQuest, Yahoo Maps, Bing Maps, etc.

The debate about whether SEs should be regulated or not has ignited public interest (Crowcroft 2007, Inria

2012). A neutral SE should only use relevance to construct its rankings, and ignore revenues. This would

allow new entrants that perform well (i.e., that are commonly clicked) to be listed near the top of the list of

organic search results. The risk of a non-neutral ranking is that it may slow down innovation by favoring

the incumbents that are known to generate profits, thereby preventing new applications/content from being

shown, and hence from becoming known and successful.

EXAMPLE 5. A Vertically Integrated SE with a CP. Here we focus on a specific type of request which

can be served by either third-party CPs or by the SE itself. Assume that a limited number of CPs compete

with the SE, and that the parameters r, g, and λ(r) for the instance correspond to just this type of request.

We assume that each request has M = 10 matching pages, that one of them (say Page 1) is served directly

by the SE, while the other nine are served by third-party CPs. In addition to the revenue coming from

Page 1, the SE receives an expected revenue of β = 1 per request from sponsored links in the results

page. We assume that R1, . . . ,R10,G1 are independent random variables, all uniformly distributed over

(0,1), whereas G2 = · · · = G10 = 0. The CTRs θj , in Table 3, are proportional to the observed relative

numbers of clicks as a function of position j, given in the first table of Dejarnette (2012). The multiplicative

proportionality constant has no impact on our derivations, so we take it equal to 1. Each third-party CP also

receives an expected revenue Ci, for i= 2, . . . ,10, where the Ci are independent and uniform over (0,1).

Those Ci are not considered by the optimization performed by the SE, but we will use them to estimate the

impact of various strategies on the CP revenues.

The M = 10 pages are ranked by the SE by decreasing value of R̃i + ρG̃i, for some ρ ≥ 0. Figure 4

shows the SE revenue, the relevance r(ρ), the revenue and the visit rate for CP 1 and for each other (third-

party) CP, all as a function of ρ. The revenues are per unit of time. When ρ increases, the SE favors CP 1
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Table 3 CTR values θj used in Example 5
θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0.364 0.125 0.095 0.079 0.061 0.041 0.038 0.035 0.03 0.022

more, which decreases the overall relevance and increases the visit rate to CP 1. The optimal tradeoff for

the SE is attained with ρ∗ ≈ 0.55. The ranking bias from choosing ρ > 0 only affects Page 1. The relative

positions of the other pages remain the same as in the neutral ranking. Consequently, the relevance r(ρ) is

only marginally affected by ρ in this case. If R1 was stochastically much smaller than the other Ri’s (e.g.,

uniform over [0, ε] for a small ε), then the impact of ρ on r would be larger. When ρ→∞, Page 1 is always

ranked first, and the relevance r(ρ) becomes

r(∞) =

(
θ1

2
+

9∑
i=1

θi+1E[U(10−i)]

)
=
θ1

2
+

9∑
i=1

θi+1

(10− i)
10

≈ 0.517,

where U(1), . . . ,U(9) are independent random variables uniformly distributed over [0,1] sorted by increasing

order (the order statistics), and the visit rate to Page 1 is θ1r(∞)≈ 0.188.
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Figure 4 Performance measures as a function of ρ (simulation results)

To assess the sensitivity of the SE strategy to advertising, we now examine how the results depend on β.

This shows the tradeoff that the SE faces for different types of requests. For requests related to, e.g., airline

tickets, hotel reservations, or retailer products, the SE could make more profit by showing its own content

among organic links rather than through sponsored search, because requests of this kind may produce

conversions, whereas for requests that are appealing in the sponsored search market, the SE may try to

offer the most relevant links, to boost that revenue stream. Figure 5(a) plots ρ∗ as a function of β, while

Figure 5(b) plots the ensuing revenue for CP 1 and for each third-party CP. Those functions were estimated

by simulation, using the iterative fixed-point method to find ρ∗, with a fixed sample size of n= 107 at each
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Figure 5 Optimal ρ for the ranking, and CP revenue per unit of time, as functions of β (from simulation)

step. When β grows, ρ∗ tends to zero, because the revenue from sponsored links dominates, making it more

rewarding for the SE to improve its reputation to attract more users. The impact of non-neutrality is small

in this example because biasing the ranking only attracts limited additional revenue. When β is small, in

contrast, sponsored links do not pay much and it becomes worthwhile for the SE to sacrifice relevance to

some extent for immediate profits. In the extreme case when β = 0, we have ρ∗ =∞, so Page 1 is always

placed at the top, and the other pages are sorted by decreasing order of relevance. This gives an average

revenue of 0.09619 for CP 1 and of 0.01695 for each other CP. Although not shown in the figure, the

expected SE revenue ϕ(r∗, g∗) grows almost linearly with β, which means that the increasing revenues of

sponsored search dominate the additional revenue to the SE coming from Page 1.

To illustrate the impact of non-neutrality, Table 4 reports the variations of the most relevant performance

metrics when using ρ= ρ∗ instead of ρ= 0 (neutral ranking), for different values of β. For our parameters,

we see that while the variation of the perceived quality (relevance) remains small (around 10%), the impact

on the visibility and the revenues of the SE-owned CP is substantial: by being non-neutral, the SE can

multiply the revenues of its CP by a factor of 2.8 and its visit rate by a factor larger than 3. On the other

hand, the other CPs see their revenues and visit rates reduced by 14% to 32%, a significant decrease that may

impact their long-term profitability. Of course, the results may be different with real data, but the framework

and method can be applied similarly and can be used to study the impact of different types of regulations

and optimization strategies on the various actors and on public welfare.

5. Conclusion
We have introduced a new modeling framework that allows online platforms to rank items in a way that

maximizes long-term revenues. The long-term impact is captured by the arrival rate of requests, which is

an increasing function of the average relevance of the displayed pages clicked by the users. We proved that
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Table 4 The impact of non-neutral rankings in Example 5
CP 1 other CP CP 1 other CP

Relevance revenue revenue visit rate visit rate
Neutral, ρ= 0
(reference case,
optimal for β =∞)

0.635 0.028 0.0283 0.057 0.057

Non-neutral, ρ= 0.559 0.618 0.066 0.0243 0.112 0.049
(optimal for β = 1) (−3%) (+136%) (−14%) (+96%) (−14%)
Non-neutral, ρ= 0.924 0.592 0.084 0.0215 0.140 0.043
(optimal for β = .5) (−7%) (+200%) (−24%) (+146%) (−25%)
Non-neutral, ρ= 1.374 0.568 0.093 0.0193 0.158 0.039
(optimal for β = .25) (−11%) (+232%) (−32%) (+177%) (−32%)

although we have to choose an ordering among a large number of possibilities for each request and the

objective function is nonlinear, an optimal ranking must satisfy some simple conditions: the items must be

sorted by order of a score defined as a simple function of the (expected) relevance and short-term profits.

This function depends on a single real-valued parameter. Under the additional assumption that the scores are

all different with probability 1, this provides a unique ordering for each request. Then, the whole problem

reduces to optimizing the value of this parameter. We have provided an algorithm for that that relies on

simulating the process to obtain estimates.

Our model and results might prove useful to platform owners (SEs, classified ads websites, online retail-

ers) to navigate the tradeoff between short-term and long-term effects when defining their ranking strategies.

They can also be of interest to regulators, who can run experiments with the model (based on real data

if available) to better understand the behavior of revenue-oriented platforms and to anticipate the impact

of regulatory interventions, which is of particular importance with regard to the current search neutrality

debate.

Acknowledgments
We would like to thank the referees, AE and Editor who had excellent suggestions of improvement during the review

process. This work has been supported by Inria’s associated team MOCQUASIN, an Inria International Chair, a Canada

Research Chair, CONICET Argentina Grant PIP 112-201201-00450CO, FONCYT Argentina Grant PICT 2012-1324,

and an NSERC Discovery Grant to P. L’Ecuyer.

References
Aflaki, S., I. Popescu. 2014. Managing retention in service relationships. Management Science 60(2) 415–433.

Asmussen, S., P. W. Glynn. 2007. Stochastic Simulation. Springer-Verlag, New York.

Athey, S., G. Ellison. 2011. Position auctions with consumer search. Quarterly Journal of Economics 126(3) 1213–

1270.

Auction Insights. 2008. Decoding eBay’s best match. https://web.archive.org/web/*/http://www.

auctioninsights.info/decoding-ebays-best-match.html . Last accessed Oct 2014.



L’Ecuyer et al.: Revenue-Maximizing Rankings
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 27

Austin, D. 2006. How google finds your needle in the web’s haystack. American Mathematical Society Feature

Column 10(12). http://www.ams.org/samplings/feature-column/fcarc-pagerank.

Avrachenkov, K., N. Litvak. 2004. Decomposition of the Google PageRank and Optimal Linking Strategy. Rapport

de recherche RR-5101, INRIA. URL http://hal.inria.fr/inria-00071482.

Bertsekas, D. P., S. E. Shreve. 1978. Stochastic Optimal Control: The Discrete Time Case. Academic Press, New

York.

Besbes, O., C. Maglaras. 2009. Revenue optimization for a make-to-order queue in an uncertain market environment.

Operations Research 57(6) 1438–1450.

Brill, J. 2013. Statement of the Commission regarding Google’s search

practices. http://www.ftc.gov/public-statements/2013/01/

statement-commission-regarding-googles-search-practices . Last accessed Oct 2014.

Crowcroft, J. 2007. Net neutrality: The technical side of the debate: A white paper. ACM SIGCOMM Computer

Communication Review 7(1).

Dejarnette, R. 2012. Click-through rate of top 10 search results in Google. URL http:

//www.internetmarketingninjas.com/blog/search-engine-optimization/

click-through-rate.

Edelman, B., B. Lockwood. 2011. Measuring bias in “organic” web search. http://www.benedelman.org/

searchbias.

Edelman, B., M. Ostrovsky, M. Schwarz. 2007. Internet advertising and the generalized second-price auction: Selling

billions of dollars worth of keywords. The American Economic Review 97(1) 242–259.

Google. 2011. Facts about Google and competition. http://web.archive.org/web/20111104131332/

http://www.google.com/competition/howgooglesearchworks.html . Last accessed Oct

2014.

Hanson, W.A., K. Kalyanam. 2007. Internet Marketing and E-Commerce. International student edition,

Thomson/South-Western, Mason, Ohio.

Inria. 2012. Inria’s response to ARCEP consultation about network neutrality.

Lahaie, S., D. Pennock, A. Saberi, R. Vohra. 2007. Sponsored search auctions. N. Nisan, T. Roughgarden, E. Tardos,

V. Vazirani, eds., Algorithmic Game Theory, chap. 28. Cambridge University Press, 699–716.

Maglaras, C., A. Zeevi. 2003. Pricing and capacity sizing for systems with shared resources: Scaling relations and

approximate solutions. Management Science 49(8) 1018–1038.
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Maillé, P., B. Tuffin. 2014. Telecommunication Network Economics: From Theory to Applications. Cambridge Uni-

versity Press.



L’Ecuyer et al.: Revenue-Maximizing Rankings
28 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Mendelson, H., S. Whang. 1990. Optimal incentive-compatible priority pricing for the M/M/1 queue. Operations

Research 38(5) 870–883.

Pasupathy, R., S. Kim. 2011. The stochastic root finding problem: Overview, solutions, and open questions. ACM

Transactions on Modeling and Computer Simulation 21(3) Article 19.

Rudin, W. 1974. Real and Complex Analysis. 2nd ed. McGraw-Hill, New York.

Rushe, D. 2012. Eric Schmidt Google senate hearing – as it happened. http://www.guardian.co.uk/

technology/blog/2011/sep/21/eric-schmidt-google-senate-hearing . Last accessed

Oct 2014.

Varian, H.R. 2007. Position auctions. International Journal of Industrial Organization 25(6) 1163–1178.

Williams, H. 2010. Measuring search relevance. http://www.ebaytechblog.com/2010/11/10/

measuring-search-relevance.

Wright, J. D. 2012. Defining and measuring search bias: Some preliminary evidence. George Mason Law & Economics

Research Paper 12-14, George Mason University School of Law.


