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Ageing is a degenerative process leading to tissue dysfunction and death. A proposed cause 

of ageing is the accumulation of epigenetic noise, which disrupts youthful gene expression 

patterns that are required for cells to function optimally and recover from damage1-3. 

Changes to DNA methylation patterns over time form the basis of an 'ageing clock'4,5, but 

whether old individuals retain information to reset the clock and, if so, whether this would 

improve tissue function is not known. Of all the tissues in the body, the central nervous 

system (CNS) is one of the first to lose regenerative capacity6,7. Using the eye as a model 

tissue, we show that expression of Oct4, Sox2, and Klf4 genes (OSK) in mice resets youthful 

gene expression patterns and the DNA methylation age of retinal ganglion cells, promotes 

axon regeneration after optic nerve crush injury, and restores vision in a mouse model of 

glaucoma and in normal old mice. This process, which we call recovery of information via 

epigenetic reprogramming or REVIVER, requires the DNA demethylases Tet1 and Tet2, 

indicating that DNA methylation patterns don't just indicate age, they participate in 

ageing. Thus, old tissues retain a faithful record of youthful epigenetic information that can 

be accessed for functional age reversal. 

The metaphor of the epigenetic landscape, first invoked by Waddington to explain 

embryonic development8,9, is increasingly seen as relevant to the other end of life9. Evidence 

from yeast and mammals supports an Information Theory of Ageing, in which the loss of 

epigenetic information disrupts youthful gene expression patterns1-3, leading to cellular 

dysfunction and senescence.10 

In mammals, progressive DNA methylation changes serve as an epigenetic clock, but 

whether they are merely an effect or a driver of ageing is not known4,5. In cell culture, the ectopic 

expression of the four Yamanaka transcription factors, namely Oct4, Sox2, Klf4, and c-Myc 

(OSKM)11, can reprogram somatic cells to become pluripotent stem cells, a process that erases 

most DNA methylation marks and leads to the loss of cellular identity4,12. In vivo, ectopic, 

transgene-mediated expression of these four genes alleviates progeroid symptoms in a mouse 

model of Hutchison-Guilford Syndrome, indicating that OSKM might counteract normal 

ageing13. Continual expression of all four factors, however, induces teratomas14 or causes death 

within days13, ostensibly due to tissue dysplasia15. 

Ageing is generally considered a unidirectional process akin an increase in entropy, but 

living systems are open, not closed, and in some cases can fully reset biological age, examples 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/710210doi: bioRxiv preprint 

https://doi.org/10.1101/710210


 3 

being "immortal" cnidarians and the cloning of animals by nuclear transfer16. Having previously 

found evidence for epigenetic noise as an underlying cause of ageing2,3, we wondered whether 

mammalian cells might retain a faithful copy of epigenetic information from earlier in life, 

analogous to Shannon's "observer" system in Information Theory, essentially a back-up copy of 

the original signal to allow for its reconstitution at the receiving end if information is lost or 

noise is introduced during transmission17. 

To test this hypothesis, we introduced the expression of three-gene OSK combination in 

fibroblasts from old mice and measured its effect on RNA levels of genes known to be altered 

with age, including H2A, H2B, LaminB1, and Chaf1b. We excluded the c-Myc gene from these 

experiments because it is an oncogene that reduces lifespan18. OSK-treated old fibroblasts 

promoted youthful gene expression patterns, with no apparent loss of cellular identity or the 

induction of Nanog, an early embryonic transcription factor that can induce teratomas (Extended 

Data Fig.1a-c). 

Next, we tested if a similar restoration was possible in mice. To deliver and control OSK 

expression in vivo, we engineered a tightly regulated adeno-associated viral (AAV) vector under 

the control of tetracycline response element (TRE) promoter (Fig.1a)19,20. The TRE promoter can 

be activated either by rtTA in the presence of DOX (the "Tet-ON" system) or by tTA in the 

absence of DOX ("Tet-OFF"). Extraneous AAV sequences were removed so the vector could 

accommodate OSK as a poly-cistron. To test if ectopic OSK expression was toxic in vivo, we 

infected 5 month-old C57BL/6J mice with AAV9-rtTA and AAV9-TRE-OSK delivered 

intravenously (1.0 x 1012 gene copies total), then induced OSK expression by providing 

doxycycline in the drinking water (Extended Data Fig. 2a). Surprisingly, continuous induction of 

OSK for over a year had no discernable negative effect on the mice (Fig.1b and Extended Data 

Fig. 2b)20, ostensibly because we avoided high-level expression in the intestine (Extended Data 

Fig.2c-e), thus avoiding the dysplasia and weight loss seen in other studies15. 

 Almost all species experience a decline in regenerative potential during ageing. In 

mammals, one of the first systems to lose its regenerative potential is the CNS.6 Retinal ganglion 

cells (RGCs) are part of the CNS that project axons away from the retina towards the brain, 

forming the optic nerve. During embryogenesis and in neonates, RGCs can regenerate if 

damaged, but this capacity is lost within days after birth7. Then, throughout adulthood, the 

function of these cells continues to decline21. To date, attempts to reverse acute or chronic 
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damage to the CNS have been moderately successful, and no treatments have successfully 

restored eyesight. 

To test whether it is possible to provide adult RGCs with the regenerative capacity, we 

induced OSK in an optic nerve crush injury model. The Tet-Off system carrying OSK, either in 

separate AAVs or in the same AAV, was injected into the vitreous body, resulting in efficient, 

selective, and doxycycline-responsive gene expression in RGCs (Fig.1c). As a negative control, a 

group of mice were also continuously treated with doxycycline to repress OSK expression 

(Extended Data Fig. 3a). Two weeks after AAV delivery, we performed optic nerve crush. Axon 

length and optic nerve density were determined 16 days later (Fig.1d).  

The greatest extent of axon regeneration and RGC survival, independent of RGC 

proliferation (Extended Data Fig.4a), occurred when all three genes were delivered via the same 

AAV as a polycistron (Fig. 1e-g). Indeed, when polycistronic OSK was induced for 12-16 

weeks, regenerating RGC axon fibers extended over 5 mm into the chiasm, where optic nerve 

connects to brain (Extended Data Fig.4b, c). When genes were co-delivered by separate AAVs, 

no effect on axon regeneration was observed, ostensibly due to the lower frequency of co-

infection (Extended Data Fig.3c, d). When delivered singly, OCT4 and SOX2 alone increased 

RGC survival slightly, but none of the single factors alone had any effect on regenerative 

capacity (Fig. 1e, f). Because Klf4 has been reported to repress rather than promote axonal 

growth22,23, we also tested a dual-cistron of just Oct4 and Sox2, but observed no regenerative 

effect even in the absence of Klf4 (Fig. 1e, f).   

Utilizing the Tet-On AAV system for its rapid on-rate (Extended Data Fig. 3b and 5a, b), 

we tested the effect of inducing OSK expression before or after damage. Significant 

improvement in axon regeneration only occurred when OSK expression was induced after injury; 

the longer the duration of OSK induction post-injury, the greater the distance the axons extended, 

with no increase in the total number of RGCs (Fig. 2b-d). By comparing infected RGCs numbers 

pre- and post-injury, survival rate of OSK infected RGC was ~2.5-3.0 times that of uninfected or 

GFP-infected RGCs (52 vs. 17%-20%) (Extended Data Fig. 5c, d), indicating OSK's protective 

and regenerative effects are largely cell-intrinsic. The PTEN-mTOR-S6K pathway, previously 

shown to improve RGC survival and axon regeneration in vivo24, was not activated in OSK-

infected cells post-injury (Extended Data Fig. 6a, b), indicating a new pathway might be 

involved. 
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Given the necessity of post-injury OSK expression and the known role of Yamanaka 

factors to reverse DNA methylation (DNAme) age during partial or fully reprogramming in 

vitro4,12,25, we wondered whether neuronal injury advanced epigenomic age and whether OSK's 

benefits were due to the preservation of a younger epigenome. Genomic DNA from FACS-

isolated RGCs was obtained from retinas that are intact or 4-days after axonal injury in the 

presence or absence of OSK induction and subjected reduced-representation bisulfite sequencing 

(RRBS). A newly published rDNAme clock26 provided the best site coverage (70/72 CpG sites) 

relative to other available mouse clocks27,28, and its age estimate remained highly correlated with 

chronological age of RGCs (Extended Data Fig. 7a and Methods). Consistent with the 

hypothesis, in the absence of global methylation changes, injured RGCs experienced an 

acceleration of the epigenetic clock and OSK expression counteracted this effect (Fig. 2e and 

Extended Data Fig. 7b).  

Ten-Eleven-Translocation (TET) dioxygenases are known for their ability to remove 

DNA demethylation at CpG sites. Because Yamanaka factors promote in vitro reprogramming 

by upregulating Tet1 and Tet2, but have no effect on Tet329,30, we tested whether Tet1 and Tet2 

were required for the beneficial effects of OSK on RGCs. We utilized previously well 

characterized AAVs expressing short- hairpin RNAs against Tet1 and Tet2 (sh-Tet1 and sh-

Tet2)31-33 and validated their high co-transduction rate (near 70%) with OSK AAV in the RGCs 

(Extended Data Fig. 6c, d). Knockdown of either Tet1 or Tet2 blocked the ability of OSK to 

promote RGC survival and regeneration (Fig. 2f and Extended Data Fig. 6e).  

To explore if neuronal reprogramming might be applicable to humans, we performed 

axon regeneration assays on differentiated SH-SY5Y human neuronal cultures (Fig. 2g), with 

and without OSK induction (Extended Data Fig. 8a, b). Similar to results of mouse RGCs in vivo 

(Extended Data Fig. 4a), OSK did not induce human neuron cell proliferation (Extended Data 

Fig. 8c, d). Axon degeneration was then induced by a 24 hr treatment with vincristine (VCS), a 

chemotherapeutic agent, and cells were then allowed to recover for 9 days. Again, we measured 

the DNA methylation age of AAV-transduced neurons using a clock for in vitro studies34. 

Paralleling the RGCs, DNA methylation age was significantly increased after VCS-induced 

damage of human neurons (Extended Data Fig. 8e), and OSK expression not only prevented this 

increase but also restored a younger DNA methylation age without a global reduction of DNA 

methylation (Fig.2h and Extended Data Fig. 7c). At Day 9 post-damage, the neurite area was 15-

fold greater in the rejuvenated OSK-transduced cells than controls (Extended Data Fig. 8f, g). 
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The recovery from damage was completely blocked by validated Tet2 knockdown (Fig. 2i, j, 

Extended Data Fig. 8h) even in presence of high OSK expression (Extended Data Fig. 8i), but 

was not dependent on mTOR-S6K pathway (Extended Data Fig. 8j, k), again paralleling mouse 

RGCs. Thus, the ability of OSK to reprogram neurons and promote axon growth is a conserved, 

DNA demethylation-dependent cell intrinsic process. We refer to this process as the recovery of 

information via epigenetic reprogramming, or "REVIVER" for short. 

Glaucoma, a progressive loss of RGCs and their axons that often coincides with increased 

intraocular pressure, is a leading cause of age-related blindness worldwide. Although some 

treatments can slow down disease progression35, it is currently not possible to restore vision once 

it has been lost. Given the ability of OSK to regenerate axons after acute nerve damage, we 

tested whether REVIVER could restore the function of RGCs in a chronic setting like glaucoma 

(Fig. 3a). Elevated intraocular pressure (IOP) was induced unilaterally for 4-21 days by injection 

of microbeads into the anterior chamber (Fig. 3b)36. AAVs or PBS were then injected 

intravitreally and expressed at a time point when glaucomatous damage was established, with a 

significant decrease in RGCs and axonal density (Fig. 3a, Extended Data Fig.9a, b). Four weeks 

after AAV injection, OSK-treated mice presented with a significant increase in axon density 

compared to mice that received either PBS or AAVs with no OSK induction (-OSK). The 

increased axon density was equivalent to the axon density in the saline-only, non-glaucomatous 

mice (Fig. 3c, d) and was not associated with proliferation of RGCs (Extended Data Fig.9c). 

To determine whether the increased axon density in OSK-treated mice coincided with 

increased vision, we tracked the visual acuity of each mouse by measuring their optomotor 

response (OMR) (Fig. 3e). Compared to mice that received either PBS or -OSK AAV, those that 

received OSK induction experienced a significant increase in visual acuity relative to the pre-

treatment baseline measurement, restoring about half of vision (Fig. 3f). A readout of electrical 

waves generated by RGCs in response to a reversing contrast checkerboard pattern, known as 

pattern electroretinogram (PERG) analysis, showed that OSK treatment significantly improved 

RGC function relative to the pre-treatment baseline measurements and PBS or -OSK AAV 

treatments (Fig. 3g, h). To our knowledge, REVIVER is the first treatment to reverse vision loss 

in a glaucoma model. 

Many treatments known to work well in young individuals often fail in older ones. For 

example, an approach to regenerate retinal rod photoreceptors was effective in 1 month-old mice 

but not in 7 month-olds37. Given the ability of REVIVER to regenerate axons and to restore 
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vision after glaucomatous damage in young mice, we wondered if REVIVER might be effective 

in aged mice, too. Optic nerve crush injury was performed on 12 month-old mice using the same 

protocol as in Fig.1d according to the experimental design in Fig 4a. In aged mice, OSK AAV 

treatment for two weeks post-injury doubled RGC survival, similar to that observed in 1 and 3 

month-old mice (Extended Data Fig. 10a). Though the axon regeneration was slightly less than 

young mice two weeks after injury (Fig. 4b, Extended Data Fig. 10b), OSK AAV treatment in 

aged mice for five weeks was similar to that observed in young mice (Fig. 4b, c). These data 

indicate that ageing does not significantly diminish the effectiveness of OSK AAV treatment in 

inducing axon regeneration following an optic nerve crush injury. 

To test whether REVIVER could reverse vision loss associated with physiological 

ageing, 4 and 12 month-old mice received intravitreal injections of -OSK or +OSK AAV (Fig 

4a). Compared to the 4 month-olds, there was a significant reduction in visual acuity and RGC 

function at one year of age, as measured by OMR and PERG. Strikingly, this loss was 

completely restored by 4-weeks of OSK expression (Fig. 4d, Extended Data Fig.10c). We did not 

see a restorative effect in 18 month-old mice (Extended Data Fig. 10c, d), likely due to 

spontaneous corneal opacity that develops at that age38.  

Considering there was no obvious increase in RGCs and axon density in the 12m-old-

mice (Extended Data Fig. 10e, f), we suspected the increased vision was due to a functional 

improvement, one that could be revealed by analyzing the transcriptome. FACS-purified RGCs 

from 12-m-old mice, either untreated or treated with -OSK or +OSK AAV, were analyzed by 

RNA-seq. Compared to RGCs from 5-m-old young mice, we identified 464 genes that were 

differentially-expressed during ageing and also not affected by empty AAV infection (Extended 

Data Fig. 11a and Supplemental Table 1-4). Remarkably, the vast majority (90%, 418) of the 464 

age-deregulated genes were restored to youthful levels after 4 weeks of OSK expression (Fig. 4e, 

f). Of the 268 age-downregulated genes, 44 were genes involved in sensory perception (Fig.4f), 

suggesting a decline in signaling receptors or sensory function during ageing, one that can be 

restored by REVIVER (Extended Data Fig. 11b, c). Interestingly, 116 of these genes are yet to 

be characterized. Another 196 genes that were up-regulated during ageing are known or 

predicted to be involved in ion transport (Extended Data Fig.11d).  

Consistent with the axon regeneration data, the knockdown of Tet1 or Tet2 completely 

blocked the ability of REVIVER to restore vision in 12 month-old mice (Fig. 4g, h). To 
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determine if the DNA methylation clock was affected, we measured the rDNA methylation age 

of FACS-sorted RGCs from 12 month-old mice. Four weeks of OSK AAV expression 

significantly decreased DNA methylation age, and this was Tet1- and Tet2-dependent (Fig. 4i). 

Together, these results demonstrate that Tet-dependent in vivo reprogramming can restore 

youthful gene expression patterns, reverse the DNA methylation clock, and restore the function 

and regenerative capacity of a tissue as complex as the retina.  

 

Post-mitotic neurons in the CNS are some of the first cells in the body to lose their ability to 

regenerate. In this study, we show that in vivo reprogramming of aged neurons can reverse DNA 

methylation age and allow them to regenerate and function as though they were young again. 

The requirement of the DNA demethylases Tet1 and Tet2 for this process indicates that altered 

DNA methylation patterns may not just a measure of age but participants in ageing. These data 

lead us to conclude that mammalian cells retain a set of original epigenetic information, in the 

same way Shannon's observer stores information to ensure the recovery of lost information17. 

How cells are able to mark and retain youthful DNA methylation patterns, then in late adulthood 

OSK can instruct the removal of deleterious marks is unknown. Youthful epigenetic 

modifications may be resistant to removal by the Tets by the presence of a specific protein or 

DNA modification that inhibits the reprogramming machinery. Even in the absence of this 

knowledge, these data indicate that the reversal of DNA methylation age and the restoration of a 

youthful epigenome could be an effective strategy, not just to restore vision, but to give complex 

tissues the ability to recover from injury and resist age-related decline.  
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Methods 

Mouse Lines 

C57BL6/J wild type mice were purchased from Jackson Laboratory (000664) for optic nerve 

crush and glaucoma model experiments. For ageing experiments, females from NIA Aged 

Rodent Colonies (https://www.nia.nih.gov/research/dab/aged- rodent-colonies-handbook) were 

used. Col1a1-tetOP-OKS-mCherry/ Rosa26-M2rtTA alleles were a gift from the Hochedlinger 

lab (Harvard).39 All animal work was approved by Harvard Medical School, Boston Children’s 

Hospital, and Mass Eye and Ear Institutional animal care and use committees. 

 

Surgery  

Mice were anesthetized by intraperitoneal injection of a mixture of ketamine (100 mg/kg; 

Ketaset; Fort Dodge Animal Health, Fort Dodge, IA) and xylazine (9 mg/kg; TranquiVed; 

Vedco, Inc., St. Joseph, MO) supplemented by topical application of proparacaine to the ocular 

surface (0.5%; Bausch & Lomb, Tampa, FL). All animal procedures were approved by the 

IACUC of the respective institutions and according to appropriate animal welfare regulations. 

 

Production of Adeno associated viruses (AAVs) 

Vectors of AAV-TRE-OSK were made by cloning mouse Oct4, Sox2 and Klf4 cDNA into an 

AAV plasmid consisting of the Tet Response Element (TRE3G promoter) and SV40 element. 

The other vectors were using similar strategy or directly chemically synthesized. All pAAVs, as 

listed (Supplemental Table 5), were then packaged into AAVs of serotype 2/2 or 2/9 (titers: > 

5´1012 genome copies/ml). AAVs were produced by Boston Children's Hospital Viral Core. 

 

Systemic delivery of AAV9 to internal organs 

Expression in internal organs was achieved through retro-orbital injection of AAV9 (3´1011 

TRE-OSK plus 7´1011 UBC-rtTA). To induce OSK expression, doxycycline (1 mg/ml; MP 

biochemicals) was given in drinking water continuously, 3 weeks post-AAV injection. 

 

Cell culture and differentiation 

Ear fibroblasts (EFs) were isolated from Reprogramming 4F (Jackson Laboratory 011011) or 3F 

(Hochedlinger lab, Harvard) mice and cultured at 37ºC in DMEM (Invitrogen) containing Gluta-

MAX, non-essential amino acids, and 10% fetal bovine serum (FBS). EFs of transgenic OSKM 
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and OSK mice were passaged to P3 and treated with doxycycline (2 mg/ml) for the indicated 

time periods in the culture medium. SH-SY5Y neuroblastoma cells were obtained from the 

American Tissue Culture Collection (ATCC, CRL-2266) and maintained according to ATCC 

recommendations. Cells were cultured in a 1:1 mixture of Eagle’s Minimum Essential Medium 

(EMEM, ATCC, 30-2003) and F12 medium (ThermoFisher Scientific, 11765054) supplemented 

with 10% fetal bovine serum (FBS, Sigma, F0926) and 1X penicillin/streptomycin 

(ThermoFisher Scientific, 15140122). Cells were cultured at 37°C with 5% CO2 and 3% O2. 

Cells were passaged at ~80% confluency. SH-SY5Y cells were differentiated into neurons as 

previously described40 with modifications. Briefly, 1 day after plating, cell differentiation was 

induced for 3 days using EMEM/F12 medium (1:1) containing 2.5% FBS, 1× 

penicillin/streptomycin, and 10 µM all-trans retinoic acid (ATRA, Stemcell Technologies, 

72264) (Differentiation Medium 1), followed by a 3 day incubation in EMEM/F12 (1:1) 

containing 1% FBS, 1 × penicillin/streptomycin, and 10 µM ATRA (Differentiation Medium 2). 

Cells were then split into 35 mm cell culture plates coated with poly-D-lysine (ThermoFisher 

Scientific, A3890401). A day after splitting, neurons were matured in serum-free neurobasal/B27 

plus culture medium (ThermoFisher Scientific, A3653401) containing 1 × Glutamax 

(ThermoFisher Scientific, 35050061), 1 × penicillin/streptomycin, and 50 ng/ml BDNF 

(Alomone labs) (Differentiation Medium 3) for at least 5 days. 

 

Neurite regeneration assay 

Differentiated SH-SY5Y cells were transduced with AAV.DJ vectors at 106 genome copies/cell. 

Five days after transduction, vincristine (100 nM; Sigma, V8879) was added for 24 hrs to induce 

neurite degeneration. Neurons were then washed twice in PBS and fresh Differentiation medium 

3 was added back to the plates. Neurite outgrowth was monitored for 2-3 weeks by taking phase-

contrast images at 100x magnification every 3-4 days. Neurite area was quantified using Image J.   

 

Cell cycle analysis  

Cells were harvested and fixed with 70% cold ethanol for 16 hrs at 4°C. After fixation, cells 

were washed twice with PBS and incubated with PBS containing 50 µg/mL propidium iodide 

(Biotium, 40017) and 100 µg/mL RNase A (Omega) for 1 hr at room temperature. PI-stained 

samples were analyzed on a BD LSR II analyzer and only single cells were gated for analysis. 

Cell cycle profiles were analyzed using FCS Express 6 (De Novo Software). 
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Human neuron methylation and epigenetic clock analyses 

DNA was extracted using the Zymo Quick DNA mini-prep plus kit (D4069) and DNA 

methylation levels were measured on Illumina 850 EPIC arrays. The Illumina BeadChip (EPIC) 

measured bisulfite-conversion-based, single-CpG resolution DNAm levels at different CpG sites 

in the human genome. Data were generated via the standard protocol of Illumina methylation 

assays, which quantifies methylation levels by the β value using the ratio of intensities between 

methylated and un-methylated alleles. Specifically, the β value was calculated from the intensity 

of the methylated (M corresponding to signal A) and un-methylated (U corresponding to signal 

B) alleles, as the ratio of fluorescent signals β = Max(M,0)/(Max(M,0)+ Max(U,0)+100). Thus, β 

values ranged from 0 (completely un-methylated) to 1 (completely methylated). "Noob" 

normalization was implemented using the "minfi" R package41,42. The mathematical algorithm 

and available software underlying the skin & blood clock for in vitro studies (based on 391 

CpGs) was previously published34.   

 

AAV2 Virus Intravitreal Injection 

Adult animals were anesthetized with ketamine/xylazine (100/10 mg/kg) and then AAV (1-3 µl) 

was injected intravitreally, just posterior to the limbus with a fine glass pipette attached to the 

Hamilton syringe using plastic tubing. In elevated IOP model, mice received a 1µl intravitreal 

injection between 3-4 weeks following microbead injection. The injected volume of AAV-sh-

RNA is 1/5th the volume of other AAVs. 

 

Optic Nerve Crush 

Two weeks after intravitreal AAV injection, the optic nerve was accessed intraorbitally and 

crushed in anesthetized animals using a pair of Dumont #5 forceps (FST). Alexa-conjugated 

cholera toxin beta subunit (CTB-555, 1 mg/ml; 1-2 µl) injection was performed 2-3 days before 

euthanasia to trace regenerating RGC axons. More detailed surgical methods were described 

previously24. 

 

In Vivo Doxycycline Induction or suppression 

Induction of Tet-On or suppression of Tet-Off AAV2 systems in the retina was performed by 

administration of doxycycline (2 mg/ml) (Sigma) in the drinking water. Induction of Tet-On 
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AAV9 system systemically was performed by administration of doxycycline (1 mg/ml) (USP 

grade, MP Biomedicals 0219895505) in the drinking water. 

 

Axon Regeneration Quantification 

The number of regenerating axons in the optic nerve was estimated by counting the number of 

CTB-labeled axons at different distances from the crush site as described previously24.  

 

Whole-Mount Optic Nerve Preparation 

Optic nerves and the connecting chiasm were dehydrated in methanol for 5 min, then incubated 

overnight with Visikol® HISTO-1™. Next day nerves were transferred to Visikol® HISTO-2™ 

and then incubated for 3 hrs. Finally, optic nerves and connecting chiasm were mounted with 

Visikol® HISTO-2™. 

 

Immunofluorescence 

Whole-mount retinas were blocked with horse serum 4°C overnight then incubated at 4°C for 3 

days with primary antibodies: Mouse anti-Oct4 (1:100, BD bioscience, 611203), Rabbit anti-

Sox2 (1:100, Cell signaling, 14962), Goat anti-Klf4 (1:100, R&D system, AF3158), Rabbit anti-

phosphorylated S6 Ser235/236 (1:100, Cell Signaling 4857), Rabbit anti-Brn3a (1:200, EMD 

Millipore, MAB1585) and Guinea pig anti-RBPMS (1:400, Raygene custom order A008712 to 

peptide GGKAEKENTPSEANLQEEEVRC) diluted in PBS, BSA (3%) Triton X-100 (0.5%). 

Then, tissues were incubated at 4°C overnight with appropriate Alexa Fluor-conjugated 

secondary antibodies (Alexa 405, 488, 567, 674; Invitrogen) diluted with the same blocking 

solution as the primary antibodies, generally used at 1:400 final dilution. Frozen sections were 

stained overnight with primary antibodies at 4°C and then secondary antibodies at room 

temperature for 2 h. Sections or whole-mount retinas were mounted with Vectashield Antifade 

Mounting Medium.  

 

Western Blot  

SDS-PAGE and western blot analysis was performed according to standard procedures and 

detected with an ECL detection kit. Antibodies used: Rabbit anti-Sox2 (1:100, EMD Millipore, 

AB5603), Mouse anti-Klf4 (1:1000, ReproCell, 09-0021), Rabbit anti-p-S6 (S240/244) (1:1000, 
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CST, 2215), Mouse anti-S6 (1:1000, CST, 2317), Mouse anti-β-Tubulin (1:1000, Sigma-Aldrich, 

05-661), Mouse anti-β-Actin−Peroxidase antibody (1:20,000, Sigma-Aldrich, A3854). 

 

RGC Survival and Phospho-S6 Signal 

RBPMS-positive cells in the ganglion layer were stained with an anti-RBPMs antibody (1:400, 

Raygene custom order A008712 to peptide GGKAEKENTPSEANLQEEEVRC) and a total of 

four 10X fields per retina, one in each quadrant, were enumerated. The average number per field 

was determined and the percentages of viable RGCs were obtained by comparing the values 

determined from the uninjured contralateral retinas. Phospho-S6 (1:100, Cell Signaling 4857) 

staining was performed under the same conditions and the densities of phopsho-S6-positive 

RGCs were obtained by comparing the value to uninjured contralateral retinas.  

 

Microbead-induced mouse model of elevated IOP 

Elevation of IOP was induced unilaterally by injection of polystyrene microbeads (FluoSpheres; 

Invitrogen, Carlsbad, CA; 15-μm diameter) to the anterior chamber of the right eye of each 

animal under a surgical microscope, as previously reported36. Briefly, microbeads were prepared 

at a concentration of 5.0 × 106 beads/mL in sterile physiologic saline. A 2 μL volume was 

injected into the anterior chamber through a trans-corneal incision using a sharp glass 

micropipette connected to a Hamilton syringe (World Precision Instruments Inc., Sarasota, FL) 

followed by an air bubble to prevent leakage. Any mice that developed signs of inflammation 

(clouding or an edematous cornea) were excluded. 

 

IOP (Intraocular pressure) measurements 

IOPs were measured with a rebound TonoLab tonometer (Colonial Medical Supply, Espoo, 

Finland), as previously described36,43. Mice were anesthetized by 3% isoflurane in 100% oxygen 

(induction) followed by 1.5% isoflurane in 100% oxygen (maintenance) delivered with a 

precision vaporizer. IOP measurement was initiated within 2-3 min after the loss of a toe or tail 

pinch reflex. Anesthetized mice were placed on a platform and the tip of the pressure sensor was 

placed approximately 1/8 inch from the central cornea. Average IOP was displayed 

automatically after 6 measurements after elimination of the highest and lowest values. The 

machine-generated mean was considered as one reading, and six readings were obtained for each 
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eye. All IOPs were taken at the same time of day (between 10:00 and 12:00 hrs) due to the 

variation of IOP throughout the day. 

 

Optomotor Response 

Visual acuity of mice was measured using an optomotor reflex-based spatial frequency threshold 

test44,45. Mice were able to freely move and were placed on a pedestal located in the center of an 

area formed by four computer monitors arranged in a quadrangle. The monitors displayed a 

moving vertical black and white sinusoidal grating pattern. A blinded observer, unable to see the 

direction of the moving bars, monitored the tracking behavior of the mouse. Tracking was 

considered positive when there was a movement of the head (motor response) to the direction of 

the bars or rotation of the body in the direction concordant with the stimulus. Each eye would be 

tested separately depending on the direction of rotation of the grating. The staircase method was 

used to determine the spatial frequency start from 0.15 to 0.40 cycles/deg, with intervals of 0.05 

cycles/deg. Rotation speed (12°/s) and contrast (100%) were kept constant. Responses were 

measured before and after treatment by individuals blinded to the group of the animal and the 

treatment.  

 

Pattern Electroretinogram (PERG) 

Mice were anesthetized with ketamine/xylazine (100mg/kg and 20mg/kg) and the pupils dilated 

with one drop of 1% tropicamide ophthalmic solution.  The mice kept under dim red light 

throughout the procedure on a built-in warming plate (Celeris, Full-Field and Pattern Stimulation 

for the rodent model) to maintain body temperature at 37˚C. A black and white reversing 

checkerboard pattern with a check size of 1° was displayed on light guide electrode-stimulators 

placed directly on the ocular surface of both eyes and centered with the pupil. The visual stimuli 

were presented at 98% contrast and constant mean luminance of 50 cd/m2, spatial frequency: 

0.05 cyc/deg; temporal frequency: 1Hz. A total of 300 complete contrast reversals of PERG were 

repeated twice in each eye and the 600 cycles were segmented and averaged and recorded. The 

averaged PERGs were analyzed to evaluate the peak to trough N1 to P1 (positive wave) 

amplitude. 

 

Quantification of optic nerve axons 

For quantification of axons, optic nerves were dissected and fixed overnight in Karnovsky’s 
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reagent (50% in phosphate buffer). Semi-thin cross-sections of the nerve were taken at 1.0 mm 

posterior to the globe and stained with 1% p-phenylenediamine (PPD) for evaluation by light 

microscopy. Optic nerve cross sections were imaged at 60x magnification using a Nikon 

microscope (Eclipse E800, Nikon, Japan) with the DPController software (Olympus, Japan) and 

6-8 non-overlapping photomicrographs were taken to cover the entire area of each optic nerve 

cross-section. Using ImageJ (Version 2.0.0-rc-65/1.51u), a 100 μM x 100 μM square was placed 

on each 60x image and all axons within the square (0.01mm2) were counted using the threshold 

and analyze particles function in image J as previously described36,43,44. Damaged axons stain 

darkly with PPD and are not counted. The average axon counts in the 6-8 images were used to 

calculate the axon density/mm2 of optic nerve. Individuals performing axon counts were blinded 

to the experimental groups. 

 

Quantification of retinal ganglion cells in glaucoma model 

For ganglion cell counting, images of whole mount retinas were acquired using a 63x oil 

immersion objective of the Leica TCS SP5 confocal microscope (Leica Microsystems). The 

retinal whole mount was divided into four quadrants and two to four images (248.53µm by 

248.53µm in size) were taken from the midperipheral and peripheral regions of each quadrant, 

for a total of twelve to sixteen images per retina. The images were obtained as z-stacks (0.5µm) 

and all Brn3a positive cells in the ganglion cell layer of each image were counted manually as 

previously described44. Briefly, RGCs were counted using the “Cell Counter” plugin 

(http://fiji.sc/Cell_Counter) in Fiji is Just ImageJ software (ImageJ Fiji, version 2.0.0-rc-

69/1.52n). Each image was loaded into Fiji and a color counter type was chosen to mark all 

Brn3a stained RGCs within each image (0.025mm 2). The average number of RGCs in the 12 to 

sixteen images were used to calculate the RGC density per square millimeter of retina. Two 

individuals blinded to the experimental groups performed all RGC counts.  

 

RGC Enrichment  

Retinas were fresh dissected and dissociated in AMES media using papain, then triturated 

carefully and stained with Thy1.2-PE-Cy7 anti-body (Invitrogen 25-0902-81) and Calcine Blue 

live-dead cell stain, then flow sorted on a BD FACS Aria using an 130µm nozzle to collect over 

10,000 Thy1.2+ and Calcine blue+ cells (1-2% of total events). Frozen cells were sent to 
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GENEWIZ, LLC (South Plainfield, NJ, USA) for RNA extraction and ultra-low input RNA-seq, 

or to Zymo research (Irving, CA) for DNA extraction and genome-wide reduced representation 

bisulfite sequencing (RRBS). 

 

Classic RRBS Library preparation 

DNA was extracted using Quick-DNA Plus Kit Microprep Kit. 2-10 ng of starting input genomic 

DNA was digested with 30 units of MspI (NEB). Fragments were ligated to pre-annealed 

adapters containing 5’-methyl-cytosine instead of cytosine according to Illumina’s specified 

guidelines. Adaptor-ligated fragments ≥50 bp in size were recovered using the DNA Clean & 

ConcentratorTM-5 (Cat#: D4003). The fragments were then bisulfite-treated using the EZ DNA 

Methylation-LightningTM Kit (Cat#: D5030). Preparative-scale PCR products were purified 

with DNA Clean & ConcentratorTM-5 (Cat#: D4003) for sequencing on an Illumina HiSeq 

using 2x125 bp PE. 

 

DNA methylation age analysis of mouse RGC 

Reads were filtered using trim galore v0.4.1 and mapped to the mouse genome GRCm38 using 

Bismark v0.15.0. Methylation counts on both positions of each CpG site were combined. Only 

CpG sites covered in all samples were considered for analysis. This resulted in total of 708156 

sites. For the rDNA methylation clock reads were mapped to BK000964 and the coordinates 

were adjusted accordingly26. 70/72 sites were covered for rDNA clock, compared to 102/435 

sites of whole lifespan multi-tissue clock27, or 248/582 and 77,342/ 193,651 sites (ridge) of two 

entire lifespan multi-tissue clocks28. 

 

Total RNA extraction and Sample QC 

Total RNA was extracted following the Trizol Reagent User Guide (Thermo Fisher Scientific). 1 

µl of 10 mg/ml Glycogen was added to the supernatant to increase RNA recovery. RNA was 

quantified using Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) and RNA 

integrity was determined using TapeStation (Agilent Technologies, Palo Alto, CA, USA). 

 

Ultra-low input RNA library preparation and multiplexing 

RNA samples were quantified using Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, 

USA) and RNA integrity was ascertained using a 2100 TapeStation (Agilent Technologies, Palo 
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Alto, CA, USA). RNA library preparations, sequencing reactions, and initial bioinformatics 

analysis were conducted at Genewiz (South Plainfield, NJ, USA). A SMART-Seq v4 Ultra Low 

Input Kit for Sequencing was used for full-length cDNA synthesis and amplification (Clontech, 

Mountain View, CA), and Illumina Nextera XT library was used for sequencing library 

preparation.  Briefly, cDNA was fragmented and adaptors were added using Transposase, 

followed by limited-cycle PCR to enrich and add an index to the cDNA fragments.  The final 

library was assessed by a Qubit 2.0 Fluorometer and Agilent TapeStation.   

 

Sequencing 2x150bp PE 

The sequencing libraries were multiplexed and clustered on two lanes of a flowcell. After 

clustering, the flowcell were loaded on the Illumina HiSeq instrument according to 

manufacturer’s instructions.  Samples were sequenced using a 2x150 Paired End (PE) 

configuration.  Image analysis and base calling were conducted by the HiSeq Control Software 

(HCS) on the HiSeq instrument.  Raw sequence data (.bcl files) generated from Illumina HiSeq 

was converted into fastq files and de-multiplexed using Illumina bcl2fastq v2.17 program. One 

mis-match was allowed for index sequence identification. 

 

RNA-seq analysis 

Paired-end reads were aligned with hisat2 v2.1.046 to the Ensembl GRCm38 primary assembly 

using splice junctions from the Ensembl release 84 annotation. Paired read counts were 

quantified using featureCounts v1.6.447 using reads with a MAPQ >=20. Differentially-expressed 

genes for each pairwise comparison were identified with edgeR v3.2648, testing only genes with 

at least 0.1 counts-per-million (CPM) in at least three samples. Gene ontology analysis of 

differentially-expressed genes was performed with AmiGO v2.5.1249-51. Age-associated sensory 

perception genes were extracted from the mouse Sensory Perception (GO:0007600) category the 

Gene Ontology database, including genes that were differentially expressed (q<=0.05) in 12 

versus 5 month-old mice, excluding genes that were induced by the Control virus alone (q<=0.1). 

 

Data availability 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request.  
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Figure 1. AAV-delivered polycistronic OSK is non-toxic and induces CNS axon 

regeneration. a, Schematic of the Tet-On and Tet-Off AAV vectors used in this study. b, 

Body weight of WT mice, OSK transgenic mice and AAV9-mediated OSK-expressing mice 

(1.0 x 1012 gene copies) with or without doxycycline induction in the first 4 weeks (n = 5, 3, 

6, 4, 6 and 3, respectively). c, Schematic of intravitreal AAV2 injection to target retina 

ganglion cells. A representative retinal whole mount and retinal cross section 2 weeks after 

intravitreal injection of OSK AAV. Stains for Klf4 (green) and RBPMS (blue) show the 

transduction efficiency and targeted nerve fiber layer. Scales bars = 1 mm and 100 µm 

respectively. d, Experimental outline of the optic nerve crush study using the Tet-Off 

system. Alexa-conjugated (555 nm) cholera toxin subunit B (CTB) was used for 

anterograde axonal tracing. e, Quantification of regenerating axons 16 days after crush 

injury at multiple distances distal to the lesion site in mice treated with d2EGFP, Oct4, 

Sox2, Klf4, Oct4-Sox2, O+S+K on separate vectors, or OSK AAV2. Error bars indicate 

s.e.m. (n = 5, 4, 4, 4, 4, 4, 7, 5). f, Survival of RBPMS-positive cells in the RGC layer 

transduced with different AAV2 16 days after crush injury (n = 4-8). g, Representative 

images of longitudinal sections through the optic nerve showing CTB-labeled regenerative 

axons on day 16 post-injury in wild-type mice with an intravitreal injection of AAV2-tTA 

and AAV2-TRE-OSK in the presence or absence of Dox. Blue asterisks indicate the crush 

site. Scale bars = 200 µm. ***, P<0.001, ****, P<0.0001, one-way ANOVA with Bonferroni 

correction in e, f, relative to d2EGFP in f. 
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Figure 2. OSK expression promotes axon regeneration and RGC survival through a 

Tet-dependent mechanism. a, Experimental strategies for pre- and post-injury induction of 

OSK expression (wpc - weeks post crush). b, RGC survival in response to OSK induction 

pre- or post-injury. c, Axon regeneration in response to OSK induction pre- or post-injury. 

d, Representative longitudinal sections through the optic nerve showing CTB-labeled axons 

4 weeks after crush injury, with or without post-injury induction of OSK. Blue asterisks 

indicate optic nerve crush site. Scale bars represent 200 µm. e, rDNA methylation age of 1-

month-old RGCs isolated from axon-intact retinas infected with or without GFP, or from 

axon-injured retinas infected with GFP-AAV or OSK-AAV 4 days after nerve crush. f, 

Axons regeneration in retinas co-transduced with AAV2 vectors encoding polycistronic 

OSK, tTA, and shRNA vectors with a scrambled sequence (Scr), Tet1, or Tet2 sequences to 

knockdown Tet DNA dioxygenases/demethylases. g, Axon regeneration in human neurons 

post-vincristine (VCS) damage. h, DNA methylation age of human neurons with OSK 

expression pre-damage (Day -) or after VCS damage (Day 1 and 9), estimated by skin and 

blood cell clocks. i, Neurite area in each AAV treatment group.  j, Representative images of 

human neurons and the neurite area 9 days post-VCS damage. *p < 0.05, **p < 0.01, **** p < 

0.0001, one-way ANOVA with Bonferroni’s multiple comparison test in b, c, e, f, h, i, 

relative to first group in e. Linear regression p value in h refers to a decrease in DNAme 

Age. 
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Figure 3. OSK AAV treatment restores visual function in an experimental model of 

glaucoma.  a, Experimental outline. b, Intraocular pressure (IOP) measured weekly by 

rebound tonometry for the first 4 weeks post-microbead injection. c, Representative 

micrographs of PPD-stained optic nerve cross-sections at 4 weeks after AAV2 or PBS 

injection. Scale bars = 50 µm. -OSK: AAV-rtTA+AAV-TRE-OSK; +OSK: AAV-

tTA+AAV-TRE-OSK. d, Quantification of healthy axons in optic nerves 4 wks after PBS 

or AAV injection. e, High-contrast visual stimulation to measure optomotor response. To 

assess vision, reflexive head movement was tracked in response to the rotation of a moving 

stripe pattern that increases in spatial frequency. f, Spatial frequency threshold response of 

each mouse measured before treatment and 4 weeks after intravitreal injection of AAV 

vectors. g, Representative PERG waveforms recorded from the same eye at baseline before 

AAV injection and four weeks later after -OSK (upper graph) or +OSK AAV (lower graph) 

treatment. h, Mean PERG amplitudes of recordings measured from each mouse at baseline 

before treatment and 4 weeks after intravitreal injection of AAVs. *P < 0.05; **P < 0.01; 

***P < 0.001, ****P < 0.0001. Two-way ANOVA with Bonferroni correction between 

groups was used for the overall effect of time and treatment. A paired t-test was used to 

compare before and after treatments.  
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Figure 4. OSK AAV treatment in aged mice induces axon regeneration following optic 

nerve injury and restores visual function in aged mice. a, Experimental outline. b Axon 

regeneration in 12-month-old mice with OSK AAV or control AAV (d2EGFP) treatment 2 

or 5 weeks after optic nerve crush. c, Representative confocal images of longitudinal 

sections through the optic nerve showing CTB-labeled axons after 5 weeks of OSK 

treatment. Scale bar = 200 µm. d, The spatial frequency threshold in young mice (4 months) 

and old mice (12 months) treated with -OSK or +OSK AAV for 4 weeks. e, Hierarchical 

clustered heatmap showing RNA-Seq expression of 464 differentially expressed genes in 

FACS sorted RGCs from intact young mice (5 months) or intact old mice (12 months), or 

old mice treated with either -OSK or +OSK AAV. -OSK: AAV-TRE-OSK; +OSK: AAV-

tTA+AAV-TRE-OSK. f, Scatter plot of OSK-induced changes versus age-associated 

changes in mRNA levels.  Dots represent differentially expressed genes in RGCs. g and h, 

Spatial frequency threshold and PERG amplitudes in old mice (12 months) treated with: (i) 

-OSK, (ii) +OSK, or (iii) +OSK together with either sh-Scr or sh-Tet1/sh-Tet2-mediated 

knockdown for 4 weeks. -OSK: AAV-rtTA+AAV-TRE-OSK; +OSK: AAV-tTA+AAV-

TRE-OSK. i, rDNA methylation age of 12-month-old RGCs FACS isolated from retinas 

infected for 4 weeks with -OSK or +OSK AAV together with short-hairpin DNAs with a 

scrambled sequence (sh-Scr) or targeted to Tet1 or Tet2 (sh-Tet1/sh-Tet2). Gene exclusion 

criteria for e and f: genes with low overall expression (log2(CPM)<2), genes that did not 

significantly change with age (absolute log2 fold-change <1) or genes altered by the virus 

(differentially expressed between intact old and old treated with TRE-OSK AAV). *P < 

0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001. One-way ANOVA with Bonferroni 

correction in b, g, h and i, relative to first group in i. Two-way ANOVA with Bonferroni 

correction in d. 
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Extended Data Fig. 1 Exploration of the effect of OSK (no Myc) on ageing cells. a, 

Experimental outline for testing the rejuvenation effects of OSKM and OSK expression in 

young and old transgenic mouse fibroblasts. b and c, OSKM and OSK expression rescues 

age-associated transcriptional changes without inducing Nanog expression. Sequences of 

qPCR primers are in Supplementary Table 6. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 

0.0001. Two-tailed Student’s t test. 
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Extended Data Fig. 2 Safety of OSK AAV. a. Sox2 expression in the liver of WT mice 

post-intravenous delivery of OSK-AAV9 and OSK transgenic (TG) mice. b. Body weight 

of WT mice and AAV-mediated OSK-expressing mice (1.0x10^12 gene copies total) with 

or without doxycycline in the following 9 months after first 4 weeks monitoring in Fig.1b 

(n=5,3,6,4 respectively). c. AAV-UBC-rtTA and AAV-TRE-Luc vectors used for 

measuring tissue distribution. d. Luciferase imaging of WT mice at 2 months after retro-

orbital injections of AAV9-UBC-rtTA and AAV9-TRE-Luc (1.0x10^12 gene copies total). 

Doxycycline was delivered in drinking water (1 mg/mL) for 7 days to the mouse shown on 

the right.  e. Luciferase imaging of eye (Ey), brain (Br), pituitary gland (Pi), heart (He), 

thymus (Th), lung (Lu), liver (Li), kidney (Ki), spleen (Sp), pancreas (Pa), testis (Te), 

adipose (Ad), muscle (Mu), spinal cord (SC), stomach (St), small intestine (In), and cecum 

(Ce) 2 months after retro-orbital injection of AAV9-UBC-rtTA and AAV9-TRE-Luc 

followed by treatment with doxycycline for 7 days. The luciferase signal is primarily in 

liver. Imaging the same tissues with a longer exposure time (lower panel) revealed lower 

levels of luciferase signal in pancreas (liver was removed). 
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Extended Data Fig.3 Characterization of inducible polycistronic AAV system. a, b 

Whole-mounted retina display of RBPMS and Klf4 immunofluorescence, showing that 

expression from the AAV2 Tet-Off system can be turned off by doxycycline in drinking 

water (2mg/mL 3 days), and expression from the AAV2 Tet-On system can be turned on by 

doxycycline drinking water (2mg/mL 2 days). Scale bars = 1 mm. c, Immunofluorescence 

analysis of the whole-mounted retina transduced with a polycistronic AAV vector 

expressing Oct4, Sox2, and Klf4 in the same cell. White arrows point at triple positive cells. 

Scale bars represent 100 µm. d, Immunofluorescence analysis of the whole-mounted retina 

transduced with AAVs separately encoding Oct4, Sox2, and Klf4. Red, blue and green 

arrows point at single-positive cells, white arrow point at triple positive cell, other arrows 

point at double positive cells. Scale bars = 100 µm. 
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Extended Data Fig. 4 OSK induces long-term axon regeneration post-injury without 

RGC proliferation. a, Retina whole mount staining showing absence of the proliferation 

marker Ki67 (left). OSK infected RGCs have none while proliferating 293T cells have a 

signal (right). Scale bars = 100 µm. b, Imaging of optic nerves showing regenerating axons 

with or without OSK AAV treatment 12 weeks post crush (wpc). Scale bars = 200 µm. c, 

Whole nerve imaging showing CTB- labeled regenerative axons at 16 weeks post crush 

(wpc) in wild-type mice with intravitreal injection of AAV2-tTA and TRE-OSK. Scale bars 

= 200 µm. 
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Extended Data Fig. 5 The Tet-On system has better turn on rate and OSK transduced 

RGCs have higher survival rate than the Tet-Off system. a, Representative images 

showing the d2EGFP expression in retina from Tet-Off AAV system with different 

doxycycline treatment (2 mg/mL). When pre-treated with doxycycline to suppress 

expression (on DOX), GFP showed up sparsely after doxycycline withdrawal for 8 days, 

much weaker compared to peak expression (Never DOX). b, Representative images 

showing the d2EGFP in retina from Tet-On AAV system. No GFP expression was observed 

in the absence of doxycycline. GFP expression reached a peak level 2 days after 

doxycycline induction and remained at a similar level after 5 days of induction. c, 

Representative Immunofluorescence image of GFP-positive or KLF4-positive RGCs in 

intact and crushed samples. d, Quantification of GFP- or KLF4- positive cells indicating 

higher survival rate of OSK expressing RGCs after crush.  ****, P<0.0001, one-way 

ANOVA with Bonferroni correction. Scale bars = 200 µm in a, b and c. 
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Extended Data Fig.6 Identification of epigenetic mechanism underlying OSK effect. a, 

Representative images of retinal whole mounts transduced with d2EGFP- or OSK-encoding 

AAV2 in the presence or absence of crush injury. Retinal whole mounts were 

immunostained for the RGC marker RBPMS and mTOR activation marker pS6. b, 

Quantification of pS6-positive RGC percentile in intact and crushed samples. c, 

Representative images of retinal whole mounts transduced with TRE-OSK and tTA AAV2 

in the combination with sh-Scr or sh-Tet1 or sh-Tet2 YFP AAV2 at titer ratio 5:5:1. Retinal 

whole mounts were immunostained for Klf4. d, Quantification of transduction rate of 

shRNA-YFP AAV in OSK expressing RGCs. e, Quantification of RGC survival in retinas 

co-transduced with AAV2 vectors encoding polycistronic OSK and tTA, in combination 

with sh-Scr, sh-Tet1 or sh-Tet2 YFP. Scale bars = 100 µm in a and c. *P < 0.05; **P < 

0.01; ***P < 0.001, ****P < 0.0001. Two-Way ANOVA in b, One-way ANOVA in e. 
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Extended Data Fig. 7 Methylation clock analysis of mouse RGCs and human neurons. 

a, Correlation between rDNA methylation age and chronological age of sorted mouse 

RGCs; b, Average DNA methylation levels of RGCs from different ages and treatments, 

based on 708,156 shared sites from RRBS of all samples (combined strands); c, Average 

DNA methylation levels of human neurons treated with OSK before treatment with 

vincristine (VCS) (–) or days post-VCS damage (1 and 9), among 850,000 probes from 

EPIC array. 
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Extended Data Fig. 8 OSK induces axon regeneration of human neurons via DNA 

demethylases not mTOR. a, Immunofluorescence of differentiated human neurons with 

transduction of AAV-DJ vectors. -OSK: AAV-tTA; +OSK: AAV-tTA+AAV-TRE-OSK. b, 

mRNA levels of Oct4, Sox2 and Klf4 in human neurons transduced with AAV-DJ vectors. 

c, Percentage of cells in S phase. d, FACS profiles of G1, S, and G2 phases in 

undifferentiated cells and differentiated cells transduced with AAV-DJ vectors. e, DNA 

methylation age of human neurons before vincristine (VCS) damage (Day -) or 1 and 9 days 

post-damage in the absence of OSK expression, estimated using a skin or a blood cell clock.  

f, Quantification of neurite area at different time points after vincristine damage. g, 

Representative images and neurite area of human neurons after vincristine damage with or 

without OSK expression. h and i, human Tet2 mRNA level and mouse Oct4 mRNA level 

with sh-Scr or sh-Tet2 AAV in human neurons in the absence or presence of OSK 

expression. j, The effect of mTOR inhibition on axon regeneration of differentiated neurons 

with or without OSK expression. k, Phosphorylation level of S6 in human neurons with 

rapamycin treatment (10 nM) for 5 days. *p < 0.05, **p < 0.01, **** p < 0.0001, one-way 

ANOVA with Bonferroni’s multiple comparison test in b, c, e, f, h, i, j. The linear 

regression p value in e refers to DNAme Age decreasing with time. 
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Extended Data Fig.9 Effect of OSK in Microbead-induced glaucoma model. a, 

Quantification of RGCs and representative confocal microscopic images from retinal flat-

mounts stained with anti-Brn3a (red), an RGC-specific marker, and DAPI (blue), a nuclear 

stain, 4 weeks after microbead or saline injection (8 weeks post-saline or microbeads). Scale 

bar = 100 µm. b, Quantification of healthy axons of optic nerve and representative 

photomicrographs of PPD-stained optic nerve cross-sections, 4 weeks after microbead or 

saline injection. Scale bars = 25 µm. c, Quantification of RGCs and representative confocal 

microscopic images 4 weeks post-PBS or AAV injection (8 weeks after a saline or 

microbead injection). *p < 0.05, **p < 0.01, *** p < 0.001, Student’s t-test in a and b. one-

way ANOVA with Bonferroni’s multiple comparison test in c. 
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Extended Data Fig. 10 Effect of OSK in aged mice. a, Effect of OSK expression on RGC 

survival in young, adult, and aged mice after optic nerve crush injury. b, Axon regeneration 

after OSK expression, compared to the d2EGFP controls in young (1 m), adult (3 m), and 

aged (12 m) mice, 2 weeks post-injury. (The 12 m data in Fig.4b was reshown, as 

experiments were performed at the same time as the 1 m and 3 m old mice). c, Comparison 

of PERG measurement in different ages at one-month after -OSK or +OSK treatment. -

OSK: AAV-rtTA+AAV-TRE-OSK; +OSK: AAV-tTA+AAV-TRE-OSK. d, Spatial 

frequency threshold in 18-month-old mice treated with -OSK or +OSK AAV for 4 weeks. e, 

Comparison of RGC cell density in 4- and 12 m-old-mice one month after -OSK or +OSK 

treatment. f, Comparison of axon density in 4 m- and 12 m-old mice, one month after -OSK 

or +OSK treatment. **p < 0.01, **** p < 0.0001, Two-way ANOVA with Bonferroni 

correction in a, c, e, f. One-way ANOVA with Bonferroni correction in b. Student’s t-test in 

d. 
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Extended Data Fig. 11 RNA-seq analysis of OSK-treated RGCs. a, Scatter plot of OSK-

induced changes versus age-associated changes in mRNA levels.  Dots represent 

differentially expressed genes in RGCs.  Gene exclusion criteria: genes with low overall 

expression (log2(CPM)<2), genes that did not significantly change with age (absolute log2 

fold-change <1) or genes altered by the virus (differentially expressed between intact old 

and old treated with TRE-OSK AAV). b, Hierarchical clustered heatmap showing RNA-

Seq expression of sensory genes in FACS-sorted RGCs from young (5 m) or old mice (12 

m), or old mice treated with either -OSK or +OSK AAV. c, Top 10 biological process that 

are lower in old compared to young and restored by OSK. d, Top 10 biological process that 

are higher in old compared to young and reduced by OSK. 
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