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Reversal of transmission and reflection based on
acoustic metagratings with integer parity design
Yangyang Fu1,2,6, Chen Shen 3,6, Yanyan Cao1,6, Lei Gao1, Huanyang Chen4, C.T. Chan5, Steven A. Cummer3 &

Yadong Xu1

Phase gradient metagratings (PGMs) have provided unprecedented opportunities for

wavefront manipulation. However, this approach suffers from fundamental limits on con-

version efficiency; in some cases, higher order diffraction caused by the periodicity can be

observed distinctly, while the working mechanism still is not fully understood, especially in

refractive-type metagratings. Here we show, analytically and experimentally, a refractive-type

metagrating which can enable anomalous reflection and refraction with almost unity effi-

ciency over a wide incident range. A simple physical picture is presented to reveal the

underlying diffraction mechanism. Interestingly, it is found that the anomalous transmission

and reflection through higher order diffraction can be completely reversed by changing the

integer parity of the PGM design, and such phenomenon is very robust. Two refractive

acoustic metagratings are designed and fabricated based on this principle and the experi-

mental results verify the theory.
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T
he ability to control at will the propagation of waves, such
as electromagnetic waves and acoustic waves, has captured
the fascination of scientists. In the past few years, as the 2D

version of bulk metamaterials, metasurfaces have provided new
paradigms to build devices that direct the flow of waves in a way
not possible before1–4, and have enabled new physics5–9 that are
distinctly different from those observed in their 3D counterparts
(i.e., metamaterials). Typical examples, include planar lenses5,
holograms6, ultrathin cloaking7 in electromagnetics, and other
devices in acoustics10,11. By engineering phase shift ϕ(x) along
metasurfaces, the scattered wavefronts can be manipulated to
achieve anomalous reflection or refraction12–16, which is sum-
marized as the generalized Snell’s law (GSL)12,

kinx ¼ krðtÞx � ξ; ð1Þ

where kinx and k
rðtÞ
x are tangential wave vectors of incident and

reflected (transmitted) wave. For the 2D case, ξ= ∂ϕ(x)/∂x
describes the phase gradient along the metasurface. In acoustics,
similar wavefront manipulation has been demonstrated using
structured phase arrays17–22. However, recently some studies23,24

have shown that this kind of phase gradient metasurface is
inherently limited in conversion efficiency for wavefront
manipulation, due to impedance mismatch at boundaries. Even
for an ideal phase gradient metasurface with infinite resolutions
(i.e., m→∞, where m is the number of unit cells in a superlattice;
see below), such a limitation is still present.

A few solutions23–25 were proposed to successively overcome
this inherent limitation to achieve the scattering-free manipula-
tion of anomalous reflected and refracted waves, but the designed
metasurfaces require active elements or strong nonlocality, posing
challenges for practical implementations26,27. To realize extre-
mely anomalous transmission/reflection with perfect efficiency in
a passive and lossless structure, bianisotropic metasurfaces28–30

were proposed and experimentally demonstrated in both elec-
tromagnetic and acoustic waves. Alternatively, metagratings31,
periodic structures with a supercell comprising of several sub-
scatters, were suggested to deliver the output wavefront into the
desired direction with unity efficiency. However, this method
solely works for a specific incidence angle, as the design of the
metastructure is well defined for a specific angle. By electro-
statically biasing graphene sheets, reconfigurable metagratings32

can extend the incidence to several discrete angles, but the
structures are complex and the working angle is still limited.
Therefore, how to realize high-efficient anomalous reflection or/
and anomalous refraction, that can cover a wide incidence in a
passive structure, is still an open question.

Essentially, phase gradient metasurfaces are periodic structures
with a supercell spatially repeated along the interface, because of
folded phase profile33. In this way, the GSL is insufficient to
determine completely the directions of anomalous reflected or/
and refracted waves, in particular for incident angle beyond the
so-called critical angle predicted by the GSL. Instead, it is replaced
by another formula involving superlattices16,19

kinx ¼ krðtÞx � nG; ð2Þ

where G= 2π/p is the reciprocal lattice vector, and p is period.
Both ξ and G commonly share the identical magnitude, yet with
different physical origin; the former is introduced by the phase
gradient, whereas the latter is caused by the periodicity of grating.
Eq. (2) can not only steer a wavefront as expected from the GSL,
but can also exhibit other unique features. In fact, in a large
number of aforementioned phase gradient metasurfaces, parti-
cularly in acoustic metasurfaces17–22,34–38, anomalous reflection
or refraction with high-efficiency were obtained through higher
order diffraction. For convenience, in this work we call all

periodic structures with phase gradient as phase gradient meta-
gratings (PGMs). Normally, there are several diffraction channels
simultaneously open for a particular incidence and these propa-
gation channels are available for incident wave to depart from
PGM. The diffraction mechanism therein is complex and
ambiguous, especially in more complicated refractive-type PGMs,
since the refractive and reflective diffraction channels are con-
currently included. Eq. (2) fails to predict the primary diffraction
order of the scattering waves. For instance, for incident angle
beyond the critical angle (the n= 1 order in Eq. (2)), multiple
diffraction channels coexist, and only negative refraction stem-
ming from the n=−3 order in Eq. (2) was observed in experi-
ments19. The underlying mechanism is still a puzzle.

In this article, we will investigate theoretically and experi-
mentally a passive and lossless refractive-type PGM, and we will
show that the designed PGM can enable anomalous reflection
and refraction with near unity conversion efficiencies over a wide
angle of incidence. Recently, based on loss-induced suppression
of higher order diffraction, acoustic asymmetric transmission39

was demonstrated in the lossy PGMs. Transient simulations
revealed that multiple reflections (MRs) are responsible for the
energy-loss of higher order diffraction39, which offered a new
insight to explore the uncharted diffraction rule. Starting from the
MR effect39,40, we will reveal the diffraction mechanism of PGMs.
It is found that the diffraction order is relevant to the propagation
number of MRs (i.e., the number of times the wave travels inside
the PGM) and the number of unit cells m of the PGMs. In par-
ticular, the transmission and reflection amplitudes of a particular
diffraction order are determined by the integer parity of the
propagation number. Consequently, the control of transmission
and reflection of the diffraction order can be realized by con-
trolling the integer parity, i.e., oddness or evenness (and hereafter
referred to simply as parity), of the number of unit cells in the
PGMs. Further explorations show that such parity-dependent
phenomena are very robust for any m, implying that the dif-
fraction law in Eq. (2) should be carefully refined according to the
integer parity of m. Based on the demonstrated diffraction
mechanism, we derive here a new set of formulas that can well
explain the complicated diffraction phenomena of our studied
PGMs, and can fully predict the parity-dependent perfect
anomalous reflection and refraction. The puzzling diffraction
phenomena in previous work can also be well understood from
our diffraction rule. The experimentally measured results of
acoustic waves verify our findings.

Results
Models and theory. To demonstrate our idea, let us start from the
metagrating structure shown in Fig. 1a, where the PGM is
composed of periodically repeated supercells with lengths of p. It
should be noted that although this study focuses on acoustic
waves, the achieved results are also applicable to the electro-
magnetic analogs16. The whole system is immersed in a back-
ground medium of air with density of ρ0= 1.21 kg m−3 and speed
of sound c0= 343 ms−1. Figure 1b shows the details of the
supercell, which includes m unit cells with widths of a (=p/m),
and each unit cell is made of sound-hard material (gray area)
perforated by a slit (blue area) with a width of w. The thickness of
the metagrating is h. To steer the outgoing wave, the transmitted
phase across a supercell covers a complete range of 2π, with a
phase gradient of ξ. To begin with, we consider effective medium
filled in the subwavelength slits. The effective medium is char-
acterized by different effective refractive indices, and the index
profile in the jth unit cell is given as nj= 1+ (j− 1)λ0/mh. For
obtaining a specific phase gradient, the period length is set to be
constant, and the width of unit cell is determined by the number
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of unit cells in a supercell. We consider incident wave from air
with kinx ¼ k0 sin θin, where k0= 2π/λ0 is wave vector in air and
θin is the incident angle. The reflected and transmitted waves obey
the diffraction law of Eq. (2), with the maximum diffraction order
(N, a negative integer) given as, N= roundup [−2k0/G]+ 1.
Regardless of the direction of the incident wave, i.e.,
kinx 2 �k0; k0½ �, the existing diffraction orders of the reflected and
transmitted waves belong to n∈ [N, 1].

Diffraction mechanism of PGM. We first provide an intuitive
physical picture to reveal the diffraction mechanism. Owing to
the sound-hard materials of a PGM (gray area in Fig. 1b), these
unit cells could be regarded as acoustic waveguides. The sound-
hard material is thick enough to avoid wave coupling between
adjacent unit cells. When the width of unit cell is much smaller
than the working wavelength (i.e., a≪ λ0), only fundamental
mode can be supported inside these unit cells. The forward and
backward waves propagating in the unit cells interfere to form
standing waves stemming from the MR effect of incident rays in
the PGM (see the yellow arrows in Fig. 1c). For simplicity, we
define the number of times the waves pass through the medium
as L. When incident rays pass directly through the PGM, i.e., L=
1 (see the solid yellow arrows), the phase shift in the jth unit cell
is ϕj= k0njh and the phase difference of adjacent unit cells per
period is Δϕ= ϕj+1− ϕj= 2π/m. By analyzing Eq. (2), the phase
gradient of the nth diffraction order could be equivalent to ξ=
nG, accordingly, the phase difference of two adjacent unit cells is
expressed as Δφn= aξ= 2πn/m. For one-pass propagation, the
lowest order n= 1 is satisfied for Δϕ= Δφ1, therefore Eq. (2) can
be expressed as

kinx ¼ ktx � G ¼ ktx � ξ; ð3Þ

which is well-known as GSL. In such a case, the incident wave
with kinx 2 �k0; k0 � ξ½ � will follow GSL (the n= 1 order), with
kx= k0− ξ being the critical momentum. When the incident
angle is beyond the critical angle (kinx 2 k0 � ξ; k0½ �), the channel

of the n= 1 order will close, and normally the incident wave
cannot pass through the PGM via direct transmission. There-
upon, waves will undergo another propagation process (L= 2) via
internal reflection at the transmitted interface (see the dashed
yellow arrows), leading to a phase shift of 2ϕj and a phase dif-
ference of Δϕ= 2 × (2π/m) at the reflected interface. As the
remaining diffraction orders are n∈ [N, 0], so Δφn= 2πn/m ≤ 0.
Therefore, it seems that waves cannot couple to these diffraction
orders by means of Δϕ= Δφn. However, when a phase wrap of 2π
is applied to Δϕ, i.e., Δϕ− 2π (2π phase wrap is enough for wave
to couple to higher-order (N) in a PGM with unit cells supporting
fundamental waveguide modes), the phase difference becomes
equivalent. Therefore, when Δϕ− 2π= Δφn, the reflected wave
with the n-diffraction order will occur (see the red arrows in
Fig. 1c); if not, the third time propagation process (L= 3) will
emerge in unit cells via internal reflection at the reflected interface
(see Fig. 1d). When rays reach the transmitted interface, the phase
difference is Δϕ= 3 × (2π/m). Similarly, if it can meet Δϕ− 2π=
Δφn, there will be a transmitted wave of the n-diffraction order,
otherwise the fourth time propagation (L= 4) will happen and so
forth (See Fig. 1d).

Generally, if we consider the oscillating wave inside a PGM
coupling to the n-diffraction order via L-time propagation
process in unit cells, the corresponding relation can be expressed
as 2πL/m− 2π= 2πn/m, i.e.

L ¼ mþ n: ð4Þ

As L > 0 and the maximum diffraction order is N, the
number of unit cells is required to meet m ≥ 1− N. When L is
odd, the incident wave will couple to the corresponding
transmitted wave of the higher orders; whereas when L is
even, it will couple to the corresponding reflected wave of
the higher orders. Consequently, by combining Eqs. (2) and (4),

p = ma
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Fig. 1 Concept of studied metagratings. a Schematic diagram of the proposed PGM consisting of periodically repeated supercells. b Geometric topology of

the supercell composed of m groups of unit cells. The regions in gray are sound-hard materials and the regions with blue colors are gradient index materials

for generating gradient phase shift along +x-direction. c Trajectories of rays propagating in two adjacent unit cells. d Sketch map of diffraction mechanism

and multiple reflections effect in the jth unit cell in (c). Each unit cell can be regarded as a Fabry–Perot (FP) resonator, inside which the wave oscillates back

and forth L times before reaching a resonance condition that determines the reflection or transmission. The higher order diffraction depends on the

propagation number L and the number m of unit cells in a supercell
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the diffraction law in a PGM is summarized as

kx ¼ ktx � nG; L is oddð Þ

kx ¼ krx � nG; L is evenð Þ

�

: ð5Þ

Using Eqs. (3)–(5), the diffraction phenomena in a PGM can
be predicted. For the incident wave below the critical angle, the
propagation number is L= 1, the incident wave will couple to the
transmitted wave of the lowest order n= 1, which is independent
of m. For the incident wave beyond the critical angle, MRs
happen inside the PGM in turn (i.e., L= 1→ 2→ 3...) and
resonance transmission or reflection can be induced when the
path length due to MRs reaches the Fabry–Perot condition. If the
wave travels through the slab an odd (even) propagation number,
strong transmission (reflection) can be generated, with the
diffraction order determined by Eq. (5) (see Fig. 1d). Although
several diffraction orders are open for the incident wave, the
maximum diffraction order is preferential owing to minimum
propagation number that corresponds to minimum geometric
path length. Furthermore, if one designs a PGM with odd and
even unit cells, caused by the parity transition of the propagation
number, the transmission and reflection of the diffraction order
can be reversed.

Analytical and numerical demonstration. Although the above
revealed diffraction mechanism and associated diffraction rule are
very simple, they are indeed powerful for making complex dif-
fraction phenomena clear. Without loss of generality, we take
PGMs with ξ= k0 to verify this point, in which the maximum
diffraction order is N=−1 and the critical angle of is θ1= 0°.
When θin < θ1, the propagation number is L= 1, it is mainly the
transmitted wave following GSL (the n= 1 order). While for
θin > θ1, there are two diffraction orders, i.e., the n= 0 order and
the n=−1 order. As we have discussed in Fig. 1d, the higher

diffraction order is preferential owing to the minimum propa-
gation number. Hence, for θin > θ1, the effective diffraction order
is the n=−1 order and the corresponding propagation number
of PGM with m unit cells is L=m− 1. Based on Eqs. (4) and (5),
when m is odd, e.g., m= 3, the propagation number L is even,
which leads to the reflection of the n=−1 order (see the equi-
frequency contour in Fig. 2a). On the other hand, when m is even,
e.g., m= 4, the propagation number L is odd, which results in the
transmission of the n=−1 order (see the equi-frequency contour
in Fig. 2b). To demonstrate above theoretical prediction,
numerical simulations are performed using COMSOL MULTI-
PHYSICS. The simulated field patterns of the PGMs with three
and four unit cells are respectively displayed in Fig. 2c, d, where
these two metagratings share identical phase gradient, since the
period length is constant, i.e., p= λ0. When θin=−30°, which is
below the critical angle, the incident waves in both cases pass
through the PGMs following the n= 1 order (see the lower plots
of Fig. 2c, d). However, when θin= 30°, beyond the critical angle,
the incident wave is reflected back for the PGM with m= 3
(see the upper plot in Fig. 2c), and passes through the PGM with
m= 4 (see the upper plot in Fig. 2d). In both cases, the scattered
waves follow the n=−1 diffraction order with nearly perfect
conversion efficiency (see the arrows in Fig. 2). Therefore, the
theoretical prediction based on Eqs. (4) and (5) is well demon-
strated from numerically simulated acoustic field patterns. In
addition, by observing the equicontour in Fig. 2a, when the
incident angle is within the critical angle, the anomalous trans-
mission can occur by following ktx ¼ kxþξ. While for the incident
angle beyond the critical angle, the PGM will generate an
equivalent tangential momentum of −ξ, the anomalous reflection
will take place by obeying krx ¼ kx � ξ. Hence, bounded by the
critical angle, the anomalous reflection and transmission can
simultaneously exist in a single PGM, which enables potential
design for multifunctional acoustic planar devices.
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In simulations, p= h= λ0, a= 0.9w and nj= ρj
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In fact, the reflection (transmission) of the n=−1 order for
the PGM with m= 3 (m= 4) not only happens at θin= 30°, but
occurs in a wider incident range, which can be observed from the
equi-contours in Fig. 2. To quantify angular performance of the
PGMs, we analytically and numerically show the relationship
between the transmission/reflection of the diffraction orders and
the incident angle in Fig. 3, where the analytical results are
described by the curves and the numerical results are indicated by
the symbols. The analytical results are obtained based on the
coupled mode theory18,39 (details shown in Supplementary
Note 1), which agree well with numerical results except for
very steep incident angles. For the case of the PGM with m= 3
(see Fig. 3a, b), more than 90% transmission of the n= 1 order is
observed for θin∈ [−60°, 0°] and the reflection of the n=−1
order is higher than 90% for θin∈ [0°, 60°]. In addition, for the
normal incidence, that is, at the critical angle, there is an odd
propagation number of L= 3 for the n= 0 order, bringing about
higher transmission of the n= 0 order (see the black data in
Fig. 3a). For the case of the PGM with m= 4 (see Fig. 3c, d),
similar behavior is observed for θin∈ [−60°, 0°]. For angles above
the critical angle (θin∈ [0°, 60°]), however, the reflection mode is
reversed to transmission mode due to integer parity of the cell
number. Furthermore, it is an even propagation number of L= 4
for the n= 0 order, therefore there is higher reflection of the n=
0 order at the critical angle (see the black data in Fig. 3d), which is
opposite with that in Fig. 3a. For the incident angle near ±90°,
owing to intrinsic limitation of PGMs29,30, the coupling efficiency
between incident wave and the n= 1/n=−1 order is extremely
low and stronger specular reflection appears (see black data in
Fig. 3b, d). In addition, to further demonstrate Eqs. (4) and (5), as
a more complicated case, PGMs with ξ= 0.6k0 are used to reveal
similar reversal phenomena of the diffraction orders, shown in
Supplementary Figs. 1 and 2, and Supplementary Note 2.

Design of PGMs and experimental verifications. To further
confirm the diffraction behavior of the PGMs (ξ= k0) with odd/
even number of unit cells, we utilize zigzag microstructures to
design two groups of PGMs at 4.0 kHz: one is a PGM with three
unit cells and the other has four unit cells. In each case, the
transmissions of these designed unit cells are nearly unity and the
phase differences between two adjacent cells are Δϕ= ϕj+1− ϕj=
2π/m (m= 3 and 4). The Supplementary Figs. 3 and 5, and Sup-
plementary Notes 3 and 4 show the physical dimensions of the final
designs and design details. The fabricated samples of the two PGMs
are shown in Fig. 4a, where one period of the PGM with m= 3
(m= 4) is highlighted by the red (blue) box (see the inset). The
experimental setup is shown in Fig. 4b. For the designed PGM with

m= 3, we numerically show the corresponding relationship
between the transmission/reflection of the main diffraction orders
(T1, T0 and R

−1) and the incident angle in Fig. 4c, where the
transmission/reflection agrees well with that in the ideal case of
Fig. 3. In the experiments, to measure the angular performance of
the designed PGMs, the Gaussian beam from the speaker array is
incident from θin=−60° to θin= 60° with a step of 15°, and the
measured results denoted by the stars are also displayed in Fig. 4c.
While the measured result has some deviation in amplitude from
the numerical result, the variation tendency of the curves agrees well
with each other. Indeed, anomalous reflection and transmission can
simultaneously exist in such a single PGM. To clearly show the
reflection performance of the PGM with m= 3, the simulated
scattered field, including reflected field and transmitted field of
incident beam with θin= 30° (for other angles, see Supplementary
Fig. 4) is shown in Fig. 4d, where a strong reflected wave towards
the opposite direction with the incident wave is seen and the
transmitted wave is much weaker. The experimentally measured
scattered field shows the identical result (see Fig. 4e).

For the designed PGM with m= 4, the corresponding relation-
ship between the transmission/reflection of the main diffraction
orders (T1, T−1, and R0) and the incident angle is shown in Fig. 4f,
with transmission/reflection agreeing well with prediction (Fig. 3).
The corresponding measured result is displayed in Fig. 4f, where
there are some small discrepancies between the numerical and
measured results, but the overall trend in both cases is consistent.
In addition, the field patterns of simulated and measured scattered
waves for θin= 30° (for other angles, see Supplementary Fig. 6) are
respectively shown in Fig. 4g, h, where both results reveal that
strong transmitted waves appear and reflected waves are
considerably weaker. Therefore, the parity design of the PGMs
can effectively manipulate the switching of reflection and
transmission of the higher order diffraction, enabling more
flexibility in the design of acoustic planar devices.

Robust feature of parity-dependent transmission and reflec-
tion. We would also like to point out that the phenomenon of
anomalous reflection and refraction in the PGMs with parity
design is very robust, depending only on the parity of the number
m of unit cells. The reversal phenomenon could be observed in a
PGM with parity design, even with large m, as long as the wave
coupling between adjacent unit cells is negligible. To demonstrate
this robust feature, we consider a specific case of a PGM with ξ >
k0 as an example, and analyze the behavior at normal incidence.
In this way, only the transmission and reflection of the n= 0
order41 need to be taken into consideration. After some
mathematical derivations (see Supplementary Note 5), the
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corresponding transmission and reflection coefficients for the
n= 0 order are respectively given as

r0 ¼
ζ1j j2� ζ2j j2

ζ21�ζ22
; t0 ¼

ζ1ζ
�
2�ζ�1ζ2
ζ21�ζ22

; ð6Þ

where ζ1 ¼ ~g � 1ð Þ
Pm

j¼1 1= u2j � 1
� �

, ζ2 ¼ 1� ~gð Þ
Pm

j¼1 uj=

u2j � 1
� �

, ~g1 ¼ 2g21= g21 � γ1
� �

,g1 ¼ sincðGw=2Þ and uj ¼

expðiϕjÞ is phase shift in the jth unit cell in u-complex plane.

From Eq. (6), we know that the reflection and transmission are
only determined by two factors: (i) the coefficient ~g1, which is
related to the geometry structure of a PGM and is a constant for a

fixed configuration. (ii) the sums of Y1 ¼
Pm

j¼1 1= u2j � 1
� �

and

Y2 ¼
Pm

j¼1 uj=ðu
2
j � 1Þ, which are highly dependent on the phase

distribution ϕj in u-complex plane. When m is odd, the
phase distribution of ϕj is asymmetric (see Fig. 5a), which results
in |Y1|= |Y2|. When m is even, the phase distribution of ϕj is
symmetric (see Fig. 5b), and Y2= 0. The detailed mathematical
derivation is shown in Supplementary Note 5. With these results,
Eq. (6) becomes

r0 ¼ 0; t0 ¼ expð�iφTÞ; m is odd; ð7Þ

r0 ¼ expð�iφRÞ; t0 ¼ 0; m is even; ð8Þ

where φT ¼ argðζ1Þ þ argðζ2Þ and φR ¼ 2 argðζ1Þ, giving rise to a
perfect transmission for odd m and a perfect reflection for even m.

The results are consistent with these from the theoretical prediction
summarized in Eqs. (4) and (5). Based on the generalized theore-
tical formulas in Eqs. (S11)–(S14), Fig. 5c, d displays the results of
R ¼

P

n rnðmÞj j and T ¼
P

n tnðmÞj j with n= 0, respectively,
which agree well with the approximate results of Eqs. (7) and (8).
Therefore, it is analytically confirmed that even for larger m, the
reversal phenomenon of almost perfect transmission and reflection
is preserved, implying the parity-dependent feature is quite robust.

Discussion
In conclusion, through a combination of analytical calculations
and numerical simulations, we have revealed the governing dif-
fraction mechanism of PGMs from the perspective of MRs. We
find that the integer parity of the PGMs plays a pivotal role in the
higher order diffraction for incident waves beyond the critical
angle. To be more precise, the parity transition in the designed
unit cells of a PGM enables the relevant odd/even transition of
propagation number in the unit cells, which induces the reversal
of transmission and reflection for a particular diffraction order.
To demonstrate our findings, two acoustic PGMs (ξ= k0) with
three and four unit cells are designed using zigzag micro-
structures, and the reversal phenomenon of higher order dif-
fraction is clearly demonstrated in experiments. In particular, the
coexistence of anomalous reflection and anomalous transmission,
depending on a critical angle, is achieved in a single PGM with an
odd number of unit cells. Compared with previous works in
both acoustic waves and electromagnetic waves, the diffraction
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mechanism proposed here can comprehensively explain almost
all the known diffraction behaviors in the metagratings with
phase gradient. While our system is designed to work at a specific
frequency, the parity-dependent behavior can be observed in a
certain bandwidth as the phase gradient along the metagrating is
preserved, leading to some tolerances in the frequency response
(see Supplementary Fig. 7 and Supplementary Note 6). In addi-
tion, if a larger m-integer is designed for the lossy metagratings,
the higher diffraction orders will undergo more round-trips,
along with more absorption40. As a result, the parity-dependent
scattering behavior of the higher diffraction orders will gradually
disappear as “m” increases. We believe that our proposed dif-
fraction mechanism can become a new paradigm for the design of
acoustic/electromagnetic PGMs and open up new wave manip-
ulation capabilities based on the versatile platform that can offer.
For instance, due to achieved anomalous refraction and reflection,
our work enables more systematic design of functional
planar devices, such as asymmetric and wide-angle absorbers39,40,
multifunctional metagratings42, omnidirectional reflector43–45.
Alternatively, inspired by the phenomenon that an incident wave
can be totally transmitted or reflected by a disordered slab46–48,
one can design a metagrating of disorder with a properly designed
combinations of integer m, which might enable some new effects
associated with disorder-induced transition.

Methods
Numerical simulations. The full wave simulations are performed using COMSOL
Multiphysics Pressure Acoustics module. In Fig. 2, the plane wave is incident on
the PGM consisting of two supercells, the upper and lower walls are set as periodic
boundary conditions and perfectly matched layers (PMLs) are used in the left and
right sides to reduce the reflection. In Fig. 4, a spatially modulated Gaussian wave is
incident on the designed PGM with 20 supercells, and the surrounding regions are
PMLs. The normalized transmission and reflection efficiencies of the diffraction
orders are numerically obtained from the port analysis of COMSOL RF module,
where the acoustic profiles are replaced by their optical analogs.

Experimental apparatus. The samples were fabricated with fused deposition
modeling in three dimensional printing and the printed material is acrylonitrile

butadiene styrene plastic with density of 1180 kgm−3 and speed of sound 2700ms−1.
As the characteristic impedance of the plastic is much larger than that of air, the
walls can be considered as acoustically rigid. The fabricated PGM consists of ten
supercells and is placed in a two-dimensional waveguide for the measurement. A
loudspeaker array with 28 speakers emits a Gaussian modulated beam to the PGM
and the reflected and transmitted field is scanned using a moving microphone with
a step of 2.0 cm. The acoustic field at each spot is then calculated using Fourier
Transform. The overall scanned area is 90 cm by 30 cm and the signal at each
position is averaged out of four measurements to reduce noise. The transmission/
reflection efficient is calculated by performing Fourier Transform along a line right
behind/in front of the PGM.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used for the analyses will be made available upon e-mail request to the
corresponding author.
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