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In this Letter we define a family of entanglement distribution protocols assisted by feedback classical

communication that gives an operational interpretation to reverse coherent information, i.e., the sym-

metric counterpart of the well-known coherent information. This leads to the definition of a new

entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.
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Shannon’s great result was proving that sending infor-
mation through a noisy channelN can be achieved with a
vanishing error, in the limit of many uses of the channel
[1]. Shannon’s key idea was to add redundancy to the
message in order to compensate for the channel’s noise.
He showed that the channel’s communication capacity
CðN Þ between two partners, called Alice and Bob, is given
by the maximal mutual information between Alice’s input
a and Bob’s output b ¼N ðaÞ, i.e.,

C ðN Þ ¼ max
a

Hða:bÞ ðbits=channel useÞ: (1)

Quantum information theory [2] is a generalization of
Shannon’s information theory that has attracted huge in-
terest in the last decade, as it allows for new potential
applications, such as quantum communication and entan-
glement distribution. Quantum communication allows
faithful transfer of quantum states through a quantum noisy
channel �. The quantum communication capacity Qð�Þ
gives the number of qubits per channel use that can be
reliably transmitted, preserving quantum coherence. It was
shown in [3] that the coherent information Ið�; �AÞ, a
function of Alice’s input �A on channel �, plays a crucial
role in the definition of the quantum communication ca-
pacity. The coherent information is

Ið�; �AÞ ¼ IðIR ��ðjc ihc jRAÞÞ ¼ Ið�RBÞ; (2)

where jc iRA is the purification of �A and Ið�RBÞ ¼ SðBÞ �
SðRBÞ, where SðXÞ is the von Neumann entropy of �X. By
analogy with Shannon’s theory, one would expectQð�Þ to
be calculated by maximizing over a single use of the
channel,

Q ð1Þð�Þ ¼ max
�A

Ið�; �AÞ: (3)

Unfortunately, the quantum case is more complicated, as

Qð1Þð�Þ is known to be nonadditive [4]. The correct ca-
pacity definition [5] is,

Q ð�Þ ¼ lim
n!1

1

n
max
� �A

Ið��n; � �AÞ: (4)

Only for the restricted class of degradable channels [6], is

Qð�Þ known to be additive, i.e., Qð�Þ ¼ Qð1Þð�Þ. The
channel � is called degradable if there exists a map M
that transforms Bob’s output �B into the environment state
�E, i.e., Mð�BÞ ¼ �E, where �E ¼ TrRB½j�ih�jRBE� and
j�iRBE is the purification of �RB. Similarly if there is a map
G such that Gð�EÞ ¼ �B the channel is called antidegrad-
able and Qð�Þ ¼ 0.
Having free access to a classical communication channel

Alice and Bob can improve the quantum communication
protocol, as opposed to Shannon’s theory where using
feedback gives no improvement [7]. One can define three
new quantum communication capacities depending on the
use of the classical channel: forward classical communi-
cation (Q!); feedback classical communication (Q );
two-way classical communication (Q$). In Fig. 1 we
review the relations between these four capacities.
Entanglement is another important resource for quantum

information processing. Therefore, the study of the entan-

FIG. 1 (color online). Relations between the quantum commu-
nication and entanglement distribution capacities. We first start
by two general remarks: (I) Being able to send a noiseless qubit
is a stronger resource than distributing units of entanglement
(e-bits): Ex �Qx for all x. (II) Increasing the complexity of the
assistance cannot decrease the capacity: X � X � X$. The
following remarks concern their corresponding number on the
figure. (1) The equality E ¼Q ¼Q! was shown in [12].
(2) Any entanglement distribution protocol with free forward
classical communication can be transformed into a quantum
communication protocol by appending teleportation to it.
(3) Results from combining 1 and 2. (4) Combining 1, 3 and
II. (5) It is easy to prove that E ¼Q$ for the erasure channel
[13,14]. In [14] it was shown that the erasure channel satisfies the
strict inequality Q <Q$, which gives E � Q .
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glement distribution capacity of quantum channels (dis-
tributed e-bits per use of the channel) is of crucial impor-
tance. As for quantum communication, we can also define
four types of assisted (unassisted) capacities for entangle-
ment distribution: fE; E!; E ; E$g. As shown in Fig. 1, all
the entanglement distribution capacities are equivalent to
their quantum communication counterparts, except for
E ð�Þ.

Entanglement distribution assisted by feedback classical
communication.— The entanglement distribution protocol
assisted by classical feedback communication, as de-
scribed in [8], goes as follows. Alice starts preparing a
bipartite entangled state�RjA1;A2;...;An

, where R is a group of

qubits entangled with the qubits Ai sent, one by one,
through the channel �. The first round of the protocol,
see Fig. 2, consists of three steps: (i) Alice sends qubit A1

through the quantum channel �; (ii) Bob applies an in-
complete quantum measurement B1 over his received
qubit B1 and communicates the classical outcome b1 to
Alice; (iii) Alice, condition on the classical message b1,

applies a global quantum operation Ab1
1 over the joint

system of R and the remaining n� 1 qubits A2A3 . . .An.
The next n� 1 rounds are a slight modification of the first

one. First, Bob’s measurement Bb1...bi�1
i acts on all his

received qubits B1B2 . . .Bi, conditioned on his previous
measurement outcomes b1 . . . bi�1. Second, Alice’s opera-
tion Ab1...bi

i , acts on all her remaining qubits RAiþ1 . . .An,
conditioned on all previous classical communication mes-
sages. By properly choosing Alice’s operations and Bob’s
incomplete measurements both partners extract� nE ð�Þ
units of entanglement (e-bits) at the end of the protocol.
Unfortunately, the calculation of E ð�Þ is extremely chal-
lenging in full generality.

Reverse entanglement distribution.—A big practical dis-
advantage of the previous protocol is that Alice has to wait

until Bob sends the message bi before applying Ab1...bi
i

and subsequently sending qubit Aiþ1, which greatly de-
creases the transmission rate. A way of avoiding this
problem is to simplify the protocol to a single round of
classical feedback after Alice has sent all her qubits
A1A2 . . .An through the quantum channel �; see Fig. 3.
We call this familly of simplified protocols reverse entan-
glement distribution protocols, by analogy with the quan-
tum key distribution scenario [9]. Before the single
postprocessing round Alice and Bob’s shared state is

�RjB1;B2;...;Bn
¼ IR ���nð�RjA1;A2;...;An

Þ: (5)

By properly choosing Alice’s and Bob’s operations both
partners extract � nEvð�Þ e-bits, where Evð�Þ is the
reverse entanglement distribution capacity, satisfying the
inequality Evð�Þ � E ð�Þ.
Remark that, in the particular case where Alice’s inputs

are independent and identically distributed, i.e.,
�RjA1;A2;...;An

¼ ��n
RjA, the postprocessing of the reverse en-

tanglement distribution protocol is the dynamical equiva-
lent of an entanglement distillation protocol over the static
resource ��n

RjB [10].

Reverse coherent information capacity.—In what fol-
lows we consider a subset of the reverse entanglement
distribution protocols with a strikingly simple capacity
that lower bounds Evð�Þ. By exchanging the roles of
Alice and Bob in the family of static distillation protocol
assisted by one-way classical communication defined in
[10], we obtain a new family of static distillation protocols
with rate

IRð�RBÞ ¼ SðRÞ � SðRBÞ: (6)

By analogy with the quantum key distribution scenario [9],
we call the quantity IRð�RBÞ the reverse coherent informa-
tion. It is then straightforward to consider a family of

FIG. 2 (color online). The first round of the entanglement
distribution protocol assisted by classical feedback consists of
three steps: (i) Alice sends qubit A1 through the quantum channel
�; (ii) Bob applies an incomplete quantum measurement B1

over his received qubit B1 and communicates the outcome b1 to

Alice; (iii) Alice applies a global quantum operation Ab1
1 over

the joint system of R and the remaining n� 1 qubits Ai. The next
rounds are straightforward extensions of the first one.

FIG. 3 (color online). A simplification of the general entangle-
ment distribution protocol assisted by classical feedback (Fig. 2)
limits the protocol to a last single round of processing. After
Alice has sent all her qubits (A1A2 . . .An) through the quantum
channel �, Bob applies a collective incomplete measurement B
among all the qubits B1B2 . . .Bn and communicates the classical
outcome b to Alice. Finally, conditioned on the message b, Alice
applies the quantum operation Ab on system R.
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entanglement distribution protocols assisted by classical
feedback with rate IRð�; �AÞ ¼ IRðIR ��ðjc ihc jRAÞÞ ¼
IRð�RBÞ. Optimizing this rate over �A we define the single-

letter reverse coherent information capacity Eð1ÞR ð�Þ.
Similarly to Eq. (4) we can define a regularized entan-

glement capacity ERð�Þ that lowerbounds Evð�Þ.
Interestingly, this quantity can be shown to be additive

for all channels, i.e., ER ¼ Eð1ÞR . To do so we only need to
prove the relation

IRð� ��; �A1A2
Þ � IRð�; �A1

Þ þ IRð�; �A2
Þ: (7)

Using the alternative definition of the reverse coherent
information IRð�RBÞ ¼ SðBEÞ � SðEÞ, where j�iRBE is
the purification of �RB and �BE, Eq. (7) can be restated
as a relation between two von Neumann mutual informa-
tion quantities: SðB1E1:B2E2Þ � SðE1:E2Þ. This relation
holds because discarding quantum systems can only de-
crease the mutual information, which results from the
strong-subadditivity of the entropy.

The previous proof is strikingly similar to the additivity
of the unassisted capacity of degradable channels, except
that it holds for all channels. Since IRð�; �AÞ is additive, it
would be extremely interesting if it could be used to give a
definition of E ð�Þ or Evð�Þ similar to Eq. (4).
Unfortunately, this cannot be done as IRð�; �AÞ does not
satisfy the data processing inequality.

Despite reverse coherent information capacity restricts
the protocols to a very specific subset, its study remains
very interesting, as for some channels it achieves a remark-
able improvements over the unassisted capacity Eð�Þ. To
get some intuition on when we may obtain an improve-
ment, we look at the difference between the coherent
information and its reverse counterpart (IRð�RBÞ �
Ið�RBÞ ¼ SðRÞ � SðBÞ). We see that for channels satisfy-
ing SðRÞ> SðBÞ over all inputs, such as the bosonic lossy

channel, reverse reconciliation performs better than Eð1Þ.
On the other hand, for those channels satisfying SðBÞ �
SðRÞ for all inputs, such as optical amplifiers or the erasure

channel, we obtain E � Eð1Þ � ER. In the case of the
erasure channels is it easy to see that E$ ¼ Ev > E >
ER, which gives an example of strict separation between
Ev and ER.

Amplitude damping channel.—The amplitude damping
channel describes the process of energy dissipation
through spontaneous emission in a two-level system. The

effect of the channel on the input state � is D�ð�Þ ¼
E0�E

y
0 þ E1�E

y
1 , where

E0 ¼ 1 0
0

ffiffiffiffi
�
p

" #
; E1 ¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �
p

0 0

� �
; (8)

and 1� � is the probability of spontaneous emission.
Generalizing the results of [11], we can restrict the input
state to the class �A ¼ diagð1� p; pÞ without loss of gen-
erality. For a given input population p, the output state is

�B ¼ diagð1� �p;�pÞ and the (reverse) coherent infor-
mation becomes

IðE; pÞ ¼ Hð�pÞ �Hðð1� �ÞpÞ;
IRðE; pÞ ¼ HðpÞ �Hðð1� �ÞpÞ; (9)

where HðxÞ is the binary entropy. Optimizing over the

input population we obtain Eð1ÞðD�Þ and ERðD�Þ as func-
tions of the damping parameter �; see Fig. 4. Using the
concatenation property of the amplitude damping channel
(D� �D�0 ¼D��0) it is easy to prove that the amplitude

damping channel is degradable (EðD�Þ ¼ Eð1ÞðD�Þ) for

� � 1=2 and antidegradable (EðD�Þ ¼ 0) for � � 1=2.

We conclude that ERðD�Þ outperforms EðD�Þ for all �.
Even more interestingly, ERðD�Þ remains positive in the

range � � 1=2 where EðD�Þ ¼ 0; see Fig. 4(a).

Generalized amplitude damping channel.—Spontaneous
emission to an environment at thermal equilibrium leads to
the generalized amplitude damping channel Dð�;�Þ, which
can be modeled by the Stinespring’s dilation circuit of
Fig. 5. The relaxation operation applies the unitary trans-
formation,

URO ¼
1 0 0 0
0

ffiffiffiffi
�
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

0
0 � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p ffiffiffiffi

�
p

0
0 0 0 1

2
6664

3
7775; (10)

jointly to the input state and the environment. The thermal
environment is modeled by inserting half of an entangled

state j��i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �
p j00i þ ffiffiffiffi

�
p j11i into the second input

of URO. The channel can be seen as the random mixing
Dð�;�Þ ¼ �Dð�;0Þ þ ð1� �ÞDð�;1Þ of two limiting cases:

(1) the amplitude damping channel when (Dð�;0Þ); and

(2) a populating channel (Dð�;1Þ). We restrict the analysis
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FIG. 4. (a) Comparison of EðD�Þ (dashed line) and ERðD�Þ
(solid line) as functions of the damping parameter � for the
amplitude damping channel, together with the capacity
Eð1ÞðD�Þ ¼ ERðD�Þ of the generalized amplitude damping

channel with a maximally mixed environment (� ¼ 1=2) (dotted
line). (b) Optimal input population p achieving the previous
capacities.
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to 0 � � � 1=2 as for any channel Dð�;�¼1=2þxÞ with

optimal input population p� there is a symmetric channel
Dð�;�¼1=2�xÞ with optimal population 1� p� reaching the

same capacity. As before, Alice’s input can be restricted to
�A ¼ diagð1� p; pÞ giving

SðBÞ ¼ Hð�pþ ð1� �Þ�Þ; (11)

SðABÞ ¼ H4ð�1; �2; �3; �4Þ; (12)

where H4 is the Shannon entropy of a four-dimensional
distribution and �j are the four eigenvalues of �AB,

�1 ¼ �ð1��Þð1�pÞ; �2 ¼ ð1��Þð1��Þp;

�3;4 ¼ ½1��1��2	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ð�1þ�2Þþ ð�2��1Þ2

q
�=2:
(13)

Optimizing over the input population p we obtain the

capacities Eð1ÞðDð�;�ÞÞ and ERðDð�;�ÞÞ. It is easy to show

that ERðDð�;�ÞÞ> Eð1ÞðDð�;�ÞÞ for any noise � except for

� ¼ 1=2, where both are equal, as shown in Fig. 4. Unfor-
tunately, we cannot conclude ERðD�;�Þ � EðDð�;�ÞÞ for
�> 0, as the channels are no longer degradable.
Nevertheless, it is easy to prove that generalized amplitude
damping channels (Dð�;�Þ) with � � 1=2 are antidegrad-

able (�B ¼Dð�=ð1��Þ;�Þð�EÞ), which shows that for such

channels ERðDð�;�ÞÞ � EðDð�;�ÞÞ ¼ 0 (see Fig. 6).

Conclusion.—We reviewed the relation between quan-
tum communication and entanglement distribution capaci-
ties, paying special attention to entanglement distribution
assisted by classical feedback. By restricting ourselves to
realistic protocols with a single final round of postprocess-
ing, we defined the reverse entanglement distribution pro-
tocols. A subset of such protocols give an operational
interpretation of the reverse coherent information, a sym-
metric counterpart of the coherent information. This allow
us to define a new entanglement distribution capacity
which is additive and outperforms the unassisted capacity
for some important channels, such as the damping channel
and its generalization.
We acknowledge financial support from the W.M. Keck

Foundation Center for Extreme Quantum Information
Theory. S. P. acknowledges financial support from the EU
(Marie Curie fellowship).

[1] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
[2] M.A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, England, 2002).

[3] B. Schumacher and M.A. Nielsen, Phys. Rev. A 54, 2629
(1996).

[4] D. P. DiVincenzo, P.W. Shor, and J. A. Smolin, Phys. Rev.
A 57, 830 (1998); G. Smith and J. A. Smolin, Phys. Rev.
Lett. 98, 030501 (2007); G. Smith and J. Yard, Science
321, 1812 (2008).

[5] S. Lloyd, Phys. Rev. A 55, 1613 (1997); I. Devetak, IEEE
Trans. Inf. Theory 51, 44 (2005).

[6] I. Devetak and P.W. Shor, Commun. Math. Phys. 256, 287
(2005).

[7] T.M. Cover and J. A. Thomas, Elements of Information
Theory (Wiley, New Jersey, 2006).

[8] A.W. Leung, Phys. Rev. A 77, 012322 (2008).
[9] F. Grosshans, G. van Assche, J. Wenger, R. Tualle-Brouri,

and P. Grangier, Nature (London) 421, 238 (2003).
[10] I. Devetak and A. Winter, Phys. Rev. Lett. 93, 080501

(2004).
[11] V. Giovannetti and R. Fazio, Phys. Rev. A 71, 032314

(2005).
[12] H. Barnum, E. Knill, and M.A. Nielsen, IEEE Trans. Inf.

Theory 46, 1317 (2000).
[13] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, Phys.

Rev. Lett. 78, 3217 (1997).
[14] D. Leung, J. Lim, and P.W. Shor, Phys. Rev. Lett. (to be

published).

00.250.50.751
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Damping parameter (η)

T
ol

er
ab

le
 N

oi
se

00.250.50.751
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Damping parameter (η)

O
pt

im
al

 P
op

ul
at

io
n

FIG. 6. (a) Tolerable thermal noise of the generalized ampli-
tude damping channelDð�;�Þ (minimum � such that the capacity

is zero) as a function of the damping parameter � for:
Eð1ÞðDð�;�ÞÞ (dashed line), and ERðDð�;�ÞÞ (solid line).

(b) Input population p achieving the curves of (a).

FIG. 5 (color online). Quantum circuit corresponding to the
Stinespring’s dilation of the generalized amplitude damping
channel Dð�;�Þ. Alice’s input state �in and half of an entangled

state j��i interact through the relaxation operation URO com-
posed of two CNOT gates and a controlled rotation around the y
axis of the Bloch sphere [cos2ð�=2Þ ¼ �].
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