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ABSTRACT

Database research mainly focuses on forward-moving data flows:
source data is subjected to transformations and evolves through
queries, aggregations, and view definitions to form a new target in-
stance, possibly with a different schema. This Forward Paradigm
underpins most data management tasks today, such as querying,
data integration, data mining, etc. We contrast this forward pro-
cessing with Reverse Data Management (RDM), where the action
needs to be performed on the input data, on behalf of desired out-
comes in the output data. Some data management tasks already
fall under this paradigm, for example updates through views, data
generation, data cleaning and repair. RDM is, by necessity, con-
ceptually more difficult to define, and computationally harder to
achieve. Today, however, as increasingly more of the available data
is derived from other data, there is an increased need to be able to
modify the input in order to achieve a desired effect on the output,
motivating a systematic study of RDM.

We define the Reverse Data Management problem, and classify
RDM problems into four categories. We illustrate known examples
of RDM problems and classify them under these categories. Fi-
nally, we introduce a new type of RDM problem, How-To Queries.

1. DATA TRANSFORMATIONS

Informally, a data transformation consists of a function from an
input data source to an output data source. The natural evolution
of data follows the directionality of the transformations, i.e. from
source to target. Most data management tasks fall under this for-
ward paradigm from a variety of perspectives: query processing,
data integration, data mining, clustering and indexing.

We study here a class of problems that focus on the reverse di-
rection, i.e. against the direction of the data transformation (Fig.T).
In these problems one wants achieve a certain effect in the output
data, and needs to act on the input data in order to achieve that
effect. Examples include updating through views [[12]], data gener-
ation [|8]l, causality computation [26], data cleaning [3]. We thus
refer to these areas under the common term of Reverse Data Man-
agement, or RDM. Thus, RDM consists of the problems where one
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Figure 1: Reverse Data Management reasons from a desired
output instance or specification, to the required input.

needs to compute a database input, or modify an existing database
input, in order to achieve a desired effect in the output.

All these problems share a common premise: they essentially
reverse a transformation in order to achieve a desired target in-
stance, or target properties. Our goal in this paper is to identify
the commonalities and differences among these problems, based
on the specifications of the problem requirements, and to propose
a systematic study of RDM. We define a taxonomy of RDM prob-
lems, categorizing them into four groups, allowing us to identify
and describe a new type of RDM that we call How-To queries. Of-
ten users, administrators, and analysts are interested in changing
their data in ways that would achieve certain conditions and con-
straints: “What advertisements will result in the best sales increase,
at a cost bounded by X?”, “How can I increase my clients’ return on
investment with the minimum number of trades?”. How-to queries
come as a natural extension of the reverse management space as
we will observe in the following section, and are useful for strategy
decisions and for modeling various data optimization problems.

RDM is more difficult to define and to implement than direct data
management, because of the simple fact that the inverse of a func-
tion is not necessarily a function. Given a desired output, or a de-
sired change of the output, there are multiple inputs (or none at all)
that can satisfy it. This difficulty shows up in all RDM problems:
in updates through views one restricts the view to the most simple
updateable views [[12|] or searches for updates that minimize the
number of side-effects [[10]]; data cleaning and repair often results
in NP-hard problems [3} [24]]; in causality too one has to compute
an NP-hard problem to find the causes of an output [26].

To circumvent this difficulty in a general framework, we propose
the adoption of SAT or MaxSAT solvers as general purpose tools
in RDM. These solvers handle tens of thousands of variables and
clauses, and for many practical instances even millions (cf. [[1]]),
making them attractive for RDM, and have recently been deployed
for specific RDM problems [27]]. We posit that, by using SAT or
MaxSAT as primitives (oracles), many of the RDM problems be-
come tractable in practice.

2. THE PROBLEM SPACE FOR RDM

We classify RDM problems along two dimensions.
Target Data. We distinguish between explicit target and implicit
target specifications. In the case of an explicit target, the output is
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Figure 2: The space of Reverse Data Management, seen under
source and target specifications.

given as a specific data instance. Sometimes there is a distinction
between different versions of the target (e.g. before and after a view
update), but it always involves tuple-level instances. In the case of
an implicit target, the output is described indirectly, through con-
straints, or through statistics, like in constraint-base data cleaning,
or in declarative data generation. Since statistics and other con-
straints can also be viewed as transformations on the data, implicit
descriptions can be transformed into explicit ones. However, we
prefer to preserve the distinction, as we view the two cases as con-
ceptually different: one is based on specific tuples, while the other
on collective measures over an instance. In the former case, we
know exactly what target data we aim for; in the latter case we
only desire some general effect, usually given through some con-
straints, or aggregate statistics. Thus, the two cases differ in what
restrictions they impose on the target data. Since the reverse data
management paradigm involves a “backward” derivation, from tar-
get to source, some specification of the target data always needs to
be part of the problem description.

Source Data. We distinguish between RDM problems with a
reference source data and without source data. In the first case we
have a source data and we want to modify it to reflect a desired
effect on the output: updates through views is the classic exam-
ple. In the second case, we have to compute the entire input from
scratch: the goal of inverse schema mapping is to give a simple tool
to compute the input from the output [|I8]]; another example is data
generation, where we do not have any input and need to construct
one from scratch.

This classification of the two dimensions results in four types of
RDM problems, which are illustrated in[Fig. 2] [Figure 2depicts the
reverse data management domain using the distinctions we made
on source and target constraints. We classify some RDM problems
using their most common form, but note that some of them could
potentially be classified differently based on variations of the prob-
lem description. This exercise helps us identify an interesting new
direction of this line of research that we call How-To queries, which
we motivate and describe in the following section. We will cover in
more detail the examples mentioned in[Fig. 2] but this is not meant
to be an exhaustive list. In the next section we describe a specific
RDM problem that has not yet been explored in literature, which
falls under the fourth category.

View Updates. In the various flavors of the view update prob-
lem ([[10} |12, |13]]), a source dataset is given, along with a query
that specifies a view over the data. In the classical formulation, the
goal is to describe the class of views that are updateable. In other
formulations of the problem, one wants to modify the source data
to achieve the desired update, without introducing additional side-
effects (or by minimizing them) [[10]. The target data in this case
is the view itself, and the problem is to determine how updates, in-
sertions, and deletions to the view would be reflected to the source
data. Thus, there is a reference source, and the output is explicit.

1491

Data Provenance; Database Causality. While data provenance
([T1L 94 20]) is computed “forwards”, from the source to the target,
its purpose is often to enable users to trace information backwards:
given an output tuple, its provenance describes which input tuples
have contributed to it. Both target and source data are given in
this problem statement, and the goal is to select only the relevant
parts of the source that correspond to the target tuples of interest.
Database Causality (26} [25] is a refinement of data provenance,
where the target tuples may deviate from what the user expects (un-
expected tuples appear in the result, or expected ones do not), and
the goal is to select the appropriate source tuples as causes of given
target tuples. In both cases, the problem statement specifies an ex-
plicit target where the output is given as a specific data instance, and
a source data instance from which the proper parts will be selected.

Inversion Mappings. Data exchange deals with a problem that
often arises in cases of data integration, where we need to trans-
form data from one schema to another. A schema mapping is a
specification that describes how data from a source schema A is to
be mapped to a target schema . The inversion of a mapping ([4]
17, 21 [3]) describes the reverse transformation from B to A, the
goal being to recover the original source data. Various definitions
of schema mappings and their inversions exist, but in general we
still have an explicit specification of the target dataset, however, we
do not necessarily have any reference source as was the case in the
problems we’ve covered so far.

Abduction. Abduction [[15] 28] is a related problem where the
goal is to find hypothetical explanations for an observed conse-
quence. In the general case no reference source needs to be as-
sumed, but abduction techniques have also been linked to repairs (0]
and view updates [22]] (possibly classifying it in a different box).

Data Generation. In order to test correctness and performance
of algorithms and systems, synthetic data is often necessary, as it
allows arbitrary scale up, and exhaustive exploration of properties
and parameters that can not always be found in real data. Generat-
ing synthetic data with meaningful characteristics that sufficiently
resembles real data behavior is a very hard and challenging prob-
lem in database research ([21} |19, |8]]). In data generation, there
is usually no reference source data, but rather the data needs to
be generated from scratch, commonly based on specific statistics.
Some common statistics involve the size of relations, number of
unique attribute values, as well as correlations between them. A
valid solution to the data generation problem is source data that
satisfies all constraints given by the problem description. As op-
posed to the previous problem settings, the target here is implicitly
specified using statistics and constraints, rather than a fully defined
data instance.

Constraint-based Repair. In this problem we are given a source
database instance and a target constraint, such as a key constraint or
some conditional functional dependencies. The goal is to repair the
source data in order to satisfy the constraint [3]. While the source
data exists (reference source), there is no target data, instead there
is only a target constraint, so the target specification is implicit.

3. HOW-TO QUERIES

How-to queries are motivated from a related research problem
within the forward processing paradigm: what-if or hypothetical
queries [23||7]]. They use source and target data to ask questions of
the form “How would the output change for a given change in the
source?”. They are motivated by a variety of business applications
that require strategy evaluation and decisions. However, it is more
meaningful for such applications to be treated under the reverse
framework of how-to queries, i.e. “How should the input change in



order to achieve the desired output?”. Here, we give motivating ap-
plications for how-to queries, overview the challenges of this new
direction, and give some early suggestions for solutions.

3.1 Example Applications

A strong motivation for how-to queries comes from the domain
of business intelligence [[16} {14} 29]]. Key performance indicators
are commonly extracted from source data using complex aggregate
functions and those may be evaluated against different strategies.
Common questions in this domain are of the form “How could
we maintain revenue growth while still reduce risks (at least par-
tially)?”, “Should we increase sales volume by opening new sales
channels, or offer promotions, or both?”.

EXAMPLE 3.1 (PORTFOLIO ANALYSIS). An analyst at a bro-
kerage company wants to investigate strategies that could achieve
better returns and volatility of customer portfolios, based on the
company’s recommendations during the last three years. He would
like to receive a list of possible modifications to the company’s stock
recommendations, that would achieve the desired output in the cus-
tomer’s portfolios (e.g. 10% return). Out of all the possible scenar-
ios, the analyst wants to give preference to those that are closest to
the company’s current strategy as they would require fewer trades.

is a modification of an example that appears in
[[7]. Note the fundamental difference between this example and
the one geared towards hypothetical queries: in contrast with [/7]]
where the analyst manually selects relevant hypotheses for testing,
in our how-to setting the relevant scenarios are automatically se-
lected based on the specifications on the target data. Along with
the target restrictions on the portfolio returns, optimization criteria
can also be used to restrict the solution space (e.g. minimize the
number of trades). These are used to define a distance metric from
the reference source (the current portfolios), and pick the solution
closest to it.

EXAMPLE 3.2 (COMPANY REORGANIZATION). A software
company going through some financial strain hires consultants to
help reduce operational costs. The consultants may suggest lay-
offs, salary decreases, or department and project merging, within
certain constraints specified by the company’s requirements. For
instance, any salary decreases should be uniform across employees
of the same department, every project should have at least a certain
number of employee hours devoted to it, and the solution should be
achieved with the minimum number of employee reassignments.

How-to queries can be used to describe in an abstract way datasets
that satisfy a set of constraints, and can find applications in a variety
of domains beyond business intelligence tools.

EXAMPLE 3.3 (SHIPMENT CONSOLIDATION). A product sup-
plier receives orders for various products from different clients. He
would like to minimize costs by consolidating shipments to the same
client. However, the supplier needs to make sure that all orders ar-
rive within the agreed delivery window, and no shipment exceeds
the maximum order size.

EXAMPLE 3.4 (RESOURCE UTILIZATION). A system adminis-
trator has access to system logs of a server cluster with information
on resource allocation and utilization, and job arrival, execution,
and waiting times. During peak times within the day the system can
become overloaded, and job wait times reach undesirable highs.
The administrator wants to determine which machines in the clus-
ter should be kept in operation so that job wait times are bounded
by a small constant, and throughput remains high, while minimiz-
ing the operational cost of the cluster (there is a cost associated
with keeping a machine in operation).

As seen through our examples, how-to queries have implicit tar-
get specifications, and operate on a reference source. The target
specifications may be simple constraints on the target instance (e.g.
no salary should exceed $150Kk), or differential constraints that re-
strict the amount of modification from the current instance (e.g. no
salary should face more than 10% reduction). Commonly, an 0b-
Jjective function will be defined in relation to the source instance,
which defines a score for the feasible solutions, allowing us to pick
the one that minimizes or maximizes the criterion.

3.2 Challenges

Based on the motivation examples of we identify sev-
eral desiderata for the implementation of how-to queries:

e Support for defining simple target as well as differential con-
straints. For example, a cost may be defined based on a con-
stant value (e.g. < 10k), or in reference to a current cost
metric (e.g. 10% reduction in cost).

e Support for defining optimization criteria as objective func-
tions (e.g. minimize the number of required trades).

e Support value updates, as well as insertions and deletions to
the reference source data.

e Maintain declarativity, possibly through SQL extensions.

o Efficient evaluation. In order to be useful, how-to queries
should be computed efficiently.

We next discuss some first ideas on tackling these problems.

Language. It is natural to consider SQL extensions to support
how-to queries. The language should allow us to express con-
straints, objective functions, and the how-to query itself. We will
use as a reference point, and will give sample syn-
tax constructs that could describe it. We start with defining tar-
get constraints over the Portfolios relation containing among
other fields a unique custID for each customer, a curValue and
buyPrice for each transaction. The constraint will resemble asser-
tion declarations, and its function will be similar.

CREATE CONSTRAINT Constri
AS NOT EXISTS

(SELECT  sum(curValue) as v, sum(buyPrice) as p
FROM Portfolios

GROUP BY custID

HAVING v < 1.1%p)

The above constraint ensures that every customer receives a re-
turn of at least 10% on the total of their investments. As a simplifi-
cation we excluded trading costs.

Objective functions could be defined in a similar fashion, but de-
fine a minimization or maximization objective instead of a strict
constraint. The statement below is a simplified version of the ob-
jective of| Note the use of _O and _N, refering to “old”
and “new”, in reference to the relation Portfolios: when defin-
ing a differential constraint or objective that compares to the cur-
rent reference source, we need to differentiate between the original
source data (Portfolio_0) and the how-to result (Portfolio_N).

CREATE OBJECTIVE Obji1
AS SELECT count (*)
FROM ((SELECT distinct stock, custID
FROM (Portfolios_0 UNION Portfolios_N))
EXCEPT
(SELECT distinct 0.stock, 0.custID
FROM Portfolio 0 0, Portfolio N N
WHERE O0.stock=N.stock
AND 0.custID=N.custID))
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The objective above counts the total number of trades' required
to modify the reference source relation to a new candidate solu-
tion Portfolios_N. The analyst can then issue a how-to query as
follows:

HOW TO minimize(0bj1)
SUBJECT TO Comstril

There are further challenges relating to the language definition.
One important component is allowing the user to specify the types
and areas of permissible modifications. For example, a user may
only want solutions that modify a certain relation and not another,
or even restrict modifications to specific attributes. This is directly
related to the concept of endogenous and exogenous variables in-
troduced in [26].

Evaluation. A major challenge of how-to queries is making their
evaluation fast. A naive approach would be to generate multiple hy-
pothetical queries, evaluate those, and select as a solution the one
that satisfies the how-to constraints and is optimal based on the ob-
jective function. This straw man approach however is not expected
to get us far, as even the evaluation of hypothetical queries is itself
hard. We believe that the solution lies in the appropriate reduction
of a how-to query to a clean mathematical optimization problem
that can be solved with other existing techniques. Our recent work
on causality [27] (which is also a reverse data management prob-
lem), has shown that such reductions hold great potential as special-
ized SAT solvers have been optimized over the years to tackle even
hard problems very efficiently®. Specifically for how-to queries, we
will also need to study reductions to linear, integer, and quadratic
programming, as they are a basic component of constrained op-
timizations. Such a reduction will not be straightforward, as the
choice of variables, as well as the translation of the declarative ob-
jectives and constraints to mathematical equations is not obvious.

4. CONCLUSIONS

In this vision paper we discuss the paradigm of Reverse Data
Management, and identify problems that fall within this domain.
We provide insights on the similarities and differences of various
data management subfields within this context and identify a chal-
lenging new problem. We describe the concept of how-to queries,
establish a practical motivation, and introduce some first challenges,
as well as promising directions.
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