
Reverse Engineering Feature Models from

Software Configurations using Formal Concept

Analysis

R. AL-msie’deen1, M. Huchard1, A.-D. Seriai1, C. Urtado2 and S. Vauttier2

1LIRMM / CNRS & Montpellier 2 University, France
Al-msiedee, huchard, Seriai@lirmm.fr

2LGI2P / Ecole des Mines d’Alès, Nı̂mes, France
Christelle.Urtado, Sylvain.Vauttier@mines-ales.fr

Abstract. Companies often develop in a non-disciplined manner a set
of software variants that share some features and differ in others to meet
variant-specific requirements. To exploit existing software variants and
manage them coherently as a software product line, a feature model must
be built as a first step. To do so, it is necessary to extract mandatory
and optional features from the code of the variants in addition to as-
sociate each feature implementation with its name. In previous work,
we automatically extracted a set of feature implementations as a set of
source code elements of software variants and documented the mined
feature implementations based on the use-case diagrams of these vari-
ants. In this paper, we propose an automatic approach to organize the
mined documented features into a feature model. The feature model is a
tree which highlights mandatory features, optional features and feature
groups (and, or, xor groups). The feature model is completed with re-
quirement and mutual exclusion constraints. We rely on Formal Concept
Analysis and software configurations to mine a unique and consistent fea-
ture model. To validate our approach, we apply it on several case studies.
The results of this evaluation validate the relevance and performance of
our proposal as most of the features and their associated constraints are
correctly identified.

Keywords: Software Product Line, Feature Models, Software Product
Variants, Formal Concept Analysis, Product-by-feature matrix.

1 Introduction

To exploit existing software variants and build a software product line (SPL),
a feature model (FM) must be built as a first step. To do so, it is necessary to
extract mandatory and optional features in addition to associate each feature
with its name. In our previous work [1,2], we have presented an approach called
REVPLINE 1 to identify and document features from the object-oriented source
code of a collection of software product variants.

1 REVPLINE stands for RE-engineering Software Variants into Software Product
Line.

Dependencies between features need to be expressed via a FM which is a
de facto standard formalism [3,4]. A FM is a tree-like hierarchy of features and
constraints between them (cf. left side of Figure 1). FMs aim at describing the
variability of a SPL in terms of features. A FM defines which feature combi-
nations lead to valid products within the SPL (cf. right side of Figure 1). We
illustrate our approach with the cell phone SPL FM and its 16 valid product
configurations (cf. Figure 1) [5].

C
e
ll

P
h
o
n
e

W
ir
e
le

s
s

I
n
fr
a
r
e
d

B
lu

e
t
o
o
t
h

A
c
c
u

C
e
ll

S
t
r
o
n
g

M
e
d
iu

m

W
e
a
k

D
is
p
la

y

G
a
m

e
s

M
u
lt
i
P
la

y
e
r

S
in

g
le

P
la

y
e
r

A
r
t
if
ic

ia
l
O

p
p
o
n
e
n
t

P-1 × × × × × × × ×

P-2 × × × × × × × ×

P-3 × × × × × × × × ×

P-4 × × × × × × × ×

P-5 × × × × × × ×

P-6 × × × × × × ×

P-7 × × × × × × × × ×

P-8 × × × × × × × × ×

P-9 × × × × × × × × × ×

P-10 × × × × × × ×

P-11 × × × × × × × × ×

P-12 × × × × × × × × ×

P-13 × × × × × × × × × ×

P-14 × × × × × × × × × ×

P-15 × × × × × × × × × ×

P-16 × × × × × × × × × × ×

Fig. 1. Valid product configurations of cell phone SPL feature model [5].

Figure 1 shows the FM of the cell phone SPL [5]. The Cell Phone feature is
the root feature of this FM; hence it is selected in every program configuration.
It has three mandatory child features (i.e., the Accu Cell, Display and Games

features), which are also selected in every product configuration as their parent
is always included. The children of the Accu Cell feature form an exclusive-or

relation, meaning that the programs of this SPL include exactly one out of the
three Strong, Medium or Weak features. The Multi Player and Single Player

features constitute an inclusive-or, which necessitates that at least one of these
two features is selected in any valid program configuration. Single Player has
Artificial Opponent as a mandatory child feature. The Wireless feature is an
optional child feature of root; hence it may or may not be selected. Its Infrared
and Bluetooth child features form an inclusive-or relation, meaning that if a
program includes the Wireless feature then at least one of its two child features
has to be selected as well. The cell phone SPL also introduces three cross-tree
constraints. While the Multi Player feature cannot be selected together with
the Weak feature, it cannot be selected without the Wireless feature. Lastly, the
Bluetooth feature requires the Strong feature.

Galois lattices and concept lattices [6] are core structures of a data analy-
sis framework (Formal Concept Analysis) for extracting an ordered set of con-

cepts from a dataset, called a formal context, composed of objects described by
attributes. In our approach, we consider the AOC-poset (for Attribute-Object-
Concept poset) [7], which is the sub-order of the concept lattice restricted to
attribute-concepts and object-concepts. Attribute-concepts (resp. object-con-
cepts) are the highest (resp. lowest) concepts that introduce each attribute (resp.
object). AOC-posets scale much better than lattices. For applying Formal Con-
cept Analysis (FCA) we used the Eclipse eRCA platform2.

Manual construction of a FM is both time-consuming and error-prone [8],
even for a small set of configurations [9]. The existing approaches to extract
FM from product configurations [8,10] suffer from a lot of challenges. The main
challenge is that numerous candidate FMs can be extracted from the same input
product configurations, yet only a few of them are meaningful and correct, while
in our work we synthesize an accurate and meaningful FM using FCA. Moreover
the majority of these approaches extract a basic FM without constraints between
its features [11] while, in our work, we extract all kinds of FM constraints.

The remainder of this paper is structured as follows: Section 2 presents the
reverse engineering FM process step-by-step. Next, Section 3 presents the way
that we propose to evaluate the obtained FMs. Section ?? describes the ex-
perimentation and threats to the validity. Section 4 discusses the related work.
Finally, in Section 5, we conclude this paper.

2 Step-by-Step FM Reverse Engineering

This section presents step-by-step the FM reverse engineering process. According
to our approach, we identify the FM in seven steps as detailed in the following,
using strong properties of FCA to group features among product configurations.
The AOC-poset is built from a set of known products, and thus does not repre-
sent all possible products. Thus, the FM structure has to be considered only as a
candidate feature organization that can be proposed to an expert. The algorithm
is designed such that all existing products (used for construction of candidate
FM) are covered by the FM. Besides, it allows to define possible unused close
variants.

The first step of our FM extraction process is the identification of the AOC-
poset. First, a formal context, where objects are software product variants and
attributes are features (cf. Figure 1), is defined. The corresponding AOC-poset

is then calculated. The intent of each concept represents features common to
two or more products or unique to one product. As AOC-posets are ordered, the
intent of the most general (i.e., top) concept gathers mandatory features that
are common to all products. The intents of all the remaining concepts represent
the optional features. The extent of each of these concepts is the set of products
sharing these features (cf. Figure 2). In the following algorithms, for a Concept C,
we call intent(C), extent(C), simplified intent(C), and simplified extent(C)
its associated sets. Efficient algorithms can be found in [7].

The other steps are presented in the next sections.

2 The eRCA : http://code.google.com/p/erca/

Fig. 2. The AOC-poset for the formal context of Figure 1.

2.1 Extracting root feature and mandatory features

Algorithm 1 is a simple algorithm for building the Base node (cf. Figure 3).
Features in the top concept of the AOC-poset (Concept 16) are used in every
product configuration. The Cell Phone feature is the root feature of the cell
phone FM (line 5). Then a mandatory Base node is created (lines 8,9). It is
linked to nodes created to represent all the other features in the top concept,
i.e., Accu Cell, Display and Games (lines 12-16).

2.2 Extracting atomic set of features (AND-group)

Algorithm 2 is a simple algorithm for building AND-groups of features (exclud-
ing all the mandatory features, line 3). An AND-group of features is created (line
8) to group optional features that appear in the same simplified intent (test line
6), meaning that these features are always used together in all the product con-
figurations where they appear. Lines 12-16, nodes are created for every feature
of the AND-group and they are attached to an And node. For instance, Con-
cept 23 in Figure 2 has a simplified intent with two features, Single Player and
Artificial Opponent, leading to the And node of Figure 3.

2.3 Extracting exclusive-or relation

Features that form exclusive-or relation can be identified in the concept lattice
using the meet (denoted by ⊓) lattice operation [12], which amounts to compute

Algorithm 1: ComputeRootAndMandatoryFeature

1 // Top concept ⊤
2 ∃ F ∈ A, which represents the name of the soft. family with F in feature set of ⊤

Data: AOCK , ≤s: the AOC-poset associated with K

Result: part of the FM containing root and mandatory features
3 // Compute the root Feature
4 CFS ← intent(⊤)
5 Create node root, label (root) ← F, type (root) ← abstract
6 CFS′ ← CFS \ {F}
7 if CFS′ 6= ∅ then
8 Create node base with label (base) ← ”Base”
9 type (base) ← abstract

10 Create edge e = (root, base)
11 type (e) ← mandatory
12 for each Fe in CFS′ do

13 Create node feature, with label (feature) ← Fe

14 type (feature) ← concrete
15 create edge e = (base, feature)
16 type (e) ← mandatory

Algorithm 2: ComputeAtomicSetOfFeatures (and groups)

Data: AOCK , ≤s: the AOC-poset associated with K

Result: part of the FM with and groups of features
1 // Compute atomic set of features
2 // Feature List (FL) is the list of all features (FL = A in K=(O, A, R)).
3 FL′ ← FL \ CFS // FL \ intent(⊤)
4 AsF ← ∅
5 int count ← 1
6 for each concept C 6= ⊤ such that | simplified intent(C) | ≥ 2 do

7 AsF ← AsF ∪ simplified intent(C)
8 Create node and with label (and) ← ”AND”+ count
9 type (and) ← abstract

10 create edge e = (root, and)
11 type (e) ← optional
12 for each F in simplified intent(C) do

13 create node feature, with label (feature) ← F

14 type (feature) ← concrete
15 create edge e =(and, feature)
16 type (e) ← mandatory

the greatest lower bounds in the AOC-poset. If a feature A is introduced in
concept C1, a feature B is introduced in concept C2 and C1 ⊓ C2 = ⊥ (and
extent(⊥) = ∅), that is, if the bottom of the lattice is the greatest lower bound
of C1 and C2, the two features never occur together in a product. In our current

approach, we only build a single Xor group of features, when any group of
mutually exclusive features exists. Computing exclude constraints (see Section
2.6) will deal with the many cases where several Xor group of features exist
(a set of exclude constraints defining mutual exclusion is equivalent to a Xor

group).
Algorithm 3 is a simple algorithm for building the single Xor group of fea-

tures. The principle is to traverse the set of super-concepts of each minimum
elements of the AOC-poset and to keep the concepts that are the super-concepts
of only one minimum concept. Only features that are not used in the previous
steps are considered in FL” (line 2). Lines 6-10, in our example, we consider the
three minimum concepts Concept 11, Concept 12 and Concept 15. The many
SSC sets are the sets of super-concepts for Concept 11, Concept 12 and Con-
cept 15. Cxor is the set of all concepts, except Concept 11, Concept 12 and
Concept 15. Lines 11-15 only keep in Cxor concepts that do not appear in two
SSC sets. Cxor contains concepts number 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14,
19, 20 and 21. Line 16 eliminates Concept 19 which is not a maximum. As there
are three features (Medium, Strong, Weak, from Concept 21, Concept 20, and
Concept 2 respectively) that are in FL” and in the simplified intent of concepts
of Cxor (line 18), an Xor node is created and linked to the root (lines 19-26).
Then, on lines 27-33, nodes are created for the features and linked to the Xor

node. Figure 3 shows this Xor node.

2.4 Extracting inclusive-or relation

Optional features are features that are used in some (but not all) product con-
figurations. There are many ways of finding and organizing them. Algorithm 4
is a simple algorithm for building the Or group of features. In our approach, we
pruned the AOC-poset by removing the top concept, concepts that correspond to
AND groups of features, and concepts that correspond to features that form an
exclusive-or relation. The remaining concepts define features that are grouped
(lines 8-12) into an Or node (created and linked to the root on lines 4-7). In
the AOC-poset of Figure 2, the Wireless, Infrared, Bluetooth, and Multi Player

features form an inclusive-or relation (cf. Figure 3).

2.5 Extracting require constraints

Algorithm 5 is a simple algorithm for identifying require constraints. A require
constraint, e.g., saying ”variable feature A always requires variable feature B”,
can be extracted from the lattice via implications. We say that A implies B
(written A → B). The require constraints can be identified in the AOC-poset:
when a feature F1 is introduced in a subconcept of the concept that introduces
another feature F2, there is an implication F1 → F2. We only consider the
transitive reduction of the AOC-poset limited to Attribute-concepts (line 2) and
features that are in simplified intents (line 3-4). In the AOC-poset of Figure 2,
we find 6 require constraints from the transitive reduction of the AOC-poset to

Algorithm 3: ComputeExclusive-orRelation (Xor)

Data: AOCK , ≤s: the AOC-poset associated with K

Result: part of the FM with XOR group of features
1 // Compute exclusive-or relation
2 FL′′ ← FL′ \ AsFs
3 Cxor ← ∅
4 SSCS ← ∅ // set of super-concept sets
5 Minimum-set ← ∅
6 for each minimum of AOCK denoted by m do

7 Let SSC the set of super-concepts of m (except ⊤)
8 SSCS ← SSCS ∪ {SSC}
9 Minimum-set ← Minimum-set ∪ {m}

10 Cxor ← Cxor ∪ SSC

11 while SSCS 6= ∅ do
12 SSC-1 ← any element in (SSCS)
13 SSCS ← SSCS \ SSC-1
14 for each SSC-2 in SSCS do

15 Cxor ← Cxor \ (SSC-1 ∩ SSC-2)

16 Cxor ← Max(Cxor)
17 XFS ← ∅
18 if |Cxor| > 1 and |FL′′ ∩ ∪C∈Cxorsimplified intent(C)| > 1 then

19 Create node xor with label (xor) ← ”XOR”
20 type (xor) ← abstract
21 create edge e = (root, xor)
22 // if all products are covered by Cxor
23 if ∪C∈Cxorextent(C) = O then

24 type (e) ← mandatory

25 else

26 type (e) ← optional

27 for each concept C ∈ Cxor do

28 for each F in simplified intent(C) ∩ FL′′ do

29 create node feature, with label (feature) ← F

30 type (feature) ← concrete
31 create edge e = (xor, feature)
32 type (e) ← alternative
33 XFS ← XFS ∪ F

attribute-concepts (cf. Figure 3). Remark that implications ending to mandatory
features are useless because they are represented in the FM by the Base node.

2.6 Extracting exclude constraints

In our current proposal, we compute binary exclude constraints ¬(A∧B) under
the condition that A and B are not both linked to the Or group. To mine

Algorithm 4: ComputeInclusive-orRelation (Or)

Data: AOCK , ≤s: the AOC-poset associated with K

Result: part of the FM with OR group of features
1 // Compute inclusive-or relation
2 FL′′′ ← FL′′ \ XFS
3 if FL′′′ 6= ∅ then
4 Create node or with label (or) ← ”OR”
5 type (or) ← abstract
6 create edge e = (root, or)
7 type (e) ← optional
8 for each F in FL′′′ do

9 create node feature, with label (feature) ← F

10 type (feature) ← concrete
11 create edge e = (or, feature)
12 type (e) ← Or

Algorithm 5: ComputeRequireConstraint (Requires)

Data: ACK , ≤s: the AC-poset associated with K

Result: Require - the set of require constraints
1 Require ← ∅
2 for each edge (C1, C2) = e in transitive reduction of AC-poset do

3 for all f1, f2 with f1 ∈ simplified intent(C1) and f2 ∈ simplified intent(C2) do

4 Require ← Require ∪ {f1 −→ f2}

exclude constraints from an AOC-poset, we use the meet3 of the introducers of
the two involved features. For example, the meet of Concept 2 which introduces
Weak and Concept 22 which introducesMulti Player is the bottom (in the whole
lattice). In the AOC-poset they don’t have a common lower bound. We can
thus deduce ¬(Weak ∧ Multi P layer). In the AOC-poset of Figure 2, there
are three exclude constraints (cf. Figure 3). Algorithm 6 is a simple algorithm
for identifying exclude constraints. It compares features that are below the OR
group with each set of features in the intent of a minimum (line 4), in order to
determine which are incompatible: this is the case for a pair (f1, f2) where f1
is in the OR group and not in the minimum intent, and f2 is in the minimum
intent but not in the OR group (lines 6-10). Figure 3 shows the resulting FM
based on the product configurations of Figure 1.

3 in the lattice

Algorithm 6: ComputeExcludeConstraint (Excludes)

Data: AOCK , ≤s: the AOC-poset associated with K

Result: Exclude - the set of exclude constraints.
1 // Minimum-set from Algorithm 3
2 // FL′′′ from Algorithm 4
3 Exclude ← ∅
4 for each P ∈ Minimum-set do

5 Pintent ← intent(P) \ intent(⊤)
6 Opt-feat-set ← FL′′′ \ (FL′′′ ∩ Pintent)
7 Super-feat-set ← Pintent \ (FL′′′ ∩ Pintent)
8 if Opt-feat-set 6= ∅ and Super-feat-set 6= ∅ then
9 for each f1 ∈ Opt-feat-set, f2 ∈ Super-feat-set do

10 Exclude ← Exclude ∪ {¬(f1 ∧ f2)}

3 Experimentation

In order to evaluate the mined FM we rely on the SPLOT homepage4 and the
FAMA Tool5. Our implementation6 converts the FM that has been drawn us-
ing SPLOT homepage into the format of FAMA. Then, we can easily generate
a file containing all valid product configurations [13]. Figure 3 shows all valid
product configurations for the mined FM by our approach (the first 16 product
configurations are the same as in Figure 1). We compare the sets of configura-
tions defined by the two FMs (i.e., the initial FM compared to the mined FM).
The mined FM introduces 15 extra product configurations which correspond to
feature selection constraints that have not been detected by our algorithm.

Evaluation Metrics: In our work, we rely on precision, recall and F-measure

metrics to evaluate the mined FM. All measures have values in [0, 1]. If re-
call equals 1, all relevant product configurations are retrieved. However, some
retrieved product configurations might not be relevant. If precision equals 1,
all retrieved product configurations are relevant. Nevertheless, relevant product
configurations might not be retrieved. If F-Measure equals 1, all relevant prod-
uct configurations are retrieved. However, some retrieved product configurations
might not be relevant. F-Measure defines a trade-off between precision and re-
call, so that it gives a high value only in cases where both recall and precision are
high. The result of the product configurations that are identified by the mined
cell phone FM is as follow: (precision: 0.51), (recall : 1.00) and (F-Measure: 0.68).
The recall measure is 1 by construction, due to the fact that the algorithm was
designed to cover existing products.

4 SPLOT homepage : http://gsd.uwaterloo.ca:8088/SPLOT/
5 FAMA Tool Suite : http://www.isa.us.es/fama/
6 Source Code : https://code.google.com/p/sxfmtofama/

C
e
ll

P
h
o
n
e

W
ir
e
le

s
s

I
n
fr
a
r
e
d

B
lu

e
t
o
o
t
h

A
c
c
u

C
e
ll

S
t
r
o
n
g

M
e
d
iu

m

W
e
a
k

D
is
p
la

y

G
a
m

e
s

M
u
lt
i
P
la

y
e
r

S
in

g
le

P
la

y
e
r

A
r
t
if
ic

ia
l
O

p
p
o
n
e
n
t

P-17 × × × × ×

P-18 × × × × × ×

P-19 × × × × × × ×

P-20 × × × × × × ×

P-21 × × × × × × × ×

P-22 × × × × ×

P-23 × × × × × ×

P-24 × × × × × × ×

P-25 × × × × × × ×

P-26 × × × × × × ×

P-27 × × × × × × × ×

P-28 × × × × × × × ×

P-29 × × × × × × × ×

P-30 × × × × × × × × ×

P-31 × × × × × × × × ×

Fig. 3. The mined FM and its extra product configurations.

To validate our approach7, we ran experiments on 7 case studies: ArgoUML-
SPL [1], mobile media software variants [2], public health complaint-SPL8, video
on demand-SPL [8,3,14], wiki engines [10], DC motor [11] and cell phone-SPL
[5]. Table 1 summarizes the obtained results.

Results show that precision appears to be not very high for all case studies.
This means that many of the identified product configurations of the mined FM
are extra configurations (not in the initial set that is defined by the original FM).
Considering the recall metric, its value is 1 for all case studies. This means that
product configurations defined by the initial FM are included in the product
configurations derived from the mined FM. Experiments show that if the gener-
ated AOC-poset has only one bottom concept there is no exclusive-or relation
or exclude constraints from the given product configurations. In our work, the
mined FM defines more configurations than the initial FM. The reason behind
this limitation is that some feature selection constraints are not detected. Nev-
ertheless, the AOC-poset contains information for going beyond this limitation.
We plan to enhance our algorithm to deal with that issue, at the price of an
increase of complexity.

4 Related Work

For the sake of brevity, we describe only the work that most closely relates to
ours. The majority of existing approaches are designed to reverse engineer FM

7 Source code: https://code.google.com/p/refmfpc/
8 http://www.ic.unicamp.br/~tizzei/phc/

Table 1. The results of configurations that are identified by the mined FMs.

Group of Features CTCs Evaluation Metrics

case study N
u
m
b
er

o
f
P
ro
d
u
ct
s

N
u
m
b
er

o
f
F
ea
tu
re
s

B
a
se

A
to
m
ic

S
et

o
f
F
ea
tu
re
s

In
cl
u
si
v
e-
o
r

E
x
cl
u
si
v
e-
o
r

R
eq
u
ir
es

E
x
cl
u
d
es

E
x
ec
u
ti
o
n
ti
m
es

(i
n
m
s)

P
re
ci
si
o
n

R
ec
a
ll

F
-M

ea
su
re

1 ArgoUML-SPL 20 11 × × × 509 0.60 1.00 0.75

2 Mobile media 8 18 × × × 441 0.68 1.00 0.80

3 Health complaint-SPL 10 16 × × × × 439 0.57 1.00 0.72

4 Video on demand 16 12 × × × × 572 0.66 1.00 0.80

5 Wiki engines 8 21 × × × × × × 555 0.54 1.00 0.70

6 DC motor 10 15 × × 444 0.83 1.00 0.90

7 Cell phone-SPL 16 13 × × × × × × 486 0.51 1.00 0.68

from high level models (e.g., product descriptions) [10,14]. Some approaches of-
fer an acceptable solution but are not able to identify important parts of FM
such as cross-tree constraints, and-group, or-group, xor-group [11]. The main
challenge of works that reverse engineer FMs from product configurations ([8,3])
is that numerous candidate FMs can be extracted from the same input config-
urations, yet only a few of them are meaningful and correct. The majority of
existing approaches are designed to identify the dependencies between features
regardless of FM hierarchy [8]. Work that relies on FCA to extract a FM does
not fully exploit resulting lattices. In [11], authors rely on FCA to extract a ba-
sic FM without cross-tree constraints, while in [12], authors use FCA as a tool
to understand the variability of existing SPL based on product configurations.
Their work does not produce FMs. In our work, we rely on FCA to extract FMs
from the software configurations. The resulting FMs exactly describe the given
product configuration set. The proposed approach is able to identify all parts of
FMs.

5 Conclusion

In this paper, we proposed an automatic approach to extract FMs from software
variants configurations. We rely on FCA to extract FMs including configuration
constraints. We have implemented our approach and evaluated its produced re-
sults on several case studies. The results of this evaluation showed that the
resulting FMs exactly describe the given product configuration set. The FMs
are generated in very short time, because our FCA tool (based on traversals of
the AOC-poset) scales significantly better than the standard FCA approaches
to calculate and traverse the lattices. The current work extracts a FM with two
levels of hierarchy. As a perspective of this work, we plan to enhance the ex-
tracted FM by increasing the levels of hierarchy based on AOC-poset structure
and to avoid allowing the FM to represent extra configurations.

Acknowledgment The authors would like to thank the reviewers for their
valuable remarks that helped improve the paper. This work has been supported
by the CUTTER ANR-10-BLAN-0219 project.

References

1. Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., Vauttier, S., Salman, H.E.:
Mining features from the object-oriented source code of a collection of software
variants using formal concept analysis and latent semantic indexing. In: SEKE
’13. (2013) 244–249

2. Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., Vauttier, S.: Document-
ing the mined feature implementations from the object-oriented source code of a
collection of software product variants. In: SEKE ’14. (2014) 264–269

3. Acher, M., Baudry, B., Heymans, P., Cleve, A., Hainaut, J.L.: Support for reverse
engineering and maintaining feature models. In: VaMoS ’13, New York, NY, USA,
ACM (2013) 20:1–20:8

4. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE ’11, New York, NY, USA, ACM (2011) 461–470

5. Haslinger, E.N.: Reverse engineering feature models from program configurations.
Master’s thesis, Johannes Kepler University Linz, Linz, Austria (September 2012)

6. Ganter, B., Wille, R.: Formal concept analysis - mathematical foundations.
Springer (1999)

7. Berry, A., Gutierrez, A., Huchard, M., Napoli, A., Sigayret, A.: Hermes: a simple
and efficient algorithm for building the AOC-poset of a binary relation, Annals of
Mathematics and Artificial Intelligence (may 2014)

8. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Reverse engineering feature
models from programs’ feature sets. In: WCRE ’11, IEEE (2011) 308–312

9. Andersen, N., Czarnecki, K., She, S., Wasowski, A.: Efficient synthesis of feature
models. In: SPLC (1), ACM (2012) 106–115

10. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P.,
Lahire, P.: On extracting feature models from product descriptions. In: VaMoS
’12, New York, NY, USA, ACM (2012) 45–54

11. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal
contexts. In: SPLC ’11, New York, NY, USA, ACM (2011) 4:1–4:8

12. Loesch, F., Ploedereder, E.: Optimization of variability in software product lines.
In: SPLC ’07, Washington, DC, USA, IEEE Computer Society (2007) 151–162

13. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Inf. Syst. 35(6) (September 2010) 615–636

14. Lopez-Herrejon, R.E., Galindo, J.A., Benavides, D., Segura, S., Egyed, A.: Reverse
engineering feature models with evolutionary algorithms: An exploratory study. In:
SSBSE, Springer (2012) 168–182

	Reverse Engineering Feature Models from Software Configurations using Formal Concept Analysis
	Introduction
	Step-by-Step FM Reverse Engineering
	Extracting root feature and mandatory features
	Extracting atomic set of features (AND-group)
	Extracting exclusive-or relation
	Extracting inclusive-or relation
	Extracting require constraints
	Extracting exclude constraints

	Experimentation
	Related Work
	Conclusion

