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We propose a scheme to reverse-engineer gene networks on a
genome-wide scale using a relatively small amount of gene expres-
sion data from microarray experiments. Our method is based on the
empirical observation that such networks are typically large and
sparse. It uses singular value decomposition to construct a family of
candidate solutions and then uses robust regression to identify the
solution with the smallest number of connections as the most likely
solution. Our algorithm has O(log N) sampling complexity and O(N4)
computational complexity. We test and validate our approach in a
series of in numero experiments on model gene networks.

With recent advances in cDNA and oligonucleotide microarray
technologies (1), it has become possible to measure mRNA

expression levels on a genome-wide scale. Data thus collected
provide valuable descriptions of gene activities under various
biochemical (2) and physiological (3) circumstances and allow one
to reverse-engineer the gene networks, i.e., to infer the underlying
network structures from experimental measurements. However,
naturally occurring gene regulatory networks are embedded in
genomes that typically consist of thousands of genes. To extract the
topology of such networks and hence isolate the functional sub-
networks represents a computationally daunting task; it also re-
quires a very large amount of experimental data, which are expen-
sive to obtain.

To circumvent this problem of data deficiency, many current
research efforts have focused on clustering, i.e., grouping genes into
hierarchical functional units based on correlations in expression
patterns (3–8). This hierarchical approach has been fruitful in
identifying coregulated genes in certain functional units (3–6). It
has also been generalized to self-organizing maps (7) and super-
vised learning schemes (8) to cope with the sensitivity to noise and
other deficiencies intrinsic to hierarchical clustering (9), at the cost
of increasing computational cost. However, a fundamental short-
coming of such clustering schemes is that they are based on the
assumptions that: (i) gene regulatory networks are hierarchical in
structure (3–6), and (ii) genes performing related biological func-
tions exhibit similar expression patterns (and vice versa). These
assumptions may not always be valid. At a structural level, there are
data suggesting that gene regulatory networks are not strictly
hierarchical in nature; rather, they are interwoven like a web (10),
as in the cases of metabolic (11) and protein networks (12), with
multiple pathways for similar functions to provide redundancy to
protect against mutations and other deleterious effects (13). At a
dynamical level, mRNA and protein expression levels for certain
genes may not be correlated (14), suggesting a similar lack of strict
correlation between gene expression and function. Therefore,
although clustering is useful on a local scale to identify isola-
ted coexpressing units, it is not suitable for large-scale reverse
engineering.

Recently, there have been attempts to reconstruct models for
gene regulatory networks on a global, genome-wide scale using
ideas from system identification (15), such as genetic algorithms
(16), neural networks (17), and Bayesian models (18). Although
useful in specific contexts, these approaches are of restricted scope,
as they typically require a large amount of data and computation to
generate connectivity maps for large networks, such as those of
genomic scales. To overcome these problems of data shortage and

computational inefficiency, several researchers (19–22) have
adopted a linear model and have used singular value decomposition
(SVD) (23) to reverse-engineer the network architecture. As we will
explain in greater detail below, although SVD provides a useful and
condensed description of the data, it alone may not correctly
identify the connectivity matrix and therefore may not accurately
predict the behavior of the gene networks in response to novel
stimuli. The method of SVD has to be supplemented by extra
conditions, based on biological knowledge, to recover the network
topology correctly.

Here we propose such a scheme to identify the entire network
structure in gene regulatory networks on a genome-wide scale. Our
approach is built on previous work using SVD (19–22) and is based
on an insight provided by earlier studies on gene regulatory
networks (24, 25) and bioinformatics databases (11, 12), namely,
that gene networks in most biological systems are sparse. Thus, we
first use SVD to construct a family of candidate networks, all being
consistent with the experimental data, and then uses robust regres-
sion (26) to identify the sparsest network in this family as the most
likely solution. As such, our scheme has O(log N) sampling com-
plexity and O(N4) computational complexity. Much in the spirit of
systems biology (27), our goal is to extract the gene regulatory
networks on a global scale and to do so efficiently, in order to
identify individual subnetworks in a first draft of the topology of the
entire network, on which further, more local, analysis can be based.

Method
The method we propose to reverse-engineer gene networks consists
of two steps. We first use SVD to construct a set of feasible solutions
that are consistent with the measured data and then we use robust
regression to select the sparsest one as the solution.

For simplicity, we will consider only systems that are operating
near a steady state, so that the dynamics can be approximated by a
linear system of ordinary differential equations:

ẋi�t� � ��ixi�t� � �
j � 1

N

Wijxj�t� � bi�t� � �i�t� for i � 1, 2, . . . , N.

[1]

Here the xis are the concentrations of the mRNAs that reflect the
expression levels of the genes, the �is are the self-degradation rates,
the bis are the external stimuli, and the �is represent noise. The
matrix elements, Wijs, which are real numbers, describe the type and
strength of the influence of the jth gene on the ith gene, with a
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positive sign indicating activation, a negative sign indicating repres-
sion, and a zero indicating no interaction.

In an experiment, we can apply a prescribed stimulus (b1, b2, . . . ,
bN)T and use a microarray to measure simultaneously the concen-
trations of all of the N different mRNAs, i.e., (x1, x2, . . . , xN)T.
Repeating this procedure M times, we get M measurements and can
tabulate the results as

XN � M :� �
x1

1 x1
2 · · · x1

M

x2
1 x2

2 · · · x2
M

···
···

· · ·
···

xN
1 xN

2 · · · xN
M
�.

Here the subscript i indexes individual genes, and the superscript j
denotes experiment number. That is, xi

j is the concentration of the
ith mRNA for the jth trial, with similar notations for Ẋ and B. Then
we can rewrite Eq. 1 as

ẊN � M � AN � NXN � M � BN � M,

where we have neglected noise and absorbed the self-degradation
rates �is into the coupling constants Wijs to simplify notation. That
is, Aij :� Wij � �ij�i.

The goal of reverse engineering is to use the measured data B,
X, and Ẋ to deduce A and hence the connectivity matrix W. In this
context, we may take the transpose of the system and rewrite it as

�XT�M � N�AT�N � N � ��ẊT�M � N � �BT�M � N�

to emphasize the fact that A is the unknown. If M � N and X is
full-ranked, we can simply invert the matrix X to find A. However,
typically M �� N because of the high cost of perturbations and
measurements. We therefore have an underdetermined problem.
One way to get around this is to use SVD (23) to decompose XT into

�XT�M � N � UM � N�WN � N��VT�N � N,

where U and V are each orthogonal:

UT�U � VT�V � IN � N,

with I being the identity matrix, and W is diagonal:

W � �
w1 0 · · · 0
0 w2 · · · 0
···

···
· · ·

···
0 0 · · · wN

� .

Without loss of generality, we may assume that all nonzero elements
of wk are listed at the end, i.e., w1, w2, . . . , wL � 0 and wL�1, wL�2,
. . . , wN 	 0, where L :� dim(ker(XT)). Then one particular solution
for A is:

A � A0 :� �Ẋ � B��U�diag� 1
wj
���VT�, [2]

with 1�wj taken to be zero if wj � 0, whereas the general solution
is given by the affine space

A � A0 � C�VT, [3]

with C � (cij)N
N, where cij is zero if j � L and is otherwise an
arbitrary scalar coefficient. This family of solutions in Eq. 3
represents all the possible networks that are consistent with the
microarray data. Among these solutions, the particular solution A0
is the one with the smallest L2 norm.

This idea of using SVD to reverse-engineer gene networks with
a limited amount of data is not new (19–22). Nevertheless, these
earlier efforts stopped at Eq. 2 and took A0 as the solution, a choice

that may not always recover the connectivity matrix correctly, as we
shall see in Example 1.

Because SVD leads to nonunique solutions, we need additional
constraints to isolate the true solution from the entire family in Eq.
3. Many choices are possible, and the particular choice depends on
our knowledge of the biological system. For example, if we know a
priori that certain genes are functionally related, we may impose this
as a constraint to sieve through the family of solutions given by Eq.
3. Here we adopt the viewpoint that we have no prior knowledge
of the network. In such cases, we may rely on insights provided by
earlier works on gene regulatory networks (24, 25) and bioinfor-
matics databases (11, 12), which suggest that naturally occurring
gene networks are sparse, i.e., generally each gene interacts with
only a small percentage of all the genes in the entire genome. It is
in this global sense, on a genome-wide scale, that the entire
network, which encompasses all the individual gene regulatory
networks, is sparse; and it is this feature that we will exploit to
resolve the ambiguity introduced by SVD.

Because the family Eq. 3 represents all connectivity matrices that
are consistent with the measurement data, we may concentrate on
this set to look for the true connectivity matrix. Imposing sparseness
on the family of solutions given by Eq. 3 means that we need to
choose the coefficients cij to maximize the number of zero entries
in A. This is a nontrivial problem, because we do not know in
advance which entries are nonzero. As we shall see in Example 1,
the solution A0 as found by SVD alone may not be close to the true
solution. We therefore cannot assume that a small entry in A0
corresponds to a zero entry in the true solution (28). It is necessary
to explore the family of solutions in Eq. 3. Nonetheless, a brute-
force approach, enumerating all possibilities to see which choice will
lead to a self-consistent solution (29), is computationally costly as
it will take O(N!�(k!(N � k)!)) operations to solve a system of N
equations with k nonzero entries whose locations are unknown. A
more efficient method is needed for large N.

Our idea is to consider the dual problem, where we proceed as
if we could have all entries being zero, namely, setting A � 0 in Eq.
3 to obtain

C�VT � �A0,

which is an overdetermined problem as there are only NL variables
(cij for j � L), whereas there are N2 equations. In this context, the
solution A � A0, given by Eq. 2, is the closest solution in the L2
sense. However, that is not what we want. Instead, we want to satisfy
as many equations as possible. Viewed as such, our task is equiv-
alent to the problem of finding the exact-fit plane (30) in robust
statistics, where we try to fit a hyperplane to a set of points
containing a few outliers, with the objective being to pass through
as many points as possible. This is a well-studied problem, and many
methods have been developed to do this, each with its merits and
shortcomings (26). Here we have chosen L1 regression (31), where
the figure of merit is the minimization of the sum of the absolute
values of the errors, for its efficiency. Among the many numerical
algorithms for L1 regression, we have adopted the simplex method
in refs. 32 and 33 for its simplicity. This algorithm takes approxi-
mately O(pn2) computations to solve a regression problem with n
data points and p parameters (31). Here we have n � N and p �
L � N � M for each row in Eq. 3. This relation implies that more
experimental data points can relieve the burden on computation,
whereas a small set of experimental data points will demand more
computations to resolve the uncertainty. Because experiments are
much more expensive than computations, it is desirable to reduce
M even though that will increase p. As we shall demonstrate in the
in numero experiments below, it is possible to reverse-engineer
networks with M � O(log N) experimental measurements. In such
cases, we have M �� N and so p � O(N). It therefore takes O(N3)
computations to reconstruct one row of the connectivity matrix,
and the recovery of the entire matrix is an O(N4) process.
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In Numero Experiments. In this section, we report on three numerical
experiments that we have conducted to test our reverse engineering
scheme. In the first experiment, we calibrated the scheme using a
large sparse linear system. In the second experiment, we applied the
scheme to a nonlinear model for a cascade of repressors. In the third
experiment, we tested the scheme with a large sparse nonlinear
network consisting of both activators and repressors. As we shall
show, in all three cases, we were able to recover the network
connectivity using a small number (compared to the network size)
of measurements even in the presence of noise.

Example 1: A large sparse linear network. In this first experiment,
we considered a linear system governed by Eq. 1. To generate the
connectivity matrix W, we proceeded row by row. For each row, we
randomly picked an integer k from a power-law distribution with a
cutoff (12) at kmax with kmax �� N. We then randomly selected k
entries and assigned each of them a nonzero value randomly chosen
from a uniform distribution. The condition kmax �� N ensures
sparseness.

To test the reverse engineering scheme, we perturbed the system
1 with transient random perturbations bi(t). While the system was
relaxing back to the steady state, we took measurements for X and
estimated Ẋ by linear interpolation. We repeated this process M
times to collect M data points and applied the reverse engineering
scheme to attempt to reconstruct the connectivity matrix. The
connectivity matrix thus reconstructed, denoted by AR, was then
compared with the true connectivity matrix AT � W � , entry by
entry. Specifically, we measured the error by counting the number
of discrepancies:

E :� �
i � 1

N �
j � 1

N

eij, [4]

where

eij :� �1 if �AR,ij � AT,ij� 	 �
0 otherwise; ,

with � being some prescribed small value for error tolerance, which
was chosen in accordance with the noise level. We emphasize the
importance of considering the difference AR � AT directly when
calibrating a reverse engineering scheme. Demonstrating that AR,
when substituted back into Eq. 1, reproduces the experimental data
closely (19–22) is insufficient, as this amounts to showing that the
residual 	ARx � b � ẋ	 is small. But a small residual does not imply
an accurate solution, especially when ill-conditioned equations are
involved (34), which is the case here as we are attempting to invert

nonsquare matrices by SVD. An AR that leads to a small residual,
although faithfully describing the experimental data, may not
correctly predict the network’s response to novel stimuli.

The results from one such experiment are depicted in Fig. 1. For
small M, there are many errors in the reconstruction, but the
number of errors E drops rapidly as M increases. A more detailed
study where we kept track of the eijs row by row revealed (data not
shown) that our algorithm recovers sparser rows earlier than less
sparse rows as the number of measurements M increases. This result
suggests the possibility of partially recovering gene networks even
with a very small amount of data; we shall not pursue this idea here
and shall concentrate on the recovery of entire networks.

We have also plotted in Fig. 2 the smallest number of measure-
ments, Mc, that are needed to recover the entire N 
 N matrix
correctly, i.e., with E � 0. It reveals that Mc � O(log N). This data
requirement is maximally efficient, as the minimum number of
measurements needed to recover the entire matrix is bounded by
the information content in the matrix, which is conjectured (17) to
be Mc � �(k log(N�k)).

For comparison, we attempted to reverse-engineer the network
using SVD alone (19–22), without imposing sparseness by robust
regression, i.e., by taking A0 in Eq. 2 as the solution. We found that
we could recover the connectivity matrix only when we had a large
number of measurements (M 
 0.99N) (Fig. 3). For small M, we

Fig. 1. Number of errors, E, made by the reverse engineering scheme as a
functionofM, thenumberofmeasurements, for four linearnetworksof theform
1 with different sizes N.

Fig. 2. Critical number of measurements, Mc, required to recover the entire
connectivity matrix correctly, versus N, the size of the network for linear systems
oftheform1.Circles:numericaldata.Line: least-squaresfitoftheformMc � a �

b log N.

Fig. 3. Number of errors, E, made by SVD alone (without the imposition of
sparseness) as a function of M, the number of measurements, for four linear
networks of the form 1 with different sizes N.

Yeung et al. PNAS � April 30, 2002 � vol. 99 � no. 9 � 6165

G
EN

ET
IC

S



found that AR was far from AT, although the AR thus found could
reproduce the time series data.

Example 2: A repressing cascade. In this second in numero
experiment, we considered a one-dimensional cascade of genes,
each of which is induced by an external stimulus and repressed by
an immediate neighbor, as illustrated in Fig. 4. This system can be
modeled by the following nonlinear system of ordinary differential
equations (35, 36):

d
dt

ui � ��iui �
�i

1 � ui � 1
�i � �i�t�, for i � 1, 2, . . . , N,

[5]

where ui is the concentration of the ith mRNA, �i is the degradation
rate of the ith mRNA, �i is the synthesis rate of the ith repressor,
�i is the repression cooperativity of the ith repressor, and �i(t)
represents noise. Here we adopt the convention that u0 � 0.

In the absence of noise, Eq. 5 has a unique stable fixed point,
given recursively by

u*i �
1
�i
� �i

1 � u*i � 1
�i� , for i � 1, 2, . . . , N. [6]

Near this steady state, the dynamics is governed by the linearization
1 with xi � ui � u*i, bi � 0, and

Wij �
��i�iu*i � 1

�i � 1

�1 � u*i � 1
�i�2 �i � 1,j.

As in Example 1, to test the reverse engineering scheme, we
repeatedly perturbed the system 5 from the steady state 6 with
transient small random perturbations and took measurements
while the system was relaxing back to the steady state. We
iterated this process M times to collect M data points and applied
our reverse engineering scheme to attempt to reconstruct the
connectivity matrix. For small M, there are many errors in the
reconstruction, but the number of errors E, as defined in Eq. 4,
drops rapidly as M increases (Fig. 5). In particular, with the
parameter values chosen, we could recover the entire connec-
tivity matrix correctly with M  Mc � 70 �� N � 400.

We emphasize the importance of keeping the system close to a
steady state for the reverse engineering scheme presented here to
be applicable. We have tried applying large perturbations to the
system 5 so that the dynamics is far from equilibrium, i.e., u is no
longer close to u*, as may occur during development, disease,
injury, or certain genetic or biochemical perturbations. In these
cases, we could not recover the connectivity matrix even with a large
(�N) number of measurements. This failure is not surprising, given
that under such conditions the linearization 1 is no longer valid. In
such cases, we need a nonlinear model to capture the dynamics and
to recover the connectivity topology.

Example 3: A large sparse gene network. In this third in numero
experiment, we considered a random network of genes. Each gene
is induced by an external stimulus while also activated and repressed
by other genes that are randomly chosen from a power-law distri-
bution with a cutoff kmax �� N, as in Example 1. This system is
illustrated in Fig. 6. Assuming that different regulatory effects do
not interfere with one another, we can model the system by
the following nonlinear system of ordinary differential equations
(35, 36):

d
dt

ui � ��iui �
�i � �j � Ai

uj
�ij

1 � �j � Ai
uj

�ij � �k � Ri
uk

�ik
� �i�t�,

for i � 1, 2, . . . , N, [7]

where ui is the concentration of the ith mRNA, �i is the degradation
rate of the ith mRNA, �i is the synthesis rate of the ith mRNA, �ij

is the activation cooperativity of the jth gene on the ith gene, �ik is
the repression cooperativity of the kth gene on the ith gene, and �i(t)
represents noise. The sets Ai and Ri, whose cardinalities obey a
power-law distribution, specify the genes that activate or repress,
respectively, the ith gene.

Unlike Example 2, here we were unable to find the steady states
analytically; we could not even ascertain analytically whether a
steady state exists. We therefore resorted to numerics. By following
the dynamics directly with numerical integration, we found that a
stable fixed point exists for certain choices of parameters. Near a
steady state u*, the dynamics is governed by the linearization 1 with
xi � ui � u*i, bi � 0, and

Wij �
�iju*j�ij � 1

1 � �l � Ai
u*l�il � �k � Ri

u*k�ik

�

��i � �l � Ai
u*l�il� ��iju*j�ij � 1 � �iju*j�ij � 1�

� 1 � �l � Ai
u*l�il � �k � Ri

u*k�ik� 2 .Fig. 5. Number of errors, E, made by the reverse engineering scheme as a
function of M, the number of measurements, for the repressing cascade 5 with
N � 400 genes.

Fig. 6. Schematic of a nonlinear gene network with a random structure.

Fig. 4. Schematic of a one-dimensional gene network with a cascade structure.
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As before, to test the reverse engineering scheme, we repeatedly
perturbed the system 7 from a steady state with transient small
random perturbations and took measurements while the system was
relaxing back to the steady state. Repeating this process M times,
we obtained M data points and applied our reverse engineering
scheme to attempt to reconstruct the connectivity matrix. For small
M, there are many errors in the reconstruction, but the number of
errors E, as defined in Eq. 4, drops rapidly to zero as M increases
(data not shown), indicating that we can elucidate the whole
network correctly with a small number of measurements. As Fig. 7
shows, the smallest number of measurements, Mc, that are needed
to recover the entire N 
 N matrix again scales logarithmically with
N, i.e., Mc � O(log N).

Discussion
We have proposed a reverse engineering scheme suitable for global
reconstruction of gene networks, which are large and sparsely
connected on a genome-wide scale. Our algorithm requires O(log
N) sample points and O(N4) computations. We have tested and
validated our scheme in three in numero experiments. In this
section, we compare our method with other reverse engineering
schemes. We also discuss how our scheme can be improved and
generalized.

One method to reverse-engineer gene networks is to use genetic
algorithms (16), which allow network models to evolve under
selective pressure in an attempt to fit the data. A related idea is to
train neural networks (17) to learn the network topology. However,
these approaches are of restricted scope, as they typically require an
unrealistically large amount of data and computation to generate
connectivity maps for large networks. Similarly, Bayesian models
(18), although useful for evaluating the likelihood of a particular
hypothesis and for identifying the most likely network from a small
set of competing candidate models, are inefficient if used to
reconstruct network architectures de novo for networks of genomic
scales. In comparison, adopting a linear model and then using SVD
to reverse-engineer the network architecture (19–22) is more
efficient in terms of both data requirement and computation. The
SVD method attempts to reconstruct the networks directly from
experimental data without prior knowledge of their structures and
is therefore useful in generating a first draft of the network topology
in novel situations. Nonetheless, one has to use SVD with care to
get biologically meaningful results. What SVD does is to provide a
family of candidate networks that are consistent with the microarray
data. It does not identify which one of those candidates is the correct
solution. The solution with the smallest L2 norm may not corre-
spond to the real structure, as discussed in Example 1. We therefore

have to amend the SVD method with some additional criteria to
select the most likely solution. We have proposed using the sparse-
ness of the networks as one such criterion. Our numerical experi-
ments have shown that this amended method can recover the
network topology correctly, using O(log N) sample points and
O(N4) computations.

One attractive feature of our reverse engineering scheme is that
it can be easily parallelized, as it recovers the connectivity matrix
row by row, with mutually independent operations. Moreover, if we
focus on a particular gene, it takes O(NM2) computations to
perform SVD and then O(N3) computations to impose sparseness
to find the elements that are immediately regulating this particular
gene. Successive iterations then identify upstream genes layer by
layer (Fig. 8) without solving for the entire network, which requires
O(N4) computations. Such a recovery process allows rapid eluci-
dation of pathways that lead to the particular gene under study,
identifying its regulating genes as potential drug targets for phar-
maceutical purposes.

Nevertheless, our reverse engineering scheme has a counter-
intuitive feature. Although efficient in recovering the architectures
of large networks, it is less efficient for small networks, requiring
almost as many measurements as the number of genes to recon-
struct the network topology, because the notion of sparseness is
relative and is ill-defined for small networks. In a network with only
a few genes, even if each gene is interacting with a small number of
genes, it is still interacting with a significant portion of the network.
Thus, the network may no longer be regarded as sparse. We have
been unable to quantify this notion of sparseness and to pinpoint the
critical size of a network as a function of the average number of
connections. This issue is related to the concept of exact-fit point
(30) in L1 regression and has been solved only under very specific
conditions governing the sample points. As a rule of thumb, our
numerical experiments suggest that if the average number of
connections is fewer than 10, which is a reasonable estimate for
biological systems (24, 25), then our algorithm starts to show its
efficiency when the network size is larger than 200 genes or so. As
a consequence, our method is useful for rapidly furnishing on a
global scale a first draft of the topology of the entire network that
encompasses all of the gene regulatory networks in naturally
occurring genomes but is not suitable for fine-tuning to improve the
local resolution of small subnetworks that govern individual bio-
logical functions. To extract these local features to build biologically
meaningful models for the various genetic and biochemical path-
ways, we need to integrate our method with other statistical
methods and experimental data (27). Such methods may include
using Bayesian networks to verify the likelihood of the paths (18)

Fig. 7. Critical number of measurements, Mc, required to recover the entire
connectivity matrix correctly, versus N, the size of the network for nonlinear
systems of the form 7. Circles: numerical data. Line: least-squares fit of the form
Mc � a � b log N.

Fig. 8. Layer-by-layer recovery of network topology. Focusing on Gene 1, we
can identify Genes 2 and 3 as the immediate upstream elements directly regu-
lating Gene 1, and then Genes 4, 5, and 6 as next-immediate upstream elements
indirectly regulating Gene 1.
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or probing the networks iteratively to gain more information (J.T.,
M.K.S.Y., J. Hasty, and J.J.C., unpublished work).

As for the data, we may need to incorporate the activities of
proteins (14, 37, 38) in addition to the mRNA expression levels. Our
scheme is applicable to protein networks as well, because they are
also sparsely connected large networks (38). Advances in experi-
mental techniques have provided proteomic data on a massive scale
and have sparked attempts to reverse-engineer protein networks
(37–39). Most of these reverse engineering methods are based on
clustering (40) and suffer from the same drawbacks as the clustering
schemes for reverse engineering gene networks, as noted earlier.

One potential drawback of our scheme is that it requires data on
time derivatives (Ẋ in Eq. 2), which can be difficult to obtain
especially in the presence of noise. However, with careful instru-
mentation (41) and statistics (42), it is possible to estimate the gene
expressions relatively accurately by repeating microarray measure-
ments only a small number of times. The large number of gene
expressions per microarray provides the large number of samples to
avoid small-sample biases for reliable estimation of the noise
parameters. We conjecture that a similar approach can be used to
obtain reasonable estimates of the time derivatives of the gene
expressions. In our in numero experiments, we adopted an unso-
phisticated approach, where we measured only the gene expressions
X, and then estimated the time derivatives Ẋ by linear interpolation.
Even with such naı̈veté, we could correctly reverse-engineer the
network architectures, as demonstrated in the in numero
experiments.

There is considerable theoretical work that can be done to
improve our method, both algorithmically and in terms of modeling.
On the algorithmic side, there is much to investigate regarding how
to impose sparseness. For convenience we have adopted the
simplex method from refs. 32 and 33 to solve the L1 regression
problem. This computational algorithm may not be the most
efficient one given our unconventional situation, with the number
of regression parameters being approximately N � M, which
increases linearly with the number of data points N. Other methods,
such as interior point methods (43) may be worth considering.
Indeed, minimizing the L1 norm may not be the optimal way to
unmask the outliers. Many different methods, such as least median
of squares and least trimmed squares, have been proposed as
alternatives (26). It is as yet unclear which of these methods is best
suited for the task at hand. This promises to be a rich problem in

robust statistics. Another idea that we may borrow from the study
of robust statistics is to use designed experiments rather than
random sampling to achieve higher exact-fit points (30), which
translate into smaller numbers of measurements to recover the
connectivity matrix. This construction can be experimentally real-
ized by using genetic toggle switches (44) to perturb the gene
networks systematically. A similar idea has been exploited (in J.T.,
M.K.S.Y., J. Hasty, and J.J.C., unpublished work) to reverse-
engineer gene networks.

On the modeling side, for simplicity we have adopted Eq. 1, a
deterministic linear system of ordinary differential equation with
constant coefficients, to model gene networks. We have neglected
the effects of nonlinearities, noise, time delays (45), and combina-
torial effects (46). Another complication is that network connec-
tivity can change dynamically in response to changes in the exper-
imental conditions, as proteins and metabolites are synthesized or
destroyed to create or block pathways. It is futile to try to capture
such a dynamically changing network by using a static model.
Instead, we have to adopt a dynamical model with time-dependent
matrix elements Wij(t) in Eq. 1. Similarly, we can combine time
series data from different experiments only if the data are obtained
under comparable conditions, and in particular, with the system
operating near the same steady state. Otherwise, the system may
be governed by ẋ � Cx in one case and by ẋ � Dx in another, with
C 	 D, so that we cannot capture all the data by using one model
ẋ � Ax.

We expect that our reverse engineering scheme will be useful for
reconstructing gene networks on a genome-wide scale when more
experimental data become available. Because the number of sam-
ple points that are needed to recover the network scales logarith-
mically with the size of the network, we expect to be able to recover
the network topology of real genomes, which consist of O(104)
genes, with several hundred measurements instead of tens of
thousands of measurements. This amount of data should be ob-
tainable in the near future as the cost of experimental data
collection drops (1, 47).
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