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Background

�e aim of gene regulatory network (GRN) research is to explain comprehensively the 

generation process and complex regulatory relationships of genes and their products 

in biological tissues from the perspective of system scale [1–3]. GRN is an important 

way to cope with various internal and external stimuli by synergizing the functions of 

genes. GRN is a complex continuous and dynamic system, in which gene regulation is 

a dynamic event that changes with time and environment [4–6]. Gene expression data 
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could reflect the regulatory orders of genes and the important information of regula-

tory objects [7]. With the development of DNA microarray or chip technology, a large 

amount of gene expression profiles have been generated, which provide a condition for 

identifying gene regulatory networks using computational models [8–10].

Some computational approaches have been developed to describe biology networks 

[11–17], especially the regulatory relationships between genes with gene expression 

time series, such as directed graph [18], Boolean network [3, 19], Bayesian network [20, 

21], differential equation [22], neural network [23–25], stochastic equation [26, 27], etc. 

Differential equation model is more conducive to describing the concentration evolution 

of biological macromolecules such as RNA and protein over time. �erefore, this model 

has been widely utilized in pharmacokinetics, enzymology and gene regulatory network 

construction [28–33]. For each target gene, its corresponding differential equation is 

identified, in which the dependent variables (genes) indicate the corresponding regula-

tory factors of target gene. Hohm and Zitzler resolved the issue of how to optimize the 

parameters of ordinary differential equation (ODE) for GRN inference [34]. Tian et al. 

proposed stochastic delay differential equations to describe the time-delayed regula-

tory relationships in GRN [35]. Gebert and Jong proposed piecewise linear differential 

equation to identify the most relevant regulating interactions in GRN [36, 37]. Zhang 

et al. proposed single-index ODE model and clipped absolute deviation penalty penal-

ized function to infer network structure [38]. Matsumoto et al. proposed ODE models to 

identify GRN with single-cell RNA-Seq data [39]. Some special nonlinear ODE models 

also have been proposed to infer GRN, such as S-system model [40–42].

Recently the complex versions of many models have been proposed due to their poten-

tial to optimize more easily, better generalization characteristics, faster learning and 

higher noise-robust memory mechanisms [43–45]. You and Hong presented multilayer 

feedforward neural network (MFNN) with complex-valued activation function to model 

QAM signals of different constellation sizes [46]. Deng et al. also proposed complex-val-

ued radial basis function neural network (CVRBFNN) to deal with QAM signals and the 

results showed that CVRBFNN performed better than functional link artificial neural 

network [47]. Hu et al. discussed the global stability of the complex-valued and delayed 

version of recurrent neural network [48]. Trabelsi et al. proposed complex-valued con-

volutional feed-forward networks [49]. Yang et  al. proposed a novel complex-valued 

method based on mathematical expression to resolve real-valued prediction and clas-

sification problems [50].

In order to forecast gene expression data and identify GRN accurately, complex-valued 

ordinary differential equation (CVODE) is presented in this paper. Grammar-guided 

genetic programming (GGGP) is utilized to evolve the structure of CVODE and com-

plex-valued firefly algorithm (CFA) is proposed to search the optimal complex-valued 

parameters of model. �ree real gene expression datasets are applied to test the infer-

ence performances of our proposed methods.

Results and discussion

�ree real gene expression data sets are utilized to test the performance of our proposed 

method. All the real gene expression data need to be normalized, which is defined as 

follows.
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where gmin and gmax are the minimum and maximum of dataset, respectively.

In our experiment, ODE and CVODE models are both applied to predict gene expres-

sion data and infer gene regulatory networks with three real gene expression datasets. 

Our proposed hybrid evolutionary algorithm is utilized to infer ODE and CVODE mod-

els and the parameters are the same. In GGGP, population size is set to 50, crossover rate 

is set to 0.9 and mutation rate is set to 0.1. In CFA, population size is set as 100, and step 

size is set as 0.02. �e parameters are selected according to previous research results 

[51–53]. Sensitive ( Sn ) and Specificity ( Sp ) are utilized to evaluate the inferred gene reg-

ulatory networks. Sn represents the proportion of the positive samples to be identified 

correctly in all positive ones. Sp denotes the proportion of the negative samples to be 

identified correctly in all negative ones.

SOS DNA repair network

SOS DNA damage repair network is selected as the first real gene regulatory network, 

which contains six main genes (uvrD, lexA, umuD, recA, uvrA and polB). �e real 

structure of SOS DNA damage repair network is depicted in Fig. 1. �e gene expression 

data used in this experiment are from Uri Alon [54, 55]. �e DNA repair process of E. 

coli is observed by ultraviolet irradiation. �e expression levels of six genes at different 

time points are measured.

�e datasets from the first three experiments are utilized to optimize the CVODE 

models. �e last dataset is utilized to test. With hybrid evolutionary algorithm the cor-

responding CVODE models of six genes are described as follows. Variables x1, x2, . . . , x6 

represent six genes: uvrD, lexA, umuD, recA, uvrA and polB, respectively.

ODE models are also utilized to infer SOS network. �e predicted results of ODE and 

CVODE for six genes are depicted in Fig. 2. From Fig. 2, it could be seen that the results 

of CVODE predicted are closer to real ones than ODE. In order to compare clearly, the 

prediction RMSE values of ODE and CVODE for six genes are listed in Table 1, which 

reveals that CVODE model has smaller prediction RMSE values than ODE for six genes. 

On average CVODE could decrease 34.4% RMSE value.

(1)g ′
=

g − gmin

gmax − gmin

(2)

dx1

dt
= (−0.1523 - 0.1507i)

x1

x5
+(−2.4023 + 0.0498i) × (x1−x6) + (0.2349 + 0.1709i)x2

dx2

dt
= (0.3382 + 3.3836i) × (1−x1) + (4.4767 + 0.0309i)x6+(0.0773 - 0.0837i) × cos(x4−x2)

dx3

dt
= (0.222 + 0.8159i)x3x1+(0.906 + 1.638i)cos(x3) + (0.6876 - 0.514i) × (x2+x1)

dx4

dt
= (4.396 + 2.799i) × (2x2−x6) + (−9.0003 + 2.4687i) × (

x1

x4
)2+(−7.023 + 10.339i)

× (cos(x3)−x3) + (−3.2559 + 2.3771i) × (x4−
x6

x4
) + (0.4655 - 0.1199 i)cos(x1−x5)

dx5

dt
= (−0.2329 + 0.7256i)cos(sin(x1)) + (0.7061 + 0.0325i)cos(x5−x2) + (0.0241 - 0.5961i)cos(cos(x3))

dx6

dt
= (0.0461 + 0.0237i)x3x2−(0.2843 + 0.0345i)x36
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Fig. 1 SOS DNA repair network

Fig. 2 The prediction results of 6 genes in SOS network. The black lines represent the real gene expression 
data, while the blue lines and red lines denote the forecasting results by ODE and CVODE models, 
respectively

Table 1 Prediction RMSE values of ODE and CVODE for six genes

The ‘bold values’ represent the better results between two methods

Genes ODE CVODE

uvrD 0.014345 0.007601

lexA 0.075643 0.072955

umuD 0.017476 0.008536

recA 0.164121 0.076576

uvrA 0.168299 0.122481

polB 0.004601 0.003229

Averaged 0.074081 0.048563
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In order to test the modeling performance of CVODE further, the fitness values of 

ODE and CVODE against generations are plotted in Fig. 3. From Fig. 3, we can see 
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Fig. 3 Fitness values vs generations

Fig. 4 The construction of SOS network by ODE (a) and CVODE (b). The solid lines denote the real 
regulations, while the dotted lines represent the false relationships

Table 2 Performances of ODE and CVODE for construction of SOS network

The ‘bold values’ represent the better results between two methods

Methods Sn Sp

CVODE 1 0.4138

ODE 0.7143 0.3793
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that the hybrid evolutionary algorithm could search the optimal CVODE model with 

about 20 generations, while the optimal ODE model is found with about 50 genera-

tions. �us CVODE model has smaller fitness value and gains the optimal solution 

with fewer generations than ODE model.

�e inferred SOS networks by ODE and CVODE are depicted in Fig. 4. Compared 

Fig. 1 with Fig. 4, it could be seen that CVODE model could identify 7 true-positive 

(real) regulations and 17 false-positive regulatory relationships, while ODE model 

could identify 5 true-positive relationships and 18 false-positive relationships. �e 

performances of Sn and Sp of SOS networks inferred by ODE and CVODE are listed 

in Table  2. In terms of Sn , CVODE is 39.99% higher than ODE. In terms of Sp , our 

method is 9.1% higher than ODE. �e results reveal that our method could identify 

all true-positive regulatory relationships and less false-positive regulations than ODE 

model.

Human cell time-series data

Cell cycle refers to the whole the process from the beginning of one cell division to the end 

of the next division. �e second real gene expression time series data are from the genes 

periodically expressed, which were supplied by Whitfield [56]. �e experiment includes five 

periods and 1134 genes. �e sub dataset extracted in this part includes five genes and 46 

time points, in which the first 40 time points are utilized to search the optimal CVODE 

models and the rest time points are utilized to test the performance. By applying our 

method, we have obtained the following CVODE models. Variables x1, x2, . . . , x5 represent 

five genes, respectively.

�e prediction errors of ODE and CVODE are depicted in Fig. 5, which reveals that the 

prediction errors of CVODE are closer to zero than ones of ODE. �e predicted RMSE 

values of ODE and CVODE are listed in Table 3. For the predicted results of five genes, 

CVODE has smaller prediction RMSE values than ODE, which show that CVODE could 

more accurately predict gene expression data. On average CVODE could decrease 49.07% 

RMSE value.

(3)

dx1

dt
= (0.2366 + 4.2126i) × (x5+x2) − (1.0667 - 0.0343i)x24−(4.9572 - 2.8702i)

x3x5+(6.5323 - 0.7549i)x3−(4.3955 + 0.5311i) × (x1−x4)

dx2

dt
= (1.5138 + 11.009i) × (x5−x4) − (6.201 + 5.4258i)x3+(2.0535 + 0.2076i)

× (x1+x3) − (3.7539 - 4.6864i)cos(x3)

dx3

dt
= (2.7072 + 3.5088i)

x4

x1
−(3.3836 + 0.1783 i) × (x4−x3) − (0.941 + 0.5496i)

× cos(x3) + (2.8053 + 3.0456i)x4

dx4

dt
= (−0.029 - 2.7968i)sin(x5) + (4.5367 + 5.986i)sin(x1) − (4.9878 + 0.757i) × (x4−x3)

dx5

dt
= (−4.0444 + 0.7446i) × (x1−x4) − (0.9768 + 2.0349i) × (x3−x2) + (3.5815

+1.2342 i)sin(x1) + (−1.0076 + 3.716i) × (x5−x1) + (−1.0549 - 1.8469i) × 2x2
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Fig. 5 Prediction errors of ODE (blue lines) and CVODE (red lines) with human cell time-series data

Table 3 Prediction RMSE values of ODE and CVODE for six genes

The ‘bold values’ represent the better results between two methods

Genes ODE CVODE

Gene 1 0.227851 0.125126

Gene 2 0.11358 0.066308

Gene 3 0.363917 0.123348

Gene 4 0.340177 0.2797

Gene 5 0.328782 0.10551

Averaged 0.274861 0.139998

Fig. 6 The real E. coli sub network
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E. coli database

�e third real gene expression dataset is extracted from polymicrobial probe database (ver-

sion 4 build 6), which contains 4297 genes and 907 biology experiments [57]. �e used 

dataset contains the first 35 experiments, in which the first 30 time points are utilized to 

search the optimal CVODE models and the rest time points are utilized as testing data. 

Eight genes (Crp, araC, nagC, chbC, araE, araA, chbA and chbF) are chosen and the real 

network structure is from RegulonDB [58] containing 15 regulations, which is described in 

Fig. 6.

Fig. 7 Prediction errors of ODE (blue lines) and CVODE (red lines) with E. coli database

Table 4 Prediction RMSE values of ODE and CVODE for eight genes

The ‘bold values’ represent the better results between two methods

Genes ODE CVODE

Crp (Gene 1) 0.013349 0.010013

araC (Gene 2) 0.058062 0.031771

nagC (Gene 3) 0.01153 0.020923

chbC (Gene 4) 0.041527 0.018565

araE (Gene 5) 0.008005 0.024344

araA (Gene 6) 0.023222 0.033139

chbA (Gene 7) 0.028299 0.015565

chbF (Gene 8) 0.031919 0.016927

Averaged 0.026989 0.021406
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�rough our proposed hybrid evolutionary method, we could obtain the CVODE mod-

els as Eqs. (4). Variables x1, x2, . . . , x8 represent genes Crp, araC, nagC, chbC, araE, araA, 

chbA and chbF, respectively.

Fig. 8 The construction E. coli network by ODE (a) and CVODE (b). The solid lines denote the real regulations, 
while the dotted lines represent the false relationships
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�e predicted errors of ODE and CVODE are depicted in Fig. 7, which reveal that the 

predicted errors of CVODE are closer to zero than ones of ODE. �e predicted RMSE 

values of ODE and CVODE are listed in Table 4. For Gene1, Gene2, Gene4, Gene7 and 

Gene8, CVODE has smaller predicted RMSE values than ODE. For Gene3, Gene5 and 

Gene6, ODE performs better than CVODE. On average CVODE could improve 20.69% 

prediction accuracy and more accurately forecast gene expression data than ODE.

According to the optimal CVODE models, the inferred E. coli sub-network is 

described in Fig. 8b. ODE models are also utilized to infer E. coli and the result is also 

depicted in Fig. 8a. Compared with real network structure, we can see that CVODE 

model could identify 14 true-positive regulations and ODE model could identify 12 

true-positive relationships. �e performances of Sn and Sp of E. coli networks inferred 

by ODE and CVODE are listed in Table 5. From the inferred results, it could be seen 

that CVODE could identify more accurately gene regulatory network than ODE model.

(4)

dx1

dt
= (−4.1015 + 5.371i) × (x8+

x1

x8
) + (2.5219 - 0.3343i)cos(x25) + (2.0703 + 2.9986i) × (x8+x7 × x8)

dx2

dt
= (−7.9767 + 9.8189i)x27+(5.5059 - 5.2522i)x2x7+(3.5167 + 10.3982i) × (x2−x6)

−(16.939460 - 13.448812i) × (x6−x1)

dx3

dt
= (−0.1369 + 1.0964i)cos(x2) + (1.5904 + 0.2761i)x23+(0.2941 + 1.5517 i)x2x3+

−(2.4638 + 1.6326i)
x1

x8
+(0.8683 + 0.6514i)

x8

x2

dx4

dt
= (−5.0047 - 0.6521i)cos(sin(x8)) + (0.79 + 0.6943i)cos(x3−x1) − (3.9688 + 0.779i)

× (2x1−x7) + (1.9222 + 0.8736i)
cos(x4)

x4
+(3.234 - 0.0632i)x1

dx5

dt
= (−1.9009 - 0.8821i)cos2(x5) + (0.5571 + 0.9842i)(

x2

x5
)2+(2.0521 - 0.7683i)x1

dx6

dt
= (−0.648 - 0.2905i)x6+(−2.2871 + 0.5342i)

x4

x8
−(1.3399 + 4.0571i)

x6

x3

−(0.1901 + 2.2337i)x21+(2.1551 - 0.3921i) × (x5−x2)

dx7

dt
= (−3.1357 - 1.2992i)cos(x1) + (−1.8814 + 2.4155i)x23+(0.7295 + 0.7151i)x4x1

+(−1.4544 - 0.4791i)sin(x4)

dx8

dt
= (−1.7613 - 3.4795i) × (x1−x6) + (0.1275 + 1.415i)x1+(3.3253 - 4.9547i)sin(x8)

+(−2.8165 + 1.5682i)
x7

x1
+(−0.6489 + 1.2929i)x26

Table 5 Performances of ODE and CVODE for constructing E. coli network

The ‘bold values’ represent the better results between two methods

Methods Sn Sp

CVODE 0.933333 0.591837

ODE 0.8 0.612245
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Conclusions

In this paper, we have presented complex-valued ODE model to identify the regula-

tions among genes for gene regulatory network inference. Grammar-guided genetic 

programming and complex-valued firefly algorithm are proposed to search the opti-

mal structure and parameters of CVODE. �ree real gene expression datasets are 

utilized and the results reveal that CVODE model could not only improve 20%-50% 

prediction accuracy of gene expression data, but also identify more true-positive reg-

ulatory relationships than ODE.

Our proposed method has some advantages including (1) compared with ODE, 

CVODE has the complex-valued structures, constants and coefficients, which could 

improve the modeling ability; (2) GGGP overcomes the shortcomings of GP and CFA 

has more population diversity and faster convergence than the traditional firefly algo-

rithm, so our proposed hybrid optimization method based on GGGP and CFA could 

search the optimal model faster; (3) because of the equipment and sample tissues, 

the expression data may contain noise during the data collection process. Complex-

valued methods have higher noise-robust memory mechanisms, so CVODE model 

has better performance than ODE.

In the further, CVODE will be applied for real large-scale GRN inference. �e opti-

mization of complex-valued model needs many computing resources, so the parallel 

technologies will improve the learning speed of model in the following work.

Methods

Complex-valued ordinary di�erential equation model

Complex-valued ordinary differential equation (CVODE) model is a variant of ODE 

model, whose coefficients and functions are complex-valued. Its expression is given as 

followed [59].

Fig. 9 The derived tree of CVODE model sin z + cos z − z
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where Z is complex-valued independent variable, β is complex-valued coefficient 

vector, t is the time point and F(·) is complex-valued unknown function.

Structure optimization

Grammar-guided genetic programming (GGGP) is an improved version of genetic 

programming (GP), which overcomes the shortcomings of GP, such as the generation 

and preservation of valid programs, small search space, and complex genetic opera-

tors [51–60]. GGGP is presented to evolve the structure of CVODE model. In GGGP, 

context-free grammar (CFG) model is utilized to guide the evolutionary process of 

GP in order to obtain the optimal solution faster.

CFG model contains a quadruple, which is represented as G = {N , T , P,
∑

} , where 

N  is non-terminal symbol set, T  is terminal symbol set, P is production rule set and 
∑

 is beginning symbol set. Four sets satisfy the conditions: N ∩ T = φ and 
∑

∈ N  . An 

element in production rule set is represented as x → y , where x ∈ N  , and y ∈ N ∪ T  . 

In order to represent an example of CVODE model sin z + cos z − z , four sets of CFG 

model are defined in advance. N = {s, exp, op, pre, var} , T = {sin, cos, +, −, z} , 
∑

= {s} , and P is given as

�e derived tree of CVODE model sin z + cos z − z is obtained by generating sentence 

through context-free grammar, which is depicted in Fig. 9.

In GGGP, the individuals come from the derived trees of the grammar models. As the 

same as GP, GGGP also has genetic operators to evolve the derived trees, which contain 

selection, replication, crossover and mutation. Selection and replication mechanisms are 

consistent with GP. For crossover mechanism, two derived trees are randomly selected, and 

two sub-trees with the same source characteristics are selected to be crossed, whose root 

nodes have the same non-terminal symbols. For mutation mechanism, an internal node is 

selected randomly. If the node is a non-terminal node, the node is retained and the sub-tree 

with this node as the root node is deleted and replaced by a sub-tree created by syntax rules. 

If this node is the terminal node, it is replaced by a new terminal node created randomly.

Parameter optimization

Complex-valued firefly algorithm (CFA) is an efficient complex-valued evolutionary 

algorithm, which is based on the mutual attraction and movement processes of com-

plex-valued fireflies [52]. Compared with many traditional evolutionary algorithms, CFA 

has some advantages, such as simple design, few parameters, strong robustness, high 

population diversity and fast convergence.

(5)
dZ

dt
= β · F(Z, t).

(6)

s → exp

exp → exp op exp

exp → pre exp

exp → var

pre → sin | cos

op → +|−

var → z.
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In CFA, the positions of firefly populations are complex, so the real parts and imag-

inary parts of the positions of firefly populations need to be optimized in parallel. In 

CVODE model, complex-valued constants and coefficients need to be optimized. In this 

paper, CFA is presented to evolve the parameters of CVODE. �e detail optimization 

process of parameters of CVODE with CFA is given in Algorithm 1.
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The �owchart of GRN inference with CVODE

In this paper, CVODE is utilized to infer gene regulatory network, in which GGGP 

and CFA are proposed to optimize CVODE model. Suppose that gene expres-

sion data [D1,D2, . . . ,Dm] contains m genes and each gene contains n time points 

( Di = [D1

i
,D2

i
, . . . ,Dn

i
] ). �e inference flowchart of GRN with m genes by our proposed 

algorithm is described in Fig. 10 �e detailed process is given as follows.

(1) Due to that the input data of CVODE model are complex-valued, gene expression 

data need to convert into complex data using Algorithm 2 before GRN inference.

Fig. 10 The flowchart of CVODE optimization for GRN inference
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(2) �e regulatory relationships of each target gene are inferred by CVODE model 

independently. For gene i, with gene expression data, the process of searching the 

optimal CVODE model is introduced as followed.

1. Initialize N  CVODE individuls.

2. Calculate the fitness values of N  CVODE individuals. �e complex outputs need 

to be converted into real values by Algorithm 3.

3. GGGP is applied to search the optimal structure of CVODE, which is intro-

duced in Sect.  2.2. At some iterations, CFA is utilized to search the optimal 

complex-valued parameters of CVODE, whose structure is fixed.

4. If the satisfied condition is achieved, the optimal process stops; otherwise, go to 

step 2).

(3) If the optimal CVODE contains independent variables, the corresponding genes of 

independent variables could regulate the target gene. For example gene j is included 

in the optimal CVODE dZi
dt

= f (Zj) , which means that gene i is regulated by gene j.

(4) i + +. If the regulatory relationships of all genes have been identified, create overall 

gene regulatory network; otherwise go to step (2).
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