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Abstract. Cache attacks, which exploit differences in timing to perform
covert or side channels, are now well understood. Recent works leverage
the last level cache to perform cache attacks across cores. This cache is
split in slices, with one slice per core. While predicting the slices used by
an address is simple in older processors, recent processors are using an
undocumented technique called complex addressing. This renders some
attacks more difficult and makes other attacks impossible, because of the
loss of precision in the prediction of cache collisions.
In this paper, we build an automatic and generic method for reverse en-
gineering Intel’s last-level cache complex addressing, consequently ren-
dering the class of cache attacks highly practical. Our method relies on
CPU hardware performance counters to determine the cache slice an
address is mapped to. We show that our method gives a more precise
description of the complex addressing function than previous work. We
validated our method by reversing the complex addressing functions on
a diverse set of Intel processors. This set encompasses Sandy Bridge, Ivy
Bridge and Haswell micro-architectures, with different number of cores,
for mobile and server ranges of processors. We show the correctness of
our function by building a covert channel. Finally, we discuss how other
attacks benefit from knowing the complex addressng of a cache, such as
sandboxed rowhammer.

Keywords: Complex addressing, Covert channel, Cross-Core, Last level cache,
Reverse engineering, Side channel.

1 Introduction

In modern x86 micro-architectures, the cache is an element that is shared by
cores of the same processor. It is thus a piece of hardware of choice for per-
forming attacks. Cache attacks like covert and side channels can be performed
in virtualized environments [16, 22, 27, 33, 35–37], breaching the hypervisor iso-
lation at the hardware level. Caches are also exploited in other types of attacks,
such as bypassing kernel ASLR [8], or detecting cryptographic libraries in virtu-
alized environments [17].



Cache attacks are based on difference of timings: the access to a cached
memory line is fast, while the access to a previously evicted cache line is slow.
Cache attacks can operate at all cache levels: level 1 (L1), level 2 (L2) and Last
Level Cache (LLC). Attacks on the L1 or L2 cache restrict the attacker to be
on the same core as the victim. This is a too strong assumption on a multi-
core processor when the attacker and the victim migrate across cores [27, 35].
We thus focus on cache attacks on the last level cache, which is shared among
cores in modern processors. Attacks on the last level cache are more powerful
as the attacker and the victim can run on different cores, but they are also
more challenging. To perform these attacks, the attacker has to target specific
sets in the last level cache. He faces two issues: the last level cache is physically
addressed, and modern processors map an address to a slice using the so-called
complex addressing scheme which is undocumented.

A first set of attacks requires shared memory and evicts a specific line us-
ing the clflush instruction [36, 16, 38, 7]. However, a simple countermeasure to
thwart such side channels is to disable memory sharing across VMs, which is
already done by most cloud providers.

Without using any shared memory, an attacker has to find addresses that
map to the same set, and exploit the cache replacement policy to evict lines.
On processors that do not use complex addressing, huge pages are sufficient
to enable side channels by targeting a precise set [14]. On recent processors
that use complex addressing, this difficulty can be bypassed by evicting the
whole LLC [22], but the temporal resolution makes it impossible to perform
side channels. Liu et al. [20] and Oren et al. [24] construct eviction sets by
seeking conflicting addresses, enabling fine-grained covert and side channels. This
works without reverse engineering the complex addressing function, but has to
be performed for each attack.

Hund et al. [8] manually and, as we show, only partially reverse engineered the
complex addressing function to defeat kernel ASLR on a Sandy Bridge processor.
The challenge in reversing the complex addressing function is to retrieve all the
bits. Indeed, previous approaches rely on timing attacks with conflicting cache
sets. As the set bits are fixed, they cannot be retrieved this way. Previous work
was also incomplete because the function differs for processors with different
numbers of cores, as we will show.

Reversing this addressing function also gains momentum [29] in discussions
about the exploitation of the so-called rowhammer vulnerability. Indeed, rowham-

mer can cause random bit flips in DRAM chips by accessing specific memory
locations repeatedly [19]. The exploitation of this vulnerability uses the clflush
instruction [28]. This instruction has been disabled [3] in the Native Client sand-
box [2] due to this security issue. Reversing the addressing function could lead
to new ways to exploit rowhammer without relying on the clflush instruction.

In this paper, we automate reverse engineering of the complex cache address-
ing in order to make these attacks more practical. In contrast to previous work
that reverse engineered the function manually, we develop a fully automatic ap-
proach to resolve the complex addressing of last level cache slices. Our technique



relies on performance counters to measure the number of accesses to a slice and
to determine on which slice a memory access is cached. As a result, we obtain
a translation table that allows determining the slice used by a given physical
address (Section 3). In the general case, finding a compact function from the
mapping is NP-hard. Nevertheless, we show an efficient algorithm to find a com-
pact solution for a majority of processors (which have 2n cores). As a result, we
provide new insights on the behavior of the last level cache, and refine many
previous works (e.g., Hund et al. [8]). In particular, we obtain a more complete
and more precise description than previous work, i.e., taking into account more
bits of the memory address and fixing the partially incorrect functions of prior
work. We evaluate our method on processors of different micro-architectures
with various numbers of cores (Section 4). We demonstrate the correctness of
our function by building a prime+probe covert channel (Section 5). Finally, we
discuss the difference between our findings and the previous attempts of reverse
engineering this function, as well as other applications (Section 6).

Contributions

In summary, this paper presents the following main contributions:

1. We introduce a generic method for mapping physical addresses to last level
cache slices, using hardware performance counters.

2. We provide a compact function for most processor models (with 2n cores).
3. We validate our approach on a wide range of modern processors.
4. We show, and discuss, practical examples of the benefits to cache attacks.

2 Background

In this section, we give details on cache internals for Intel processors post Sandy
Bridge micro-architecture (2011). We then review attacks that exploit cache
interferences to perform covert and side channels. Finally, we provide background
on hardware performance counters.

2.1 Cache Fundamentals

The processor stores recently-used data in a hierarchy of caches to reduce the
memory access time by the processor (see Figure 1). The first two levels L1 and
L2 are usually small and private to each core. The L3 is also called Last Level
Cache (LLC). It is shared among cores and can store several megabytes. The
LLC is inclusive, which means it is a superset of the lower levels.

Caches are organized in 64-byte long blocks called lines. The caches are n-

way associative, which means that a line is loaded in a specific set depending on
its address, and occupies any of the n lines. When all lines are used in a set, the
replacement policy decides the line to be evicted to make room for storing a new
cache line. Efficient replacement policies favor lines that are the least likely to
be reused. Such policies are usually variations of Least Recently Used (LRU).
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Fig. 1: Cache architecture of a quad-core Intel processor (since Sandy Bridge micro-
architecture). The LLC is divided into slices, and interconnected with each core by a
ring bus.

The first level of cache is indexed by virtual addresses, and the two other
levels are indexed by physical addresses. With caches that implement a direct

addressing scheme, memory addresses can be decomposed in three parts: the
tag, the set and the offset in the line. The lowest log2(line size) bits determine
the offset in the line. The next log2(number of sets) bits determine the set. The
remaining bits form the tag.

The LLC is divided into as many slices as cores, interconnected by a ring bus.
The slices contain sets like the other levels. An undocumented hashing algorithm
determines the slice associated to an address in order to distribute traffic evenly
among the slices and reduce congestion. In contrast to direct addressing, it is
a complex addressing scheme. Potentially all address bits are used to determine
the slice, excluding the lowest log2(line size) bits that determine the offset in
a line. Contrary to the slices, the sets are directly addressed. Figure 2 gives a
schematic description of the addressing of slices and sets.

2.2 Cache Attacks

System memory protection prevents a process from directly reading or writing
in the cache memory of another process. However, cache hits are faster than
cache misses. Thus by monitoring its own activity, i.e., the variation of its own
cache access delays, a process can determine the cache sets accessed by other
processes, and subsequently leak information. This class of cache attacks is called
access-driven attacks.

In a prime+probe attack [26, 25, 30, 23], the attacker fills the cache, then
waits for the victim to evict some cache sets. The attacker reads data again and
determines which sets were evicted. The access to these sets will be slower for
the attacker because they need to be reloaded in the cache.
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Fig. 2: Complex addressing scheme in the LLC with 64B cache lines, 4 slices and 2048
sets per slice. The slice is given by a hash function that takes as an input all the bits of
the set and the tag. The set is then directly addressed. The dark gray cell corresponds
to one cache line.

The challenge for this type of fine-grained attack is the ability to target a spe-
cific set. This is especially difficult when the targeted cache levels are physically
indexed and use complex addressing.

2.3 Hardware Performance Counters

Hardware performance counters are special-purpose registers that are used to
monitor special hardware-related events. Such events include cache misses or
branch mispredictions, making the counters useful for performance analysis or
fine tuning. Because performance counters require high level of privileges, they
cannot be directly used for an attack.

The registers are organized by performance monitoring units (called PMON).
Each PMON unit has a set of counter registers, paired with control registers.
Performance counters can only be used to measure the global events that happen
at the hardware level, and not for a process in particular. This adds noise and
has to be considered when performing a measurement.

There is one PMON unit, called CBo (or C-Box), per LLC slice. Each CBo
has a separate set of counters, paired to control registers. Among the available
events, LLC LOOKUP counts all accesses to the LLC. A mask on the event filters
the type of the request (data read, write, external snoop, or any) [9, 11, 12].

Performance counters depend on the processor, but the CBo counters and
the LLC LOOKUP event are present in a wide range of processors, and documented



Table 1: Mapping table obtained after running Algorithm 1. Each address has been
polled 10000 times.

Physical address CBo 0 CBo 1 CBo 2 CBo 3 Slice

0x3a0071010 11620 1468 1458 143 0
0x3a0071050 626 10702 696 678 1
0x3a0071090 498 567 10559 571 2
0x3a00710d0 517 565 573 10590 3

· · · · · · · · · · · · · · · · · ·

by Intel.3 Some adaptations are needed between different types of processors.
Indeed, for Xeon Sandy Bridge, Xeon Ivy Bridge, Xeon Haswell and Core pro-
cessors, the MSR addresses and the bit fields (thus the values assigned to each
MSR) vary, but the method remains similar. Reading and writing MSR registers
needs to be done by the kernel (ring 0) via the privileged instructions rdmsr and
wrmsr.

3 Mapping Physical Addresses to Slices Using

Performance Counters

In this section, we present our technique for reverse engineering the complex
addressing function, using the performance counters. Our objective is to build a
table that maps a physical address (for each cache line) to a slice (e.g., Table 1).

This is performed using Algorithm 1. First, monitoring of the LLC LOOKUP

event is set up by writing to control registers (MSR). Then, one memory address
is repeatedly accessed (Listing 1.1) to generate activity on the corresponding
slice. The counter performance registers are then read for each slice (each CBo).
Next, the virtual address is translated to a physical address by reading the
file /proc/pid/pagemap. Finally, the physical address is associated to the slice
that has the most lookups. Such monitoring sessions are iterated with different
addresses to obtain a set of pairs (physical address, slice) that, eventually, forms
a table.

The number of times the address needs to be polled is determined exper-
imentally to differentiate the lookup of this particular address in a slice from
the noise of other LLC accesses. We empirically found that polling an address
10 000 times is enough to distinguish the correct slice from noise without ambi-
guity, and to reproduce the experiment on different configurations. The polling
itself is carefully designed to avoid access to memory locations other than the
tested address (see Listing 1.1). To this end, most of the variables are put in
registers, and the only access to main memory is performed by the clflush in-
struction that flushes the line (in all cache hierarchies). The clflush instruction
causes a lookup in the LLC even when the line is not present.

3 For the Xeon range (servers): processors of the micro-architecture Sandy Bridge
in [9], Ivy Bridge in [11], and Haswell in [12]. For the Core range (mobiles and
workstations), in [10] for the three aforementioned micro-architectures.



Algorithm 1 Constructing the address to slice mapping table.

1: mapping ← new table
2: for each addr do
3: for each slice do

4: write MSRs to set up monitoring LLC LOOKUP event
5: end for

6: polling(addr) // see Listing 1.1

7: for each slice do

8: read MSRs to access LLC LOOKUP event counter
9: end for

10: paddr ← translate address(addr)
11: find slice i that has the most lookups
12: insert (paddr, i) in mapping
13: end for

Listing 1.1 Memory polling function.

1: void polling(uintptr_t addr){

2: register int i asm ("eax");

3: register uintptr_t ptr asm ("ebx") = addr;

4: for(i=0; i<NB_LOOP; i++){

5: clflush ((void*)ptr);

6: }

7: }

Table 2 shows the characteristics of the CPUs we tested. Scanning an address
per cache line, i.e., an address every 64B, takes time, but it is linear with the
memory size. Scanning 1GB of memory takes a bit less than 45 minutes. We
now estimate the storage cost of the mapping table. The lowest 6 bits of the
address are used to compute the offset in a line, hence we do not need to store
them. In practice, it is also not possible to address all the higher bits because
we are limited by the memory available in the machine. For a processor with c

slices, the slice is represented with ⌈log2(c)⌉ bits. A configuration of e.g., 256GB
(= 238) of memory and 8 cores can be represented as a table with an index of 32
(= 38− 6) bits; each entry of the table contains 3 bits identifying the slice and
an additional bit indicating whether the address has been probed or not. The
size of the table is thus 232 × 4 bits = 2GB.

Note that the attacker does not necessarily need the entire table to perform
an attack. Only the subset of addresses used in an attack is relevant. This subset
can be predefined by the attacker, e.g., by fixing the bits determining the set.
Alternatively, the subset can be determined dynamically during the attack, and
the attacker can query an external server to get the corresponding slice numbers.



Table 2: Characteristics of the Intel CPUs used in our experimentations (mobile and
server range).

Name Model µ-arch Cores Mem

config 1 Xeon E5-2609 v2 Ivy Bridge 4 16GB
config 2 Xeon E5-2660 Sandy Bridge 8 64GB
config 3 Xeon E5-2650 Sandy Bridge 8 256GB
config 4 Xeon E5-2630 v3 Haswell 8 128GB
config 5 Core i3-2350M Sandy Bridge 2 4GB
config 6 Core i5-2520M Sandy Bridge 2 4GB
config 7 Core i5-3340M Ivy Bridge 2 8GB
config 8 Core i7-4810MQ Haswell 4 8GB
config 9 Xeon E5-2640 Sandy Bridge 6 64GB

4 Building a Compact Addressing Function

4.1 Problem Statement

We aim at finding a function, as a compact form of the table. The function takes
n bits of a physical address as input parameters. In the remainder, we note bi
the bit i of the address. The function has an output of ⌈log2(c)⌉ bits for c slices.
To simplify the expression and the reasoning, we express the function as several
Boolean functions, one per bit of output. We note oi(b63, . . . , b0) the function
that determines the bit i of the output.

Our problem is an instance of Boolean function minimization: our mapping
can be seen as a truth table, that can consequently be converted to a formula in
Disjunctive Normal Form (DNF). However, the minimization problem is known
as NP-hard, and is thus computationally difficult [4].

Existing work on Boolean function minimization does not seem suitable to
reconstruct the function from this table. Exact minimization algorithms like Kar-
naugh mapping or Quine-McCluskey have an exponential complexity in number
of input bits. In practice those are limited to 8 bits of input, which is not enough
to compute a complete function. The standard tool for dealing with a larger
number of inputs is Espresso, which relies on non-optimal heuristics. However,
it does not seem suited to handle truth tables of hundreds of millions of lines in
a reasonable time.4 It also gives results in DNF, which won’t express the func-
tion compactly if it contains logical gates other than AND or OR. Indeed, we
provided lines for a subset of the address space to Espresso, but the functions
obtained were complex and we did not succeed to generalize them manually.
They were generated from a subset, thus they are only true for that subset and
do not apply to the whole address space.

We thus need hints on the expression of the function to build a compact
addressing function. We did this by a first manual reconstruction, then followed

4 At the time of camera ready, Espresso has been running without providing any
results for more than 2000 hours on a table of more than 100.000.000 lines, which
only represents the sixth of the 64GB of memory of the machine.



by a generalization. We have done this work for processors with 2n cores, which
we consider in the remainder of the section.

4.2 Manually Reconstructing the Function for Xeon E5-2609 v2

We now explain how one can manually reverse engineer a complex addressing
function: this is indeed how we started for a Xeon E5-2609 v2 (config 1 in Ta-
ble 2). In Section 4.3, we will explain how this can be automated and generalized
to any processor model with 2n cores. The following generalization removes the
need to perform the manual reconstruction for each setup.

We manually examined the table to search patterns and see if we can deduce
relations between the bits and the slices. We performed regular accesses to ad-
dresses which were calculated to fix every bit but the ones we want to observe,
e.g., regular accesses every 26 bytes to observe address bits b11 . . . b6. For bits
b11 . . . b6, we can observe addresses in 4kB pages. For the higher bits (b12 and
above) we need contiguous physical addresses in a bigger range to fix more bits.
This can be done using a custom driver [8], but for implementation convenience
we used 1GB pages. Across the table, we observed patterns in the slice number,
such as the sequences (0,1,2,3), (1,0,3,2), (2,3,0,1), and (3,2,1,0). These patterns
are associated with the XOR operation of the input bits, this made the manual
reconstruction of the function easier.

We obtained these two binary functions:

o0(b63, . . . , b0) = b6 ⊕ b10 ⊕ b12 ⊕ b14 ⊕ b16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b22 ⊕ b24 ⊕ b25

⊕ b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32 ⊕ b33.

o1(b63, . . . , b0) = b7 ⊕ b11 ⊕ b13 ⊕ b15 ⊕ b17 ⊕ b19 ⊕ b20 ⊕ b21 ⊕ b22 ⊕ b23 ⊕ b24

⊕ b26 ⊕ b28 ⊕ b29 ⊕ b31 ⊕ b33 ⊕ b34.

We confirmed the correctness of the obtained functions by comparing the
output of the slice calculated with the function against the entire mapping table
obtained with the MSRs.

4.3 Reconstructing the Function Automatically

Our manual reconstruction shows that each output bit oi(b63, . . . , b0) can be
expressed as a series of XORs of the bits of the physical address. Hund et al.
[8] manually reconstructed a mapping function of the same form, albeit a differ-
ent one. In the remainder, we thus hypothesize, and subsequently validate the
hypothesis, that the function has the same form for all processors that have 2n

cores.
The fact that the function only relies on XORs makes its reconstruction a

very constrained problem. For each Boolean function oi(b63, . . . , b0), we can an-
alyze the implication of the address bits independently from each other, in order



Table 3: Functions obtained for the Xeon and Core processors with 2, 4 and 8 cores.
Gray cells indicate that a machine with more memory would be needed to determine
the remaining bits.

Address Bit

3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0

7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores

o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

to access only a handful of physical addresses. Our algorithm finds two addresses
that only differ by one bit, finds their respective slices using performance coun-
ters, and compares the output. If the output is the same, it means that the bit
is not part of the function. Conversely, if the output differs, it means that the
bit is part of the function. Note that this only works for a XOR function. This
algorithm is linear in number of bits.

To implement the algorithm, we use huge pages of 1GB on Xeon processors
(resp. 2MB on Core processors), which is contiguous physical memory naturally
aligned on the huge page size. The offset in a huge page is 30-bit (resp. 21-bit)
long, therefore the lowest 30 bits (resp. 21 bits) in virtual memory will be the
same as in physical memory. We thus calculate offsets in the page that will result
in physical addresses differing by a bit, without converting virtual addresses to
physical addresses. To discover the remaining bits, we allocate several huge pages,
and convert their base virtual address to physical address to find those that differ
by one bit. In order to do this, we allocate as many huge pages as possible.

To evaluate the algorithm, we retrieved the function for all models from
config 1 to config 8 of Table 2, results are summarized in Table 3. The functions
are given for the machine that has the most memory, to cover as many bits as
possible. We remark that the functions, for a given number of cores, are identical
among all processors, for all ranges of products and micro-architectures. Using
the above mentioned algorithm, we obtained those functions quickly (from a few
seconds to five minutes in the worst cases). We also remark that we have in
total 3 functions o0, o1 and o2 for all processors, and that the functions used
only depends on the number of cores, regardless of the micro-architecture or the
product range. While in retrospective this seems to be the most straightforward
solution to be adopted by Intel, this was far from evident at the beginning of
our investigations. Now that the functions are known, an attacker can use them
to perform his attacks without any reverse engineering.

5 Using the Function to Build a Covert Channel

To verify empirically the correctness of the function, we build a covert channel.
This covert channel uses similar principles to the one of Maurice et al. [22]. It is
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Fig. 3: Receiving interleaved ‘0’s and ‘1’s to test the raw bitrate of the covert channel.

based on the fact that the LLC is inclusive, i.e., when a line is evicted from the
LLC, it is also evicted from the L1 and L2. With this property, a program on
any core can evict a line from the private cache of another core. This property
can then be used by two programs to communicate. The work in [22] bypasses
the complex addressing issue by evicting the whole LLC. However, the LLC
typically stores a few megabytes, and thus the sender needs to access a buffer
that is the size of (or bigger than) the LLC to evict it entirely. Having the
complex addressing function, the sender targets a set in a slice, and thus evicts
a cache line with much fewer accesses. For example, in the case of a 12-way
associative LLC, assuming a pseudo-LRU replacement policy, the sender needs
approximately 12 accesses to evict the whole set.

In this covert channel, the sender creates a set of physical addresses that
map to the same set, using the function and the translation from virtual to
physical addresses. It repeatedly accesses these addresses to send a ‘1’, and does
nothing to send a ‘0’. The receiver has a set of physical addresses that map to
the same LLC set as the sender’s. When the sender sends a ‘1’, it evicts the data
of the receiver from the LLC, and thus from its private L1 cache. The receiver
consequently observes a slow access to its set.

We conduct an experiment on config 1 to estimate the bitrate of this covert
channel, in which the sender transmits interleaved ‘0’s and ‘1’s. Figure 3 illus-
trates the measurements performed by the receiver. According to the measure-
ments, 29 bits can be transmitted over a period of 130 microseconds, leading to
a bitrate of approximately 223 kilobits per second.



6 Discussion

6.1 Dealing with Unknown Physical Addresses

The translation from virtual to physical addresses is unknown to the attacker
in most practical setups, like in virtualized or sandboxed environments. We now
describe a possible extension to the covert channel described in Section 5 to
avoid using this address translation.

Similarly to the work of Liu et al. [20] and Irazoqui et al. [14], the sender
and the receiver both use huge pages. The cache index bits are thus the same for
virtual and physical addresses. Using the function only on the bits in the offset
of the huge page, the sender is able to create a set of addresses that map to the
same set, in the same slice. As some bits of the physical address are unknown,
he does not know the precise slice. However, he does know that these addresses
are part of a single set, in a single slice.

The receiver now performs the same operation. The receiver has only the
knowledge of the index set to target, but he does not know in which of the n

slices. He thus creates n sets of addresses, each one being in a different slice.
He then continuously accesses each of these sets. The receiver will only receive
transmitted bits in a single set: from now on, he can target a single set. The
sender and the receiver are effectively accessing the same LLC set in the same
slice.

6.2 Other Applications

Reverse engineering the complex addressing function is orthogonal to performing
cache attacks. Indeed, knowing the correct addressing function can help any fine-
grained attack on the LLC. Cache attacks rely on the attacker evicting data from
a cache level. This can be done by the clflush instruction. However, it requires
shared memory in a covert or side channel scenario, and it is not available in
all environments. We thus focus on building attacks without this instruction.
To perform an attack on the LLC, the attacker needs to create an eviction set,
and to subsequently access the data to evict the lines that are currently cached.
There are two methods to find an eviction set: a dynamic approach based on
a timing attack that does not require the function, and a static approach that
uses the function to compute addresses that belong to an eviction set. Building
a static eviction set has the advantage of being faster than building a dynamic
one. Indeed, the function is already known, whereas the dynamic set has to be
computed for each execution. Moreover, Gruss et al. [6] showed that dynamically
computing a set to achieve an optimal eviction is a slow operation.

Hund et al. [8] defeated KASLR using the static approach. Similarly, Irazoqui
et al. [14] used a static approach on a Nehalem CPU that does not use complex
addressing. Yet, their attack requires understanding the slice selection, and thus
having the complex addressing function for more recent CPUs. Concurrently
to this work, Gruss et al. [6] used the complex addressing function to build
a proof-of-concept of the rowhammer attack without the clflush instruction.
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dresses in the same set, which is calculated using [8] and our function. Results on 100
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Rowhammer is not a typical cache attack, since it exploits a bug on the DRAM
to flip bits. However, the bug is triggered by frequent accesses to the DRAM,
i.e., non-cached accesses. The original exploits used the clflush instruction,
that is not available in e.g., Javascript. An attack that seeks to avoid using the
clflush instruction thus also needs to compute an eviction set.

6.3 Comparison to Previously Retrieved Functions

We observe that the functions we obtained differ from the ones obtained by
Hund et al. [8], and Seaborn [29]. In particular, Hund et al. found that the
functions only use the tag bits (bits b17 to b31). We argue that their method
does not infer the presence of the bits used to compute the set (bits b6 to b16).
Indeed, as they searched for colliding addresses, they obtained addresses that
belong to the same slice and the same set. As in this case the set is directly
mapped to the bits b6 to b16, addresses that collide have the same values for
these bits. Therefore, if the function that computes the slice uses the bits b6 to
b16, the method of [8] is not able to retrieve them. On the contrary, our method
retrieves the slices regardless of the sets, leading to a complete function.

We also observe that the function we retrieved for 2 cores is the same as
the one retrieved in [29], albeit a more complete one. However, the function we
retrieve for 4 cores does not use the same bits as the one retrieved in [8]. We argue
that we do have access to the ground truth (i.e., the slices accessed), whereas
they rely on indirect measurements. Several correct functions can however be
retrieved, as the slices can be labeled differently from one work to another.

To compare our function against [8], we performed the following experiment.
Using the retrieved addressing function, we constructed a set of physical ad-
dresses that are supposed to map the same set (thus the same slice). We accessed



N different addresses from this set. We then measured the access time to the first
reference address accessed, to see if it was evicted from the cache. Figure 4 shows
the median number of CPU cycles to access the reference address for different
values of N , for 100 runs. The function that is the most precise should have a
memory access time spike the closest N = 20 (which is the cache associativity).
We observe that both functions have a spike slightly after N = 20. We note that
the spike occurs for a value N > 20 and not exactly N = 20: it is most likely due
to the fact that the replacement policy on Ivy Bridge is not strictly LRU, but a
variant called Quad-Age LRU [18]. In practice, both functions are able to evict
a cache line with few accesses. However, our function seems more precise than
the one of [8], leading to fewer accesses to evict a cache line (N = 23 accesses
for our function, N = 24 for [8]), and a sharper transition. This also confirms
the correctness of our function.

7 Related work

Hardware performance counters are traditionally used for performance monitor-
ing. They have also been used in a few security scenarios. In defensive cases, they
are used to detect an anomalous behavior such as malware detection [5], integrity
checking of programs [21], control flow integrity [34], and binary analysis [32].
Uhsadel et al. [31] used performance counters in offensive cases to profile the
cache and derive a side-channel attack against AES. However, the performance
counters can only be read with high privileges, i.e., in kernel-mode, or being
root in user-mode if a driver is already loaded. Contrary to this attack, we use
performance counters to infer hardware properties offline, and our subsequent
cache attack does not need high privileges.

The Flush+Reload attack [36] relies on shared memory, and more precisely
on shared libraries, to evict lines of cache, using the clflush instruction. In
this attack, the attacker leverages the shared and inclusive LLC to run concur-
rently to the victim on separate cores, including on separate virtual machines.
Flush+Reload has been used to attack implementations of RSA [36], AES [16]
and ECDSA [1]. It has also been used to find a new side channel that revives
a supposedly fixed attack on CBC encryption mode [13], and to detect cryp-
tographic libraries [17]. Gruss et al. [7] presented a generic technique to profile
and exploit cache-based vulnerabilities, using Flush+Reload. Memory sharing
can be easily disabled in virtualized environments (which is already the case
in the cloud environment), effectively rendering impossible the Flush+Reload
attack. On sandboxed environments, like Javascript or Native Client [2], the
ability to perform the Flush+Reload attack is also compromised by the absence
of clflush instruction [3]. Understanding how complex addressing works allows
performing cache attacks in these environments, without the need of shared
memory or clflush.

Simultaneously to our work, Irazoqui et al. [14], Liu et al. [20], and Oren et al.
[24] have extended the Prime+Probe attack to the LLC. They are thus able to
perform side channels on the LLC without any shared memory. They construct a



set of addresses that map to the same set as the line to evict. Irazoqui et al. [14]
have used a Nehalem processor that does not use complex addressing. Therefore
huge pages are sufficient to construct this set of addresses. Liu et al. [20], and
Oren et al. [24] targeted more recent processors that use complex addressing.
They, however, performed their attacks without reverse engineering the complex
addressing function. Thus, even if we share the same motivation, i.e., performing
cache attacks on recent processors without any shared memory, our works are
very different in their approaches. We also note that our work has a broader
application, as it contributes to a better understanding of the undocumented
complex addressing function, possibly leading to other types of attacks.

Other work is directly interested in retrieving the function, and several at-
tempts have been made to reverse engineer it. Hund et al. [8] performed a manual
reverse engineering for a 4-core Sandy Bridge CPU. Their method uses collid-
ing addresses, i.e., indirect measurements, to derive the function. They used
this function to bypass kernel ASLR. Very recently, and also simultaneous to
our work, Seaborn [29] continued the work of [8], with a 2-core Sandy Bridge
CPU. The intended goal is to exploit the rowhammer bug with cached accesses,
without the clflush instruction. Gruss et al. [6] subsequently demonstrated a
rowhammer attack on Javascript, using the complex addressing function. In con-
trast, we do not use the same method to retrieve the addressing function as [8,
29]. Our method, using performance counters, performs direct measurements,
i.e., retrieves the exact slice for each access. We thus show that the functions
in [8, 29] are partially incorrect, even though they are sufficient to be used in
practice. We also derive a function for all processors with 2n cores, automating
the reverse engineering. Different from these two works, we also have tested our
method on a large variety of processors. Concurrently to our work, Irazoqui et al.
[15] worked on automating this reverse engineering, and evaluated their work on
several processors. However, their method is similar to Hund et al. [8], and thus
suffers from the same limitations.

8 Conclusions

In this paper, we introduced a novel method to reverse engineer Intel’s undocu-
mented complex addressing, using hardware performance counters. The reversed
functions can be exploited by an attacker to target specific sets in the last level
cache when performing cache attacks. Contrary to previous work, our method is
automatic, and we have evaluated it on a wide range of processors, for different
micro-architectures, numbers of cores, and product ranges. We also obtained a
more complete and more correct description of the complex addressing function
than previous work, i.e., taking into account more bits of the memory address.
In the general case with any number of cores, we automatically built a table
that maps physical addresses to cache slices. This table already enables to per-
form targeted cache attacks but may require an important amount of storage.
In the case of CPUs with 2n cores we provided a compact function that maps
addresses to slices, rendering the attacks even more effective. We demonstrated



a covert channel to prove the correctness of our function, and discussed other
applications such as exploiting the rowhammer bug in Javascript.

Our work expands the understanding of these complex and only partially
documented pieces of hardware that are modern processors. We foresee several
directions for future work. First, a compact representation for CPUs with a num-
ber of cores different from 2n would generalize our findings. Second, we believe
that new attacks could be made possible by knowing the complex addressing of
a cache. Finally, we believe that understanding the complex addressing function
enables the development of countermeasures to cache attacks.
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