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Abstract

Language use in everyday life can be studied using lightweight, wearable

recorders that collect long-form recordings - that is, audio (including

speech) over whole days. The hardware and software underlying this

technique is increasingly accessible and inexpensive, and these data are

revolutionizing the language acquisition field. We first place this tech-

nique into the broader context of the current ways of studying both

the input being received by children and children’s own language pro-

duction, laying out the main advantages and drawbacks of long-form

recordings. We then go on to argue that a unique advantage of long-

form recordings is that they can fuel realistic models of early language

acquisition that use speech to represent children’s input and/or to es-

tablish production benchmarks. To enable the field to make the most of

this unique empirical and conceptual contribution, we outline what this

reverse engineering approach from long-form recordings entails, why it

is useful, and how to evaluate success.
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1. Introduction

Recent years have seen the rise of data collection through wearable, lightweight, unobtrusive

devices that collect audio for tens of hours at a time, allowing a uniquely naturalistic

viewpoint of language use as people go about their everyday activities (Wu et al. 2018; Sun

et al. 2019; Oller et al. 2010). Although this technique could be used to investigate language

use at any age (see Figure 1), it has been extensively used with children; as a result, this

body of work has important conceptual, methodological, and ethical contributions that

are relevant across fields of linguistics. There exist recent systematic overviews of this prior

research (see e.g., Ganek and Eriks-Brophy 2018). Technical aspects of long-form recordings

(including step-by-step how-to’s and ethical recommendations) have already been largely

covered in prior work (see Casillas and Cristia 2019; Cychosz et al. 2020 and Appendix A

of our online supplementary materials). Thus, after positioning the methodology in the

broader context of language acquisition research methods, we devote most of the article to

laying out the promise of the technique in the context of a reverse engineering approach

to the study of early language acquisition. Indeed, now that it is possible to capture the

full complexity of child language experiences, artificial language learners trained on realistic

data can help us build better theories about how humans develop their language perception

and production skills.

2. Positioning long-form recordings in a broader methodological landscape

In typical long-form recordings, infants and young children wear a custom-made piece of

clothing with a breast pocket, within which a recording device is inserted. This device

typically records over many hours. When the full waking day is represented, we may talk

of daylong recordings. In this review, however, we will use the term "long-form recordings"

to highlight the fact that some researchers do not capture the whole waking day but only

8+ hours; whereas others may also capture nighttime.

Language acquisition can be studied by a variety of means, each of which has unique

strengths and weaknesses (See Table 1). It is most reasonable to reflect on the place the use

of long-form recordings can have by comparing it with other methods to study (a) children’s

production and (b) the input afforded to children. By and large, productions and input can

be studied jointly using one of four methods: 1. long-form recordings; 2. long observations

by third parties (third-party observations, for short); 3. parental reporting; and 4. shorter

audio/video recordings. Next, we define each of these techniques and highlight the relative
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Figure 1

Examples of wearable recorders. (a) Smartwatch recording audio, heart rate, and movement,
adapted from Fig 1 in Liaqat et al. (2018)). (b) Body camera on a South Carolina police officer
(Ryan Johnson, CC BY-SA 2.0. (c) A small audio recorder and photo camera worn by a Mayan
child in Southern Mexico (by courtesy of Marisa Casillas).

Study method
Context

sampling

Ecological

validity
Reusability Complexity

Long-form recordings High High High High

Third-party observations Medium-high Medium-high Low Low

Parental reporting Medium Low Low Low

Short audio-/video-

recordings
Variable Medium High Medium

Table 1 Main strengths and weaknesses of the four key methods to study both input

afforded to children as well as their production.

strengths and weaknesses by comparing the methods according to the following criteria:

Context sampling (what proportion of the context of the child experiences is sampled);

Ecological validity (to what extent the acquired data reflect real characteristics of the

situations); Reusability (how reusable the acquired data are in light of new hypotheses);

and Complexity (in analyzing the acquired data).

Long-form recordings rely on a sampling of the full range of a child’s experiences in one

or several days (and sometimes also during nights) and across all the contexts the child

may be in (in or out of the house). Among the four methods we discuss here, long-form

recordings are therefore closest to third-party observations, such as those anthropologists

employ for time allocation research (Gross 1984) and those that psychologists use for some

behavioral observations. For instance, Roopnarine et al. (2005) observed families for 3 hours

at a time in 4 separate visits, each time completing a checklist of observed behaviors every

30 seconds. Long-form recordings and third-party observations have the relative advantage

over other techniques that the child’s carers do not have to do anything special (not even
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stay in the same room as the camera). Furthermore, the novelty effect of having an observer

should, if anything, decrease over the long observation period, resulting in greater ecological

validity for long observations and long-form recordings than the other methods.

Nonetheless, long-form recordings present three advantages compared to third-party ob-

servations. First, the observer is less salient, which may result in even lower awareness and

fewer perturbations of the natural behavior of participants (high ecological validity). Sec-

ond, setting aside the potentially longer initial investment to learn the technique and obtain

ethical approval, long-form recordings require less effort and time from experts than third-

party observations, particularly since the recorder can be mailed. In terms of reusability,

recordings, unlike third-party observations, can be consulted, reannotated, and reanalyzed,

including to measure behaviors that had not been considered before collecting the data.

That said, third-party observations have an important advantage over long-form recordings

in that the observer has access to multimodal cues and other information, allowing more

nuanced interpretations using the full 360° context. Moreover, such third-party observa-

tions often rely on standardized checklists, which are then easy to analyze (low complexity)

while long-form recordings require the use of manual and/or automatic annotation tools to

extract information of interest (high complexity).

Among parental reporting techniques, the method closest to long-form recording is

probably the use of smartphone apps or a similar set-up to collect reports from caregivers

over a long time period. Diaries that ask bilingual parents to report on how frequently they

use one or another language, at different moments of the day over a whole week, would fall

under this category (e.g., Orena et al. 2020). Although apps are not yet prevalent, they

could be useful for sampling behavior at different timescales. For instance, we could ask

the caregiver to report who is talking to the child right now (through push notifications

that pop up at different points in the day); or to report which words the child says or

understands at different child ages (as in Wordful1). Like long-form recordings and third-

party observations, such reports could sample from the full range of experiences afforded

to children. That said, there could be reporting biases due to relying on caregiver report,

lowering both lower context sampling and ecological validity. As to the former, caregivers

may be less able to respond to the app’s request about who is talking to the child when they

are engaging in hygiene or other "hands-on" routines. As to the latter, the caregiver will

be keenly aware of being observed when reporting on their own behavior, and may align

their reporting with their beliefs instead of accurately representing what occurs; e.g. a

bilingual parent who consistently reports they use each language 50% of the time. Another

limitation of parental reports is that, as with third-party observations, they cannot be

revisited to code other behaviors not foreseen in the original design (i.e., low reusability of

the method). Nonetheless, parental reports have a key relative advantage over long-form

recordings and third-party observations in that caregivers can incorporate their background

knowledge about the family and the child in their interpretations. Similarly to third-party

observations, data acquired through parental reports are also easier to analyze than long-

form recordings (low complexity).

Finally, shorter audio/video recordings are probably the most common way in which

psycholinguists have described children’s input as well as their production. For example,

Bergelson et al. (2019) studied input and production in a longitudinal study on infants aged

6-18 months by setting up a video recorder on a tripod and having each infant wear two head-

1http://wordfulapp.com/
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mounted video-recorders. Families were thus recorded at home for one hour, after which

the researchers returned to pick up the equipment. Such shorter audio/video recordings

share with long-form recordings the relative advantage that they can be revisited as new

hypotheses arise (high reusability). One relative disadvantage of short observations over all

other methods discussed so far is that investigators must choose whether they want to keep

activity heterogeneity low, by asking all families to record during a specific activity (e.g.,

meal time, play, hygiene), or whether they want to represent the full range of experiences,

in which case they still need to choose how to sample from each (e.g., whether to record the

same number and length of each, or whether to sample them with the frequency with which

they occur in a natural day). Such short observations also probably result in increased

consciousness of being observed, which potentially affects participants’ behavior and lowers

ecological validity. This also leads to a key advantage of short recordings over all the

other methods, which is that the investigator can purposefully target an activity or setting

that is most relevant to their purposes, for instance by providing a set of toys that leads

to an increased use of a relatively rare structure (e.g., eliciting defining and non-defining

relative clauses with a purpose-made book or deck of cards). Although shorter audio/video

recordings are less complex to analyze than long-form recordings, working on audio and/or

videos still requires the use of automatic or manual annotation.

Importantly, no method is perfect, but they are to a certain extent mutually compatible,

such that researchers can try to design data collection using one or more in a complementary

scheme. For example, Bergelson et al. (2019) collected one full day’s audio recording in

addition to the hourlong video recording, on separate days, and found some diverging results

(notably a larger quantity of speech in the hourlong videos than in the long-form audios),

as well as considerable convergence (for instance, in terms of who spoke to the child).

Additional mixed methods can be devised to serve the researcher’s goals: An investigator

could ask families to record over two full days, and send in an observer for part of one of those

days; or they could ask the families to play an elicitation game, and write down the time

and day they did so. The investigators could then extract the sections of the recording that

contain these dual methods, and analyze them further, in order, for instance, to establish

the extent to which behaviors are affected by the presence of a third-party observer in the

first example, or simply to transcribe and study the speech occurring during the elicitation

game in the second example.

Without denying the complementarity of the four methods, we do believe that there

are three ways in which long-form recordings are unparalleled. First, long-form recordings

are a promising technique to collect naturalistic big data in various populations. Nielsen

et al. (2017) documented that developmental journals are heavily skewed towards publishing

articles with data from WEIRD (Western, educated, industrialized, rich, and democratic)

populations. This sampling bias can lead behavioral scientists to wrongly attribute cultur-

ally specific findings as universal traits. Although researchers using systematic behavioral

observations and short recordings have certainly made an attempt to broaden the languages

and cultures represented in the literature, both of these methods require so much investment

and expertise that, in reality, it is mostly outsiders who document language acquisition in

such settings. Therefore, despite our best intentions, we may misrepresent the language

and culture, and further our research questions and output may not have the optimal im-

pact they can have on the population from which the participants are drawn. Admittedly,

most current adopters of long-form recordings are WEIRD Cychosz and Cristia (ming),

but we hope that this method will be increasingly used by diverse researchers, including
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members of underrepresented and underserved linguistic and cultural communities, so that

the mainstream literature can better represent their viewpoints and interests, and so that

these populations stand a higher chance of benefiting from the research.

Second, long-form recordings may be ideally suited to address current needs for repli-

cable and reproducible research. To begin with, reproducibility is heightened by the use of

audio and video archiving and sharing repositories such as HomeBank (VanDam et al. 2016)

and Databrary (Simon et al. 2015), in the wake of the CHILDES tradition (MacWhinney

2000). What is more, by capturing a maximally unbiased sample of the child’s language ex-

perience, while ensuring maximal ecological validity, the use of long-form recordings should,

overall, increase the probability of conceptual replications. Additionally, many of the anal-

yses rely on automated methods that are shared across many laboratories. As a result,

it becomes easier to quantify (and possibly fix) biases that may be present in measures

extracted by these automatic tools than when relying on human annotation.

Third, such recordings may be ideally suited to foster a new direction of research within

the broader field of modeling early language acquisition, namely a reverse engineering ap-

proach to the study of infant language development. We will dedicate the rest of this article

to laying out this new research direction.

3. Reverse engineering language acquisition

There is a long tradition of modeling in the context of language acquisition (e.g., MacWhin-

ney 2005). A complete review would be beyond the scope of this paper, but to illustrate

the field of possibilities we can cite Anderson (1975) for an example of a syntax-learning

model or Brent (1996) for a word-discovery model. While computational models of lan-

guage acquisition traditionally assumed that speech was represented as an error-free string

of adult-like phonemes (which is unlikely the case for infants), more recent studies address

the problem of language learning from raw speech. This line of research can be illustrated

with Nguyen et al. (2020), the last iteration of a challenge2 organized in the speech pro-

cessing community that revolves around spoken language modeling without annotation or

text.

In view of the substantial progress of these past years in algorithms that can learn from

raw speech, there are clear interests in a greater integration of AI and language development

studies. Dupoux (2018) set down recommendations for such an enterprise, which we will

not repeat here. Like Dupoux, we assume that unsupervised language learning models

should be exposed to realistic data; and that they should be evaluated on psycholinguistic

benchmarks to compare humans’ and machines’ language capabilities at various linguistic

levels. In this new research direction, child-centered long-form recordings play a crucial

role by providing artificial language learners with ecologically valid input data in the form

of the speech by adults and other children present in the audio recordings, which is then

directly comparable to the input afforded to children. Our proposal builds on and extends

Dupoux (2018) by spelling out how a research program centered on long-form recordings

could proceed, considering such recordings as an information source on not only children’s

2Challenges in the machine learning community are events during which participants (usually
researchers including students) work on improving the performance of a baseline model on one or
multiple tasks (from audio classification Schuller et al. 2019 to unsupervised language modelling
Nguyen et al. 2020)
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input, but also children’s production.

In Section 3.1, we describe the reverse engineering approach to the study of infant lan-

guage acquisition. In Section 3.2, we explain why language acquisition researchers should

consider using machines as a proxy to study infants. We then lay out how to study input

effects in Section 3.3. Section 3.4 presents our psycholinguistic-driven framework to mea-

suring language skills of artificial language learners. This benchmarking framework is based

on behavioral correlates of language learning observed in humans and allows us to compare

the language skills of the artificial language learner with those of the human.

3.1. What does the reverse engineering approach to the study of first language

acquisition include?

Since we are discussing reverse engineering in the context of long-form recordings, by and

large the experiences under discussion are unimodal, based only on the speech, as the vast

majority of long-form recordings being gathered are audio only. That said, recent AI work

begins to address the problem of learning language from audiovisual exposure (Chrupała

et al. 2017; Harwath et al. 2020; Alishahi et al. 2021), although admittedly these studies

do not use realistic data. Using long-form data to train these sighted artificial language

learners would require using devices that capture both what children hear and what they

see (such a set up has been used in Casillas et al. 2020b,a for instance). Capturing child

language experiences across multiple modalities would offer us opportunities to compare

audio-only models with audiovisual models and could help us better understand the role of

visual experiences during the language acquisition process. Importantly, while audiovisual

long-form recordings could be used, touch and smell can not (yet?) be digitized, particularly

at the long-form scale, yet these senses can help in the language acquisition process (Abu-

Zhaya et al. 2017). This is a current limitation of the technique, and thus we discuss only

audio-based and video-based models in this review.

By and large, the models we discuss in this review are passive learners, in the sense

that they cannot affect the input data they receive. This aspect of the models makes

them somewhat different from human children, who are able to explore and interact with

their environment. For example, if a learning human child formulates the hypothesis "Cats

are those little hairy animals", and wants to check whether this hypothesis is true, the

child could interact with their environment to prove or disprove the hypothesis, such as

by pointing at the cat while waiting for a caregiver’s reaction. This connects with the

importance of embodiment in first language acquisition (Yu 2014) and of the child’s role

in shaping their environmental input (Tamis-LeMonda et al. 2018). Although the artificial

learner may benefit from the child’s interactions with their environment, if the two types of

learner are not at the same learning stage and/or have not formulated the same hypothesis,

ultimately the child will profit more of their own experiences than will an artificial learner

who is simply reexperiencing the human child’s experiences.

With those considerations in mind, the reverse engineering approach to the study of

first language acquisition via long-form recordings can be summarized as follow:

1. We design a computer program to have some learning mechanism(s) we believe are

useful to learn language (i.e., we control the mechanisms). Those are discussed in the

current section.

2. We provide this program with a controlled and realistic language experience (i.e., we

control the input), see section 3.3.

www.annualreviews.org • Reverse engineering language acquisition 7



Controlled and realistic language experienceLearning mechanism(s)

Attuned artificial language learner

Psycholinguistic stimuliBehavioral outcomes

Model of psycholinguistic tasks

Language acquisition simulation

Behavioral benchmarking

Figure 2

Outline of the reverse engineering approach for language acquisition. First, we perform a language
acquisition simulation, by applying learning mechanisms on a controlled and realistic language
experience to derive an attuned artificial language learner. These simulations can be used to check
for the effect of variation in those language experiences (e.g., multilingual input, variation in
household size; see Section 3.3). Second, we use behavioral benchmarking to evaluate learning:
the attuned artificial language learner undergoes a battery of psycholinguistic tasks. These tasks
are conceptually related to the tasks that are used to study humans, but they are adapted for the
machine (see Section 3.4). Note that the psycholinguistic task can also contain a habituation

phase that will further modify the state of the attuned artificial language learner (hence the

two-sided interaction between the two).

3. We observe what the system learns and how it develops (i.e., we observe the learning

outcomes3), see section 3.4.

3Note that we distinguish output (i.e., production) from outcome (i.e., consequences, that could

8 Lavechin, de Seyssel, Gautheron, Dupoux, and Cristia



Let us take the example in which our goal is to understand perceptual development. In

such as case, there is often a learning phase and an evaluation phase. The learning phase

includes exposing the artificial language learner to a naturalistic and controlled language

experience (typically represented by adult speech extracted from child-centered long-form

recordings). Then comes the evaluation phase, in which the attuned learner (i.e., the model

postexposure) undergoes a battery of psycholinguistic tests. These psycholinguistic tests are

conceptually related to experimental protocols used in child studies to assess the language

capabilities of infants (looking-while-listening procedure, conditioned head turning, etc.).

Behavioral patterns extracted from those tests can then be compared to those observed in

humans undergoing the experimental version of the psycholinguistic tests. Figure 2 provides

a diagram illustrating this version of the reverse engineering approach.

Having described the approach, we can now discuss the benefits of using in silico mod-

eling to study infant language acquisition.

3.2. Insights that artificial language learners can provide us

Despite thousands of laboratory experiments that isolate learning mechanisms in babies,

thousands of hours of observations, and probably millions of hours of study of both bodies

of work, still little is known about the inner mechanisms that underlie human language

development in the wild, the causal role of the input afforded to the child, and the best

explanation for the perception and production outcomes exhibited over the course of acqui-

sition. This is not truly our research community’s fault. Language acquisition, like most

cognitive processes, is essentially a black box and can be studied only as such by language

development researchers.

It is important to note that the term "black box" is also used in the AI community and

can be defined as the inability to predict an AI model’s decisions. Even though the state of

the model is fully known at any given time, this state is so complex that its inner processes

and workings cannot be fully understood.

It therefore appears that Language Acquisition and AI researchers face a common chal-

lenge: studying a black box. So one may wonder: why would one use a black box as a proxy

to study another black box?

First, artificial language learners are tireless. We can study their responses over a large

quantity of stimuli in ways that would be impossible (or unethical) with infants. Observing

behavioral patterns in machines may inspire psycholinguists to run new human studies.

Indeed, if a behavior of interest is observed in machines but has never been documented

in infants, then it may be worth checking whether infants also exhibit this given behavior.

Using thousands or millions of stimuli allows us to generate robust predictions.

The second advantage of the AI black box over the infant’s is the adaptability of the

former: we can easily tweak an AI model’s input data as well as parameters of the learning

mechanism(s). Thus, we can observe consequences of the simulated language experience on

the language skills of the machine while keeping control over the learning mechanisms, and

vice versa.

If there is a mismatch between the learning outcomes of an artificial language learner

and the human learner, then we can think of ways to make the machine more human-like.

In cases in which we are using input that faithfully represents the input that children are

be visible in production or perception).
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exposed to, we can rule out an issue with the input, and thus infer that the mistmatch

might be due to other aspects of our experiment: namely, 1. the learning mechanisms

in the model; 2. details of the experience presentation (e.g., the quantity of data); or 3.

the computational implementation of the psycholinguistic tests used to measure learning

outcomes.

In the opposite case, if a computer program yields outcomes similar to those of the

infants when provided with the same experience infants had, then we are faced with the

tantalizing conclusion that we have found one viable model (probably among many others)

of human behavior. Then, based on the results of that viable model, we can suggest new

testable predictions regarding how infants’ language develops.

3.3. Controlling the input to measure its downstream effects

In this section, we assume that we hold mechanisms constant, and illustrate how the re-

verse engineering approach can shed light on the causal role of the input, with the goal of

measuring learning outcomes through procedures described in Section 3.4.

One way in which we can use this approach is by comparing the input of different infants

or groups of infants. Some discussions of, for instance, group variation are based on the idea

that some children may be afforded qualitatively (Brookman et al. 2020) or quantitatively

(Weisleder and Fernald 2013) different input. Instead of simply describing qualitative and

quantitative differences between the children or the groups, a reverse engineering approach

would expose the exact same artificial learner to long-form recordings of these different

groups, and then assess whether there are substantial differences in learning outcomes.

In fact, one advantage of a reverse engineering approach is that we can go beyond

attested environments. Since we can control the quantity of data the artificial language

learner is exposed to, we can simulate data deprivation and/or proliferation experiments.

We can also plot developmental curves that show the evolution of the model’s language

skills as a function of the quantity of data it has had access to.

Similarly, some research studies the language input of children exposed to multiple

languages using long-form recordings (Orena et al. 2020). Along with checking for outcome

differences after exposure to naturally occurring multilingual audio, we can more precisely

simulate additional cases by creating bilingual and/or multilingual corpora. This allows us

to precisely control for the distribution of these languages during the exposure phase and

to use all languages to check for skills in each language during the evaluation phase.

The approach can be generalized to many other aspects of language exposure that are

currently hard to control and tease apart, although for some it may be harder to do so

well. For instance, we think it is technically possible to vary speaker distribution in terms

of household size, number of siblings, and gender distribution, because we can start with

recordings done in households with only one adult caregiver and only one sibling and then

mix them together to create families with on to ten caregivers and one to ten "siblings",

since in the original setting we can trust that adult and child sections will have been

correctly attributed to one adult and one other child respectively. Even so, the "siblings"

in these simulated large families will be easier to tell apart than siblings found in natural

recordings of large families because they will not necessarily sound similar to each other

(since they are originally drawn from different families). Other dimensions may be hard

to create because the tools they rely on are not necessarily mature yet. For instance,

varying vocabulary size would require an accurate automatic speech-to-text model, which
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is beyond the state of the art at present; varying the frequency of book readings would

require automatically extracting book-reading interactions, but there is no automatic tool

to detect such interactions to date. Nonetheless, and given the fast pace of AI research, it

is useful to think about this feature of in silico modeling in general terms.

3.4. Evaluating language skills of the artificial language learner

Let us start by assuming that we want to check what was learned. In this case, one

may be tempted to ask: do models learn phonemes, nouns, and so forth? This is akin

to attempting to establish whether the model has a given linguistic representation. We

see two problems with this option. First, it is devilishly difficult to demonstrate that a

representation is in place, doing so involves, for instance, additional levels of agreement in

terms of how to prove its presence (e.g., for phonemes Jaeger 1980; for a general criticism

on inferring mental entities, see Twaddell 1935). Second, representations are precisely

the area in which theories of language (acquisition) diverge in the fiercest manner (e.g.,

Ambridge and Lieven 2015). Although some may disagree with us, we would like to posit

that psycholinguistic benchmarking tasks should be theory-agnostic. By not forcing extra

assumptions of representations on either the human or the machine learner, the findings

have a higher chance of being relevant to a broad range of theories.

A second definition of learning may be to ask about representations in terms of their

neural implementation. In the avenue of human-machine comparison, an approach that

has interested the AI and neuroscience communities involves comparing activation patterns

of neural networks with those of the human brain while being asked to perform a similar

task (e.g., Yamins et al. 2014). While this approach promises interesting scientific insights

about human brain information processing, it also shows some limitations in the context

of early language acquisition. First, data acquisition devices that locate activity precisely

in both time and space are very seldom used with infants (but see e.g., Bosseler et al.

2021). Second, these techniques require large sample sizes for reproducible results even

among adults (Turner et al. 2018), and given that measurements in infancy are typically

even noisier than those gathered in adulthood, we can infer that it is possible that the body

of literature on infant neuroimaging will require substantial accumulation of results before

we can employ it for our benchmarks.

Therefore, given the current theoretical and methodological landscape, we propose a

behavior-oriented approach, in which we study the behavior of infants in parallel to the

behavior of machines. 4

To extract behavioral patterns for the machine, we additionally need to reflect on how

numbers returned by the machine can be related to the kinds of behaviors elicited and/or

observed among human learners. By numbers, we mean either the output representations5

4In this review, we are simplifying matters by not going into detail about the fact that, in
reality, a perfectly comparable artificial learner would develop not only language but also all of its
other cognitive systems, which would allow the influence of attention, memory, and other systems
orthogonal to language to be accurately represented in the model. In other words, this would
entail not only modeling language development but also modeling how the child approaches the
psycholinguistic task. For relevant discussion, see Robinaugh et al. (2021).

5Representations learned and returned by the model should not be confused with linguistic
representations. Output representations returned by the machine are numbers describing and/or
organizing the input that was given to the model. By linguistic representations, we mean hypothe-
sized mental units that represent elements of language (e.g., phonemes, morphemes).
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of the input stimuli for perception models, or the vocalizations produced by production

models.

With that in mind, we turn to the following question: What behaviors do infants and

adults exhibit through the course of language learning, and which could serve as benchmarks

for artificial learners? We discuss these in two subsections, targeting perception (Section

3.4.1) and production (Section 3.4.2).

3.4.1. Measuring perception. Much of the language acquisition literature has attempted to

look at perception, mainly through infants’ reactions to specific stimuli in clearly defined

laboratory tasks. This work suggests that much goes on in the child’s mind even before

there are obvious changes in production. In this section, we reflect on how long-form

recordings paired with computational modeling can help us understand the development of

these markers.

As described in Section 3.1, there are two phases in the reverse engineering approach.

The first one involves exposing the artificial language learner to a controlled and realistic

language experience extracted from long-form recordings, which can be selected to vary

certain dimensions parametrically, as explained in Section 3.3. As described in this section

on perception, the second phase is one of evaluation of perception skills. Since perception

cannot be directly investigated in either human or artificial agents, in this section we rely

on behavior that is elicited in controlled conditions. Thus, the AI learner is presented with

stimuli like the ones submitted to children in the laboratory, to elicit numbers that can

be interpreted as behavioral perceptual patterns in the artificial learner. In other words,

we create a computational implementation of infant perceptual benchmarks, to which the

artificial language learner is submitted. In Table 2, we draw examples mainly from studies

on infants aged from 0 to 12 months, but we trust our reasoning can be generalized to

perception tasks beyond 1 year of age. We want to highlight that this is not an exhaustive

list, and we would be delighted if other researchers created computational implementations

of other infant perceptual benchmarks.

The top section of Table 2, dedicated to sound-only behaviors, represents experiments

where the audio is key for eliciting infants’ responses, whereas the second half of the Table

shows cross-modal behaviors where both audio and visual stimuli are used.

Test tasks may be of two types: distance-based and probability-based. Distance-based

benchmarks rely on computing the distance between different stimuli, whereas probability-

based benchmarks require the machine to compute the probability of each stimulus. We

illustrate these concepts with examples below.

Let us start with a distance-based example. Newborn humans can discriminate across

rhythmically distinct languages (Nazzi et al. 1998). One can measure a discriminability score

in the machine by submitting to it three audio stimuli: A, B and X such that A comes from a

first language L1, B from a second language L2, and X comes from L1 but different from A.

Under a distance function d, one may expect that d(A,X) < d(B,X) as A and X have been

drawn from the same language. While this might not be true for a given stimulus, repeating

the procedure across thousands of stimuli allows us to extract robust patterns in the artificial

language learner. In other words, we use here the computational implementation of the ABX

discrimination task used in psychology. An example of a computational study using this

task can be found in de Seyssel and Dupoux (2020), who tested the language discrimination

capabilities of an i-vector model to assess the role of monolingual versus bilingual exposure,

akin to studies on monolingual and bilingual human infants. The same distance-based
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Sound only behaviors Age (mo) Task Data set Literature

discriminate across rhythmically

distinct languages
0 distance-based bilingual set

of stimuli

Gasparini et al.

(2021)

discriminate native and non-native

consonants
6-8 distance-based phonetically aligned

clean speech

Werker and Tees

(1984)

accept novel content words more

easily than novel function words
6

few-shot learning +

probability-based
jabberwocky

sentences
Shi et al. (2006)

prefer high over low phonotactics 9 probability-based

made-up words

varying in

phonotactics

Jusczyk et al.

(1994)

prefer high over low frequency

content words
11 probability-based

real words varying

in frequency

Jusczyk et al.

(1994)

do not discriminate non-native

consonants
12 distance-based phonetically aligned

clean speech

Jusczyk et al.

(1994)

Cross-modal behaviors Age (mo) Task Dataset

treat words and monkey

vocalizations, but not beeps or

coughs, as possible labels

3 few-shot learning

+ distance-based

images paired with

words, monkey

vocalizations,

beeps or coughs

Ferry et al. (2010)

treat words but not monkey

vocalizations as possible labels
6 few-shot learning

+ distance-based

images paired with

words or monkey

vocalizations

Ferry et al. (2010)

treat content but not function

words as possible labels
6 few-shot learning

+ distance-based

images paired with

function words or

content words

Hochmann et al.

(2010)

know the meanings of many

common nouns
6-9 distance-based

images paired with

common nouns

Bergelson and

Swingley (2012)

few-shot learning of new

word-object pairings
9 few-shot learning

+ distance-based

images paired with

words

Yeung and

Werker (2009)

treat words with native but not

non-native sounds as possible labels
10 few-shot learning

+ distance-based

images paired with

L1 words and L2

words

May and Werker

(2014)

Table 2 A sample of human behavioral correlates of language skills that have been

reported in the literature along with their computational implementation. The Task

column describes the task that is meant to be submitted to the artificial language

learner. Distance-based tasks consist of computing the distance between the output

representations of the input stimuli. Probability-based tasks consist of computing the

probability of the output representations. Few-shot learning tasks involve a learning

phase during which the model is given some examples. The Data Set columns describe

the test stimuli that need to be gathered to submit the task of interest. Labels are

audio stimuli consistently paired with a visual stimulus, e.g. a monkey vocalization

systematically followed by a fish picture. The Literature column suggests entry points

in the psycholinguistic literature.

method can be used to benchmark the machine’s phoneme discrimination capabilities. In

this setup, A, B are X are triphones with A and B differing only in their center phone
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(/bet/ vs /bat/), and X the same triphone (but another occurrence) than A. In the same

way, one may expect that d(A,X) < d(B,X) as A and X represent the same triphone.

Phoneme discrimination capabilities have been evaluated on a Gaussian mixture model

in Schatz et al. (2021) who notably showed that a model exposed to Japanese exhibits a

lower discrimination score on the [ô] vs [l] contrast than does a model exposed to American

English. Incidentally, note that Schatz et al. (2021) concluded from their results that the

AI learner solves this task without phonemic representations per se, exemplifying one way

in which not making assumptions about representations may facilitate cross-pollination of

findings between developmental science and computational research.

Next, we turn to a probability-based example. At the age of 11 months, infants have

been shown to prefer high- over low-frequency content words (Carbajal et al. 2020). Check-

ing that this behavior is present in the machine would consist of submitting to it two stimuli,

A and B, with A drawn from high-frequency content words and B drawn from low-frequency

content words. One should observe that the probability the model returns for A is higher

than the probability returned for B, as the first one is supposed to be more frequent than

the second one in the training set.

The same two benchmarking approaches (probability- and distance-based) can be

adapted to a cross-modal setting, in which decisions need to be taken by integrating in-

formation from the auditory and another (typically visual) modality. As for the visual

modality, a task used to test infants’ comprehension of words and sentences that seems

particularly easy to adapt for the machine is the looking-while-listening task (Fernald et al.

2008). In this task, the child sits in front of a screen that shows two images, only one

of which corresponds to the audio the child is concomitantly presented with. During the

computational implementation of this test, the machine would receive an audio stimuli A1

(e.g., "nose") and would be presented with two images, one of them representing the audio

stimuli I1 (e.g., a picture of a nose) and the other one, I2, representing something else (e.g.,

a picture of a mouth). The machine would then be asked to output the representations of

all three stimuli. To check if the machine was able to map the audio stimuli to the right

image, we would consider a distance function d and check that d(A1, I1) < d(A1, I2) as

A1 and I1 share the same semantic content. Note that, alternatively, the joint probability

distribution between a word and an image might be used instead.

In Table 2, we highlight the fact that such a test phase can be preceded by a learning

phase during which the machine is presented with some examples. This phase is called few-

shot learning – few-shot means that only a small number of exposure instances are used

before the evaluation. For instance, these exposures can take the form of nonsense words

in the audio-only setting or image-word pairs in the cross-modal setting.

Finally, let us note that the audio stimuli does not have to be a real word. For instance,

a fish picture can be paired with a monkey vocalization, in which case we would evaluate

the ability of the machine to learn this new word-object pairing. Indeed, a sizable litera-

ture in developmental research investigates the (presumably innate) biases infants bring to

word-learning tasks, finding that young infants exposed to words or monkey vocalizations

systematically paired with a visual category (e.g., dinosaurs) will generalize the "label" to a

new exemplar of the same visual category, whereas the same behavior is not observed when

dinosaur pictures are systematically paired with beeps or coughs (an overview of this line

of research in Vouloumanos and Waxman 2014). To our knowledge, similar biases have not

been investigated in artificial agents.

In sum, the probability- and distance-based evaluation paradigms are extremely pow-
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erful. They have already been used in the ZeroSpeech 2021 challenge for computational

implementations of human psycholinguistic benchmarks across multiple linguistic levels, in-

cluding phonetics, lexicon, semantics, and syntax (Nguyen et al. 2020). Nonetheless, it is

important to bear in mind that most of the previous computational studies use relatively

manicured recordings (such as audiobooks), and to our knowledge, none of them has tried

to tackle language learning after exposure to audio from long-form recordings.

3.4.2. Measuring production. In this section, we turn to production, although we start by

admitting that this line of research is a great deal less developed than the perception one,

and it may take considerable time to make progress in this area. As with perception, the

development of production involves learning mechanisms that are still the matter of active

debate (Long et al. 2020).

There are two key differences for how perception and production reverse engineering

approaches can work. First, models of perception development require the extraction from

long-form recordings of only the speech that represents children’s input, whereas to model

production development it is worthwhile to extract both the input and the child’s output.

In fact, when considering production development, there is a strong case to be made about

children’s production being shaped by their own output – and thus their output may, under

some accounts, be considered as input too. Second, while perception models are only

required to return representations of their input, production models need to integrate those

evolving representations of the input; with 1. (potentially changing) biophysical constraints

on production (due to the fact that the child’s body, including their tongue, is changing

with age); 2. mechanisms for learning-related changes in production; and 3. some system

for actually generating vocalizations. That said, not all extant models of children’s language

production consider all of these aspects, and others actually consider additional constraints,

such as social constraints (Pagliarini et al. 2020). To take a specific example, Warlaumont

et al. (2011)’s model has an articulatory component (which generates the child’s output in

terms of gestures) as well as a perceptual auditory component (which captures patterns in

the input as well as the auditory consequences of the child’s production) – but note that the

articulatory component does not include biophysical constraints per se. Approaches with

realistic models of the developing vocal tract are rare (but see Philippsen 2021).

At least in principle, then, a reverse engineering approach to production development

that builds on long-form recordings would proceed as follows: If one believes that input

speech can affect production, then the model should use the input to hone perceptual

representations (i.e., Section 3.4.1); in all cases, one can use children’s production as a

benchmark against which to compare the model learner’s production. As discussed in

Section 3.1, one can control the learning mechanisms and the input, in order to measure

outcomes.

In reality, however, we see a considerable gap between how production is typically mod-

eled and long-form recording data, for both the perception and the production aspects of

production development. In current work aiming to model production development, input

is most typically represented in a simplified manner (e.g., with first and second formant val-

ues representing vowels), and output is similarly reduced to such summary representations

(although exceptions exist; see e.g., Rasilo and Räsänen 2017). What is more, it is not un-

common to see evaluations akin to an elicited imitation task, where the system is provided

with an adult vocalization as input and is asked to imitate them (i.e., produce the articu-

latory activations corresponding to this auditory input). Such a benchmark does not seem
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realistic for children under 2 years of age, given that eliciting repetition is methodologically

challenging even at around 20 months (albeit possible, see Hoff et al. 2008). Moreover, it

is unclear that studies are actually referring to what human children’s performance is in

actual imitation tasks. Instead, much of this work appears to operate under the assumption

that imitation is prevalent in real-life interaction. However, laboratory observations suggest

imitation is vanishingly rare (Athari et al. 2021), even in a setting where parents may be

driven to increase their interactions with their child as a consequence of being observed.

Convergence, which is a form of imitation, was not found to be systematic in the analysis

of long-form recordings (Seidl et al. 2018)

A second issue standing in the way of relating long-form recordings and production

models concerns the fact that researchers of production development typically specialize on

certain development phases and phenomena. For instance, some study the emergence of

syllable structure (Warlaumont and Finnegan 2016), and others study vowel targets (Rasilo

and Räsänen 2017). This specialization entails that models of production developed at

present do not generate the whole range of vocalizations observed in long-form recordings,

but are instead dedicated to features of vocalizations.

When we look at production development more broadly, we see many aspects that

should be accounted for, including the following:

• The presence of both speech-like and non-speech-like vocalizations (Long et al. 2020)

• The increase in canonical vocalizations (having at least one adult-like consonant-vowel

or vowel-consonant transition) with age (Cychosz et al. 2021)

• The appearance of meaningful utterances, starting with single words (de Boysson-

Bardies and Vihman 1991)

• The appearance and increased prevalence of word combinations (Braine and Bower-

man 1976)

Not only are these aspects out of reach for any extant model learner, but also the basic

description of these phenomena in long-form recordings is rare. In fact, it was only recently

found that speech-like vocalizations are prevalent in long-form recordings even among new-

borns (Long et al. 2020); and that the proportion of vocalizations containing canonical

transitions appears to continually increase well beyond the first year of age, according to

long-form data (Cychosz et al. 2021). Information from long-form recordings on the other

phases (namely, the appearance of meaningful speech and of word combinations) has been

documented in only two studies (Casillas et al. 2020b,a), both of which employed human

annotation. It would be ideal to develop automated techniques so that they can be applied

at scale in multiple languages. Moreover, further development is needed to create compu-

tational implementations of these human psycholinguistic benchmarks if we are to succeed

in our goal of comparing humans and systems.

In sum, reverse engineering the development of production is farther away on the horizon

than the study of perception, awaiting conceptual advances in modeling approaches, which

may also necessitate important changes in the way we do descriptive analyses of production

data gleaned from long-form recordings. As briefly noted, some work in production also

takes a social stance, incorporating caregivers in the developmental loop. Progress in such

conceptual settings will require even more work, as they necessitate reverse engineering the

caregiver as well.
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3.4.3. Limitations of the human/machine behavioral comparison. Before concluding the re-

view, we want to highlight some limitations of our benchmarking approach. All of it relies

on the psycholinguistic human data being empirically solid and unbiased – and we believe

progress on both of these fronts is necessary to support the backward and forward loop

between humans and machines.

To begin with, Table 2 may continue to perpetuate the illusion that infants’ skills can

be described with simple statements. In reality, conclusions drawn from child studies are

rarely as clear as "children do X" or "they don’t do Y". Results may vary depending on

the sample size, the methodology used, and the age of the participants, such as reported

in a study of 12 meta-analyses in Bergmann et al. (2018). Ultimately, we should probably

instead look at the distribution of effects sizes emerging from meta- or mega-analyses, rather

than an arbitrary yes/no binomial assessment. This point applies both to perception and

to production benchmarks.

Another issue with evaluating AI learners against extant human infant literature comes

from the fact that this literature is biased towards specific populations and languages.

A study of three leading developmental journals (where perception experiments are often

published) showed that over three-quarters of their papers bore on North American and/or

European infants (Nielsen et al. 2017), and a study in the Journal of Child Language

(which often publishes articles on children’s naturalistic production) showed a shocking

69% of the papers bore on English learners, with a mere 15% bearing on non-Indo-European

languages (Slobin 2014). And although there is less evidence about this, it is likely that the

samples from, for instance, North American infants are not representative of the greater

populations. Thus, a characteristic observed in an American infant growing up in a high-

socioeconomic-status setting may or may not be observed in infants growing up in other

communities. In the absence of systematic observations across cultures, the AI learner seems

doomed to reproduce bias found in the language acquisition literature. Several researchers

are working hard to collect long-form recordings from more diverse populations (see e.g.,

Cychosz et al. 2021) and we hold out hope that, at least in terms of long-form audio,

the bias may be weakened in years to come. However, for our perceptual benchmarks we

require something like laboratory experiments, and there are currently very few researchers

collecting perception data from more diverse communities (but look out for Marisa Casillas’

output in coming years; Casillas et al. 2020b; and the ManyBabies efforts).

Setting aside these two issues of robustness and bias in the data, we foresee that fur-

ther work is needed to reflect on which tasks we want to incorporate in our benchmark.

Being able to solve a given task does not tell us if solving this task is required for language

learning. For instance, divergent discrimination responses to rhythmically similar versus

different languages may be neither necessary nor sufficient for language learning. Alterna-

tives include that this difference in behavior is an acquired response bias; or a side effect

of auditory development as affected by ambient sounds (similar to how infants prefer their

mother’s voice but not their father’s voice at birth, Lee and Kisilevsky 2014), in other words,

behaviors that emerge but that are neither necessary nor sufficient for language learning.

If such a task is used to evaluate the AI learner, observations in humans and machines may

be divergent for uninteresting reasons.

That said, we think this problem is less worrisome than the other two. In fact, de-

ciding which behaviors necessarily occur as a function of language development could be

a problem with which computational models can help. The intuition is that if a behavior

is necessary and sufficient for language development, then it should be systematically ob-
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served for any and all artificial agents that do acquire language. Large-scale cross-linguistic

studies assessing languages skills of AI learners across different learning mechanisms and

language experiences may indeed help us gain insight into which behaviors are merely side

effects, and which behaviors are necessary for language learning. In the opposite case, a sin-

gle computational model solving task T without exhibiting behavior B would be enough to

conclude that B is not necessary for T – as in the case of Schatz et al. (2021)’s model, which

shows perceptual attunement to the exposure language without phonemic representations.

To take another example not yet attested, we can imagine a model that could learn some

level of semantics, while being unable to detect word boundaries. This would constitute

a proof of principle of the computational tractability of semantic learning without word

boundaries.

4. Conclusion

Long-form recordings offer an ecological view of language use in everyday life. Aside from

capturing child language experiences in an ecologically valid way, they offer new and exciting

research opportunities in reverse engineering infant language development. Building upon

the work of Dupoux (2018), we have defined two key aspects of the reverse engineering

approach: 1) the language acquisition simulation, or how to use controlled and realistic

data to create simulated language experiences and 2) the behavioral benchmarking, or

how to assess language skills of the artificial language learner with psycholinguistic tests.

This two-sided approach has the potential to increase our understanding of how language

is acquired and how it develops through exposure, both in humans and in machines. The

more we understand language acquisition in humans, the more human-like artificial language

learners we can create. Similarly, the closer artificial language learners are to humans, the

more we understand how language outcomes are shaped by exposure.
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