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Abstract—In this paper, we propose a forensic technique for the
reverse engineering of double JPEG compression in the presence
of image resizing between the two compressions. Our approach is
based on the fact that previously JPEG compressed images tend
to have a near lattice distribution property (NLDP), and that this
property is usually maintained after a simple image processing
step and subsequent recompression. The proposed approach
represents an improvement with respect to existing techniques
analyzing double JPEG compression. Moreover, compared to
forensic techniques aiming at the detection of resampling in
JPEG images, the proposed approach moves a step further, since
it also provides an estimation of both the resize factor and the
quality factor of the previous JPEG compression. Such additional
information can be used to reconstruct the history of an image
and perform more detailed forensic analyses.

I. INTRODUCTION

In recent years, the possibility of acquiring a large amount

of multimedia data in digital format and sharing it through

the Internet has brought a dramatic change in the way such

information is used. With a very little effort, multimedia data

such as images can be copied, manipulated, or combined to-

gether, making it extremely difficult to maintain a link between

the original acquisition and the final digital copy accessed by

the users. This fact has stimulated the development of a new

discipline, image forensics, aiming at detecting clues regarding

the history of a digital image, by looking for distinctive

patterns in statistical and geometrical features, including JPEG

quantization artifacts, interpolation, demosaicing traces [1].

Since a vast amount of digital images is available today

in JPEG format, several forensic tools try to obtain clues

by analyzing artifacts introduced by JPEG recompression.

When the discrete cosine transform (DCT) grids of successive

JPEG compressions are perfectly aligned, areas which have

undergone a double JPEG compression can be detected by

recompressing the image at different quality levels [2], or by

analyzing the statistics of DCT coefficients [3]. Recent results

demonstrate that even multiple JPEG recompressions can be

detected using first digit features of DCT coefficients [4].

Alternatively, non aligned double JPEG compression can be

revealed by considering blocking artifacts [5], or by evaluating
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the integer periodicity of DCT coefficients when different

shifts are applied to the examined image [6]. In both cases,

a careful examination of DCT coefficient statistics can also

permit automatic localization of doubly compressed areas [7].

A classical application scenario for the aforementioned

tools is image tampering detection. However, a much more

ambitious goal could be that of moving a step further, in

order to collect information about the processing chain which

led to a specific observed image. In this respect, a first

example can be provided by forensic tools that not only

detect double JPEG compression, but also estimate previous

compression parameters, like [2] or [6]. Unfortunately, the

above tools suffer from severe limitations in real life scenarios.

For example, if the image is resized between successive JPEG

compressions, which is often the case when digital images are

posted on photo sharing applications, the models the above

methods rely on are no more valid.

In this paper, we propose a forensic technique for the reverse

engineering of double JPEG compression in the presence of

image resizing between the two compressions. Our approach

aims at exploiting the fact that previously JPEG compressed

images tend to be distributed near the points of a lattice and is

based on the extension of the technique proposed in [6] for non

aligned double JPEG compression. The proposed approach

represents an improvement with respect to existing techniques

analyzing double JPEG compression. Moreover, compared to

forensic techniques aiming at the detection of resampling in

JPEG images like [8], the proposed technique moves a step

further, since it also provides an estimation of both the resize

factor and the compression parameters of the previous JPEG

compression. Such additional information is important, since it

can be used to reconstruct the history of an image and perform

a more detailed forensic analysis.

II. PROBLEM STATEMENT

Let us then assume that an original uncompressed image

x is JPEG compressed with a quality factor QF1, and then

decompressed. The image obtained after JPEG decompression

can be modeled as follows:

x1 = D−1
00 D(Q(D00x)) + e1. (1)
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In the above equation, D00 models an 8× 8 block DCT with

the grid aligned with the upper left corner of the image, Q(·)
and D(·) model quantization and dequantization processes,

respectively, and e1 is the error introduced by rounding and

truncating the output values to eight bit integers.

In the above chain, each 8 × 8 block of the decompressed

image can be modeled as a point in a 64-dimension lattice,

generated by the composition of the JPEG quantization matrix

and the block DCT matrix, perturbed by a noise due to round-

ing/truncation (R/T) errors. The distribution of such a signal

can be modeled as a mixture given by several components

distributed as the R/T errors, each one having mean equal

to a lattice point. Such a behavior can be considered as a

very powerful feature for detecting JPEG compression. If we

consider a common high SNR model for signal quantization,

the probability distribution of a generic signal within each

lattice cell can be assumed uniform. Hence, the probability

of a generic signal to fall within the support of the near lattice

distribution (NLD) can be computed as the ratio of the volume

of the support of R/T errors over 64 pixels to the volume of

a lattice cell, i.e.,

p =

(

q64

VΛ

)N

=

(

64
∏

k=1

1

Q1(k)

)N

(2)

where q is the quantization step for the pixel values, VΛ is

the volume of the lattice cell, and N is the number of 8 × 8
blocks of the image. In the above equation, we have assumed

that pixels are rounded to the nearest integer (q = 1) and that

the volume of the lattice cell is given by the product of the

JPEG quantization matrix entries Q1(k), k = 1, . . . , 64, since

the DCT matrix is unitary. It is clear that for Q1(k) > 1 and

for moderately large images (N ≈ 104) the above probability

quickly becomes negligible.

The near lattice distribution property (NLDP) of JPEG

images is expected to hold even if the decompressed image

undergoes subsequent processing steps. Let us consider the

case we are interested in, i.e., image resizing followed by

JPEG recompression.

When the decompressed image is resized, the whole process

can be modeled as the convolution of the image pixels by

an interpolation kernel φ(s), followed by resampling on the

desired grid. More formally, the resized image is given by

x2(m) =
∑

n

x1(n)φ(Am+ b− n) (3)

where n = (n1, n2) and m = (m1,m2), n1, n2,m1,m2 ∈ N,

are the pixel coordinates of the original and resized image,

respectively, whereas A and b are a 2× 2 matrix and a 2× 1
shift vector defining the resampling grid. For simple image

resizing, we have A = γ−1I, where γ is the resize factor

and I is the identity matrix. Moreover, in the following we

will assume that b = 0, i.e., image resizing preserves the

position of the upper left pixel. It is worth noting that the

above formalism can be used to model other generic affine

transformations of the image plane, like rotation and shearing.

Observing the NLDP directly on the resampled pixels is

not an easy task. However, if we are able to estimate an

approximation of the intermediate continuous image surface

ξ(s) =
∑

n
x1(n)φ(s − n), it is evident that by resampling

it according to the original pixel grid we will again observe

the NLDP of the resulting pixels. In order to quantify to

what extent the NLDP is preserved after image resizing, it is

important to assess how well the continuous image ξ(s) can

be approximated starting from the observed resampled pixels.

When the interpolation kernel is an ideal sinc pulse, ξ(s) can

be exactly reconstructed if γ > 1, or when γ < 1 and the

spectrum of the original signal is zero outside [−γπ, γπ]. For

practical interpolation kernels, like the bilinear or the bicubic

spline, there will be in general some residual aliasing terms

that can be modeled as signal dependent noise. However, for

natural images such aliasing terms will usually be negligible

and we do not expect them to significantly affect the NLDP.

In the case of JPEG recompression, the second JPEG com-

pression will introduce an approximation term e3 with respect

to the decompressed and resized image x2. Such an error term

will add up to the R/T errors and will make the detection of

the NLDP more difficult. The exact distribution of e3 may be

complex to derive, however by assuming again the high SNR

model for the quantization of DCT coefficient and invoking

the central limit theorem (CLT) it can be approximated by a

Gaussian distribution having zero mean and variance

σ2
e(n) =

64
∑

k=1

d̃k(n)
2Q2(k)

2 (4)

where d̃k(n) is the kth frequency 8×8 IDCT vector evaluated

at pixel position n and Q2(k) models the quantization matrix

of the second JPEG compression. Hence, the probability of a

generic signal to fall within the support of the NLD can be

approximated as the ratio of the volume of the typical set of

e3 over an 8× 8 block to the volume of a lattice cell, i.e.,

p ≈
(

2h(e3)

VΛ

)N

=

[

∏

n∈B8
(σe(n)

√
2πe)

∏64
k=1Q(k)

]N

(5)

where h(e3) = 1
2

∑

n∈B8
log[2πeσe(n)

2] is the differential

entropy of e3 over the generic 8 × 8 block B8. As long as

2h(e3)/VΛ < 1, the above equation says that the support of

a signal exhibiting NLDP and that of a generic signal are

disjointed with a probability tending to one.

A. Practical Measures for NLDP

Although the NLDP is a very discriminative feature, de-

tecting it in practice can be a difficult task. Firstly, the lattice

defined by the first JPEG compression depends on hidden

parameters. In some cases, these parameters can be estimated

by exploiting the fact that they can assume only a limited

number of possible values. For example, in the case of non

aligned double JPEG compression there are only 64 possible

grid shifts between the first and second compressions [7].

Nevertheless, estimating the quantization matrix of the first

JPEG compression may still be a problem. Moreover, when
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the image has been resized after the first compression, the

parameter γ may have a very large set of possible values (even

a continuous range), in which case the above approach may

become unpractical.

Secondly, the high SNR assumption may no longer hold

when quantizing DCT coefficients at higher frequencies. In

practice, this can be solved by checking only a sublattice

corresponding to the DCT coefficients at lower frequencies.

Even if this approach reduces the discriminative power of the

NLDP, it also has the merit of reducing the number of hidden

parameters to be estimated.

A suboptimal yet computationally practical approach to

detect the NLDP in the case of non aligned double JPEG

without resizing is that proposed in [6]. The aforementioned

method analyzes the integer periodicity of the histogram of the

DC coefficients when the block DCT is applied with different

grid shifts. The periodicity of the histogram can be evaluated

by considering its Fourier transform at frequencies which are

reciprocal of an integer value, i.e., we define

fij(Q) ,
∑

k

hij(k)e
−j 2πk

Q , Q ∈ N

where hij is the histogram of the DC coefficient for the

(i, j) shift. When the NLDP is present, we expect to find a

strong periodic component for a particular integer period and a

particular grid shift. This behavior can be captured by defining

an integer periodicity map (IPM) at the quantization step Q

Mij(Q) ,
|fij(Q)|

∑

i′j′ |fi′j′(Q)| , 0 ≤ i ≤ 7, 0 ≤ j ≤ 7.

In the presence of NLDP, M(Q1) will have a single entry

much greater than the others at the location (r, c) correspond-

ing to the shift of the primary compression, whereas in the

absence of NLDP M(Q) will be nearly uniform. In [6], this

property is measured by computing the min-entropy of the

IPMs, defined as

H∞ , min
Q

[

min
ij

(− logMij(Q))

]

. (6)

A high min-entropy corresponds to a mostly uniform IPM,

whereas a IPM with a high peak will be characterized by a

low min-entropy. If for a particular Q we have a low min-

entropy value, this can be associated to the presence of the

NLDP. Moreover, the Q achieving the lowest min-entropy

value provides an estimate of the quality factor of the previous

compression.

III. REVERSE ENGINEERING OF DOUBLE JPEG

COMPRESSION

As discussed in the previous section, the NLDP can be

a very reliable feature in order to detect the presence of a

previous JPEG compression in the processing chain of the

observed image. In the following, we will propose a simple

algorithm exploiting the NLDP for the reverse engineering of

a processing chain composed by a first JPEG compression, an

image resizing, and a final JPEG compression.

The proposed algorithm can be summarized by the follow-

ing steps:

1) estimate a number of candidates for the resizing factor;

2) for each candidate, reverse the resizing step;

3) for each counter-resized image, compute a measure of

the NLDP;

4) if the measure over one of the counter-resized images is

greater than a given threshold, label the image as doubly

compressed with resizing factor equal to that yielding

the maximum value of the measure, otherwise label the

image as singly compressed.

The rationale of the above algorithm is that, in the presence

of NLDP, the measure of NLDP obtained for the correct

resizing factor will be much higher than the other ones.

Conversely, in the absence of NLDP the probability of finding

a particular γ for which the measure is higher than the

threshold is negligible, since the probability of verifying the

NLDP for a generic signal is very low.

The implementation of the proposed algorithm depends on

the solution of three specific sub-problems. In the following

sections, we will discuss how we propose to solve the above

tasks.

A. Finding the Candidate Resizing Factors

This is probably the most critical step, since estimating the

correct γ is fundamental for the observability of the NLDP.

In this paper, we propose two alternative approaches based on

different assumptions.

The first approach assumes that we have no prior knowledge

about the correct resizing factor. This is the most general case,

and also the most challenging one. We propose to estimate the

candidate resizing factors by using the following algorithm,

inspired by the methods in [9], [8]:

1) Compute approximate horizontal and vertical second

derivatives by applying the filter g = [ − 1
2 1 − 1

2 ]
along rows and columns

x′′
h(n1, n2) =

∑

m

g(m)x(n1, n2 −m)

x′′
v(n1, n2) =

∑

m

g(m)x(n1 −m,n2);

2) Average the magnitudes of the rows of horizontal deriva-

tives and of the columns of vertical derivatives, yielding

two one-dimensional vectors

ah(n2) =
∑

n1

∣

∣x′′
h(n1, n2)

∣

∣

av(n1) =
∑

n2

∣

∣x′′
h(n1, n2)

∣

∣;

3) Compute the magnitude of the discrete Fourier transform

(DFT) of the above vectors fh,v(k) = |DFT{ah,v(n)}|,
divide them by their median filtered versions in order to

obtain two equalized magnitude vectors, i.e, f̃h,v(k) =
fh,v(k)/fh,v,median(k), and add them together

f̃(k) = f̃h(k) + f̃v(k);
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4) Estimate from f̃(k) the positions t̃i of the peaks having

higher magnitude. For the above step, we consider only

peaks whose value is greater than the median value times

a constant, i.e,

t̃i =

{

k

∣

∣

∣

∣

f̃(k) > f̃(k − 1) ∧ f̃(k) > f̃(k + 1)

∧ f̃(k) > β ·median
[

f̃
]

}

.

The accuracy of the estimated positions is increased by

fitting a periodic sinc function to the peak value and the

immediately previous and following values, using the

least squares method, yielding refined position estimates

ti = ψ
[

f̃(t̃i − 1), f̃(t̃i), f̃(t̃i + 1)
]

;

5) Estimate the candidate resizing factors as

γi =
NDFT

8ti
(7)

where NDFT is the length of the DFT.

The rationale of the above algorithm is that JPEG blocking

artifacts left by the previous compression, after resizing by a

factor γ, will result in periodic horizontal and vertical patterns,

having period equal to 8γ.

The second approach assumes to have some prior knowl-

edge about the possible resizing factors. This may be justified

in several scenarios. For example, most photo sharing appli-

cations use a limited number of possible image sizes when

resizing the original uploaded pictures. Since also commercial

cameras are based on image sensors providing a set of standard

image sizes, the respective image sizes can be paired in order

to enumerate a set of possible resizing factors. Hence, we can

output a set of candidate resizing factors by choosing all the

image size pairs which result in the image size of the observed

image.

B. Reversing the Resizing Step

In order to reverse the resizing step, we propose to simply

apply an image resizing with factor γ−1, using a standard

image interpolation algorithm. As discussed in Section II, even

if this will in general introduce aliasing on the counter-resized

image, we assume that the effects are negligible for what

concerns the detectability of the NLDP.

C. Measuring the NLDP

As a measure of the NLDP, we propose to compute the

min-entropy H∞ of the IPM according to (6). Since images

exhibiting the NLDP yield lower min-entropy values, we

choose to employ −H∞ in order to be consistent with the

definition of measure given in the algorithm of Section III.

The IPM approach also allows us to obtain an estimate of

the quantization step of the first JPEG compression, given as

Q1 = argminQ[minij(− logMij(Q))], which can be used to

infer the quality factor of the first compression.

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on a dataset of 500
uncompressed images having heterogeneous contents, coming

from three different digital cameras (namely Nikon D90,

Canon EOS 450D, Canon EOS 5D). From each image, we

extracted a portion of size 1024 × 1024 pixels and we com-

pressed it with six different JPEG quality factors, namely 50,

60, 70, 80, 90, and 99, using the Matlab function imwrite.

The resulting 3000 images represent the dataset of singly

compressed images. Then, each of the singly compressed

image, except those at quality 99, has been resized using

the Matlab function imresize with bicubic interpolation,

using a set of ten possible resizing factors and compressed

again using the same JPEG quality factors as the singly

compressed images. This resulted in 10 datasets of 15000
doubly compressed and resized images.

We tested both the version of the algorithm based on the

estimated resizing factor, described in Section III-A, and the

version based on prior knowledge of γ. In the second case, the

algorithm used as candidate γs all ten possible resizing factors.

In order to have a performance upper bound, we also tested an

oracle version of the proposed algorithm in which the correct

γ was assumed to be known. In all cases, the algorithms have

been applied to a 512× 512 portion of the luminance channel

of the resized and recompressed image. The counter-resized

images has been obtained by using bicubic interpolation. As to

the parameters of the resizing factor estimator, fh,v,median(k)
has been obtained using an 11 point window and we set

β = 1.2. Moreover, we considered only positions ti satisfying

5NDFT/64 < ti < NDFT/4.

The ability of the proposed algorithm to discriminate doubly

JPEG compressed an resized (DCR) images from singly

compressed (SC) images has been measured by estimating

the true positive rate (TPR) and false positive rate (FPR) of a

detector based on thresholding the min-entropy feature. TPR

is defined as the number of images detected as DCR over all

DCR images, whereas FPR is defined as the number of images

detected as DCR over all SC images.

As to the detection performance, the results obtained by

the proposed algorithm have been compared to those obtained

by the algorithm of Kirchner et al. in [8] and those obtained

by using the blocking artifact characteristics matrix (BACM)

features developed in [5]. In order to apply a threshold detector

to the BACM features, we projected each feature vector

along an optimal direction chosen according to Fisher’s linear

discriminant analysis [10].

In Fig. 1, we plot the TPR achieved by the different

detectors at FPR < 1% for different resizing factors γ, when

the quality factor of the second compression (QF2) was equal

to 90 and the quality factor of the first compression (QF1)

was in the interval [50, . . . , 90], whereas in Fig. 2, we plot

the TPR achieved by the different detectors at FPR < 1% for

different QF2s, considering γ = 1.2 and QF1 ∈ [50, . . . , 90].
The results show that the detector based on prior knowledge

of γ is clearly superior to the detector that estimates the
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Fig. 1. TPR of the different detectors at FPR < 1% for different resizing
factors γ, considering QF2 = 90 and QF1 ∈ [50, . . . , 90].
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Fig. 2. TPR of the different detectors at FPR < 1% for different quality
factors QF2, considering γ = 1.2 and QF1 ∈ [50, . . . , 90].

resizing factor, achieving a performance close to that of the

oracle detector. Both detectors have better performance than

Kirchner’s detectors and the BACM detector. Particularly, the

BACM features do not appear suitable at all in the case of

resized and recompressed images. The results also show that

resizing factors greater than one (upsampling) are more easily

detectable than resizing factors smaller than one (downsam-

pling). From Fig. 2, it is also evident that DCR images can be

reliably detected only when the quality factor of the second

compression is sufficiently high (QF2 > 80).

In order to assess the influence of QF1 on the detection

performance, in Tables I-III we report the TPR obtained at FPR

< 1% by Kirchner’s detector, the proposed algorithm with

estimated γ, and the proposed algorithm with prior knowledge,

respectively, for each (QF1, QF2) pair and γ = 1.2. For ease

of reading, the best TPRs among the three detectors have

been highlighted in bold. The above results show that on our

dataset the detector of Kirchner is able to detect DCR images

QF2

50 60 70 80 90 99

QF1

50 0.014 0.008 0.050 0.190 0.352 0.722

60 0.012 0.006 0.014 0.110 0.302 0.680

70 0.008 0.014 0.002 0.022 0.194 0.646

80 0.002 0.008 0.008 0.006 0.130 0.506

90 0.008 0.010 0.014 0.006 0.008 0.420

TABLE I
TPR AT FPR < 1% ACHIEVED BY THE ALGORITHM IN [8], FOR γ = 1.2.

QF2

50 60 70 80 90 99

QF1

50 0.278 0.538 0.646 0.728 0.766 0.792

60 0.124 0.258 0.524 0.692 0.770 0.822

70 0.018 0.050 0.242 0.522 0.712 0.822

80 0.026 0.016 0.016 0.184 0.498 0.702

90 0.014 0.012 0.030 0.016 0.108 0.402

TABLE II
TPR AT FPR < 1% ACHIEVED BY THE ALGORITHM USING ESTIMATED γ ,

FOR γ = 1.2.

QF2

50 60 70 80 90 99

QF1

50 0.658 0.798 0.794 0.830 0.834 0.836

60 0.678 0.712 0.836 0.872 0.868 0.876

70 0.012 0.572 0.734 0.882 0.920 0.932

80 0.010 0.006 0.014 0.788 0.934 0.962

90 0.012 0.010 0.006 0.010 0.500 0.902

TABLE III
TPR AT FPR < 1% ACHIEVED BY THE ALGORITHM USING PRIOR

KNOWLEDGE ABOUT γ , FOR γ = 1.2.

only when QF2 is much greater than QF1. Conversely, the

detector based on estimated γ is able to distinguish DCR

images when QF2−QF1 ≥ 10, whereas the detector based on

prior knowledge usually work also when QF2 = QF1, and,

for QF1 ≤ 70, even when QF2 is slightly less than QF1.

Surprisingly, lower values of QF1 seem to be more difficult

to detect when QF2 is very high.

With respect to previous detectors, the proposed algorithm is

also able to estimate some parameters of both the resizing step

and the previous JPEG compression. In order to evaluate the

estimation performance, we measured the mean absolute error

(MAE) between the estimated and the true resizing factor and

the probability of correctly identifying the first quality factor

(Pc), which depends on the estimation of the quantization step

of the DC coefficient of the first JPEG compression [6]. The

above measures have been computed over the images correctly

detected as DCR when FPR was less than 1%. In Fig. 3

we plot the MAE and Pc values, respectively, for different

quality factors QF2. In both cases, results are averaged over

all possible resizing factors and quality factors QF1. From the

above results, we can observe that while the algorithm based

on prior knowledge of γ has a good estimation performance

irrespectively of QF2, the algorithm estimating γ tends to
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Fig. 3. Estimation performance for different quality factors QF2. (a) mean
absolute error of the estimated resizing factor γ; (b) probability of estimating
the correct quality factor QF1. Results are evaluated over the correctly
detected images at FPR < 1% and averaged over all possible resizing factors
and quality factors QF1.
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Fig. 4. Estimation performance for different values of the estimated
parameters. (a) mean absolute error of the estimated γ; (b) probability of
estimating the correct QF1. Results are evaluated over the correctly detected
images at FPR < 1% and averaged over all possible values of the other
parameters.

produce worse estimates for lower QF2 values.

In order to verify the influence of the to-be-estimated

parameter on the estimation performance, in Fig. 4 we plot

also the MAE and Pc values for different values of γ and

QF1, respectively. In both cases, results are averaged over

all possible values of the other parameters. The results show

that resizing factors less than one are usually more difficult

to estimate. Moreover, some quality factors of the first JPEG

compression are more difficult to estimate than others. This

behavior seems related to the actual value of the quantization

step Q of the DC coefficient. For example QF1 = 60, corre-

sponding to Q = 13, is more easy to identify than QF1 = 50,

corresponding to Q = 16. However, in the latter case we

verified that most of the wrong estimates reported Q = 8.

Hence, we suppose that quantization steps corresponding to

prime numbers may be more easily identifiable.

V. CONCLUSIONS

In this paper, we have presented a practical algorithm

for the reverse engineering of a doubly compressed JPEG

image when a resizing step has been applied between the

two compressions. The method aims at exploiting the fact

that previously JPEG compressed images tend to have a near

lattice distribution property (NLDP), and that this property

is usually maintained after a simple image processing step

and subsequent recompression. The results demonstrate that

in the presence of prior knowledge regarding the possible

resizing factors, the proposed algorithm is usually able to

detect a resized and recompressed image, provided that the

quality of the second compression is not much lower than

the quality of the first compression. When the resizing factor

has to estimated, the detection performance is usually lower,

however it remains comparable to or better than that of

previous approaches. Differently from existing techniques, the

proposed approach is also able to estimate with a reasonably

good performance some parameters of the processing chain,

namely the resizing factor and the quality factor of the previous

JPEG compression. This represents an important novelty with

respect to the state of the art, since it may open the way to

more detailed forensic analyses.

We are aware that there are still a number of points to be

further investigated. First of all, some results (like those in

Table III), suggest that the IPM feature may not be the best

way to fully exploit the NLDP. Further research is needed

both to establish the fundamental limits of the NLDP and

devise practical methods achieving those limits. Moreover, the

proposed technique relies heavily on the estimation of some

hidden parameters of the processing chain. Future research

should be devoted to finding computationally efficient methods

for this task. It would also be interesting to evaluate the

sensitiveness of the algorithm to various parameters, such as

different interpolation algorithms, different quantization ma-

trices than those used in Matlab, and the use of chrominance

channels.
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