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Abstract

Reverse Nearest Neighbor (RNN) queries
have been studied for finite, stored data
sets and are of interest for decision sup-
port. However, in many applications such as
fixed wireless telephony access and sensor-
based highway traffic monitoring, the data
arrives in a stream and cannot be stored.
Exploratory analysis on this data stream
can be formalized naturally using the notion
of RNN aggregates (RNNAs), which involve
the computation of some aggregate (such as
COUNT or MAX DISTANCE) over the set of re-
verse nearest neighbor “clients” associated
with each “server”.

In this paper, we introduce and investigate
the problem of computing three types of
RNNA queries over data streams of “client”
locations: (i) Max-RNNA: given K servers,
return the maximum RNNA over all clients
to their closest servers; (ii) List-RNNA:
given K servers, return a list of RNNAs
over all clients to each of the K servers; and
(iii) Opt-RNNA: find a subset of at most
K servers for which their RNNAs are be-
low a given threshold. While exact com-
putation of these queries is not possible in
the data stream model, we present efficient
algorithms to approximately answer these
RNNA queries over data streams with error
guarantees. We provide analytical proofs
of constant factor approximations for many
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RNNA queries, and complement our analy-
ses with experimental evidence of the accu-
racy of our techniques.

1 Introduction

Reverse nearest neighbor (RNN) queries have been
studied recently for finite, stored data sets (see, e.g.,
[18, 28, 26]), and provide a natural way of identifying
the “influence” of a query point on the database,
for example, based on the geographical proximity
of a new store outlet to its potential customers, or
the vector-space similarity of a new service offering
to its client profiles. Intuitively, the reverse nearest
neighbor set of a “server” query point ¢ is the set
of “client” points in the database for which ¢ is the
nearest server!, for example, the set of customers
for which the new store outlet is the closest store,
or the set of users whose profiles are more similar to
the new service offering than to any other service.
Often, what is of interest is not the exact RNN set,
but aggregates on this set, for example, the number
of RNN clients of the new service offering, or the
median distance between the new store outlet and
its RNN customers. These aggregates are very useful
for decision support, and we refer to them as reverse
nearest neighbor aggregates (or RNNAs).

In many applications, the client data arrives
in streams, and decision support tools for these
applications need to be able to compute answers
to ad hoc aggregate (in particular, RNNA) queries
in an online fashion. We briefly discuss two such
applications next.

Fixed Wireless Telephony Access: In this ap-
plication, fixed wireless base stations are installed
at street intersections in towns, or along highways,
to enable residential telephony customers to directly
connect to the long distance network. Each base
station has a region of coverage, and the system

1[18] refers to this as the bichromatic case.



is typically overengineered so that overlaps between
coverage regions of base stations are large. Call ini-
tiations and terminations in this application arrive
in streams, and are handled by the closest available
base station, which can determine the location of the
originating call.

A decision support system for this fixed wireless
telephony access application may want to continu-
ously determine the worst-case “signal strength” for
the base stations (based on the maximum distance
between the base station and a customer), and the
“load” on the base stations (based on the number of
calls handled by the base station). It may also need
to optimize the performance of the system of base
stations by dynamically turning them on and off.

These problems are naturally expressed using
the notion of reverse nearest neighbor aggregates.
The fixed wireless base stations in this application
are analogous to “servers”, while call initiation and
termination requests are analogous to “clients”.
Since each call is handled by the closest available
base station, the number of calls handled by the
base station is a reverse nearest neighbor aggregate
(the RNN COUNT), as is the worst-case signal strength
(the MAX over all the RNN MAXDISTs). One may wish
to ask “what-if” queries: for a specified subset of K
base stations, and the given call stream, what would
be the load or worst-case signal strength at each
of these base stations? One optimization problem
involves the identification of K base stations such
that, if all other base stations were unavailable,
some RNNA (such as RNN COUNT or RNN MAXDIST)
is minimized.

Highway Traffic Monitoring: In this application,
thousands of sensors are deployed on highways [19)].
They detect vehicles that pass over them, and pro-
vide estimates of vehicle speed and length, which can
be used to infer aggregate flow and volume informa-
tion on a stretch of the highway. User queries in this
application arrive in streams, and request for traf-
fic conditions at a particular location on the high-
way, receiving periodic frequent updates based on
the data monitored by the closest available sensor,
until the query is explicitly terminated by the user.

A decision support system for this traffic monitor-
ing application may want to continuously determine
the “accuracy” of the information provided (based
on the distance between a user query location from
the sensor location), and the “load” on the system
(based on the number of user queries for each sen-
sor). It may also want to identify which sensors to
keep idle and which to keep active, under natural
accuracy or load constraints.

Again, these problems are very naturally ex-
pressed using the notion of reverse nearest neighbor

aggregates. The sensors in this application are anal-
ogous to “servers”, while user queries are analogous
to “clients”. The number of user queries associated
with a sensor is its RNN-COUNT, and the worst-case
accuracy of answers provided to user queries is the
maximum over all the sensor RNN-MAXDISTs.

1.1 Contributions and Overview

In this paper, we introduce and investigate the prob-
lem of RNNA computation over data streams con-
sisting of “client” locations, for a static set of avail-
able “servers”, in particular: (i) Max-RNNA: given
K servers, return the maximum RNNA over all
clients to any of the servers; (ii) List-RNNA: given
K servers, return the RNNA over all clients to each
of the K servers; and (iii) Opt-RNNA: find a set of
at most K servers for which their RNNAs are below
a given threshold. We make the following technical
contributions:

e While exact computation of these RNNAs is not
possible in the data stream model, we present
efficient algorithms to approximately answer
them over data streams with worst-case error
guarantees.

— For Max-RNN-COUNT, we present a 3-
approximation; when clients are inserted
but not deleted, we provide a (1 + €)-
approximation. For Max-RNN-MAXDIST, we
present a (1 + €)-approximation.

— For List-RNN-COUNT (and
List-RNN-MAXDIST), we obtain lower-
and upper-bound estimates for each server
as functions of the true counts (resp., true
MAXDISTs) for the server and its adjacent
servers.

— For Opt-RNN-COUNT, we obtain an 8-
approximation; for Opt-RNN-MAXDIST, we
present a (1 + €)-approximation.

For all of these, the space used by our tech-
niques is near-linear in the number of available
servers. These results use various count parti-
tioning and space partitioning techniques.

o We complement our analyses of RNNA compu-
tation with experimental results, using a vari-
ety of real and synthetic data sets, to better
understand the behavior of the various count
partitioning and space partitioning techniques
in practice (Section 5).

The outline of this paper is as follows. We dis-
cuss related work in Section 2, formally define the
problems in Section 3, describe the algorithmic solu-
tions in Section 4, present our experimental results



in Section 5, and conclude with a summary of our
contributions and directions for future work in Sec-
tion 6.

2 Related Work

Our paper is the first work to study the problem of
computing reverse nearest neighbor aggregates over
data streams. Related work can be broadly classified
into two areas: algorithms over data streams, and
algorithms for computing reverse nearest neighbors
over a conventional database system. We discuss
these in turn.

Data stream algorithms have been of much recent
interest, both in the theory as well as in the database
communities. The first results were the results of
Munro and Patterson [22], who studied the space
requirements of selection and sorting as a function
of the number of passes over the data; data stream
algorithms are one pass algorithms. The data steram
model was formalized by Henzinger et al. [14] and
Gilbert et al. [9].

Alsabti et al. [1], Manku et al. [20, 21], and Green-
wald and Khanna [12] considered the problem of
computing the approximate median and other quan-
tiles in a single pass over a data set. (We make
use of their algorithm in this paper.) More recently,
Gilbert et al. [11] considered the problem of comput-
ing approximate online quantiles with probabilistic
guarantees over a data stream of insertions and dele-
tions. Gilbert et al. [10] have considered the prob-
lem of histogram construction over a data stream.
(There is a vast literature on the problem of effi-
cient and accurate histogram construction, not on
data streams, which we don’t mention here.)

Recent works by Gehrke et al. [8] and Gilbert et
al. [9] have looked at maintaining summary struc-
tures for maintaining approximate aggregates over
a data stream. RNNAs differ from these aggregates
(including the correlated aggregates of [8]) in that
the association of “tuples” (clients, in our case) with
“groups” (servers, in our case) is not fixed, and the
same “tuple” can be associated with different groups
at different times. This makes it non-trivial to ex-
tend the results of [8, 9] for our problem.

There has been recent work on mining data
streams, such as the construction of decision trees
[7, 6], association rule mining [15], and similarity
matching [4]. The clustering algorithms literature
is extensive, but only recently have streaming al-
gorithms been studied [3, 13]. They study the k-
median clustering problem, which is similar to our
problem. However, they study the version with only
clients, and their results do not work for the server-
client instance we have under data streams.

In general, few results are known in the model
of dynamic maintenance, where stream data is dis-

carded as well. Notable exceptions include L,-
norms [16], Hamming norms [4], quantiles [11], and
results on maintaining stream statistics over sliding
windows [5].

The study of reverse nearest neighbors (RNN)
in databases was initiated by Korn and Muthukr-
ishnan [18]. Follow-up work includes the proposal
of more efficient access methods for indexing re-
verse nearest neighbors over finite data sets [28, 26].
However, the problem of efficiently computing re-
verse nearest neighbor aggregates (RNNAs) has not
been studied before, in particular, under space-
constrained or data stream models.

3 Preliminaries

We will begin by formalizing the setting. We have
a collection of servers; server i is located at [;. We
refer to these servers as being awvailable; a subset of
the available servers may be deemed active as spec-
ified in the queries, on a query-by-query basis. Let
n denote the total number of available servers.

Over time, clients arrive and eventually depart.
Each client j has its location L; associated with it.

For each server ¢, its reverse nearest neighbors is
the set of all clients that have ¢ as their nearest neigh-
bor server.?2 The distance function between servers
and clients depends on the application. In our case,
Euclidean distance seems most appropriate since the
servers and clients are spatially located.

The set of all reverse nearest neighbors of a server
and their distances from the server are important at-
tributes. While previous work has focused on finding
reverse nearest neighbors sets, the focus here is on
maintaining various statistics on them as the clients
arrive and depart. We focus on two instances of
these aggregates:

1. RNN-COUNT(¢) is the number of clients currently
in the system for which ¢ is the nearest neigh-
bor. This may be thought of as the “load” on
server i since, in our motivating applications,
all clients in the reverse nearest neighbor of i
are “assigned” to the facility at i.

2. RNN-MAXDIST(¢) is the largest distance to a
client that has ¢ as its nearest neighbor. This
may be thought of as the “quality” of assigning
clients to that server. For example, in the fixed
wireless case, this may correspond to the qual-
ity of the connection and in the sensor-based
traffic monitoring application, this corresponds
to the accuracy of the information.

2See [18] for more intuition about reverse nearest neigh-
bors.



If we can store the set of all clients in the sys-
tem at any moment, these aggregates can be com-
puted and maintained using the R-tree based meth-
odsin [18, 28, 26]. In practice, the stream of clients is
too large to be stored and indexed in memory. More
formally, we work in the data stream model of com-
putation [14], wherein space used is much smaller
than the number of clients in the stream. Then one
cannot obtain exact RNNA values. Therefore, the
focus is on maintaining them approximately.

In addition, RNNAs are often issued in an ad hoc
fashion as a means of understanding the general dis-
tribution of clients with respect to active servers.
Exploratory data analysis involves choosing a set of
active servers and determining the load and accu-
racy distribution, or finding active servers in order
to optimize various load and accuracy constraints.
We formalize these problems as follows.

1. Max-RNNA: given K active servers specified in
the query, return the maximum RNNA over all
clients to their closest active servers;

2. List-RNNA: given K active servers specified in
the query, return a list of the RNNA over all
clients to each of the K active servers; and

3. Opt-RNNA: choose a set of at most K servers
from the available ones to be active, such that
the RNNAs of the active servers are below a
given threshold.

All  three problems above have instances
corresponding to the use of RNN-COUNT(:) or
RNN-MAXDIST(:) as the RNNA. Note that in this
context, RNN-COUNT(i) and RNN-MAXDIST(:) are
defined with respect to the active servers specified
in the query, and not the available servers in the
system. The first problem above focuses on finding
the worst-case load or quality over a chosen set
of active servers. The second problem focuses on
obtaining the list of maximum load or worst case
quality for each. The third problem focuses on the
task of choosing a set of servers to be active based
on the current load and quality distribution on the
available servers.

In what follows, we provide novel solutions to the
problem of maintaining RNNAs as well as support-
ing the three queries above. Our solutions will use
space near-linear in the number of available servers
n in the system at any time, which is quite realistic.
Our algorithms have a priori worst-case approxima-
tion guarantees. We employ the following two ap-
proaches:

e Count partitioning: bucketing the distribu-
tion of clients and histogramming based on the
counts of clients;

e Space partitioning: bucketing the underlying
space and histogramming clients based on their
locations.

Both space partitioning and count partitioning
are done in a variety of ways depending on the con-
straints of the problem, and whether one seeks prov-
able results or heuristic improvements. In addition,
we apply a greedy strategy (with and without back-
tracking) to obtain our approximation results for
these problems.

4 Our Algorithms

In this section we describe algorithms for answer-
ing the three problems described in Section 3. We
will assume that servers are on a straight line. This
is a convenient abstraction of placement of servers
along a highway, and will apply for distances along
the highway as well. We discuss extensions of our
results to the more general case of clients being dis-
tributed on the plane in Section 4.3. For simplicity of
exposition, we focus on clients being arranged on the
same line as the servers. We will first focus on the
RNN-COUNT() instance followed by RNN-MAXDIST(%).
Table 1 summarizes our results from this section.

4.1 RNN-COUNT(¢) Instance

We maintain a data structure on the available
servers that can be updated fast with client inser-
tions and deletions.

A trivial algorithm is as follows. For each pair of
servers (i, j) where ¢ < j, we maintain C'L;; which is

the number of clients with Ly, € [;, l";lj ), and CR;;

which is the number of clients with L; € (li;lj AR
for each client k; see Figure 1. These counts can
be easily maintained when clients arrive and depart.
Consider estimating RNN-COUNT(z). Let a<; be the
closest active server to its left and a~; the closest
active server to its right. Then, the answer to the
query RNN-COUNT(%) is simply C'Li, ; +CRja_,. This
is the optimum answer.

However, this solution has two drawbacks. First,
if we have n servers in all, our data structure requires
O(n?) space (since we do not know a priori which of
them will be deemed active in any query), which can
be prohibitive. Second, each arrival or departure of a
client requires O(n?) updates of counts in the worst
case, which can be computationally prohibitive.

In what follows, we will maintain space near-
linear in n, and answer the three types of queries
above. The aggregate we determine will not be ex-
act but approximate with guaranteed accuracy, as
we shall prove.

Our Data Structure: We maintain a simple data
structure: C(i) which is the number of clients be-
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Figure 1: Inter-server midpoints for Computing RNN-COUNTs

tween servers ¢ and (i+1) at any time; C'(0) denotes
the number of clients to the left of server 1. Thus,
the total space is O(n). When client j arrives, we
find ¢ such that I; < L; < l;4; and increment C(4);
when client j departs, C(i) is decremented. It takes
O(logn) time to find the ¢ value.

Answering Queries: Now we will show how to
answer each of the three query types. Say we are
presented with the Max-RNNA(sy,...,skx) query.
Here, s1,...,sk are the K servers designated to be
active and the goal is to return max; RNN-COUNT(s;).
Say the available servers are sorted left-to-right in
the order I; < --- < [,,. The overall steps of the

algorithm are as follows:
1. Determine all j such that I; € [l,,, %) and
aggregate their C(j)’s. Denoted this by RS;.
2. Find all j's such that I; € [==2 7] and
aggregate C(j — 1)’s. Denote this by LS;.

3. Calculate M; = LS; + RS; and output M =
max; M,'.

Theorem 4.1 Let M™ be the exact answer to query
Maz-RNNA(s1,...,8K) and M be the estimate re-
turned by the algorithm above. We have M* <
M < 3M*; hence, the algorithm provides a 3-
approximation in the worst case.

Proof: Consider s;—1, s; and s;y1. Let Js be
lo,+la,
171-0-1)’ and J.

the largest j such that I; € [l,,, ==

to be the smallest j such that [; € (%,lsi].
Part of C(Js) belongs to RNN-COUNT(s;) and the
remainder to RNN-COUNT(s;11); likewise, part of
C(J< — 1) belongs to RNN-COUNT(s;) and the re-
mainder to RNN-COUNT(s;—1). Therefore, we have
M* < CJc—-1)+---+C(Js) = M. Also, in
each case, the remainder is at most M*. Hence,
M=C@{c—-1)+-+C(j>) < 3M*, giving the
theorem. |

Next we consider the List-RNNA(sy, s2,---,8K)
query. As before, we determine M; and output M;

for each s; in the list. While we cannot give an abso-
lute error guarantee on each M;, we can provide an
approximation guarantee based on the “local” neigh-
borhood of each s;. In particular,

Theorem 4.2 Let M; be the estimate returned by
our algorithm for List-RNNA(sy,s2,---,8K) and
M} is the corresponding ezact answer. We have
M; < M; < (Mj o, + M+ M;,).

The proof is similar to that of Theorem 4.1 and omit-
ted.

Finally, we turn to the Opt-RNNA problem.
Given parameter C, our problem is to determine
a subset of available servers to be active so that
(a) max; RNN-COUNT(s;) < C over all active servers s;
in our solution and (b) the number of active servers
K is minimized. We will assume that a solution sat-
isfying (a) exists and find the minimum such K it is
easy to modify the algorithm below to detect if (a)
cannot be satisfied.

Our algorithm is greedy and proceeds as fol-
lows. Assume as before that the available servers are
sorted left-to-right, and recall that our data struc-
ture maintains C'(7), the number of clients located in
[li,liv1). After having chosen k < K active servers,
we have a divider d,, at one of the server locations
l;, and all active servers have been picked to the left
of di,. (At the beginning, let dy = l;.) Find the
smallest server j* > j such that Zﬁig* C(k) > 2C.
There exists at least one server in the interval [j, j*]
that is part of the optimal solution; otherwise, it will
follow that more than C clients in the range [}, ;+]
will have either the active server immediately to the
left of j or the one immediately to right of j* in the
optimal solution as their nearest active server, which
violates optimality. We will designate the rightmost
server in [4,j*) as the (k + 1)th active server, and
set dx4+1 to be [;+ and continue the algorithm.

Theorem 4.3 Say there is a solution to the Opt-
RNNA(C) problem with max; RNN-COUNT(s;) < C
over all active servers s; and there are at most K*
active servers. Our algorithm finds a solution of at



most K* active servers such that at most 8C clients
have one of the active servers in the solution as their
active nearest neighbor. The running time of this
algorithm is O(K*logn) where n is the number of
available servers.

Proof: Consider 7 and j* as above. Let a be
the xkth active server, 8 the (k + 1)th active server
(that is, the active server immediately to the left
of j*), and v the (k + 2)th active server. We have
Y= C(k) < 2C by definition of j*, and likewise
Yol C(k) < 2C. Also, C(i) < 2C for any i
(in particular, ¢ € {a,0,7}), since otherwise no
solution exists in which each active server s; has
RNN-COUNT(s;) at most C. We have RNN- CUUNT(ﬂ)

Ca) + Y425 (k) + C(B) + X470, C(k) since 8
may the closest active server for afl the clients in
the region (I,1,) in the worst case placement of the
clients and servers. Therefore, RNN-COUNT(S) < 8C.
The fact that we do not designate more than K*
servers as being active follows since for any region
(dk,dk+1), an optimal solution must designate at
least one active server, as we do likewise. If we main-
tain the C(i)’s in an array with prefix sums, each
active server can be determined using the greedy al-
gorithm above in O(logn) time. [

Note that the algorithm presented above is ex-
tremely fast, and gives a reasonably good approx-
imate solution. We can use this as a subroutine
to solve the “dual” problem of given a hard upper
bound of K on the number of servers to be used,
the goal is to minimize the maximum RNN-COUNT(s;)
over all active servers s;. We can then choose differ-
ent values of C' and run the subroutine above until
we get a solution that uses no more than K active
servers; this will be a factor 8 approximation to the
“dual” problem.

Improved Results for Insert-Only Clients:
Consider the case when clients may only arrive (and
not depart). This will correspond to the arrival
of continuous queries issued by users in the sensor-
based traffic application that never get terminated.
Our data structures are based on count partitioning.
Say the available servers are sorted left-to-right.
We maintain a summary data structure on the
servers as clients stream in. Between servers ¢ and
(i 4+ 1), we will always maintain C(7), the number of
clients between servers i and (i + 1) at any time.
This is the data structure we maintained earlier.
In addition, we maintain /-quantiles. = Greenwald
and Khanna show how to maintain an O(M)—
space data structure for finding e-approximate quan-
tiles [12]. Using their method, we can identify
,ct such that the number of clients lying in

[lz,L k] is within (1£€)kC(i)/¢, forany k (1 < k < {)

and for € a function of 1/£.
We now describe how queries are answered. We

i : ls;+ls;
determine the largest j such that [; € [I,,, _,+ 1]

and the smallest k such that I, € [i ).
We also determine largest (3 such that Ls €
7

Lo; +lo;
[ls: s %], and the smallest v such that L,y €
Los_y o
[ i—1 i

5—,15;]. We return

((1/)—y+1)C(k-1)/t+

Y Cla)

a€lv,0]

as M;. As an example of query, consider Max-
RNNA(s1,...,8k). In this case, max; M; is re-
turned as the answer.

Theorem 4.4 Say M* is the exact answer to query
Maz-RNNA(s1,...,8K) and M is the estimate re-
turned by the algorithm above. We have M*/(1
0) < M < (1 +§)M*, for user-specified constant
fraction 6. Hence, the algorithm provides a factor
1+ & approximation in the worst case. The space
used is O((nlog N')/&) where N is the total number
of clients in the system at any time.

Proof: We have

M* > Mi > BC(H)/(1+e)f) +

> Cla)

a€ly,0]

+((1/6) =7+ 1)CE -1/ (1 +€)f)

for all 4, because of the (1 + €)-approximation of
quantiles (and hence the desired counts) at the left
and right ends of the interval, as well as the one
extra quantile added to the left and the right in the
estimation of M;. Hence, M* > max; M;/(1+¢€) =
M/(1 + €) giving one side of the inequality we wish
to prove.

From our estimation M; and the inequality above,
we have M; < M (1+€)+C(j)/+C(k—1)/l Also,
notice that M* > C(m)/2 for any m since at least
half of C(m) is closer to the available server to the
left or the right. Hence, M; < M} (1 + €+ 4/£) and
M = max; M; < M*(1+¢e+4/£). We can choose ¢,
£ such that M < (1+ d)M* for any constant 4.

The total space used is O(}, M)

O(”—loégﬂ)7 where we have used § as a pessimistic
estimate over € and £ that governs the space com-
plexity of the quantile finding algorithm. [
Similarly, we can obtain improved results for the
List-RNNA and Opt-RNNA queries, as well with
the RNN-COUNT(%) instance when clients are only in-

serted. For the general case when clients may be

+(B+1)C(5)/¢



deleted as well, the count partitioning data struc-
ture above is still useful, but we do not know how
to maintain it (in particular the quantiles) in the
presence of deletions. Hence, we would not obtain
the (1 + €)-approximation we have here and have to
settle for the 3-approximation we outlined earlier.

4.2 RNN-MAXDIST(:) Instance

In the previous section, we gave small constant ap-
proximations for the RNNAs involving counts. In
this section, we will present similar algorithms for
RNNAs involving distances. Now we need alternate
summary structures. In fact, we will use histograms
based on space partitioning rather than count par-
titioning we employed above.

Our Data Structure: As before, say the servers
are sorted left-to-right in the order Iy < --- < [,.
We also let U denote the domain size, that is, U =
[min{L;,!;},max{L;,l;}]. We maintain a summary
data structure on the available servers as clients
stream by. Between servers 7 and (i + 1), we put
dividers at distances (14 ¢)’ from I; with € > 0, for
each possible j; we denote them g}. Likewise, we put
dividers at distances (14€)’ from l;41 for each possi-
ble j and denote them A7, ,. For convenience, we will
let there be dividers at I; and l;;1 as well (each as g’s
and as h’s). There are O(log; | (lix1 —1;)) dividers
in all. We overload the notation g¥, h¥ to denote

the dividers as well as their positions. We ma,intljxin
+1

the number of clients that fall between g and g;
which will be denoted #g¥ (likewise for the h’s but
the count will be denoted #hfJrl for appropriate k).
We maintain the structure above between every two
neighboring servers (not necessarily active) because
any subset of servers may be deemed active at any
time.

When a client j arrives (or departs), we first de-
termine ¢ such that I; < L; < l;31. Then we de-
termine g¥ such that g¥ < L; < ¢, We update
#g¥ to be #g¥ + 1 (or #gF — 1 respectively); we do
likewise with h¥’s and update #h¥ , for appropriate
k’s. This takes O(logU) time to find the g¥ or h¥,
and O(1) updates to the data structure.
Answering Queries: Consider the Max-
RNNA(sy,...,8x) query. Here, s1,...,5x are
the K servers designated to be active and the goal
is to return max; RNN-MAXDIST(s;). Say the servers
are sorted left-to-right. The overall steps of the
algorithm are as follows:

e Determine the largest g° with nonzero #g° such

that g° € [ls;, %] We denote |g¢ — I;| by

RD;.

e Find the smallest A/ with nonzero #hJ such

shat(hf~ T 1,.]. We denote |hL I;| by
LD.

o Calculate D = max; max{RD;, LD;} and out-
put D.

Theorem 4.5 Let D* be the exact answer to query
Maz-RNNA(s1,...,8K) and D be the estimate re-
turned by the algorithm above. We have D* /(14€) <
D < D*; hence, the algorithm provides a (1 + €)-
approzimation in the worst case. The total space
used is O(3_;log, (Is;y, —1s;)) = O(nlogU).

Proof: Consider our algorithm above. Fix ac-
tive server s; for discussion. Define D; =
RNN-MAXDIST(s;). Say there is a client j at position
ls, + D; (the argument with the client at l5, — D; is
similar), and no client exists to the right of I, that
has ¢ as its active nearest neighbor. Clearly then
ls, + D; < lsiﬂ%. Also, there is an (a,b) such

that g° < Is, + D; < g®*!, #4° is nonzero and all

gt <gf < % will have #g/ = 0 (otherwise,
D; will not be the optimal answer).

Two cases ensue: either % € [g%,g5%1] or
not. For now, assume the latter. Two subcases en-
sue. Consider the subcase when our algorithm de-
termines D = g° — I, to be answer to the query.
Clearly, gg < ls; + D; implies D < D;. Also,
ls;, + D; < g®*! implies

D*<l,+(1+ 6)(92 —la) — s,

since (g8t —1,) < (1 +¢€)(g? —1,). Tt follows that
D; < (1+€)gt —el, —1ls,. Since l, > Is,, we have
D; < (1 + 6)92 - elSi - lSi = (1 + 6)(92 - lsz) =
(1+¢€)D, proving the lemma in this case. The other
subcase is when D = I, — h{ > gb —I,,. Tt follows
that D > D;/(1+ €) using the argument above, and
trivially, D < D; as well. That completes the proof
of the lemma for the latter case.

For the former case, the same argument holds ex-
cept that we need to use D* rather than D;. This

ls; +lsz’+1
2

is because when € [g%,g5*'], the nonzero

number clients given by #g° may be the left or to

the right of % and we do not maintain any in-
formation about this outcome in our summary data
structure. The outcome affects D; or D;y; signifi-
cantly, but not max{D;, D;;1}; this helps make the
proof complete. Details of this proof will be included
in the full version of this paper. [

We have used space partitioning, that is, bucket-
ing clients depending on their locations to achieve a
provably good approximation above. In particular,
we used exponential sized buckets since each bucket
is (1 + €) times wider than its predecessor.



| Problem I Technique | Space Bounds | Worst-Case Approzimation |
Max-RNN-Count(si, ..., Sk) Counts O(n) 3
Max-RNN-Count(sy,...,Sk) Counts and
(no client deletions) quantiles on clients O(nlog, . N) (1+¢)
Max-RNN-Maxdist(s1, . .., sx) || Exponential histogram | O(nlog,, U) (1+e€)
List-RNN-Count(sy, . .., Sk) My < M; <
Counts O(n) (M} + M} + M7 ,)
List-RNN-Maxdist(sy, ..., Sk) Exponential Di/(1+¢) <D; <
histogram O(nlog,, U) max{D;_,,D;, D},
Opt-RNNA(C) Counts O(n) 8
Opt-RNNA(D) Exponential histogram | O(nlog,, U) (1+e)

Table 1: Summary of results.

Now consider the List-RNNA(sy,s2, -,8Kk)
query. The goal is to output D} = RNN-MAXDIST(s;)
for i = 1,...,K. As before, we determine D; =
max{RD;, LD;} and output D; for each s; in the
list. While we cannot give an absolute error guar-
antee on each D;, we can provide an approximation
guarantee based on the “local” neighborhood of each
s; as in the case of RNN-COUNT(s;) queries. In par-
ticular,

Theorem 4.6 Say D} is the exact answer to query
RNN-MAXDIST(s;), and D; is the estimate returned
by our algorithm for List-RNNA(s1,82,--+,5k). We
have D} /(1 +¢€) < D; < max{D;_,,D},D}, }.

The proof is similar to that of Theorem 4.5 and omit-
ted.

Finally, we turn to Opt-RNNA with
RNN-MAXDIST(s;). Formally, we are given a
parameter D and our problem is to designate a
subset of available servers {si,...,skg} as being
active so that (a) RNN-MAXDIST(s;) < D over all
active servers s;, and (b) the number of active
servers is minimized. We use the same summary
structure as above.

The algorithm is greedy but with limited back-
tracking. At any point, we will have a divider a4
and kK < K servers have been made active to the
left of ay; all clients to the left of o, are at a dis-
tance of at most D(1 + €) from their closest active
servers. We consider the divider g > a, such that
a is the largest server with I, < a, and #g° > 0.
We have two possibilities. If there exists a server ¢
such that I, —g? < D(1+¢), then we pick the largest
such ¢ as the (k + 1)th active server; we will then
find gf such that g/ —I. < D(1 +¢€) and the largest
such divider g/ will be a,1; the construction con-
tinues as before. This is the greedy case. Else, we
check if I, — g® < D(1 + ¢€) in which case we make
a the (k + 1)th active server and find gf such that
gl — 1, < D(1 + ¢€) and the largest such divider gf
will be ax41; the construction continues as before.

This is the backtracking case. Finally, if neither case
holds, then there are no solutions with parameter D.

Theorem 4.7 Say there is a solution to Opt-
RNNA(D) problem with at most K* active servers.
Our algorithm above determines a set of at most K*
active servers such that any client is distance at most
D(1+¢), for some constant fraction €. The algorithm
takes time O(K*logn). |

We defer the proof of the theorem above to the
full version of this paper. The crux of the argu-
ment is that after we determine the xth active server,
the RNN-MAXDIST of it to the right will be larger
than that for the leftmost x active servers in any
optimal solution; this holds for any s including fi-
nally K* which gives the theorem. Again, we can
use the subroutine above to solve the “dual” version
of the problem where we are allowed a hard upper
bound of K and the goal is to minimize the maxi-
mum RNN-MAXDIST.

4.3 Extensions

Notice that so far we have assumed that the clients
are on the same line (say the z-axis) as the servers.
Our results apply to the more general case when
the clients are distributed spatially in the plane.
Let us focus on the Euclidean distance being the
choice of distance between the servers and clients
(any L, distance will also satisfy the following dis-
cussion). Answering the three RNNA query types
with RNN-COUNT is straightforward because we need
to only consider the projection of each client (z,y)
onto the z-axis. It is easy to observe that with this
modification, all our bounds apply. Next consider
the RNN-MAXDIST instance. Now we keep geometric
histograms on the intersection of the region between
x =1; and ¢ = l;41 and that of an annulus of radius
between (1 + €)? and (1 + €)/*! with center at I;.
With this modification, our algorithms and analyses
for the case of clients being on a line can be adapted



to obtain similar bounds as when they are spatially
distributed in the plane.

5 Experiments

We ran an extensive set of experiments on both real
and synthetic data to evaluate the “accuracy” of the
approximation bounds in practice, as a function of
a variety of parameters. We use the average ratio
of the exact and estimated answers to evaluate List-
RNNA query error, and the worst-case ratio to eval-
uate that of Max-RNNA and Opt-RNNA queries. In
particular, we asked the following questions:

e How close are the a posteriori error ratios to the
a priori bounds?

e How do these errors behave as a function of the
number of clients; the number of active servers;
the value of € (for RNN-MAXDIST); and the opti-
mization constraint?

5.1 Experimental Setup

Data: We used the following data sets: CALI-
FORNIA, latitudes of 63K buildings in California;
MULTIFRAC, ,,, a binomial multifractal with pa-
rameters (p,n), where p determines the ‘bias’ (for
example, when p = 0.8 the data follows the so-called
‘80-20 law’); and UNIF, a uniform distribution. The
values in these data streams were normalized to lie
in the unit line segment, and they were permuted to
arrive in random order.

Queries: We tried all 3 x 3 combinations of data
drawn disjointly from the data sets above for the
server and client locations; that is, each data set
was partitioned into one subset of servers and one
of clients. There were 500 available servers in all
experiments, with varying numbers of clients.

5.2 Accuracy for List-RNNA Queries

To gain an understanding of the a posteriori er-
ror compared to the a priori bound for List-

RNN-Count, <,

where C; and C’Z are the exact and approximate
RNN-COUNT(s;)’s associated with the s;th server in
the list of K active servers, respectively. We took
the average over all s; having C; > 0, and then aver-
aged over ten randomly chosen configurations of K
active servers. Figure 2(a) graphs the error ratio as
a function of the number of clients, with K fixed at
200; server and client locations were disjointly drawn
from CALIFORNIA. The curve represents the a pos-
teriori error. Note that the 3-approximation bound
from 4.1 does not pertain to all C;, only to max; C;.
Nonetheless, the average ratio is still well below 3,
at around 1.8. Figure 2(b) presents a graph where

we computed the error ratio

we held the number of clients constant at N = 62K
and increased the number of active servers K. The
error appears to increase proportionally with K.

We performed a similar set of experiments for the
RNN-MAXDIST instance. Figure 3(a) presents graphs
of the error ratio as a function of the number of
clients, with K = 200 and ¢ = 1.2; server and
client locations were again drawn from CALIFOR-
NTA. The two curves represent a priori and a pos-
teriori errors, respectively. The average error factor
is computed as + 3, gf; it is bounded by (1 +¢€), as
illustrated by the curve for the a priori bound. As
the graphs show, the approximation factor is typi-
cally much less than (1 4+ ¢). Whereas the bound
allows for 20% error, on average the error was below

5%.

We ran experiments to gain a better understand-
ing of how the average error behaves as a function
of the tightness of the approximation bound e. Fig-
ure 3(b) shows the average approximation factor in-
creasing proportionally with increasing €, but at only
one-fifth the rate.

Finally, we considered the effect of the number
of active servers on the error. Figure 3(c) presents
the plots. The a posteriori error appears to increase
with increasing K, but levels off.

5.3 Accuracy for Max-RNNA Queries

It was observed above that the a posteriori error
is significantly lower than the a priori bound when
averaged over the active servers; this metric is use-
ful to evaluate List-RNNA queries. For Max-RNNA
queries, it is more appropriate to evaluate the active
server whose RNNA has the largest error. We ran
the following experiments to get a sense of how accu-
rate the 3-approximation bound is for the RNN-COUNT
instance of this query type. We determined the
largest exact count max; C; and largest approximate

count max; C; (over active servers), and plotted

the ratio f;i’;i gj Note that this ratio is at least
as large as ma(:i- o for which the 3-approximation

bound holds.

The ratio for servers and clients from CALIFOR-
NIA was between 1.8 and 2.1, as shown in Fig-
ure 4(a); the error increases with K in Figure 4(b).
Thus, the maka error, which is no larger than this,

often falls well below the 3-approximation.

We ran a similar set of experiments for the
RNN-MAXDIST instance. In Figure 5(a), the maxi-

mum error ratio %"gf does not appear to be af-

ax; 5
fected by N; here K = 200. In Figure 5(b), the error
does not appear to be affected by K; here N = 62K.
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5.4 Accuracy for Opt-RNNA Queries

We ran the Opt-RNNA query for the RNN-COUNT in-
stance, which has an a priori bound of 8C. Let C;
be the exact RNN-COUNT(s;) and C' be the optimiza-
tion constraint. We measured the maximum error
ratio max; % Figure 6 presents graphs for this ra-
tio as a function of the number of clients; this ratio
is guaranteed to be at most 8. The constraint spec-
ified was C = 500. For the CALIFORNIA data, the
maximum ratio was never greater than 4 and was
usually closer to 3. Our experiments did not yield
much insight into the relationship between error and
C.

6 Conclusions and Future Work

Reverse nearest neighbor aggregates (RNNAs) are
of natural interest in decision support systems for
applications that compute proximity, based on ge-
ographical distance or vector-space similarity, be-
tween “servers” and “clients”. Applications for RN-
NAs range from the classical (such as facility loca-
tion) to the emerging (such as fixed wireless tele-
phony access and sensor-based traffic monitoring).

MAX Error for Opt-RNN-Count (vs. #clients)
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Figure 6: Maximum error for Opt-RNN-Count
(max; %) as a function of the number of clients (us-

ing CALIFORNIA), with C' = 500.

Increasingly, and especially in emerging applica-
tions, server and client data arrives in streams, and
decision support tools need to be able to compute
answers to queries in an online fashion.

In this paper, we introduced and investigated
the problem of RNNA computation over a data
stream of client arrivals and departures, with a
static set of available servers. In particular, we
studied three problems (Max-RNNA, List-RNNA



MAX Error Ratio for RNN-counts

a-prioti —— |
a-posteriori -

Error

40000 60000

#clients (n)

(a) increasing N

20000 80000

Figure 4: Maximum error for Max-RNN-Count (

MAX Error Ratio for RNN-counts

a-br!or! —
a-posteriori -

Error
n

-3

50 100 150 200 250 300 350
#active servers (K)

(b) increasing K

max; Ci
max;

&) as a function of the number of (a) clients (with
J

K =200); and (b) active servers (with N = 62K) over real data (from CALIFORNIA).

MAX Error for RNN-maxdist (vs. #clients)

1.2
1.18
1.16
114 ¢
112

a-prioi —— |
a-posteriori -

Error

1.08 |
1,06 fyocomesst
1.04 |
1.02

40000 60000

#clients

(a)

Figure 5: Maximum error of Max-RNN-Maxdist

20000 80000

max; D,'
(e B,

MAX Error for RNN-maxdist (vs. K)

1.2 —
a-prioti ——
1.18 | a-posteriori -

1.16
1.14

Error

112
11 |
1.08

150 200 250 300 350
#active servers

(b)

as a function of the number of (a) clients (with

50 100

K =200); and (b) active servers (with N = 62K) over real data (from CALIFORNIA).

and Opt-RNNA) for two aggregates (COUNT and
MAXDIST), in the data stream model. While exact
computation of these RNNAs is impossible, we pre-
sented efficient algorithms to approximately answer
them with worst-case error guarantees, using space
near-linear in the number of available servers, based
on various count partitioning and space partition-
ing techniques. Our experimental results, based on
real and synthetic datasets, provide evidence for the
accuracy of our techniques.

There are many promising directions of future
work. How can one extend our techniques to deal
with serversin two and three dimensions? Our space
partitioning and count partitioning techniques can
be extended quite naturally, but new analyses are
needed for provably accuracy guarantees. This may
be critical for some applications. As servers become
dynamic in RNNA applications, one would need to
deal with the case where the set of available servers
changes dynamically as well. Our space and count
partitioning methods can be extended quite natu-
rally by combining and refining partitions appropri-
ately; again, new analyses are needed. Within deci-
sion support systems and databases, there are tech-
nically challenging problems in integrating such so-

phisticated aggregate queries with traditional query
languages, and query evaluation engines.
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