Reverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection*

* Article accepted in IEEE TKDE

Miloš Radovanović¹ Alexandros Nanopoulos² Mirjana Ivanović¹

¹Department of Mathematics and Informatics Faculty of Science, University of Novi Sad, Serbia

²Ingolstadt School of Management University of Eichstaett-Ingolstadt, Germany

The Hubness Phenomenon

[Radovanović et al. ICML'09, Radovanović et al. JMLR'10]

- $N_k(x)$, the number of *k*-occurrences of point $x \in \mathbf{R}^d$, is the number of times *x* occurs among *k* nearest neighbors of all other points in a data set. In other words:
 - $N_k(x)$ is the reverse *k*-nearest neighbor count of *x*
 - $N_k(x)$ is the in-degree of node x in the kNN digraph
- Observed that the distribution of N_k can become skewed, and have high variance, resulting in hubs – points with high N_k values, and anti-hubs – points with low N_k
 - Music retrieval [Aucouturier & Pachet PR'07]
 - Speaker verification ("Doddington zoo") [Doddington et al. ICSLP'98]
 - Fingerprint identification [Hicklin et al. NIST'05]
- Cause remained unknown, attributed to the specifics of data or algorithms

NII, Tokyo

NII, Tokyo

Causes of Hubness

• Related phenomenon: concentration of distance / similarity

- High-dimensional data points approximately lie on a **sphere** centered at any fixed point [Beyer et al. ICDT'99, Aggarwal & Yu SIGMOD'01]
- The distribution of distances to a fixed point always has non-negligible variance [François et al. TKDE'07]
- As the fixed point we observe the data set center

 Centrality: points closer to the data set center tend to be closer to all other points (regardless of dimensionality)

Centrality is amplified by high dimensionality

Important to Emphasize

- Generally speaking, **concentration does not CAUSE hubness**
- "Causation" might be possible to derive under certain assumptions. My preferred view: they are both manifestations of underlying mechanisms triggered by high dimensionality
- Example settings with(out) concentration and with(out) hubness:
 - C+, H+: iid uniform data, Euclidean dist.
 - C-, H+: iid uniform data, squared Euclidean dist.
 - C+, H–: iid normal data (centered at 0), cosine sim.
 - o C-, H-: spatial Poisson process data, Euclidean dist.
- Two "ingredients" needed for hubness:
 - 1) High dimensionality
 - 2) Centrality (existence of centers / borders)

Hubness in Real Data

- Important factors for real data
 - 1) Dependent attributes
 - 2) Grouping (clustering)
- 50 data sets
 - From well known repositories (UCI, Kent Ridge)
 - Euclidean and cosine, as appropriate
- Conclusions [Radovanović et al. JMLR'10]:
 - 1) Hubness depends on intrinsic dimensionality
 - 2) Hubs are in proximity of **cluster centers**

Anti-Hubs in Outlier Detection

[Radovanović et al. JMLR'10]

- In high dimensions, points with low N_k the anti-hubs can be considered distance-based outliers
 - They are far away from other points in the data set / their cluster
 - o High dimensionality contributes to their existence

Anti-Hubs in Outlier Detection

[Aggarwal and Yu SIGMOD'01]

 In high-dimensional space unsupervised methods detect every point as an almost equally good outlier, since distances become indiscernible as dimensionality increases

[Zimek et al. SADM'12]

- The above view was challenged by showing that the exact opposite may take place
- As dimensionality increases, outliers generated by a different mechanism from the data tend to be detected as more prominent by unsupervised methods
 - Assuming all dimensions carry useful information

Anti-Hubs in Outlier Detection

- We show that the opposite can take place even when no true outliers exist, in the sense of originating from a different distribution
- This suggests that high dimensionality affects outlier scores and (anti-)hubness in similar ways

11

Hubness and Large Neighborhoods

Hubness and Large Neighborhoods

Hubness and Large Neighborhoods

- $p = percentage of points with lowest N_k scores$
- High dimensionality (*d*): N_k strong indicator of centrality overall (p = 100%), but weaker for anti-hubs (p = 5%)
- Low *d*: the opposite, especially w.r.t low *k* values
- Raising *k* strengthens correlation, but not when cluster boundary is crossed

[Hautamäki et al. ICPR'04]

- Proposed method ODIN (Outlier Detection using Indegree Number), which selects as outliers points with N_k below or equal to a user-specified threshold
- Experiments on 5 data sets showed it can work better than various kNN distance methods
- Not aware of the hubness phenomenon, little insight into reasons why ODIN should work, its strengths, weaknesses...
- In method AntiHub, we use $N_k(x)$ as the outlier score of x (same as ODIN, without the threshold)

Algorithm 1 AntiHub_{dist}(D, k) (based on ODIN [11])

Input:

- Distance measure dist
- Ordered data set $D = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$, where $\mathbf{x}_i \in \mathbb{R}^d$, for $i \in \{1, 2, \dots, n\}$
- No. of neighbors $k \in \{1, 2, \ldots\}$

Output:

Vector s = (s₁, s₂,..., s_n) ∈ ℝⁿ, where s_i is the outlier score of x_i, for i ∈ {1, 2, ..., n}

Temporary variables:

• $t \in \mathbb{R}$

Steps:

1) For each
$$i \in (1, 2, ..., n)$$

2) $t := N_k(\mathbf{x}_i)$ computed w.r.t. *dist* and data set $D \setminus \mathbf{x}_i$
3) $s_i := f(t)$, where $f : \mathbb{R} \to \mathbb{R}$ is a monotone function

- We experimentally identified strengths and weaknesses of AntiHub with respect to different properties (factors):
 - 1. Hubness
 - 2. Locality vs. globality
 - 3. Discreteness of scores
 - 4. Varying density
 - 5. Computational complexity

Property 1: Hubness

- High (intrinsic) dimensionality, $k \ll n$:
 - Good overall correlation between N_k and distance to a center, but
 - Many N_k values of 0 problem with discrimination
- Low dimensionality, k << n
 - Low correlation between N_k and distance to a center, but
 - For a small number of points with low N_k , this correlation is better, so AntiHub/ODIN can be meaningful

Property 2: Locality vs. globality

- For AntiHub and other methods based on *k*NN:
 - *k* << *n*: notion of outlierness is local
 - $k \sim n$: notion of outlierness is global
- AntiHub in "local mode" may have problems with discrimination
- Raising *k* can address this, but the notion of outlierness goes global
 - This can be problematic if we are interested in local outliers, but *k* crosses cluster boundaries

Property 3: Discreteness of scores

• Regardless of all of the above, N_k scores are integers, hence inherently discrete, which can also cause discrimination problems

Property 4: Varying density

- AntiHub is not sensitive to the scale of distances in the data
- Can effectively detect (local) outliers in clusters of different densities without explicitly modeling density

Property 5: Computational complexity

- Using high *k* values can be useful
- However, approximate kNN search/indexing methods typically assume k = O(1)

The AntiHub² Method

- Notable weakness of AntiHub, discrimination of scores, contributed to by two factors:
 - Hubness
 - Discreteness of scores
- Therefore, we proposed method AntiHub², which combines the N_k score of a point with N_k scores of it's k nearest neighbors, in order to maximize discrimination
- AntiHub² improves discrimination of scores compared to the AntiHub method

The AntiHub² Method

Algorithm 2 AntiHub $^{2}_{dist}(D, k, p, step)$

Input:

- Distance measure dist
- Ordered data set $D = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$, where $\mathbf{x}_i \in \mathbb{R}^d$, for $i \in \{1, 2, \dots, n\}$
- No. of neighbors $k \in \{1, 2, \ldots\}$
- Ratio of outliers to maximize discrimination p ∈ (0, 1]
- Search parameter step ∈ (0, 1]

Output:

Vector s = (s₁, s₂,..., s_n) ∈ ℝⁿ, where s_i is the outlier score of x_i, for i ∈ {1, 2, ..., n}

Temporary variables:

- AntiHub scores $\mathbf{a} \in \mathbb{R}^n$
- Sums of nearest neighbors' AntiHub scores ann ∈ Rⁿ
- Proportion α ∈ [0, 1]
- (Current) discrimination score $cdisc, disc \in \mathbb{R}$
- (Current) raw outlier scores ct, t ∈ Rⁿ

The AntiHub² Method

Local functions:

 discScore(y, p): for y ∈ Rⁿ and p ∈ (0, 1] outputs the number of unique items among [np] smallest members of y, divided by [np]

Steps:

1) a := AntiHub_{dist}(D, k)
2) For each
$$i \in (1, 2, ..., n)$$

3) $ann_i := \sum_{j \in NN_{dist}(k,i)} a_j$, where $NN_{dist}(k,i)$ is the set
of indices of k nearest neighbors of x_i
4) $disc := 0$
5) For each $\alpha \in (0, step, 2 \cdot step, ..., 1)$
5) For each $i \in (1, 2, ..., n)$
6) $ct_i := (1 - \alpha) \cdot a_i + \alpha \cdot ann_i$
7) $cdisc := discScore(ct, p)$
8) If $cdisc > disc$
9) $t := ct, disc := cdisc$
10) For each $i \in (1, 2, ..., n)$
11) $s_i := f(t_i)$, where $f : \mathbb{R} \to \mathbb{R}$ is a monotone function

Discrimination Improvement

discScore values for real data (p = 10%, step = 0.01)

Methods for comparison:

- kNN: distance to the kth nearest neighbor [Ramaswamy et al. SIGMOD Rec'00]
- ABOD: Angle Based Outlier Detection [Kriegel et al. KDD'08]
- LOF: Local Outlier Factor [Breunig et al. SIGMOD Rec'00]
- INFLO: INFLuenced Outlierness
 [Jin et al. PAKDD'06]

 Synthetic data: two well-separated Gaussian clusters of the same size, std of one 10 times larger than other, outliers 5% of points from each cluster projected 20% farther from respective cluster center

NII, Tokyo

• Real data: mostly natural labeled outliers from various domains

Name	n	d	$S_{N_{10}}$	Outlier%
aloi	50,000	64	0.260	3.016
churn	5,000	17	0.849	14.140
ctg3	2,126	35	0.652	8.279
ctg10	2,126	35	0.652	2.493
kdd99-r2l	68,338	38	0.018	1.456
kdd99-u2r	67,395	38	0.031	0.077
mammography	11,183	6	0.103	2.325
nba-allstar-1951-1972	4,018	15	0.483	15.903
nba-allstar-1973-2009	16,916	17	0.730	5.669
thyroid-sick	3,772	52	0.371	6.124
us-crime	1,994	100	1.327	7.523
wilt	4,839	5	-0.075	5.394

March 23, 2015

NII, Tokyo

March 23, 2015

NII, Tokyo

- Two types of data sets: mostly local and mostly global outliers
- With respect to different k values, AUC of AntiHub and AntiHub² behaves similarly to density-based methods (LOF, INFLO)
- Very high k values can be useful for all methods, especially LOF, INFLO, AntiHub and AntiHub², suggesting there may be a relationship between "global" density-based and distance-based outliers
- AntiHub² can improve AUC of AntiHub, but not always, thus discrimination is not the only factor that should be addressed

Conclusions

- We provided a unifying view of the role of reverse nearest neighbor counts in unsupervised outlier detection:
 - Effects of high dimensionality on unsupervised outlier-detection methods and hubness
 - Extension of previous examinations of (anti-)hubness to large values of k
 - The article also explores the relationship between hubness and data sparsity
- We formulated the AntiHub method, discussed its properties, and improved it in AntiHub² by focusing on discrimination of scores
- Our main hope: clearing the picture of the interplay between types of outliers and properties of data, filling a gap in understanding which may have so far hindered the widespread use of reverse neighbor methods in unsupervised outlier detection

Future Possibilities

• High values of *k* can be useful, but:

- Cluster boundaries can be crossed, producing meaningless results of local outlier detection. How to determine optimal neighborhood size(s)?
- Computational complexity is raised; approximate NN search/indexing methods do not work any more. Is it possible to solve this for large k?
- AntiHub and AntiHub² are no "rock star" methods
 - Can N_k scores be applied to outlier detection in a better way? Through outlier ensembles?
- Extend to (semi-)supervised outlier detection methods

Future Possibilities

- Explore relationships between intrinsic dimensionality, distance concentration, (anti-)hubness, and their impact on subspace methods for outlier detection
- Investigate secondary measures of distance/similarity, such as shared-neighbor distances

References

- M. Radovanović et al. Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Transactions on Knowledge and Data Engineering, 2015 (forthcoming).
- M. Radovanović et al. Nearest neighbors in high-dimensional data: The emergence and influence of hubs. In Proc. 26th Int. Conf. on Machine Learning (ICML), pages 865–872, 2009.
- M. Radovanović et al. Hubs in space: Popular nearest neighbors in high-dimensional data. Journal of Machine Learning Research, 11:2487–2531, 2010.
- J.-J. Aucouturier and F. Pachet. A scale-free distribution of false positives for a large class of audio similarity measures. Pattern Recognition, 41(1):272–284, 2007.
- G. Doddington et al. SHEEP, GOATS, LAMBS and WOLVES: A statistical analysis of speaker performance in the NIST 1998 speaker recognition evaluation. In Proc. 5th Int. Conf. on Spoken Language Processing (ICSLP), 1998. Paper 0608.
- A. Hicklin et al. The myth of goats: How many people have fingerprints that are hard to match? Internal Report 7271, National Institute of Standards and Technology (NIST), USA, 2005.
- K. S. Beyer et al. When is "nearest neighbor" meaningful? In Proc. 7th Int. Conf. on Database Theory (ICDT), pages 217–235, 1999.
- C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proc. 27th ACM SIGMOD Int. Conf. on Management of Data, pages 37–46, 2001.
- D. François et al. The concentration of fractional distances. IEEE Transactions on Knowledge and Data Engineering, 19(7):873–886, 2007.

- A. Zimek et al. A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, 5(5):363–387, 2012.
- V. Hautamäki et al. Outlier detection using k-nearest neighbour graph. In Proc. 17th Int. Conf. on Pattern Recognition (ICPR), vol. 3, pages 430–433, 2004.
- S. Ramaswamy et al. Efficient algorithms for mining outliers from large data sets. SIGMOD Record, 29(2):427–438, 2000.
- H.-P. Kriegel et al. Angle-based outlier detection in high-dimensional data. In Proc. 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD), pages 444– 452, 2008.
- M. M. Breunig et al. LOF: Identifying density-based local outliers. SIGMOD Record, 29(2):93–104, 2000.
- W. Jin et al. Ranking outliers using symmetric neighborhood relationship. In Proc. 10th Pacific-Asia Conf. on Advances in Knowledge Discovery and Data Mining (PAKDD), pages 577–593, 2006.