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Abstract—Given an object q, modeled by a multidimensional point, a reverse nearest neighbors (RNN) query returns the set of objects

in the database that have q as their nearest neighbor. In this paper, we study an interesting generalization of the RNN query, where not

all dimensions are considered, but only an ad hoc subset thereof. The rationale is that 1) the dimensionality might be too high for the

result of a regular RNN query to be useful, 2) missing values may implicitly define a meaningful subspace for RNN retrieval, and

3) analysts may be interested in the query results only for a set of (ad hoc) problem dimensions (i.e., object attributes). We consider a

suitable storage scheme and develop appropriate algorithms for projected RNN queries, without relying on multidimensional indexes.

Given the significant cost difference between random and sequential data accesses, our algorithms are based on applying sequential

accesses only on the projected atomic values of the data at each dimension, to progressively derive a set of RNN candidates. Whether

these candidates are actual RNN results is then validated via an optimized refinement step. In addition, we study variants of the

projected RNN problem, including RkNN search, bichromatic RNN, and RNN retrieval for the case where sequential accesses are not

possible. Our methods are experimentally evaluated with real and synthetic data.

Index Terms—Distributed databases, query processing, spatial databases.

Ç

1 INTRODUCTION

CONSIDERa set D of objects that are modeled as points in a
multidimensional space, defined by the domains of

their various features. Given a query object q, a reverse
nearest neighbor (RNN) query [19], [25], [29], [26], [5], [20],
[24], [28], [31] retrieves all objects in D that have q closer to
them than any other object in D (according to a distance
measure). RNN queries are used in a wide range of
applications such as decision support, resource allocation,
and profile-based marketing.

Assume, for example, that D is a set of films in a database

(owned by a video rental shop) and that each dimension is

the rating of the film based on its relevance to a different

category (e.g., action, comedy, detective, horror, political,

historical, etc.). The rating of a film at a particular

dimension is determined by averaging the opinions of

customers who have watched the film. Fig. 1 shows a few

films as points in a multidimensional space, considering

only two dimensions: action and comedy. In this space, a

and e are the reverse nearest neighbors of q (based on

Euclidean distance); these two points have q as their nearest

neighbor (NN). The query result could be used to

recommend q to customers who have watched a or e since

they could be interested in q as well. Note that the NN of q

(i.e., b) is not necessarily the RNN of q (since c is closer to b),

thus NN and RNN queries are essentially two different

problems. In addition, RNN queries can have multiple

results, as opposed to NN queries which have exactly one
result.

We have illustrated RNN queries based on only two
dimensions; however, there may be a large number of
dimensions, in general. According to [6], NN search (and
RNN search, by extension) could be meaningless in high-
dimensional spaces, due to the well-known curse of
dimensionality. This fact motivated database researchers
to study range queries [23], clustering [3], and similarity
search [17] in dimensional subspaces where they could be
meaningful. The searched subspace is ad hoc and may vary
between different similarity (and RNN) queries. For
instance, assume that a new film is registered in the
database and watched by some customer. The customer
rates the film only based on three dimensions (e.g., action,
detective, and political), while leaving the rest of the ratings
blank. In this case, there is no other meaningful way to
search for the RNN of the film, but using only these three
dimensions. Gessert [14] and Ooi et al. [23] stress the need
for queries in attribute subspaces, due to the existence of
missing values. Such projected RNN queries could also be
applied if some attributes of the query tuple are not relevant
for search [14]. A data analyst could explicitly select an ad
hoc-dimensional subspace to search which he thinks is
interesting. This scenario is very common in business
analysis tasks, which aggregate data based on ad hoc-
dimensional subspaces in online analytical processing
(OLAP) applications. Thus, we argue that projected NN
and RNN queries in ad hoc-dimensional subspaces are as
important as their counterparts that consider the full-
dimensional space, especially in very high-dimensional
data collections.

Surprisingly, in spite of the huge bibliography in OLAP
[1], to our knowledge, there is no prior work on NN and
RNN search in ad hoc-dimensional subspaces. Regarding
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NN queries, we can attribute this lack of research to the fact
that they can be straightforwardly converted to (and solved
as) top-k queries [11], [16], as we will discuss later
(Section 3.2). However, RNN retrieval is more complex
and there is no straightforward adaptation of existing work
[19], [25], [29], [28] for the projected version of this problem.

In this paper, we fill this gap by proposing appropriate
projected RNN evaluation techniques. Our solution is based
on the decomposition storage model (DSM) [10]. A commercial
product [2] and two prototype DBMS ([7] and [27]) have
been developed based on DSM. These systems are most
appropriate for business analysis operations (e.g., OLAP) in
large, relatively static collections, where only a small
number of attributes are relevant to each query. In DSM,
a binary table is created for each attribute, storing for each
original tuple, the ID of the tuple, and the value of the
attribute in that tuple. The binary table can be sorted on
attribute value and/or could be indexed by a Bþ-tree to
facilitate search. As a result, only relevant tables need to be
accessed for a query that relates to an ad hoc set of
attributes/dimensions. Vertically fragmented data can be
either centralized or distributed. In the distributed model,
the binary tables are located at separate servers and
remotely accessed by users operating client machines. The
queried data are transferred in the form of a stream that
stops when the whole result is transmitted or the server
receives a termination message from user. A popular
example of querying decomposed distributed data is
combining object rankings from different sources [11], [16].

The main objective of our DSM-based RNN algorithms is
to minimize the number of accessed tuples from the binary
tables since they reflect I/O cost in the centralized model
and communication cost in the distributed model. The
minor objectives are to reduce computational time and
memory usage. To our knowledge, ours is the only work
that studies projected RNN queries by gracefully applying
search on vertically decomposed data.

In addition to the more generic problem settings, we also
study some interesting variants of RNN search. The first is
the RkNN query, which retrieves the set of objects having
the query q in their kNN set. The second is the bichromatic
RNN query [26], which takes as input a point q from a data
set T (e.g., hotels) and finds the points in another data set P
which are closer to q than any other point in T . Third, we
study the case where the data are vertically decomposed
and distributed to different servers that allow only random

accesses. In such a case, for each object, it is essential to
access at least one atomic value from a server before we can
decide whether the object can be pruned from the set of
RNN candidates. We develop methods that minimize the
required number of accesses for deriving the RNN result.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 defines the problem and
outlines the RNN algorithmic framework. Sections 4 and 5
present our methodology. Section 6 discusses interesting
RNN variants. Experimental results are presented in
Section 7. Finally, Section 8 concludes the paper.

2 RELATED WORK

2.1 Euclidean RNN Search

The basic idea of early RNN algorithms [19], [29] is to
precompute the NN distance for each data point p. An
index is built on the points with their NN distances so that
RNN results can be retrieved fast. This approach has an
expensive update cost for dynamic data sets. In addition,
since we want to support RNN search in ad hoc sets of
dimensions, it is infeasible to materialize the RNN for all
points in all possible subspaces.

Thus, research shifted toward methods that do not rely
on precomputation. These algorithms follow a filter-refine-
ment framework. In the filter step, a set of candidate RNN
points (i.e., a superset of the actual result) is retrieved.
During the refinement (verification) step, a range query is
applied around each candidate p to verify whether the
query point q is closer to p than any other point in the
database. If so, p is reported as an RNN of q. The algorithms
of [25], [28] apply on R-trees and rely on geometric
properties of the Euclidean distance. Stanoi et al. [25]
divide the (2D) data space around q into six regions. It can
be proved for each region that either 1) the region does not
have any RNN or 2) the RNN of q in the region is exactly the
NN of q, when only the points in the region are considered.
Thus, in the filter step, six constrained NN queries [13] are
issued to find the nearest neighbor of q at each region.

Tao et al. [28] propose a more efficient geometric solution
(TPL) for the filter step. An incremental NN (INN)
algorithm is employed to retrieve candidate points con-
tinuously from the R-tree that indexes the data points. The
original INN algorithm [18] first inserts all root entries of
the tree into a priority queue based on their distance from q.
The nearest entry to q is retrieved from the queue; if it is a
leaf entry, the corresponding object is reported as the next
nearest neighbor. If it is a directory entry, the corresponding
node is visited and its entries are inserted into the queue.
TPL when visiting a node, before inserting its entries into
the priority queue, trims their minimum bounding rectangles
(MBRs) using the already computed RNN candidates to
smaller rectangles by pruning the areas of them which may
not contain RNN results. Fig. 2 shows an example after two
candidate points a and b are discovered. Assume that
point a is retrieved first and let M be the MBR of a node not
accessed yet. The perpendicular bisector ?ða; qÞ of points a
and q partitions the data space into two regions: halfplane
?qða; qÞ containing points closer to q than a and halfplane
?aða; qÞ containing points closer to a than q. Note that

YIU AND MAMOULIS: REVERSE NEAREST NEIGHBORS SEARCH IN AD HOC SUBSPACES 413

Fig. 1. Films rating database.



?aða; qÞ cannot contain any RNN results; thus, we only need
to consider M \ ?qða; qÞ in subsequent search.

Since the exact M \ ?qða; qÞ may have complex repre-
sentation (the MBR could be trimmed by multiple bisectors
and could be of high dimensionality), [28] suggested
approximating the trimmed region by its MBR. Consecutive
clipping of an MBR is applied if there are multiple
candidate RNNs intersecting it. For instance, M is clipped
first to M 0 and then to M 00, after considering ?ða; qÞ and
?ðb; qÞ in this order. Although this clipping technique has
low computational cost, it may not result in the smallest
possible MBR. Observe that the best MBR enclosing the
nonpruned region in M is M� instead of M 00.

RNN search is a popular problem, many variants of
which have been proposed. Singh et al. [24] propose an
approximate algorithm which cannot guarantee the dis-
covery of all results. Stanoi et al. [26] focus on bichromatic
RNN queries. Benetis et al. [5] investigate RNN queries on
spatiotemporal data. Korn et al. [20] examine aggregate
RNN queries which return an aggregate of the RNN set, on
1D data streams. Finally, [31] studies RNN queries on
graphs where the distance between two objects is deter-
mined by their shortest path.

The main defect of existing RNN methods is that they
rely either on materialization of results or on multidimen-
sional indexes (e.g., R-trees); thus, they are not effective in
solving the projected RNN problem stated in Section 1. The
data set may have a large number of dimensions and the
user could select only an arbitrary, small, interesting subset
of them, which is different from query to query. Construc-
tion and maintenance of numerous (i.e., 2d � 1 for
d dimensions) specialized indexes for all attribute subsets
is too expensive (or infeasible for vertically fragmented
distributed data). Besides, existing techniques [25], [28] rely
on geometric properties specific for the Euclidean distance,
and they cannot be applied for other distance measures
(e.g., Manhattan distance).

2.2 Top-k Queries

Our problem is closely related to top-k queries. Given a set
of objects and a number of rankings for these objects
according to different criteria, a top-k query retrieves the
k objects with the highest combined score. Assume, for
example, that we wish to retrieve the restaurants in a city in
decreasing order of their aggregate scores with respect to
how cheap they are, their quality, and their closeness to our
hotel. If three separate services can incrementally provide
ranked lists of the restaurants based on their scores in each

of the query components, the problem is to identify the
k restaurants with the best combined (e.g., average) score.

There are two types of primitive operations used by
top-k algorithms: random accesses and sorted accesses. A
random access retrieves the value of a particular object
(given its ID) for a particular dimension (i.e., attribute). The
alternative (sorted accesses) is to retrieve objects from each
ranking sequentially, in decreasing order of their scores.

The two main top-k retrieval paradigms [11] are: the
Threshold Algorithm (TA), which applies both sequential
and random accesses, and No Random Accesses (NRA),
which applies only sorted accesses. They share the follow-
ing common points. Objects are retrieved from different
sources by sorted accesses. A threshold T is defined by
aggregating the latest values seen by sorted accesses in all
dimensions. The algorithm terminates when the kth best
score is higher than T in the worst case.

Whenever TA sees an object by a sorted access, the
values of the object in other dimensions are retrieved by
using random accesses and its overall score is computed.
The top-k score is updated if necessary. The advantage of
TA is that it requires minimal memory for maintaining
top-k objects. NRA only applies sorted accesses. Objects
which have been seen in some ranking list are organized
based on their overall score in the worst case (assuming
minimal values for dimensions where the object has not
been seen). Since information for all objects seen in some
ranking are stored in memory, NRA has large memory
requirements.

When we are looking for the NN of a point q whose
dimensional values have been decomposed to binary tables
based on the DSM, we can apply a top-k algorithm after
retrieving the tuples from each binary table Ai (correspond-
ing to the ith dimension) in increasing order of their
absolute difference from qi (the value of q in dimension i). In
Section 3.2, we elaborate more on the relationship between
top-k queries and projected NN (and RNN) search.

3 A FRAMEWORK FOR RNN SEARCH

In this section, we set up the problem studied in this paper
by proposing a storage model based on DSM and a
framework for processing projected NN and RNN queries
on this model.

3.1 Problem Setting

We consider a set D of d-dimensional points. D is stored in
d binary tables, one for each dimension. Table Ai stores the
IDs of all points in D and their values in the ith dimension.
The tables may be stored centrally or distributed to different
servers. Let pi be the value of the point p at dimension i.
Given a value qi, for all points p satisfying pi � qiðpi < qiÞ,
their values in the ith dimension can be retrieved in
ascending (descending) order by searching Ai for qi and
accessing the remainder of the table forward (backward)
sequentially. Search can be facilitated by sparse Bþ-trees,
built on top of the binary tables. We denote by Aþ

i ðA
�
i Þ a

(virtual) table containing the values in Ai greater (smaller)
than qi in ascending (descending) order. Conceptually, we
open two streams for each dimension involved in the query
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that return the smaller and greater values than qi in order
by performing only sequential accesses.

We emphasize that only the set of query dimensions
(instead of all dimensions) is considered during query
processing. In the rest of the paper, we use d to denote the
number of query dimensions (not the data dimensionality).
Our goal is to solve RNN queries based on the above data
model. Definition 1 states the result set of an RNN query.
Unless otherwise stated, we consider Euclidean distance as
the dissimilarity function distðÞ. We shall discuss other
distance functions in Section 4.2.

Definition 1. Given a query point q and a data set D, a RNN
query retrieves the set

RNNðqÞ ¼ fp 2 Djdistðp; qÞ < NNdistðp;DÞg;

where NNdistðp;DÞ denotes the NN distance of p in D.

3.2 Incremental Nearest Neighbor Search

In this section, we show how to adapt the NRA top-k
algorithm [11] for incremental retrieval of projected
NN from our storage scheme. The proposed projected
NN algorithm is extended to solve projected RNN queries
in Section 3.3.

For each dimension i, tuples greater (smaller) than qi are
retrieved from table Aþ

i ðA
�
i Þ, sequentially. We use vðAþ

i Þ
and vðA�

i Þ to denote the last values seen from Aþ
i and A�

i ,
respectively. The value pi for a particular point p is either in
Aþ

i or in A�
i . Points which have been seen in some (but not

all) dimensions are indexed in memory using a hash table.
Let �ðpÞ be the set of dimensions where point p has been
seen. Considering Euclidean distance, we can compute the
minimum possible distance of p from q as follows:

mindistðq; pÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i2�ðpÞ

jpi � qij
2 þ

X

i=2�ðpÞ

ðminfvðAþ
i Þ � qi; qi � vðA�

i ÞgÞ
2

s

ð1Þ

since, in the best case, pi is equal to the closest of vðAþ
i Þ

and vðA�
i Þ to qi in all dimensions i where pi has not been

seen yet.1

Points which have been seen in all dimensions are
removed from the hash table and inserted into a min-heap.
Let ptop be the top object in this heap. If distðq; ptopÞ is
smaller than mindistðq; pÞ for all other points (including
completely unseen points) p 6¼ ptop, then ptop is output as the
next NN. In this way, all NNs are (incrementally) output or
the user may opt to terminate search after a satisfactory set
of NN has been output.

3.3 A Framework for RNN Search

As discussed in Section 2.1, RNN algorithms operate in two
steps: 1) The filter step retrieves a candidate set which
contains all the actual results and 2) the verification step
eliminates false hits and reports the actual RNNs. This
framework allows us to consider filter algorithms and
verification algorithms independently. In this section, we

focus on the filter step because it dominates the overall cost
(as verified in our experiments). Verification algorithms will
be discussed in detail in Section 5.

Fig. 3 shows a high-level pseudocode describing the
framework of RNN algorithms that operate on decomposed
data. In simple words, the RNN algorithms expand the
space around q, discovering RNN candidates and, at the
same time, constraining the additional space that needs to
be searched by exploiting the locations of discovered points.
S denotes the MBR of the space that potentially contains
RNNs of the query point q, not found yet. Initially, it is set
to the MBR of the universe U since there is no information
about the location of RNNs before search.

Let vðAþ
i Þ and vðA�

i Þ be the last values seen on files Aþ
i

and A�
i , respectively, by sorted accesses. The accessed

spaceA ¼ ð½vðA�
1 Þ; vðA

þ
1 Þ�; ½vðA

�
2 Þ; vðA

þ
2 Þ�; � � � ; ½vðA

�
d Þ; vðA

þ
d Þ�Þ,

is defined by the minimum bounding rectangle (MBR) of
the values seen at all binary tables. First, we assign the MBR
of q to A, indicating that sorted accesses along the
ith dimension start bidirectionally from the value qi. Let C
be the candidate set and F be the set of points (false hits)
that have been seen in all dimensions, but are not RNNs.
Pruned points are maintained in F in order to assist early
identification of whether some candidates are false hits (see
Line 6 of the algorithm). Initially, both C and F are set to
empty. We will illustrate the semantics of C and F shortly.

The filter algorithm has two core operations, GetNext
and Reduce. Here, we only state their specifications. Their
concrete implementations will be studied in Section 4. The
function GetNextðAÞ probes the set of binary tables A (e.g.,
in a round-robin fashion) and then returns a complete point p
whose values in all dimensions have been seen. The
function ReduceðS; pÞ uses p to reduce the search space S.

By Definition 1, if a point p is nearer to some other
point p0 than q, then p cannot be an RNN of q. In this case, p
is said to be pruned by p0. At Line 6 of the algorithm, we
check whether p can be pruned by some other points in C or
F . If so, p is pruned and then added to F . Otherwise, p is
added to the candidate set C because it is a potential result.
The filter step terminates as soon as the space to be
searched, S, is completely covered by the accessed space A
(i.e., no more candidates can be discovered). Note that if S is
covered by A in some dimensions and directions, the
corresponding tables are pruned from search. Formally, for
each dimension i, let ½S�

i ; S
þ
i � be the projection of S in i. If
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1. If, for some dimension i, Aþ
i is exhausted, then term vðAþ

i Þ � qi is
removed. Similarly, if A�

i is exhausted, term qi � vðA�
i Þ is removed.

Fig. 3. The filter algorithm.



vðA�
i Þ < S�

i , then stream A�
i is pruned. Similarly, if

vðAþ
i Þ > Sþ

i , then stream Aþ
i is pruned.

4 FILTER ALGORITHMS

In this section, we propose filter algorithms for RNN search.
Section 4.1 discusses an adaptation of the TPL algorithm
[28] on our data model. Section 4.2 proposes a carefully
designed and efficient RNN algorithm. Section 4.3 presents
an on-the-fly progress indicator for the filter step. The
algorithms follow the framework of Fig. 3; thus, we confine
our discussion on the implementation of GetNext and
Reduce operations.

4.1 The TPL Filter

The TPL filter algorithm adapts the access pattern and
pruning techniques of the TPL algorithm [28], however,
without relying on R-trees. The GetNext function of TPL
returns the next NN of q by applying the incremental
algorithm described in Section 3.2. The Reduce function
shrinks the search space S by applying the clipping method
of [28] directly on S. Let p be the next NN of q. Formally,
ReduceðS; pÞ returns the MBR enclosing S \ ?qðp; qÞ.

The main disadvantage of the TPL filter is that MBR
clipping introduces more dead space than necessary (as
discussed in Section 2.1). Thus, it does not prune the search
space effectively, increasing the number of accesses. Aminor
disadvantage is that it employs incremental NN search. In
Section 4.2, we show that we can take advantage of points
seen in all dimensions as soon as they are identified, no
matter whether they are the next NN of q or not.

4.2 The Greedy Filter

The Greedy filter algorithm is a carefully designed RNN
algorithm on our data model which does not share the
drawbacks of the TPL filter algorithm. The GetNext
function of our algorithm is not based on incremental NN
search. Instead, we modify the process of Section 3.2 to
immediately return a point as soon as it has been seen in all
dimensions. The rationale is that complete points seen earlier
than the next NN may shrink the search space fast, allowing
earlier termination of the filter step.

The Greedy filter algorithm also applies an improved
method for reducing the search space S. The idea is based
on the progressive computation of the Voronoi cell V ðqÞ of q.
The Voronoi diagram [22] of a data set D partitions the
space into a number of cells (polygons), one for each point
in D, such that, for every p 2 D, every point inside the
Voronoi cell V ðpÞ (of p) is closer to p than any other point in
D. Since the Voronoi cell of a point p must be adjacent to
that of its NN, the RNN set of q is a subset of the points p for
which V ðqÞ and V ðpÞ are adjacent.

Computation and maintenance of Voronoi diagrams for
each combination of dimensions and any distance measure
is infeasible. In addition, past work for dynamic Voronoi
cell computation of an arbitrary point exactly [32] or
approximately [26] is based on intersections of bisectors,
which is computationally expensive, especially for high
dimensionality and arbitrary (i.e., non-Euclidean) distance
measures. Besides, [4] proposes an offline method for
computing an approximation of V ðqÞ with asymptotic

bounds on approximation quality and space complexity.
Such a method requires examining many points in the
data set and it cannot be adapted to solve our problem
where the points are discovered online.

The Greedy filter algorithm computes a progressively

more refined approximation of V ðqÞ (and the corresponding

neighboring points of q that are candidate RNN results)

while retrieving points. It can be easily shown that the MBR

of V ðqÞ is the minimal possible space S to be searched

during the filter step. Let W be a set of known (i.e.,

retrieved) points around q. Based on W , we can compute an

approximation VW ðqÞ of V ðqÞ by taking the intersection of all

halfplanes
T

p2W ?qðp; qÞ. Halfplane intersection (for the

L2 norm) is both computationally expensive and space

consuming. According to [22], each incremental computa-

tion requires OðjW jdd=2eÞ time and OðdjW jdd=2eÞ space

(vertices of the resulting Voronoi cell). In addition,

computation of halfplanes is far more complex for distance

metrics other than L2. Finally, halfplane intersection cannot

be directly applied for RkNN search, which will be

discussed in Section 6. We observe that setting the search

space S to any superset of VW ðqÞ guarantees that no results

outside the accessed space A will be missed, thus exact

computation of VW ðqÞ may not be necessary for RNN

retrieval. Next, we discuss two methods that compute

conservative approximations of VW ðqÞ that do not rely on

halfplane intersection and can be computed for arbitrary

Lp distance norms.

4.2.1 Approximation Using Intercepts

Our first method approximates VW ðqÞ, dynamically and
efficiently, as new points are retrieved. In addition, the
approximated cell requires only bounded space, which is
much smaller than the space required for representing the
exact V ðqÞ in the worst case. Initially, we show how this
method works with the Euclidean distance and then extend
it for any Lp distance norm.

First, we partition the search space around q into
2d quadrants, as shown in Fig. 4a. Consider the upper right
quadrant in this example. Fig. 4b illustrates how to derive
the (local) search space for this quadrant. Suppose we have
discovered five points, a, b, c, e, and f , there. For each point
p found ðp 2 fa; b; c; e; fgÞ, we compute the intercepts of
?ðp; qÞ with the axes of the quadrant. It turns out that it
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Fig. 4. Voronoi cell approximation. (a) Global search space. (b) Local

search space.



suffices to compute and maintain the intercept closest to q
for each dimension. Let M be the MBR containing q and
these intercepts. Lemma 2 (using Lemma 1) guarantees that
M contains all potential RNNs in the quadrant. After M has
been computed for all quadrants, the (global) search space S
is taken as their MBR, as shown graphically in Fig. 4a.

Lemma 1. Consider the quadrant Q with coordinates no
smaller than q in all dimensions. Let p be a point in Q and
let e be the intercept of ?ðp; qÞ with some axis r, i.e.,
e ¼ ðq1; . . . ; qi�1; cr; qiþ1; . . . ; qdÞ. For any point p0 for which
8i 2 ½1; d� : p0i � ei, we have distðp0; qÞ � distðp0; pÞ.

Proof. We first compare distðe; qÞ and distðe; pÞ with the
corresponding distances distðp0; qÞ and distðp0; pÞ for every
dimension individually. For any dimension i, let diffq ¼
jp0i � qij � jei � qij (diffq � 0 since ei � qi and p0i � ei).
Similarly, let diffp ¼ jp0i � pij � jei � pij. If p0i � pi, then
diffp � 0. If p0i � pi, then diffp � diffq since qi � pi � p0i.
Thus, in any case, diffp � diffq. Since, in all dimensions, p0

can only be closer to p than e is and p0 can only be further
from q than e is, and due to the monotonicity of the
Euclidean distance (based on the atomic dimensional
distances), we have distðp0; qÞ � distðp0; pÞ. tu

Lemma 2. Consider a quadrant Q defined by q. Let I be the set of
the intercepts that are closest to q for each dimension. Let M be
the MBR defined by q and these intercepts. M encloses all
RNNs of q in Q that are located outside the accessed space A.

Fig. 5 shows graphically the area pruned by the intercept
of ?ðp; qÞ with the vertical quadrant axis. The intercept on
the horizontal quadrant axis can similarly prune all points
greater than or equal to it in all dimensions. Symmetrically,
we can generalize the lemma for all quadrants of the search
space. When multiple points exist in a quadrant, the nearest
intercepts to q dominate in pruning. Thus, Lemma 2 can be
trivially proven.

We can prove versions of Lemmas 1 and 2 for any
Lp metric, since the basic proof (of Lemma 1) is based on the
monotonicity property of Euclidean distance. An intercept
coordinate e ¼ ðq1; . . . ; qi�1; cr; qiþ1; . . . ; qdÞ for some axis r of
the halfplane between q and a seen point x can be easily
computed from the equation distðe; qÞ ¼ distðe; xÞ. Thus,
our technique can be applied for any Lp norm.

We stress that our Voronoi cell approximation technique
is functionally different from the one in [26]. We use
intercepts (based on any Lp norm) to compute a rectangle
that encloses V ðqÞ, whereas [26] computes a more complex

2D approximation of the cell. Thus, our method is
applicable for any dimensionality (with significantly lower
space requirements) and distance metric. Our approxima-
tion method is expected to outperform the TPL filter
discussed in Section 4.1 since it optimally clips the
quadrants containing points using information about these
points. On the other hand, the TPL filter operates on the
MBR of the whole search space S, which is harder to prune.

The only drawback of our technique is that each
retrieved point is not utilized in pruning other quadrants
except the one it resides in. For instance, in Fig. 5, point p is
used to prune the space only in the upper-right quadrant,
whereas ?ðp; qÞ could be used in combination with ?ðp00; qÞ
to prune S also in the upper-left quadrant (note that p00

alone defines a greater M there). In the next section, we
propose another pruning technique that utilizes the effect of
discovered points in neighboring quadrants.

4.2.2 Approximation Using a Hierarchical Grid

In this section, we propose a method that approximates the
MBR that covers VW ðqÞ with the help of a multidimensional
grid. This approach has several advantages. First, it
provides a guarantee on the quality of the approximation.
Second, no memory is needed for storing the cells. Third,
this technique can be used directly for other distance
metrics. Initially, we assume that the Euclidean distance is
used; later, we discuss other distance metrics.

Fig. 6a shows an exemplary 8 � 8 grid that partitions the
search space S. Whenever a new point is retrieved by
GetNext, we check (by the use of bisectors) whether a cell
can be pruned by the points which have been seen in all
dimensions. If not, the cell (shown in gray) is included in
the revised search space S0 for the next round (to be used
for the next retrieved point). Instead of explicitly including
all nonpruned cells in S0, we consider the MBR of them
(since the decomposed tables are essentially accessed until
the MBR of V ðqÞ anyway). Thus, we need not explicitly
maintain in memory any grid information. When the
algorithm is invoked for the next point, the search space S
is smaller than before, thus the cells become smaller and the
approximation quality improves incrementally.

Yet, the drawback of the above technique is that it requires
high computational cost, especially in high-dimensional
space, since a large number of cells must be checked. In
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Fig. 5. Using intercepts to prune.

Fig. 6. Reducing search space using a grid. (a) A simple grid. (b) A

hierarchical grid.



order to reduce the CPU cost, we introduce a hierarchical
grid, as shown in Fig. 6b, and employ branch-and-bound
techniques to speed up computation. We first attempt to
prune a high level cell. If pruning fails, then we partition it
into smaller ones and apply the above procedure recursively.
In Fig. 6b, the maximum recursion level is set to 3. This
parameter is a trade-off between the approximation quality
and the computational cost.

Fig. 7 shows this hierarchical grid-based traversal
algorithm for search space reduction. First, the newly
discovered point p is added to the set of points W , used
for pruning (i.e.,W ¼ C [ F ). Then, we dynamically impose
a hierarchical grid to the current search space S and prune
its cells hierarchically. S0 denotes the output search space
(MBR of cells that are not pruned). In the Traverse function,
a cell e is examined when 1) it is not covered by S0 and 2) it
cannot be pruned by any points in W . At recursion level 0,
pruning terminates and S0 is enlarged to cover e. Note that
the output S0 of this algorithm is guaranteed to be no larger
than 2e than the exact MBR of VW ðqÞ, in each dimension,
where e is the length of a cell at the finest grid resolution. As
a result, the proposed technique provides a good approx-
imation guarantee.

The grid-based Greedy filter algorithm can be applied
for other distance metrics by using alternative pruning
methods for cells (i.e., not based on perpendicular
bisectors), described by Lemma 3 (straightforwardly
proven). In Fig. 8, the rectangle (i.e., cell) can be pruned
since the maximum possible distance from a point in M
to p (maxdistðp;MÞ) is smaller than the minimum distance
from M to q ðmindistðq;MÞÞ.

Lemma 3. Let M be a rectangle. For any distance metric, if
maxdistðp;MÞ � mindistðq;MÞ, then

8p0 2 M;distðp; p0Þ � distðq; p0Þ:

4.3 Progress Indicator

In the scenario where data are distributed over a slow
network, communication cost is very expensive and it
might be desirable for the user to have a progress indicator

[21] for a long-running RNN query. During the execution of
an RNN query, the expected remaining access cost in the
filter step can be estimated as follows:

�ðq; S;AÞ ¼

jDj �
X

i2½1;d�

�iðx 2 D; ðS�
i � xi � A�

i Þ _ ðAþ
i � xi � Sþ

i ÞÞ;
ð2Þ

where �i captures the selectivity
2 of query predicates on the

ith attribute.
Intuitively, the above formula expresses the number of

accesses required to reach the search space S from the
accessed space A (i.e., values within ranges ½S�

i ; A
�
i � and

½Aþ
i ; S

þ
i � are expected to be accessed). However, the cost

may be overestimated because future data accesses may
shrink the search space S and also reduce the remaining
cost. To alleviate this problem, we now discuss how to
derive a tighter search space. Recall that only completely
seen points have been used to compute the search space S.
In fact, we can guess the unseen values of partially seen
points and then apply an RNN filter algorithm with those
points for deriving a tighter search space S� from the
existing S. For this, the (unseen) ith attribute value of a
point can be randomly generated (outside the range
½A�

i ; A
þ
i �) following the distribution of �i. Finally, the

estimated cost is averaged over multiple (e.g., 10) instances
of S� in order to stabilize the randomness effect.

5 VERIFICATION OF CANDIDATES

In this section, we discuss whether the candidates obtained
in the filter step are actual RNNs. In addition, we discuss
early (progressive) computations of RNNs before the
verification step. Finally, we show a method that minimizes
F , i.e., the set of points that are not candidates, but they are
used to prune C.

5.1 Concurrent Verification

The filter step terminates with a set C of candidate points
and a set F of false hits; points that have been seen in all
dimensions, but they are found not to be RNNs. Normally,
each candidate p 2 C is verified by issuing a range search
around p with radius distðq; pÞ. If another point is found
within this range, then p is not an RNN of q; otherwise, it is
returned. In order to reduce the number of range queries,
we perform verification in two steps. First, we check each
p 2 C whether they are closer to some other seen point in
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Fig. 8. Pruning for other distance metrics.

Fig. 7. Traversal algorithm for hierarchical grid.

2. The selectivity can be accurately computed if 1D histograms for each
attribute are available. In case no histograms can be used, data distribution
along each dimension can be estimated by maintaining moving averages of
the values accessed.



C [ F than to q. These candidates can be immediately
eliminated.

The second step is to check the remaining candidates by
range queries. Instead of issuing individual queries for each
candidate, we perform a concurrent verification, which
continues traversing the binary tables from the point where
the filter algorithm has stopped, until all candidates have
been verified. The overall verification algorithm is shown in
Fig. 9. The main idea of the second step is to compute a
rectangle M for each candidate p (based on distðq; pÞ),
where its potential neighbors closer than q may be
contained. While accessing the binary tables in search of
these points, each complete point w is checked for whether
it can prune any of the remaining candidates in C (not only
p). If p cannot be pruned, then it is reported as a result.

5.2 Progressive RNN Computation

Our algorithmic framework allows early report of points
that are definitely in the RNN set before the verification
phase. A progressive report of results is very useful in
practice since the user can examine early results while
waiting for the complete response set.

Given a candidate point p, letMðpÞ be the MBR enclosing
the region with p as the center and the range as distðp; qÞ.
Formally, we have

MðpÞ ¼ ð½p1 � �; p1 þ ��; ½p2 � �; p2 þ ��; � � � ; ½pd � �; pd þ ��Þ;

where � ¼ distðp; qÞ. During the filter step, if a candidate p
satisfies 1) MðpÞ 	 A and 2)

8p0 2 ðC [ F � fpgÞ; distðp; p0Þ > distðp; qÞ;

then p can be immediately reported as a result. Fig. 10a
shows an example, where MðpÞ is enclosed in A and does
not contain any other point but p. Note that this is the first
work to address progressive RNN computation without
using materialized results.

5.3 Reducing the Set of False Hits

During the filter step, we maintain a potentially large set F
of points that are false hits, but may be used for candidate
pruning. We can reduce this set by eliminating points that
may not be used to prune any candidate. A point p 2 F can
be discarded if 1) p does not fall in the verification range of
any existing candidate and 2) ?pðq; pÞ \ S 	 A. ?pðq; pÞ is
the part of the data space containing points closer to p than
q. Only the points in this region can be pruned by p. If its

intersection with the search space S is already covered by
the accessed space A, then any complete points found later
cannot be pruned by the point p. Note that this condition
can be generalized for arbitrary distance metrics by
replacing ?pðq; pÞ by the region closer to p than to q.
Fig. 10b illustrates an example, where a (noncandidate)
point p can be pruned from F .

6 VARIANTS OF RNN SEARCH

In this section, we discuss how our framework can be
adapted for two common variants of basic RNN search:
RkNN queries and bichromatic RNN queries. We also
investigate how RNN search can be deployed for the
scenario where only random accesses (i.e., no sorted
accesses) to data sources are allowed.

6.1 RkNN Search

The filter and verification steps of RNN search in our
framework can be easily adapted for the generalizedproblem
of RkNN search: Find all points p such that q belongs to the
k-NN set of p. The TPL filter can be generalized for RkNN
search if we select a k-subsetf�1; �2; � � � ; �kg of the points in
C [ F . Let clipðS; q; �iÞ be the MBR (in S) that may contain
somepoints closer to the query point q than the point �i. LetS

0

be the MBR that encloses clipðS; q; �iÞ8i 2 ½1; k�. Observe that
other RNN results cannot be outside S0 because all such
points are nearer to all �1; �2; � � � ; �k than to q. Therefore, S0

becomes the new search space after a new point has been
retrieved. Appropriate k-subsets of C [ F to be used for
pruning can be selected using the heuristics of [28].

The Greedy filter can be adapted for RkNN search by
considering the kth closest intercept for each axis adjacent
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Fig. 9. Concurrent verification algorithm.

Fig. 10. Optimizing the filter step. (a) Progressive verification.

(b) Reducing the refinement set.



to each quadrant. Due to space constraints, the proof of the
correctness of this approach is omitted. We stress that this
technique is deterministic, as opposed to the probabilistic
nature of selecting k-subsets in the TPL filter. In addition, it
is applicable to any Lp distance norms. The grid-based
Greedy filter can also be easily extended for RkNN search; a
cell in this case is pruned if it falls outside ?qðq; pÞ for at
least k points p 2 C [ F .

For the verification step of RkNN search, for each
candidate point p, we keep a counter of the points in C [
F which are closer to p than to q during the filter step. Every
time a new point is accessed, these counters are updated.
Eventually, verification is required only for candidates for
which the counter is smaller than k.

6.2 Bichromatic RNN Search

Bichromatic reverse nearest neighbor (BRNN) queries are a
popular variant of RNN search. Given a point data set P , a
site data set T , and a point q, the output of a BRNN query is
fp 2 P jdistðp; qÞ < NNdistðp; T Þg, where NNdistðp; T Þ is
the distance from p to its NN in T . Stanoi et al. [26] first
identified this problem and proposed an R-tree-based
algorithm for it. An approximate Voronoi cell of q with
respect to a subset of points in the site data set is first
computed. Then, a range query on the point data set is
performed to retrieve some candidate points. Finally,
candidate points are checked against the site data set to
verify whether they are actual results.

Our BRNN algorithm also follows the filter-refinement
framework. We first discuss the filter algorithm, which is
shown in Fig. 11. q is the query point, P is the point data set,
and T is the site data set. AP and AT denote the accessed
space of P and T , respectively. SP represents the search
space of P . A point worth noticing is that the candidate
set C only maintains the points in P and the false-hits set F
only maintains the points in T . The algorithm synchro-
nously accesses both data sets P and T . This is a main
difference from the algorithm in [26]. First, we retrieve a
point from T , then reduce the search space SP and add the
point to F . Second, we retrieve a point from P . It is added to
the candidate set C if it is nearer to q than all the points in F .
The algorithm terminates when AP contains SP , meaning
that all the candidates have been found.

Like the monochromatic RNN filter algorithm in Sec-
tion 3.3, the above filter algorithm for the bichromatic case

provides a generic framework for different filter methods.
For the GetNext function (on either AT or AP ), we can use
its implementations discussed in Section 4. In the context of
BRNN query, the objective of the Reduce function is to
shrink the search space SP (for the point set P ) by using a
point xT from the site set T . Thus, all the three concrete filter
methods discussed before can be applied for the Reduce
function.

In the refinement step, for each candidate, we first
determine its verification range and then issue a range
search on the site data set T in order to verify the candidate.
As for simple RNN queries, concurrent verification is
employed to improve performance (see Section 5.1).

6.3 Searching without Sorted Accesses

Consider a set of vertically partitioned data, distributed at
different servers, accessible only by random accesses. For
example, consider the same set of objects (e.g., restaurants)
for which different information (e.g., ranking) is accessible
at different Web servers (e.g., using the restaurant name as
search key). In this section, we extend our RNN search
techniques for the case where all data sources allow only
random accesses. Notice that, even for the apparently
simpler top-k search problem, we are not aware of any
existing work for the above scenario. For instance, although
top-k algorithms in [8], [9], [12] perform random accesses to
data sources, they still require sorted accesses to be
supported by at least one source.

Lemma 4 provides a lower bound for the required
number of accesses to derive the RNN set. Its proof is
straightforward since we cannot prune an object unless we
have verified that it is outside the search space by checking
whether there exists some dimension i such that pi lies
outside the range ½S�

i ; S
þ
i �. Therefore, we need to access at

least one attribute of the object.

Lemma 4. Given that only random accesses to data sources are
available, for an object p, at least one of its attributes must be
accessed in order to decide whether p lies outside the search
space S.

Our proposed RNN algorithm relies on the formulation
of the accessed space A (see Section 3.1). However, the
accessed space A becomes undefined when sorted accesses
are not allowed. Thus, we need to develop an alternative
method that performs only random accesses to the data
sources. Fig. 12 illustrates the pseudocodes of the filter and
verification algorithms.

The filter algorithm consists of two phases. In the first
phase (Lines 1-2), we perform one random access (of an
attribute value) for each object in the data set. This is the
essential cost of our RNN search (according to Lemma 4).
Since we have no guidance on which dimensions to access
first for each point, we perform these accesses in a round-
robin fashion (i.e., point pi is accessed at dimension i
modulo d). In this way, different attributes (of different
objects) can be accessed in parallel. Another advantage of
this approach is that the maximum load of all servers is
minimized. In the second phase (Lines 3-16), we perform
additional random accesses to the objects in order to
compute the search space S and store candidate objects in
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C. We first set the search space S to the universe U and the
candidate set C to empty (Line 3). At Line 4, objects are
sorted in ascending order of their accessed values. This
heuristic tends to tighten the search space earlier (in
subsequent search); its effectiveness will be verified in our
experiments. Then, for each point pi in the data set, we
check whether it is definitely outside the search space S
(Line 7). If so, we skip processing pi. Otherwise, we perform
additional random accesses for pi (Lines 9-12) as long as p
has the potential to be located in S. If the point is found to
be inside S, we can apply any filter technique in Section 4
for shrinking S. The point is added to C if it is nearer to q
than to any of the points in C. It is worth noticing that the
response time of the filter step can be reduced by
parallelizing accesses for multiple candidates. In other
words, while accessing the value of pi at dimension y
(Line 9) at the same time, we can access the values of (at
most) d� 1 other candidates at the d� 1 dimensions
different to y (by picking candidates not seen in these
dimensions).

The verification algorithm (NSA-Verification) operates in
a similar way as the concurrent verification algorithm. For
each candidate point p, we check whether it can be pruned
by other points which have been seen in all dimensions. If p
remains a candidate, we check whether it can be pruned by
any point in V, the set of points not yet seen in all
dimensions. For each object w in V, we perform accesses to

its unknown values as long as it is possible for p to be nearer
to w than q. If an object w is seen at all dimensions, we check
whether we can use it to prune any point in the candidate
set (Line 11) and remove w from V (Line 12). Finally, p is
reported as a result if it cannot be pruned by other points
(Line 14). The same parallelization technique applied in the
filter step can also be used during the verification, to
minimize the response time.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed RNN algorithms
using synthetic and real data sets. All algorithms (TPL, G-IA
for Greedy with intercept approximation, and G-HG for
Greedy with hierarchical grid) were implemented in C++.
All experiments were performed on a Pentium 4 2.3GHz PC
with 512MB memory. The maximum recursion level of the
search space reduction algorithm in G-HG is fixed to 5 (i.e., a
grid of 32d finest cells). For each experimental instance, the
query cost is averaged over 100 queries with the same
properties. We considered Euclidean distance in all experi-
ments, since TPL is inapplicable for other distance metrics.

7.1 Experimental Settings

We generated uniform synthetic data sets (UI) by assigning
random numbers to attribute values of objects indepen-
dently. The default number of objects in a synthetic data set
is N ¼ 100K. We also used a real data set (JESTER [15])
which contains a total of 4.1M ratings of 100 jokes from
73K users. A joke may not be rated by all users. We
extracted the attributes (i.e., jokes) having value for at least
60K objects (i.e., users) and then constructed binary tables
for them (22 attributes). Query objects are users randomly
chosen from the data set. For a particular query object q, we
use only the attributes for which q has ratings to issue a
projected RNN query. In this way, we are able to extract
query workloads with a specified number of query
dimensions. The query result can be used to recommend q
to his/her RNNs as a potential “buddy” since q has similar
taste in jokes as them.

Attribute values of both the UI and JESTER data sets are
normalized to the range [0, 1]. We tried different access
patterns for sequential accesses to the binary tables during
RNN evaluation (i.e., round-robin, equi-depth, etc.). We
found no practical difference between these schemes, thus
we use a round-robin accessing scheme in all experiments
reported here.

7.2 Experimental Results

7.2.1 Monochromatic RNN Queries

We study the performance of RNN search with respect to
various factors. Fig. 13a shows the filter and verification
costs (in terms of accesses) of the algorithms on the UI and
JESTER data sets for queries with d ¼ 3 dimensions. The
filter costs of the algorithms are proportional to their search
space. The MBR clipping technique in TPL prunes the space
too loosely. G-IA is more effective in space reduction than
TPL. Finally, G-HG has the lowest filter cost as it utilizes the
pruning power of discovered points in all quadrants. The
concurrent verification algorithm is very efficient; verifica-
tion costs less than 10 percent of the total cost. Since TPL
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and G-IA search more space than G-HG, they eventually
discover more points than G-HG, which can be used to
prune more candidates. This explains the higher verifica-
tion cost of G-HG compared to the other methods. As
Fig. 13b shows, the CPU cost of the algorithms follows the
same trend as the number of accesses. Unless otherwise
stated, we consider JESTER as the default data set in
subsequent experiments.

The next experiment justifies why we use only sorted
accesses to the binary tables, whereas one could develop
RNN algorithms that extend TA [11]. We implemented
versions of TPL, G-IA, and G-HG that perform random
accesses; whenever an object is seen from a binary table,
d� 1 random accesses to all other tables are applied to
retrieve the values of the object in all other dimensions.
Thus, there are no partially seen objects. Fig. 14 compares
the original filter algorithms with their versions that employ
random accesses (for queries with d ¼ 3). Observe that the
total access cost when using random accesses is much
higher than when not. In practice, their access cost
difference is even higher, provided that random accesses
are more expensive than sorted ones in real applications.

Fig. 15 shows the access and CPU cost of the algorithms

as a function of query dimensionality d. G-HG outper-

forms the other algorithms in terms of accesses and the

performance gap widens as d increases. The pruning

effectiveness of TPL and G-IA decreases with dimension-

ality. A bisector is less likely to prune all dimensions and

reduce the global MBR, thus TPL is not very effective.

Besides, for a discovered point p, the number of neighbor

quadrants increases with d and G-IA fails to utilize p in

pruning them. The CPU cost has a slightly different trend.

G-HG becomes very expensive at d ¼ 5 (and higher

values) because it needs to examine a large number of

hierarchical cells. We recommend G-IA for high query

dimensionality because it achieves good balance between

accesses and CPU cost.
Fig. 16 shows the cost of the algorithms as a function of

the data size N , on 3D UI data sets. All of the algorithms are

scalable as their costs increase sublinearly as N increases.

Again, G-HG outperforms the other methods and the

performance gap widens as N increases.
We also compared the algorithms for RkNN search.

Fig. 17 shows the performance of the algorithms with

respect to k. Access costs of the algorithms increase

sublinearly as k increases. The cost of TPL increases at the

fastest rate because it applies a heuristic, which only

considers subsets of discovered points in reducing the

search space. On the other hand, G-IA and G-HG employ

deterministic and systematic approaches for reducing the

search space effectively. Regarding CPU cost, TPL is the

most expensive as it needs to examine several subsets of

points. Also, G-HG becomes more expensive than G-IA at

high values of k because some high level (hierarchical) cells

cannot be immediately pruned and more low level cells

need to be visited.

7.2.2 Advanced RNN Queries

Fig. 18 shows the performance of the algorithms for
bichromatic RNN queries with respect to the ratio of
sites T to points P . T and P are both 3D UI data sets and
they have 200K points in total. The result is similar to
monochromatic queries; G-HG outperforms the other
algorithms. When there are fewer sites and more points,
the search space becomes larger and the density of the point
data set increases. As a result, more verifications are
needed.

Fig. 19a shows the progressiveness of the algorithms for
a typical R4NN query on a 3D UI data set. All of the
algorithms generate the first few results early because all of
them follow the same filter framework algorithm. Their
effectiveness in reducing the search space only affects their
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Fig. 13. Cost on different data sets, d ¼ 3. (a) Access cost. (b) CPU cost.

Fig. 14. Cost versus data access type, d ¼ 3, JESTER.



total cost. The arrows indicate that G-HG terminated first,

followed by G-IA and TPL. Fig. 19b shows the remaining

access cost of G-HG estimated by the progress indicator on-

the-fly for queries with different values of k. The initial cost

estimate is around 2-3 times of the remaining cost. The

estimated cost drops down fast to reasonable values after

accessing a fraction of data values. At the end, the

remaining access cost converges to 0.

7.2.3 Querying without Sorted Accesses

The last set of experiments investigates the performance

of RNN algorithms for the scenario where only random

accesses to data sources (e.g., distributed Web servers) are
allowed. The response time3 of performing a random
access to a data source is taken as one time unit. We
assume that multiple servers can be accessed in parallel
and count the total response time of each assessed
method. In our comparison, we also include: 1) LB,
which reflects the theoretical lower bound cost of
retrieving RNN (see Lemma 4), and 2) UB, a brute-force
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Fig. 15. Cost versus dimensionality d, JESTER. (a) Access cost. (b) CPU cost.

Fig. 16. Cost versus data size N, d ¼ 3, UI. (a) Access cost. (b) CPU cost.

Fig. 17. Cost versus k, d ¼ 3, JESTER. (a) Access cost. (b) CPU cost.

3. By response time here, we do not mean the CPU time, but we model
the time required to stay connected and send requests to the servers in
order to find the RNN set. We assume that all servers have the same access
time, however, our methods can be adapted for the case where the
assumption does not hold.



approach that performs parallel accesses to all attribute

values for each object. Fig. 20 shows the cost of the

algorithms as a function of query dimensionality d.

Observe that the access cost of LB is very close to that

of our algorithms. Again, G-HG outperforms its compe-

titors. Unlike the experiment of Fig. 15, the algorithms are

not much affected by the dimensionality curse. This is

attributed to the fact that, after one to two attributes of an

object have been accessed, the object is often found to be

outside the search space and further accesses for the

object can be saved. On the other hand, the response time

of the algorithms follows a different trend due to two

conflicting effects. First, when d increases, accesses to

more data sources can be parallelized and the response

time is reduced. Second, the pruning effectiveness of the

algorithms decreases with dimensionality and may lead

to longer response time.
Fig. 21 shows the cost of the algorithms with respect to k.

All of our algorithms have much lower access costs than

UB. As k increases, the access costs of G-IA and G-HG grow

slowly. The response time of the algorithms follows the

same trend as the access cost.
Finally, we study the effect of ordering the points in the

second phase of the filter algorithm (Line 4 in Fig. 12).

Fig. 22 plots the access costs of the algorithms for three

different orders: 1) no order, 2) ascending order of the
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Fig. 18. Bichromatic RNN, cost versus site-to-point ratio, jT j þ jP j ¼ 200K, d ¼ 3, UI. (a) Access cost. (b) CPU cost.

Fig. 19. Advanced RNN queries, N ¼ 100K, d ¼ 3, UI. (a) Progressive RNN, k ¼ 4. (b) Cost estimation for G-HG.

Fig. 20. Effect of d, k ¼ 1, random accesses only, JESTER. (a) Access cost. (b) Response time.



points by their accessed values (i.e., the default ordering),

and 3) descending order of the points by their accessed

values. The cost of LB (shown in a dotted line) also reflects

the access cost in the first phase of the filter algorithm.

Observe that the ascending order (i.e., the default order)

minimizes the access cost. In particular, for all three

methods, the access cost in the second phase of the filter

step (i.e., the part above LB) is nearly halved from the worst

order to the best order.

8 CONCLUSION

We proposed the first algorithms for projected RNN queries

(and their variants) on the decomposed storage model and

evaluated their performance on both synthetic and real data

sets. We also proposed the first techniques for retrieving

RNN results in a progressive way. Our techniques can

efficiently process RNN queries in arbitrary-dimensional

subspaces, at vertically partitioned distributed databases,

and based on arbitrary distance measures.
Like most previous RNN methods, our proposal is based

on a filter-refinement paradigm. We studied three alter-

natives for the filter step. Algorithm G-HG, which uses a

grid to reduce the RNN search space, has been proved the

most efficient in terms of data accesses, while G-IA, which

approximates the space to be searched with the help of

intercepts of perpendicular bisectors on the dimensional

axes, has more balanced cost between accesses and

computations. Finally, TPL, which is a direct extension of

the best-known algorithm for indexed L2 spaces, has the

worst performance in all cases. In terms of flexibility, G-HG

is applicable to any distance metric, G-IA is applicable to

any Lp distance norm, and TPL is only applicable to the

L2 norm. Finally, we optimized the verification step, with

the introduction of a concurrent verification technique.
We also developed techniques for several variants of

projected RNN search. We studied bichromatic and RkNN

queries and showed how our methods can be adapted in

this case. In addition, we solved the interesting problem of

RNN retrieval when only random accesses to dimensional

values of each object are allowed. We showed that our

adapted RNN algorithms for this case require only margin-

ally more accesses than the theoretical lower bound cost

required to solve the problem.
In the future, we plan to extend our methods to the case

of vertically distributed data at different servers, where the
access cost/response time between servers varies. In this
case, we can adapt the access patterns such that servers
with faster response time are accessed more frequently.
Finally, we will study the case where some sources allow
sorted access and others allow only random ones.
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[16] U. Güntzer, W.-T. Balke, and W. Kießling, “Towards Efficient
Multi-Feature Queries in Heterogeneous Environments,” Proc.
IEEE Int’l Conf. Information Technology (ITCC), 2001.

[17] A. Hinneburg, C.C. Aggarwal, and D.A. Keim, “What Is the
Nearest Neighbor in High Dimensional Spaces?” Proc. 26th Int’l
Conf. Very Large Data Bases (VLDB), 2000.

[18] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, 1999.

[19] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse
Nearest Neighbor Queries,” Proc. ACM SIGMOD Conf., 2000.

[20] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse Nearest
Neighbor Aggregates over Data Streams,” Proc. Int’l Conf. Very
Large Data Bases (VLDB), 2002.

[21] G. Luo, J.F. Naughton, C. Ellmann, and M. Watzke, “Toward a
Progress Indicator for Database Queries,” Proc. ACM SIGMOD
Conf., 2004.

[22] A. Okabe, B. Boots, K. Sugihara, and S. Chiu, Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, second ed. Wiley,
2000.

[23] B.C. Ooi, C.H. Goh, and K.-L. Tan, “Fast High-Dimensional Data
Search in Incomplete Databases,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), 1998.

[24] A. Singh, H. Ferhatosmanoglu, and A.S. Tosun, “High Dimen-
sional Reverse Nearest Neighbor Queries,” Proc. Conf. Information
and Knowledge Management (CIKM), 2003.

[25] I. Stanoi, D. Agrawal, and A.E. Abbadi, “Reverse Nearest
Neighbor Queries for Dynamic Databases,” Proc. ACM SIGMOD
Workshop Research Issues in Data Mining and Knowledge Discovery,
2000.

[26] I. Stanoi, M. Riedewald, D. Agrawal, and A.E. Abbadi, “Discovery
of Influence Sets in Frequently Updated Databases,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), 2001.

[27] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniak, M.
Ferreria, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik, “C-Store: A Column-Oriented DBMS,”
Proc. Int’l Conf. Very Large Data Bases (VLDB), 2005.

[28] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in
Arbitrary Dimensionality,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), 2004.

[29] C. Yang and K.I. Lin, “An Index Structure for Efficient Reverse
Nearest Neighbor Queries,” Proc. Int’l Conf. Data Eng. (ICDE),
2001.

[30] M.L. Yiu and N. Mamoulis, “Reverse Nearest Neighbors Search in
Ad-Hoc Subspaces,” Proc. Int’l Conf. Data Eng. (ICDE), 2006.

[31] M.L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao, “Reverse Nearest
Neighbors in Large Graphs,” Proc. Int’l Conf. Data Eng. (ICDE),
2005.

[32] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee, “Location-
Based Spatial Queries,” Proc. ACM SIGMOD Conf., 2003.

Man Lung Yiu received the bachelor’s degree
in computer engineering and the PhD degree
in computer science from the University of
Hong Kong in 2002 and 2006, respectively.
He is currently an assistant professor in the
Department of Computer Science, Aalborg
University. His research interests include
databases and data mining, especially ad-
vanced query processing and mining techni-
ques for complex types of data.

Nikos Mamoulis received the diploma in com-
puter engineering and informatics in 1995 from
the University of Patras, Greece, and the PhD
degree in computer science in 2000 from the
Hong Kong University of Science and Technol-
ogy. Since September 2001, he has been an
assistant professor in the Department of Com-
puter Science at the University of Hong Kong. In
the past, he has worked as a postdoctoral
researcher at the Centrum voor Wiskunde en

Informatica (CWI), The Netherlands. His research interests include
complex data management, data mining, advanced indexing and query
processing, and constraint satisfaction problems. He has published
more than 60 articles in reputable international conferences and journals
and served on the program committees of major database and data
mining conferences.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

426 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007


