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ABSTRACT

Background: Reverse phase protein array (RPPA) analysis, allows investigation 
of potential targets at the functional protein level,. We identified TNBC subtypes at 
the protein level using RPPA and compared them with mRNA molecular subtypes 
(TNBCtype, TNBCtype-4, and PAM50) that is unique in its availability of both RPPA 
and mRNA analyses.

Methods: We classified the samples from 80 TNBC patients using both k-means 
and hierarchical consensus clustering analysis and performed Ingenuity Pathway 
Analysis. We also investigated whether we could reproduce the mRNA molecular 
subtypes using the RPPA dataset.

Results: Both clustering methods divided all samples into 2 clusters that were 
biologically the same. The top canonical pathways included inflammation, hormonal 
receptors, and MAPK signaling pathways for the first cluster [“inflammation and 
hormonal-related (I/H) subtype”] and the GADD45, DNA damage, and p53 signaling 
pathways for the second cluster [“DNA damage (DD)-related subtype”]. Further 
k-means cluster analysis identified 5 TNBC clusters. Comparison between sample 
classification using the 5 RPPA-based k-means cluster subtypes and 6 gene-
expression-based TNBCtype molecular subtypes showed significant association 
between the 2 classifications (p = 0.017).

Conclusions: The I/H and DD subtypes identified by RPPA advance our 
understanding of TNBC’s heterogeneity from the functional proteomic perspective.

INTRODUCTION

Triple-negative breast cancer (TNBC) is not a 

simple, homogeneous breast cancer subtype; it collectively 

describes cancers that do not express the well-known target 

receptors estrogen receptor (ER), progesterone receptor 

(PR), and HER2. Varied research has evaluated TNBC’s 

heterogeneity, establishing a consensus that TNBC is not 

a single entity but rather a biologically heterogeneous 

group [1–6]. In order to divide the heterogeneous 

TNBC into homogeneous subtypes, several groups have 

used gene expression analysis, an approach that allows 

comprehensive investigation of more than 20,000 genes 

and their expression patterns. Several TNBC subtype 
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classifications have been derived by clustering analysis 
using gene expression patterns, such as PAM50 intrinsic 

subtypes [2, 6, 7], claudin-low subtype [8], Burstein et al’s 

4 subtypes [9], and Lehmann and colleagues’ molecular 

subtypes [4, 10]. The weakest point of gene expression 

analysis is that we cannot evaluate the genes’ active status. 

Additional barriers to daily clinical use of gene expression 

analysis are its difficult methods of analysis and poor 
reproducibility.

In contrast, reverse phase protein array (RPPA) 

analysis could be easily adapted to the clinical setting 

for evaluating subtypes because it allows investigation 

of potential targets at the protein level and could lead 

to the development of immunohistochemical assays 

[11–13]. A further strength of RPPA is that it reflects 
protein function; proteins are the most actionable and 

druggable cellular components. Thus, we sought to 

determine whether functional proteomics can define 
molecular subtypes and accelerate personalized 

medicine. In this study, we used RPPA data for 80 

TNBC patients to identify subtypes at the protein level, 

assessed the biological features of each subtype using 

Ingenuity Pathway Analysis (IPA), and compared 

duration of patient survival by subtype. For the 57 

samples for which we have RPPA and mRNA analyses 

(a unique dataset), we also investigated whether there is 

correlation between the RPPA subtypes and the subtypes 

derived from messenger RNA (mRNA) analysis. 

Comparing these 2 modalities provides complementary 

information that compensates for the drawbacks of each: 

gene expression profiling does not allow evaluation of 
the genes’ function and activation status, while RPPA 

technology does not show the extent of proteome 

coverage, as there are generally fewer than 200 analytes. 

We here have created a valuable dataset in that both 

mRNA and RPPA analyses are available for the same 57 

patient samples. According to our search, The Cancer 

Genome Atlas (TCGA) is the only other public dataset 

that has the same information.

RESULTS

Identification of 2 stable RPPA TNBC subtypes

The University of Texas MD Anderson Cancer 

Center previously created an RPPA database using 

samples from MD Anderson’s frozen breast tissue 

tumor bank; 80 patients from that dataset had triple-

negative primary invasive ductal or invasive lobular 

breast carcinoma (n=3). For the current analysis, we 

first performed 2 types of clustering analysis, k-means 
and hierarchical, to classify the TNBCs into different 

molecular subtypes using the RPPA data. From both 

clustering analyses, we identified 2 stable clusters 
(Figure 1A) that were significantly different from each 
other (SigClust p = 0.012). Clusters of k = 2 from both 

clustering methods showed exactly the same subtypes 

(Supplementary Table 1), indicating that these 2 clusters 

were stable and sufficiently different.
Protein signatures that were significant differentially 

expressed between the clusters were identified (Figure 
1A, 1B and Table 1 ). Ingenuity pathway analysis of 

the protein signatures showed that the top canonical 

pathways associated with one of the clusters included the 

inflammation, hormonal receptor, and MAPK signaling 
pathways; we designated this cluster as the “I/H-related 

subtype” The canonical pathways associated with the other 

cluster included the Growth Arrest and DNA Damage 

(GADD45), DNA damage, and p53 signaling pathways; 

we designated this cluster as the “DD-related subtype” 

(Tables 1 and 2, Figures 2 and 3). The significant pathways 
were detected by IPA with highly significant p-values  
(10-6 - 10-12).

We next compared whether these subtypes predict 

disease-free survival (DFS) and overall survival (OS). 

Kaplan-Meier analysis showed that patients’ OS and DFS 
rates, The I/H-related subtype showed better survival, 

but the differences between the two clusters were not 

significant. (DFS: p = 0.3; OS: p = 0.1) (Supplementary 
Figure 1).

Further identification of RPPA TNBC subtypes 
and comparison with mRNA-derived subtypes

In order to determine whether there is a positive 

correlation between mRNA and proteomic classifications, 
we compared the RPPA subtypes and Lehmann et 

al’s original 6 mRNA molecular subtypes [4]. The 

latter 6 subtypes--basal-like 1 (BL1), basal-like 2 

(BL2), immunomodulatory (IM), mesenchymal (M), 

mesenchymal stem-like (MSL), and luminal androgen 

receptor (LAR)--and an additional unstable (UNS) group 

were identified in 2011 on the basis of gene ontologies and 
differential gene expression [4], and we have confirmed 
these subtypes using the same methodology [14]. We 

also showed the correlation between these 6 subtypes and 

pathologic complete response [14]. In 2016, Lehmann et 

al published a preliminary analysis refining the subtypes 
to 4 [10]. However, further definition of these subtypes is 
needed before they can be exploited for targeted therapy 

or prognostic prediction in a clinical setting. Thus, we 

focused on k-means clustering analysis, which was 

originally used to identify the 6 subtypes. Consensus 

clustering with the k-means clustering method for each 

round was carried out to identify clusters in the RPPA 

dataset. Core samples for each cluster were selected based 

on positive silhouette width for each cluster, indicating the 

samples were closer to samples of the same cluster than to 

samples in other clusters. The total number of samples was 

reduced to 74 core samples.

Consensus k-means clustering analysis of the 

core samples allowed us to further identify 5 clusters 



Oncotarget70483www.impactjournals.com/oncotarget

Figure 1: (A) Heatmap of unsupervised hierarchical clustering of TNBC samples with all protein expression data. Unsupervised 

k-means clustering separated samples into the same 2 clusters. (B) Heatmap showing the relative expression level of the 42 significantly 
differentially expressed proteins between the 2 stable subtypes.
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(Table 3) in the RPPA data statistically (Figure 4). The 

heatmap for the clustered consensus matrix (Figure 5A) 

clearly shows 5 compact groups of samples frequently 

clustered together along the diagonal. Five was selected 

as the optimal cluster number as it is at the point in 

which the relative change in area under the cumulative 

distribution function (CDF) plot did not differ from 

random changes with increasing cluster number 

(Supplementary Figures 2 and 3).

These 5 clusters are further divisions of the previous 

2 clusters we identified (DD-related subtype, clusters 1, 2, 
3; I/H-related subtype, clusters 4, 5) (Figure 5), with the 

exception of only 1 sample.

Comparison between sample classification using 
the 5 RPPA-based k-means clusters (1-5) and Lehmann 

et al’s 6 gene-expression-based molecular subtypes 

showed significant association (Fisher’s exact test, p = 
0.017) (Table 4A). Subtype BL2 was RPPA cluster 1-like  

(p = 0.037), meaning most BL2 tumors were in cluster 

1, although cluster 1 contained other subtypes. Cluster 

2 was BL1-like (p = 0.002), and cluster 4 was MSL-like  

(p = 0.005). All BL1 and BL2 patients belonged to the 

DD-related subtype, indicating that the basal subtype 

showed high reproducibility regardless of the modality 

we used to identify these subtypes.

However, when we focused on each cluster, the 

most correlation was seen in only the BL1/2 subtypes, 

and we couldn’t identify the 6 molecular subtypes using 

functional proteomics analysis.

Lehmann et al refined TNBC molecular subtypes 
from 6 (TNBCtype) into 4 (TNBCtype-4) tumor-specific 
subtypes (BL1, BL2, M, and LAR) because they found 

significant evidence that the IM and MSL TNBC subtypes 
represent tumors with substantial numbers of infiltrating 
lymphocytes and tumor-associated mesenchymal cells, 

respectively. [10]

In order to investigate the biological features of 

our 5 RPPA clusters more accurately and determine the 

positive correlation with mRNA molecular subtypes, we 

also compared our 5 RPPA clusters with TNBCtype-4. 

When the RPPA clusters were compared with 

TNBCtype-4, there was a marginal significant association 
(Fisher’s exact test, p = 0.07) (Table 4B). Focused on each 

subtype, RPPA cluster 2 was enriched in TNBCtype-4 

subtype BL1 (p = 0.006), and TNBCtype-4 subtype BL2 

was enriched in RPPA cluster 1 (p = 0.043). There was no 

significant association between the TNBCtype-4 LAR or 
TNBCtype-4 M subtypes and the RPPA clusters.

We also compared our 5 RPPA cluster with the 

PAM50 subtypes, reported by Perou et al. [2, 6, 15, 16], 

Figure 2: Top networks for the I/H-related subtype.  The genes in our list are labelled in red, indicating upregulation. The depth 

of color reflects the degree of upregulation; the deeper the color, the more upregulated the gene is.
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which is well known and accepted in the clinical setting. 

When compared with the PAM50 classification, RPPA 
cluster 2 was enriched in the basal subtype (p = 0.046), 

and RPPA cluster 4 was enriched in the normal-like 

subtype (p = 0.011) (Table 4C).

The OS rates significantly differed between the 
5 RPPA clusters (log-rank test, p = 0.002). However, 

this result was affected by patient characteristics; most 

patients with T4 disease belonged to clusters 2 and 1 

(Supplementary Figure 2). The DFS plot did not show a 

significant difference between subtypes (Supplementary 
Figure 2). We listed the pattern of protein expression in 

each of the 5 RPPA clusters (Supplementary File 1).

DISCUSSION

In this study, we identified 2 major stable clusters 
using functional proteomics, and pathway analysis 

identified the biological features of these 2 groups as DD-
related and I/H-related subtypes. Two types of clustering 

analysis produced the same results; thus, these clusters 

can be considered promising and stable. When compared 

with the mRNA molecular subtypes, RPPA cluster 1 and 

mRNA subtype BL-2 (in both the TNBC 6 subtype and 

TNBCtype-4 classifications), and RPPA cluster 2 and 
BL1 (in both TNBC 6 subtype and TNBCtype-4), showed 

strong positive correlation, and most of these tumors 

Figure 3: Top networks for the DD-related subtype. See Figure 2 for description.
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Table 1: Antibodies that were significantly differentially expressed between the 2 clusters identified by k-means and 
hierarchical clustering analysis of the RPPA results

Antibody name Protein name Gene symbol Adjusted Bonferroni 
p-value

Higher expression in inflammation and hormonal subtype

Caveolin 1 Caveolin 1 CAV1 3.05E-10

Collagen VI Collagen VI COL6A1 1.29E-09

stat3pS705 stat3 phosphorylation at S705 STAT3 3.02E-08

MYH11 MYH11 MYH11 3.28E-06

PTCH Patche PTCH1 6.58E-06

ER Estrogen receptor alpha ESR1 4.89E-05

JNKpT183/
Y185

JNK phosphorylation at T183/Y185 MAPK8 0.000201828

BADp542 BAD phosphorylation at 542 BAD 0.000212416

c-JUNpS73 cjun N terminal kinase phosphorylation at S73 JUN 0.000986419

AR Androgen receptor AR 0.001376863

CCND1 Cyclin D1 CCND1 0.002897264

stat6pY641 stat6 phosphorylation at Y641 STAT6 0.006211527

MAPKp MAPK phosphorylation MAPK3 0.007085294

Annexin.1 Annexin A1 ANXA1 0.009194289

BCLpS70 bcl2 phosphorylation at S70 BCL2L1 0.026207531

Gelsolin Gelsolin GSN 0.028422688

EGFRpY1068 EGFR phosphorylation at Y1068 EGFR 0.029595161

Higher expression in DNA damage-related subtype

4EBP1 4E blinding protein1 EIF4EBP1 4.49E-08

CCNE1 Cyclin E1 CCNE1 9.18E-08

CCNB1 Cyclin B1 CCNB1 2.55E-07

PCNA Proliferating cell nuclear antigen PCNA 5.72E-07

S6 S6 ribosomal protein RPS6 7.82E-06

Cleaved PARP Cleaved PARP PARP1 8.28E-06

FANCE Fanconi anemia, complementation group E FANCE 8.28E-06

p70 S6 Kinase p70 S6 Kinase RPS6KB1 3.17E-05

MILLT10 MILLT10 MLLT10 4.16E-05

4EBP1pT70 4EBP1 phosphorylation at T70 EIF4EBP1 0.000141

YB1 Y-box binding protein 1 YBX1 0.000274

cJUN cJUN JUN 0.001139

AlB1 Amplified in breast cancer 1 A1B1 0.001443

PSAT1 PSAT1 PSAT1 0.002198

BRCA1 BRCA1 BRCA1 0.002525

GSK3 Glycogen synthase kinase 3 beta GSK3A 0.002525

(Continue)
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belonged to the DD-related RPPA subtype and the basal-

like PAM50 subtype, indicating that the basal and non-

basal subtypes showed high reproducibility regardless of 

the modality used to identify them. However, we couldn’t 

discriminate the other molecular subtypes using functional 

proteomics analysis. The results may indicate that 

classification is discordant for different modalities such 
as functional proteomics analysis and mRNA molecular 

analysis or that some subtypes described by mRNA are 

not reliable.

The two identified subtypes suggest the potential 
for different treatment strategies. From the DD-related 

subtype’s biological features, platinum agents such as 

cisplatin and carboplatin could potentially have efficacy 
for this subtype due to overexpression of cell cycle and 

DNA damage response gene signatures. For the I/H-related 

subtype, androgen receptor (AR) showed high expression 

and IPA identified hormonal signaling pathways. As 
previously suggested by Burstein et al’s and Lehmann et 

al’s findings, even within TNBC there is a subtype that 
shows high expression of ER and AR [4, 9]. The Cancer 

Genome Atlas (TCGA) Network analyzed breast cancers 

using RPPA and defined a luminal tumor subtype that 
showed high ER, AR, and BCL2 protein expression [17]. 

Thus, the I/H-related subtype has a similar biology to 

that of the luminal subtype and AR inhibitor may have 

potential to treat this subtype. Further, MAPK or Stat3 
signaling was another top canonical pathway for the I/H-

related subtype; thus, anti-inflammatory drugs such as 
COX2 inhibitors, which inhibit MAPK or Stat3 signaling 
[18–20], have potential to be targeted drugs for this 

subtype. We believe that defining subtypes will enable 

Table 2: Top canonical pathways identified by Ingenuity Pathway Analysis (IPA) for each cluster

Cluster Top canonical pathways

Inflammation and hormonal subtype

Pancreatic Adenocarcinoma Signaling

Colorectal Cancer Metastasis Signaling

Glucocorticoid Receptor Signaling

UVB-Induced MAPK Signaling
ErbB2-ErbB3 Signaling

DNA damage-related subtype

GADD45 Signaling

Molecular Mechanisms of Cancer

DNA Damage-Induced 14-3-3 Signaling

Neuregulin Signaling

p53 Signaling

Shown are the canonical pathways significantly associated with each cluster when the samples were divided into 2 clusters 
by k-means and hierarchical clustering. The significant pathways were detected by IPA with highly significant p-values (10-6 
- 10-12).

Antibody name Protein name Gene symbol Adjusted Bonferroni 
p-value

IGFR1 Insulin-like growth factor receptor 1 IGFR1 0.002525

FANCA Fanconi anemia, complementation group A FANCA 0.002525

EN1 Engrailed-1 EN1 0.002644

HER2pY1248 HER2 phosphorylation at Y1248 ERBB2 0.004761

βCatenin Beta catenin CTNNB1 0.007731

PAI1 Plasminogen activator inhibitor-1 SERPINE1 0.013501

BIM BIM BCL2L11 0.013501

CXXC6 CXXC6 TET1 0.021359

Src Src SRC 0.047705

Shown are antibodies that were expressed at higher levels in the inflammation and hormonal subtype compared with the 
DNA damage-related subtype (top) and vice versa (bottom). A nonparametric Kruskal-Wallis test was used to identify 
proteins that were significantly differentially expressed. Proteins with an adjusted p-value by the Bonferroni method of less 
than 0.05 were considered significant.
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development of subtype-specific targeted therapies and 
accelerate personalized medicine.

For the DD-related subtype, the top canonical 

pathways were GADD45 Signaling, Molecular 

Mechanisms of Cancer, and DD-Induced 14-3-3 signaling. 

In this subtype, basal-like feature genes, such as CCNE1, 

PARP1, and BRCA1, showed high expression.

Interestingly, STAT3, JNK, and cJUN were highly 
expressed in luminal and our I/H-related subtype, and 

these proteins have an important role in inflammation. 
Moreover, the MAPK signaling pathway was one of the 
top canonical pathways of the I/H-related subtype because 

of the high expression of JUN, BAD, MAPK3, MAPK8, 
BCL2L1 and EGFR proteins. Thus, the biological features 

of this subtype also include inflammation. We showed high 
protein expression of caveolin-1 and collagen VI in the 

I/H-related subtype, but as the TCGA group reported, it is 

possible that these proteins were not specific to tumor but 

were produced by the microenvironment and/or cancer-

activated fibroblasts [17].
Functional proteomics classification also indicated 2 

types of basal subtype; especially notable was that 4 of the 

5 BL2 patients in the TNBCtype-4 classification belonged 
to RPPA cluster 1. Further, cluster 1 (similar to BL2) 

showed high levels of FGFR and PI3K-AKT signaling 
pathway-related proteins. Our previous study also showed 

differences in pathologic complete response rates for 

patients with the 2 basal subtypes (BL1 was associated 

with the highest pCR rate and BL2 the lowest) even 

though basal-like subtype in intrinsic subtype reported 

favorable chemosensitivity, might be related to the 

expression of growth factors and proliferation genes [14]. 

When we compared the RPPA clusters with the PAM50 

classification, all RPPA cluster 2 (similar to BL1) tumors 
belonged to the basal-like subtype, but not all RPPA cluster 

1 (similar to BL2) tumors did. Thus, functional proteomics 

Figure 4: Consensus clustering analysis results displaying the robustness of sample classification using multiple 
iterations of k-means clustering. In this heatmap of the clustered consensus matrix, rows and columns of the matrix both indicate 

samples. The darkness of color in the heatmap represents how frequent 2 samples are clustered together. The darker, the more frequent. 

This heatmap clearly shows a pattern of 5 compact groups of samples frequently clustered together along the diagonal. The color bar on 

top indicates 5 clusters of samples.
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could possibly be used to identify the chemotherapy-

resistant subset of the basal-like type. It is truly requisite 

for TNBC patients that some patients showed progressive 

disease during neoadjuvant chemotherapy.
Only one other report has classified TNBC using 

proteomics. Lawrence et al. reported the proteomic 

landscape of TNBC in 2015 [21]; they performed 

quantitative proteomics analysis of 20 human-derived 

breast cell lines and 4 primary breast tumors to a depth 

of more than 12,000 distinct proteins. They identified 2 
overarching groups containing 4 clusters using hierarchical 

clustering analysis. They determined genetic abnormalities 

in each cluster and compared them with the mRNA 

classification, then labeled these clusters as luminal, 

basal-like 2, basal-like 1, and mesenchymal-like/claudin-

low subtypes. The results were similar to ours in that they 

also identified 2 basal-like subtypes. However, when they 
focused on the cancer-signaling proteins associated with 

each subtype, they found that despite overall concordance 

of whole proteome profiles with various cellular 
phenotypes, in most cases the expression of particular 

cancer proteins was not uniformly characteristic of one 

subtype or another.

Over the past 15 years, several mRNA expression-

guided TNBC classifications have been reported. Some 
parts of these molecular classifications are biologically 
similar, have high reproducibility, and have shown clinical 

relevance, and thus we are beginning to understand true 

Table 3: Patient characteristics for the full cohort (74 core samples) and the 5 clusters identified by k-means analysis 
of the RPPA dataset

Entire cohort Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 P-value

Total no. of 

patients
74 27 13 7 9 18

Age
≤50 years 37 12 7 3 5 10

0.937
>50 years 37 15 6 4 4 8

Menopausal 

status

Premenopausal 44 16 7 5 6 10
0.941

Postmenopausal 30 11 6 2 3 8

Tumor T 

classification

T0 1 0 0 1 0 0

0.03

T1 18 5 2 1 3 7

T2 37 18 5 1 5 8

T3 9 2 1 3 0 3

T4 8 2 4 1 1 0

Unknown 1 0 1 0 0 0

Lymph node 

metastasis status

Negative 40 14 8 3 5 10

0.943Positive 33 13 5 4 4 7

Unknown 1 0 0 0 0 1

Nuclear grade

1 1 0 0 0 0 1

0.4282 6 2 0 1 0 3

3 67 25 13 6 9 14

Neoadjuvant 
chemotherapy

No 45 16 7 3 7 12
0.65

Yes 29 11 6 4 2 6

Adjuvant 
chemotherapy

No 30 13 4 4 3 6
0.667

Yes 44 14 9 3 6 12

Neoadjuvant 
radiotherapy

No 71 26 13 5 9 18
0.047

Yes 3 1 0 2 0 0

Adjuvant 
radiotherapy

No 26 8 5 3 6 4
0.223

Yes 48 19 8 4 3 14

P-values are the result of ANOVA test (for age as a continuous variable) or Fisher’s exact test (for all other categorical 

clinical variables) comparing each clinical variable between the 5 clusters.
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TNBC subtypes on the basis of their specific biology, 
but the various subtypes do not match perfectly across 

classifications. Further refinement is needed before these 
methodologies can be adapted into daily practice. Current 

barriers to use of mRNA-guided subtyping include 1) the 

complicated analysis, which requires a high level of skill; 

2) the low reproducibility; and 3) the need to confirm true 

clinical relevance. Moreover, since among TNBCs we have 

not yet found target genes as clear and consistent as ER, PR, 

and HER2, currently we have to investigate a huge number 

of genes’ expression and mutations and identify subtypes 

according to their distributions and relationships. Because 

gene expression takes the form of continuous variables, 

clinical application relies heavily on the interpretation of 

Figure 5: Heatmap of the RPPA 5-cluster-based signature proteins. The dendrogram on top shows the consensus clustering of 

the 74 core RPPA samples. Classifications of these samples using different methods are shown below the dendrogram. The proteins shown 
are the 77 PAM signature proteins for the 5 RPPA clusters, with median centered expression values.
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data to establish thresholds, with the risk of subjectivity 
[17]. Thus, there is a risk of classifying TNBC subtypes 

based on chance rather than their true clinical and/or 

biological differences. Others have noted the need to 

classify cancers not only according to their molecular 

profiles but also based on their response to therapies. Given 
these current approaches, in order to adapt these findings to 
clinical practice, we still have many challenges.

Confirming the subtype findings using multiple 
modalities is one solution to determine highly credible 

Table 4A: Comparison of sample classification according to 5 RPPA clusters and 6 gene-expression-based TNBC 
subtypes for the 52 patients with available data

RPPA 
cluster

BL1 BL2 IM LAR M MSL UNS p-value

1 2 3 2 3 1 3 4

0.017

2 6 0 0 0 1 1 2

3 2 0 1 0 2 0 0

4 0 0 1 0 0 5 1

5 0 0 3 1 3 3 2

P-value shown is the result of Fisher’s exact test for association between the 2 classification results.
Significantly enriched:
BL2 was enriched in RPPA-cluster-1 (p = 0.037)

RPPA cluster 2 was enriched in BL1 (p = 0.002).

RPPA cluster 4 was enriched in MSL (p = 0.005).

Table 4B: Comparison of sample classification according to 5 RPPA clusters and 4 gene-expression-based TNBC 
subtypes for the 52 patients with available data

RPPA cluster BL1 BL2 LAR M UNS p-value

1 2 4 5 1 6

0.07

2 6 0 1 1 2

3 2 0 1 2 0

4 1 0 1 0 5

5 1 1 2 3 5

P-value shown is the result of Fisher’s exact test for association between the 2 classification results.
Significantly enriched:
RPPA cluster 2 was enriched in TNBCtype4 BL1 (p = 0.006).

TNBCtype4 BL2 was enriched in RPPA cluster 1 (p = 0.043).

Table 4C: Comparison of sample classification according to 5 RPPA clusters and PAM50 subtypes for the 52 patients 
with available data

RPPA cluster Basal Normal-like

1 14 4

2 10 0

3 5 0

4 2 5

5 7 5

Significantly enriched:
RPPA cluster 2 was enriched in the basal subtype (p = 0.046).

RPPA cluster 4 was enriched in the normal-like subtype (p = 0.011)
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subtypes. As we seek to adapt subtypes into clinical 

practice, proteomics has the potential to overcome the 

inability of gene analysis to investigate biological features 

directly. Through the comprehensive analysis of protein 

expression levels and activation statuses, proteomics can 

enable investigation of cancer pathogenesis and biology 

and can lead to the development of immunohistochemical 

assays. We tested 154 total and phosphorylated proteins in 

this study; of those we selected 42 proteins to identify 2 

clusters and 61 proteins to identify 5 clusters, this is still 

a large number of proteins for clinical practice, but it has 

potential to be accepted in daily clinical practice compared 

with mRNA expression. The RPPA approach permits, 

with just a small amount of material, quantification of 
the expression level and modification of proteins as a 
continuous value for a large number of patients [11].

The identification of homogeneous TNBC subtypes 
is not as simple as classifying ER-positive breast cancer, 

due to the lack of powerful biomarkers that distinguish 

each subtype. We need not only to identify strong 

biomarkers but also a biology-oriented comprehensive 

approach to identify optimal TNBC subtypes that improve 

the success rate of new targeted therapies due to optimal 

patient selection and result in better prognosis. However, 

we still do not know the optimal modality for identifying 

the subtypes and how to interpret the discordance that 

arises in identifying subtypes using different methods 

[22]. Our study is an important first step to defining 
the differences between the results of proteomic and 

mRNA classification and clarifying the issues involved 
in establishing a standard classification method using 
functional proteomics.

However, there were several limitations of this 

study. First, the samples were collected retrospectively, 

and thus clinical situations may have led to bias in terms 

of factors such as treatment selection and the duration of 

sample storage. Although the number is not big enough to 

statistically affect our findings, there are 3 lobular cancer 
patients included in this study. Second, as noted above, the 

RPPA did not cover all of the proteins corresponding to 

the genes of the mRNA expression assays. Third, the merit 

of functional proteomics in investigating phosphorylation 

disappeared in the course of our pathway analysis because 

we converted both total and phosphorylated proteins to the 

same gene symbol. These limitations might have prevented 

us from identifying more specific TNBC subtypes. For 
example, our subtype encompassing inflammation- and 
hormonal-related biological features couldn’t distinguish 

these 2 features.

We believe that functional proteomics is one of the 

strategies that will help us to achieve the goal of overcome 

TNBC heterogeneity and explore personalized medicine. A 

strength of our study is that we had data for both mRNA 

and RPPA analysis in the same patients so that we were 

able to compare and validate the modalities’ concordance. 

Although we found some discordance between the mRNA 

and proteomic classifications, our study confirmed that both 
methods divide basal and non-basal subtypes and showed 

potential for distinguishing more detailed TNBC subtypes 

such as basal 1 and 2 and the inflammation and hormonal 
subtype. For future investigation, collection of multiple 

specimens for patients over time is needed, even for patients 

receiving standard care in community clinics, in order to 

accelerate personalized therapy development in TNBC 

based on biology-oriented comprehensive approaches. 

These efforts could improve the sensitivity, specificity, 
and predictive power of TNBC subtypes and yield optimal 

treatment for these heterogeneous breast cancers.

MATERIALS AND METHODS

Patient samples

As described in our group’s previous publication 

[23], the tumor samples for the RPPA database were 

obtained from biopsies from patients with primary 

invasive ductal or invasive lobular breast carcinoma who 

underwent surgery prior to any systemic therapy between 

June 1992 and March 2007 at MD Anderson Cancer 

Center. Patients with ductal carcinoma in situ, metaplastic 

carcinoma, or sarcoma were excluded. All specimens were 

collected and analyzed under institutional review board 

approval. The current analysis consisted of the 80 patients 

from that dataset who had TNBC.

RPPA data

RPPA analysis was performed in our laboratory 

as described previously [13, 23–25]. Briefly, tumor 
lysates were normalized to 1 μg/μL concentration using 
a bicinchoninic acid assay. The lysates were then boiled 

with 1% sodium dodecyl sulfate, and the supernatants 

were manually diluted in 6 or 8 2-fold serial dilutions 

with lysis buffer. An Aushon Biosystems 2470 arrayer was 

used to create sample arrays from the serial dilutions on 

nitrocellulose-coated FAST slides (Schleicher & Schuell 

BioScience, Inc.). The slides were analyzed and protein 

expression quantitated with the use of Microvigene 

software (VigeneTech Inc., Carlisle, MA).

The RPPA dataset consists of expression levels for 

108 full proteins as well as 46 phosphorylated (phospho) 

proteins, and these data were normalized using the load-

control method. The RPPA data before and after load-

control normalization are provided in Supplementary 

Files 2 and 3. The antibody names of the RPPA dataset 

(whether full proteins or phosphoproteins) were mapped 

to HGNC (HUGO Gene Nomenclature Committee) gene 

symbols and used in downstream pathway analysis. There 

were 112 unique gene symbols for the RPPA dataset. The 

different forms of antibodies (full proteins or multiple 

phosphorylated proteins) for each gene symbol were 

treated as multiple probes measuring for the same gene.
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Matching mRNA expression data

Fifty-two of the 74 RPPA TNBC core samples had 

matching mRNA expression profiles. Core samples for each 
cluster were selected based on positive silhouette width for 

each cluster, indicating the samples were closer to samples 

of the same cluster than to samples in other clusters.

The mRNA expression data were measured using 

Affymetrix microarray HG-U133A. The robust multi-

array analysis (RMA) method was used to normalize 

the mRNA expression data, and BioConductor package 

hgu133a.db was used to annotate probe sets. Genes with 

multiple probe sets were collapsed by taking the mean.

Clinical data

As described previously [23], clinical data were 

extracted from MD Anderson’s Breast Cancer Management 

System database. HER2 levels were evaluated as continuous 

variables by RPPA analysis rather than as positive or 

negative by immunohistochemistry and/or fluorescence in 
situ hybridization.

Statistical analysis

Consensus clustering with k-means and hierarchical 

clustering methods was carried out using the R package 

ConsensusClusterPlus [26] to identify clusters in the 

RPPA dataset. Core samples for each cluster were 

selected based on positive silhouette width for each 

cluster. Signature genes of the clusters were identified 
using the PAM method [27], at a median false discovery 

rate of 0.01. For the initial 2 large clusters, the k-means 

and hierarchical clustering were carried out using R 

packages kmeans and ClassDiscovery: Mosaic (http://

bioinformatics.mdanderson.org/main/OOMPA:Overview). 

A nonparametric Kruskal-Wallis test was used to identify 
proteins that were significantly differentially expressed. 
Proteins with an adjusted p-value of less than 0.05 using 
the Bonferroni method were considered significant. 
Significance testing between clusters were carried out 
using R package SigClust [28]. Kaplan-Meier plots were 
used for overall survival (OS) and disease-free survival 

(DFS) analysis. ANOVA and Fisher’s exact test were used 

to compare clinical variables between clusters. Association 

testing between the samples’ classifications by RPPA-
based clusters and gene-expression-based subtypes was 

also carried out using Fisher’s exact test.

QIAGEN’s Ingenuity pathway analysis (IPA®, 

QIAGEN Redwood City, http://www.ingenuity.com/) was 

used to identify canonical pathways that were significantly 
associated with each cluster. The IPA program collapsed 

all protein forms (“total” and “phosphorylated”) into 

unique gene symbols by using the maximal value among 

the different forms.

The normalized and annotated gene expression 

data were fed to the online server TNBCtype (http://

cbc.mc.vanderbilt.edu/tnbc/prediction.php) to predict 

molecular subtypes in these TNBC samples. The algorithm 

for predicting the updated TNBCtype-4 subtypes was 

obtained from Brian Lehmann (Vanderbilt-Ingram Cancer 

Center). Samples classified as IM or MSL were reassigned 
to subtype BL1, BL2, M, or LAR to which highest 

correlation was obtained using the 6-subtype output. 

Samples with p-value greater than 0.05 or a difference 

in correlation coefficients between the highest and 2nd-

highest subtypes of less than 0.05 were assigned as “UNS” 

(unstable). We implemented this algorithm using R. The 

normalized gene expression data were also used to predict 

PAM50 subtype [16].
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