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Abstract

Traditionally, query processing gets a query and a database instance as input and re-

turns the result of the query for that particular database instance. Reverse query processing

(RQP) gets a query and a result as input and returns a possible database instance that could

have produced that result for that query. Rather than making a closed world assumption,

RQP makes an open world assumption. There are several applications for RQP; most

notably, testing database applications and debugging database applications. This paper

describes the formal framework of RQP and the design of a system, called SPQR (System

for Processing Queries Reversely) that implements a reverse query processor for SQL.

1 Introduction

In the last thirty years, a great deal of research and industrial effort has been invested in order

to make query processing more powerful and efficient. New operators, data structures, and

algorithms have been developed in order to find the answer to a query for a given database

as quickly as possible. This paper turns the problem around and presents methods in order to

efficiently find out whether a table can possibly be the result of a query and, if so, what the

corresponding database might look like. More formally, given a Query Q and a Table R, the

goal is to find a Database D (a set of tables) such that Q(D) = R. We call this problem reverse

query processing or RQP, for short.

Reverse query processing has several applications. First, it can be used in order to gen-

erate test databases. The generation of good test databases has been studied in the literature

(e.g., [19, 20, 4]), but it is still an expensive process in practice. Second, RQP can be helpful

to debug a database application because it enables programmers to deduce in which states a

program with embedded SQL can get. In the same way, RQP is a tool that is needed in order

to formally verify database application programs and, thus, a component in order to imple-

ment Hoare’s Grand Challenge of provably correct software [15]. Other potential applications

involve updating views and database sampling.

Reverse query processing is carried out in a similar way as traditional query processing.

At compile-time, a SQL query is translated into an expression of the relational algebra, this

expression is rewritten for optimization and finally translated into a set of executable iterators
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[13]. At run-time, the iterators are applied to input data and produce outputs [11]. What makes

RQP special are the following differences:

• Instead of using the relational algebra, RQP is based on a reverse relational algebra.

Logically, each operator of the relational algebra has a corresponding operator of the

reverse relational algebra that implements its reverse function.

• Correspondingly, RQP iterators implement the operators of the reverse relational alge-

bra which requires the design of special algorithms. Furthermore, RQP iterators have

one input and zero or more outputs (think of a query tree turned upside down). As a

consequence, the best way to implement RQP iterators is to adopt a push-based run-

time model, instead of a pull-based model which is typically used in traditional query

processing [11].

• An important aspect of reverse query processing is to respect integrity constraints of the

schema of the database. Such integrity constraints can impact whether a legal database

instance exists for a given query and query result. In order to implement integrity con-

straints during RQP, this work proposes to adopt a two-step query processing approach

and make use of a model checker at run-time in order to find reverse query results that

satisfy the database integrity constraints.

• Obviously, the rules for query optimization and query rewrite are different because the

cost tradeoffs of reverse query processing are different. As a result, different rewrite

rules and optimizations are applied.

The main contribution of this paper is to address all these aspects and present initial solu-

tions. Furthermore, this paper gives results of performance experiments for the TPC-H bench-

mark [1] using SPQR, a prototype system for reverse query processing, in order to demonstrate

how well the proposed techniques scale. This work focuses on reverse query processing for

SQL queries and the relational data model. Studying RQP for, say, XQuery and XML is one

of many avenues for future work.

As will be shown, reverse query processing for SQL queries is challenging. For instance,

reverse aggregation is a complex operation. Furthermore, model checking is an expensive

operation even though there has been significant progress in this research area in the recent

past. As a result, optimizations are needed in order to avoid calls to the model checker and/or

make such calls as cheap as possible.

The remainder of this paper is organized as follows: Section 2 describes potential appli-

cations for RQP in more detail. Section 3 defines the problem and gives an overview of the

solution. Section 4 describes the reverse relational algebra for reverse query processing. Sec-

tions 5 to 7 present the techniques implemented in SPQR. Section 8 describes the results of

experiments carried out using SPQR and the TPC-H benchmark. Section 9 discusses related

work. Section 10 contains conclusions and avenues for future work. Overall, we believe that

this paper is just a starting point towards more sophisticated and more general solutions for

reverse query processing.
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2 Applications

2.1 Generating Test Databases

The application that started this work is the generation of test databases for regression tests or

to test the specification of an application. The generation of test databases has been studied in

previous work (e.g., [19, 20, 4]). Nevertheless, finding good test data for a new or evolving

application is a daunting task because all previous work was limited to the processing of in-

tegrity constraints. The generation of data that meets the requirements of an application was

not described. RQP can be the basis for a generic tool that generates a test database from the

database schema (including integrity constraints) and other information such as the applica-

tion code (white box testing) or a UML model and specification of the application (black box

testing).

If the application code is available (e.g., Java with embedded SQL via JDBC or SQL-J),

then the application code can be analyzed using data flow analysis in order to find all code

paths [2]. Based on this information, RQP can be applied to the SQL statements which are

embedded in the application in order to generate a test database that will provide data for all

possible code paths. As a very simple example, consider the following pseudocode:

foreach x in SELECT a FROM R do

switch (x)

case 1: do some work;

case 2: do some work;

do some work;

end foreach

In order to fully test this code fragment, it is necessary that Table R contains tuples whose

value of Attribute “a” is 1, 2, and some other value. Reverse query processing can be used in

order to generate exactly such a table.

Generating a test database for a decision support application is another example for which

RQP is useful. For instance, the programmer gives a SQL query that specifies a data cube. Fur-

thermore, the programmer provides one or several sample reports on that data cube. From the

SQL query that defines the data cube and the sample reports, RQP can generate a test database

which can be used as a basis for regression tests on future implementations of the reports and

tests of other reports (with different levels of aggregation and filters). The performance ex-

periments which are based on the TPC-H benchmark and which are reported in Section 8 are

inspired by this application of RQP.

RQP can also be used in order to generate large test databases with different value distri-

butions. Such test databases can be used in order to carry out performance or scalability tests.

Efficient algorithms and a framework to implement such test databases have been devised in

[12, 3]. That work is orthogonal to our work and these algorithms can be incorporated into the

implementation of the operators of the RQP algebra in order to generate a test database that

tests the performance and scalability of specific queries.
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2.2 Other Applications of RQP

Apart from test database generation, RQP also has a lot of other potiential applications. This

section presents some of them. However, additional research is required in order to further

explore these applications.

SQL Debugger: Another practical application of RQP is to debug database applications with

embedded SQL code. If a query produces the wrong query results, then RQP can be used to

step-wise reverse engineer the query based on its query plan and find the operators that are

responsible for the wrong query results; e.g., a wrong or missing join predicate.

Program Verification: As mentioned in the introduction, RQP can be an important component

for Hoare’s Grand Challenge project of program verification [15]. In order to prove the cor-

rectness of a program, all possible states of a program must be computed. In order to compute

all states of a database program (e.g., Java plus embedded SQL), RQP is needed for finding all

necessary conditions of the database in order to reach certain program states.

Updating Views: The SQL standard is conservative and specifies that only views on base

tables without aggregates are updateable. Many applications make heavy use of SQL view

definitions and, therefore, require a more relaxed specification of updateable views. For ex-

ample, Microsoft’s ADO.NET allows the client-side update of data, regardless of the kind of

view that was used to generate that data. The reason why SQL is conservative is that updates

to certain views are ambiguous. RQP can be used in order to find all possible ways to apply an

update (possible infinitely many). Additional application code can then specify which of these

alternatives should be selected.

Database Sampling, Compression: Some databases are large and query processing might be

expensive even if materialization and indexing is used. One requirement might be to provide a

compressed, read-only variant of a database that very quickly gives approximate answers to a

pre-defined set of parametrized queries. Such database variants can be generated using RQP in

the following way: First, take a sample of the queries (and their parameters) and execute those

queries on the original (large) database. Then, use RQP on the query results and the sample

queries in order to find a new (smaller) database instance.

3 RQP Overview

3.1 Problem Statement

As mentioned in the introduction, this paper addresses the following problem for relational

databases. Given a SQL Query Q, the Schema SD of a relational database (including integrity

constraints), and a Table R (called RTable), find a database instance D such that:

R = Q(D)
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Figure 1: RQP Architecture

and D is compliant with SD and its integrity constraints.

In general, there are many different database instances which can be generated for a given

Q and R. Depending on the application some of these instances might be better than others.

In order to generate test databases, for instance, it might be advantageous to generate a small

D so that the running time of tests are reduced. While the design presented in the following

sections tries to be minimal, the techniques do not guarantee any minimality. The purpose of

this work is to find any viable solution. Studying techniques that make additional guarantees

is one avenue for future work.

As shown in [17], the equivalence of two SQL queries is undecidable if the queries include

the relational minus operator and if the queries do not follow a distinct operator order. As a

result, RQP for SQL is also undecidable; that is, in general it is not possible to decide whether

a D exists for a given R and Q if Q contains a minus operator. Furthermore, there are obvious

cases where no D exists for a given R and Q (e.g., if tuples in R violate basic integrity con-

straints). The approach presented in this paper, therefore, cannot be complete. It is a best-effort

approach: it will either fail (return an error because it could not find a D) or return a valid D.

3.2 RQP Architecture

Figure 1 gives an overview of the proposed architecture to implement reverse query processing.

A query is (reverse) processed in four steps by the following components:

Parser: The SQL query is parsed into a query tree which consists of operators of the relational

algebra. This parsing is carried out in exactly the same way as in a traditional SQL processor.

What makes RQP special is that that query tree is translated into a reverse query tree. In the

reverse query tree, each operator of the relational algebra is translated into a corresponding

operator of the reverse relational algebra. The reverse relational algebra is presented in more

detail in Section 4. In fact, in a strict mathematical sense, the reverse relational algebra is not
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an algebra and its operators are not operators because they allow different outputs for the same

input. Nevertheless, we use the terms algebra and operator in order to demonstrate the analo-

gies between reverse and traditional query processing.

Bottom-up Query Annotation: The second step is to propagate schema information (types,

attribute names, functional dependencies, and integrity constraints) to the operators of the

query tree. Furthermore, properties of the query (e.g., predicates) are propagated to the op-

erators of the reverse query tree. As a result, each operator of the query tree is annotated with

constraints that specify all necessary conditions of its result. Section 5 describes this process in

more detail. That way, for example, it can be guaranteed that a top-level operator of the reverse

query tree does not generate any data that violates one of the database integrity constraints.

Query Optimization: In the last step of compilation, the reverse query tree is transformed into

an equivalent reverse query tree that is expected to be more efficient at run-time. An example

optimization is the unnesting of queries. Unnesting and other optimizations are described in

Section 7.

Top-down Data Instantiation: At run-time, the annotated reverse query tree is interpreted

using the RTable R as input. Just as in traditional query processing, there is a physical im-

plementation for each operator of the reverse relational algebra that is used for reverse query

execution. In fact, some operators have alternative implementations depending on the appli-

cation (e.g., test database generation involves different algorithms than program verification,

Section 2). The result of this step is a valid database instance D. As part of this step, we

propose to use a model checker (more precisely, the decision procedure of a model checker) in

order to generate data [5]. How this Top-down data instantiation step is carried out is described

in more detail in Section 6.

In many applications, queries have parameters (e.g., bound by a host variable). In order to

process such queries, values for the query parameters must be provided as input to Top-down

data instantiation. The choice of query parameters again depends on the application; for test

database generation, for instance, it is possible to generate several test databases with different

parameter settings derived from the program code. In this case, the first three phases of query

processing need only be carried out once, and the Top-down data instantiation can use the same

annotated reverse query tree for each set of parameter settings.

It is also possible to use variables in the RTable. That way, it is possible to specify tol-

erances. For example, a user who wishes to generate a test database for a decision support

application could specify an example report for sales by product. Rather than specifying exact

values in the example report, the user could say that the sales for, say, tennis rackets are x

with 90K ≤ x ≤ 110K . This additional constraint for variable x would be considered during

the execution of Top-down data instantiation. Specifying such tolerances has two important

advantages. First, depending on the SQL query it might not be possible to find a test database

that generates a report with the exact value of 100K for the sales. That is, the RQP instance

might simply not be satisfiable. Second, specifying tolerances (if that is acceptable for the

application) can significantly speed-up reverse query processing because it gives the model
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CREATE TABLE Lineitem (

lid INTEGER PRIMARY KEY,

name VARCHAR(20),

price FLOAT,

discount FLOAT

CHECK (1>= discount >=0),

l_oid INTEGER);

CREATE TABLE Orders(

oid INTEGER PRIMARY KEY,

orderdate DATE);

SELECT SUM(price)

FROM Lineitem, Orders

WHERE l_oid=oid

GROUP BY orderdate

HAVING AVG(price)<=100;

D
at

a 
  

 F
lo

w

Lineitem Orders

(i)

(ii)

(iv)

(iii)

σ−1
AV G(price)<=100

orderdateχ
−1
SUM(price),AV G(price)

⋊⋉
−1
l oid=oid

π−1
SUM(price)

SUM(price)

100

120

(i) RTable

orderdate SUM(price) AVG(price)

1990-01-02 100 100

2006-07-31 120 60

(ii) Output of π−1; Input of σ−1

orderdate SUM(price) AVG(price)

1990-01-02 100 100

2006-07-31 120 60

(iii) Output of σ−1; Input of χ−1

lid name price discount l oid oid orderdate

1 productA 100.00 0.0 1 1 1990-01-02

2 productB 80.00 0.0 2 2 2006-07-31

3 productC 40.00 0.0 2 2 2006-07-31

(iv) Output of χ−1; Input of ⋊⋉
−1

lid name price discount l oid

1 productA 100.00 0.0 1

2 productB 80.00 0.0 2

3 productC 40.00 0.0 2

Lineitem

oid orderdate

1 1990-01-02

2 2006-07-31

Orders

(a) Example Schema and Query (b) Reverse Relational Algebra Tree (c) Input and Output of Operators

Figure 2: Example Schema and Query for RRA

checker more options to find solutions.

3.3 RQP Example

Figure 2 gives an example for reverse query processing. Figure 2a shows the database schema

(definition of the Lineitem and Orders tables with their integrity constraints) and a SQL

query that asks for the sales (SUM(price)) by orderdate. The query is parsed and op-

timized and the result is a reverse query tree with operators of the reverse relational algebra.

The resulting reverse query tree is shown in Figure 2b. This tree is very similar to the query

tree used in traditional query processors. The differences are that (a) operators of the reverse

relational algebra (Section 4) are used and (b) that the data flow through that tree is from the

top to the bottom (rather than from the bottom to the top).

The data flow at run-time is shown in Figure 2c. Starting with an RTable that specifies

that two result tuples should be generated (Table (i) at the top of Figure 2c), each operator

of the reverse relational algebra is interpreted by the Top-down data instantiation component

in order to produce intermediate results of reverse query processing. In this phase, RQP uses

the decision procedure of a model checker in order to guess appropriate values (e.g., possible

orderdates). Of course, several solutions are possible and the decision procedure of the

model checker chooses possible values that match all constraints discovered in the Bottom-up

annotation step randomly: depending on the application, alternative heuristics could be used

in order to generate values that are more advantageous for the application. The final result of

RQP in this example are possible instantiations for the Lineitem and Orders tables. It is
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easy to see that these instantiations meet the integrity constraints of the database schema and

that (forward) executing the SQL query using these instantiations gives the RTable as a result.

Figure 2 does not demonstrate how the Bottom-up query annotation component annotates

the reverse query tree using the integrity constraints of the database schema and properties of

the query. The example, however, does show the effects of that step. For example, the result

of reverse projection (Table (ii) in Figure 2c) generates values for the AVG(price) column

which are compliant with the predicate of the HAVING clause of the query. This process is

described in more detail in Section 5.

4 Reverse Relational Algebra

The Reverse Relational Algebra (RRA) is a reverse variant of the traditional relational algebra

[6] and its extensions for group-by and aggregation [10]. Each operator of the relational algebra

has a corresponding operator in the reverse relational algebra; the symbols are the same (e.g.,

σ for selection), but the operators of the RRA are marked as op−1 (e.g., σ−1). Furthermore,

the following equation holds for all operators and all valid tables R:

op(op−1(R)) = R

However, reverse operators in RRA should not be confused with inverse operators because

op−1(op(S)) = S is not necessarily true for some valid tables S.

In the traditional relational algebra, an operator has 0 or more inputs and produces exactly

one output relation. Conversely, an operator of the RRA has exactly one input and produces 0

or more output relations. Just as in the traditional relational algebra, the operators of the RRA

can be composed. As shown in Figure 2b, the composition is carried out according to the same

rules as for the traditional relational algebra. As a result, it is very easy to construct a reverse

query plan for RQP by using the same SQL parser as for traditional query processing.

The close relationship between RRA and the traditional relational algebra has two conse-

quences:

• Basic Operators: The reverse variants of the basic operators of the (extended) relational

algebra (selection, projection, rename, Cartesian product, union, aggregation, and mi-

nus) form the basis of the RRA. All other operators of the RRA (e.g., reverse outer

joins) can be expressed as compositions of these basic operators.

• Algebraic Laws: The relational algebra has laws on associativity, commutativity, etc.

on many of its operators. Analogous versions of most of these laws apply to the RRA.

Some laws are not applicable for the RRA (e.g., applying projections before joins); these

laws are listed in [17] and must be respected for RQP optimization (Section 7).

The remainder of this section defines the seven basic operators of the reverse relational

algebra, which form the basis for a complete implementation of a reverse query processor. A

physical implementation (e.g., algorithms) of the RRA operators for generating test databases

is described in Section 6.
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4.1 Reverse Projection

The reverse projection operator (π−1) generates new columns according to its output schema.

The output schema of an operator is defined as the set of attributes, constraints (from the

database and from predicates of the query), and functional dependencies of the output relation

generated by the operator. The output schema of each operator is generated in the Bottom-

up annotation phase (Section 5). Again, as for all operators of the reverse relational algebra,

π(π−1(R)) = R must apply for all valid R.

In Figure 2, the reverse projection creates the orderdate and AVG(price) columns.

In order to generate correct values for these columns, the reverse project operator needs to be

aware of the constraints imposed by the aggregations (SUM and AVG) and the HAVING clause

of the query. That is, the values in the AVG(price) column must be smaller or equal to 100 so

that the σ−1 does not fail. Furthermore, the value of the orderdate column must be unique

and the values in the AVG(price) and SUM(price) columns must match so that the reverse

aggregation (χ−1) does not fail. In this specific example, there are no integrity constraints from

the database schema or functional dependencies that must be respected as part of the reverse

projection. In general, such constraints must also be respected in an implementation of the π−1

operator.

An algorithm to implement the π−1 operator is presented in Section 6. This algorithm is

based on calls to the decision procedure of a model checker in order to fulfill all constraints or

fail (i.e., return error), if the constraints cannot be fulfilled.

4.2 Reverse Selection

The simplest operator of the reverse relational algebra is the reverse selection (σ−1): It either

returns error or a superset (or identity) of its input. Error is returned if the input of the reverse

select operator does not match the selection predicate. For example, if the query asks for all

employees with salary greater than 10,000 and the RTable contains an employee with salary

1,000, then error is returned. Another example of σ−1 is given in Figure 2c. Table (ii) in Figure

2c (the output of π−1) is the input of σ−1. Since the input of σ−1 is compliant with its output

schema, the output of σ−1 (Table (iii) in Figure 2c) is the same as its input.

4.3 Reverse Aggregation

Like the π−1 operator, the reverse aggregation operator (χ−1) generates columns. Further-

more, the reverse aggregation operator possibly generates additional rows in order to meet all

constraints of its aggregate functions. Again, as for all RRA operators, the goal is to make sure

that χ(χ−1(R)) = R and that the output is compliant with all constraints of the output schema

(functional dependencies, predicates, etc.). If this is not possible, then the reverse aggrega-

tion fails and returns error. An algorithm to implement the χ−1 operator using the decision

procedure of a model checker is presented in Section 6.

Tables (iii) and (iv) of Figure 2c show the input and output of reverse aggregation for the

running example. In that example, the values of the lid, name, and discount columns

are generated obeying the integrity constraints of the Lineitem table (top of Figure 2a). The

value of the price column is generated using the input (the result of the reverse selection)

9



π−1
a

σ−1
a>5

SR

∪−1

π−1
a

σ−1
a≤10

π−1
a
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a≤10

π−1
a

−−1

σ−1
a>5

Figure 3: Reverse Union (left); Reverse Minus (right)

and the intrinsic mathematical properties of the aggregate functions. The values of the l oid

and oid columns are generated obeying the constraints imposed by the join predicate of the

query and the primary key constraint of the Orders table.

4.4 Reverse Join, Cartesian Product

The reverse join operator (⋊⋉−1) completes the running example. It takes one relation as input

and generates two output relations. Like all other operators, the reverse join makes sure that

its outputs meet the specified output schemas (the database schemas for the Lineitem and

Orders tables in the example of Figure 2) and that the join of its outputs gives the correct

result. If it is not possible to fulfill all these constraints, then an error is raised. Really, the

only thing that is special about the ⋊⋉
−1 operator is that it has two outputs. Again, an efficient

algorithm to implement a reverse join is presented in Section 6. The reverse Cartesian product

is a variant of the reverse join with true as a join predicate.

4.5 Reverse Union

Like the reverse join, the reverse union operator (∪−1) takes one relation as input and generates

two output relations. According to the constraints of the output schemas of the two output

relations, the reverse union distributes the tuples of the input relation to the corresponding

output relations. An example is given in the left part of Figure 3. Both relations R and S have

an attribute a. Let the input for the reverse union be three tuples: 〈2〉, 〈12〉, 〈8〉. In this case,

the reverse union must output 〈2〉 to the left reverse selection operator and output 〈12〉 to the

right selection operator. 〈8〉 can be output to either the left or the right selection operator. If

the input of a reverse union involves a tuple that does not fulfill the constraints of any branch

(this is not possible in the example of Figure 3), then the reverse union fails and returns error.

4.6 Reverse Minus

An example for a reverse minus operator (−−1) is shown in the right part of Figure 3. Input

tuples are always routed to the left branch or result in an error. Furthermore, it is possible that

the −−1 generates new tuples for both branches in order to meet all its constraints. In this

example, the reverse minus would output an input tuple 〈2〉 (or any other input with a ≤ 5) to
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its left branch, and it would return error if its input contains a tuple with a > 5. No new tuples

need to be generated in this example.

4.7 Reverse Rename

The reverse rename operator has the same semantics as in the traditional relational model.

Thus, only the output schema is affected; no data manipulation is carried out.

5 Bottom-up Query Annotation

The bottom-up query annotation phase in Figure 1 annotates each operator op−1 of a reverse

query tree with an output schema SOUT and an input schema SIN . This way, each operator

can check the correctness of the input and ensure that it generates valid output data. Both

schemas (input and output) are defined by (1) the attributes A (names and data types), (2) the

integrity constraints C , and (3) the functional dependencies F and join dependencies J (as

well as multivalued dependencies as special cases of J). The join dependencies used in that

work are a specialization of those known from textbooks like [10]. A join dependency JD in

that work is defined as follows:

JD = (A1, A2, p)

A JD defines that the projection of the input R of an operator to the union of all attributes

A1, A2 must represent a loseless join on the projections of R to A1, A2 using p as join pred-

icate: πA1∪A2
(R) = (πA1

(R)) ⋊⋉p1
(πA2

(R)). Join dependencies with more than two sets of

attributes A1, A2 can be represented as a combination of these join dependencies. More details

are given in the corresponding sections of each reverse operator.

A schema S in RQP is formally defined as the following four tuple:

S = (A,C,F, J)

RQP considers the integrity constraints of SQL (primary key, unique, foreign key, not null,

and check) as well as aggregation constraints [21].

In the following S.A denotes the set of attributes A defined in schema S. Similarly, S.C

denotes the set of constraints C in S and S.F denotes the set of functional dependencies F

in S. In order to denote the different constraint types in a schema S, we use S.CCK , S.CUN ,

S.CPK , S.CNN and S.CAGG to denote different types of constraints in S. The notations are

summarized in Table 1.

Obviously, a unary operator (e.g., σ−1) has only one output schema whereas a binary op-

erator (e.g., ⋊⋉
−1) has two output schemas. Analogous to the output schema, the input schema

SIN of an operator specifies the attributes, constraints and functional dependencies of the input

of the operator. In a reverse query tree, the input and output schemas of operators must match;

for example, the input schema of the σ−1 is the same as the output schema of the π−1 in the

example of Figure 2b.

The annotation phase operates in a bottom-up way. It starts with the output schemas of the

leaves of the reverse query tree (e.g., the operators that read the Lineitem and Orders in
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Notation Description

S Schema S

S.A Attributes in S

S.C Constraints in S

S.F Functional dependencies in S

CCK Check constraints

CUN Unique constraints

CPK Primary key constraints

CNN Not null constraints in

CAGG Aggregation constraints

Table 1: Notations used in the bottom-up phase

Figure 2b). The output schemas of these leaves are defined by the database schema (e.g., the

SQL DDL code of Figure 2a). Then, for each operator, the input schema is computed from the

output schema of the operator. This input schema is then used to initialize the output schema

of the operator at the next level up.

The remainder of this section defines a full set of rules for the annotation of each RRA op-

erator and shows how this bottom-up phase works for each operator of the example in Figure 2.

Furthermore, we also show how the bottom-up phase works for nested queries. In this regard,

our work is an extension of the work presented in [17]; that work describes how functional

dependencies and check constraints expressing the equality can be propagated for expressions

of the relational algebra. We extend that work for all elements (A, C , and F ) contained in a

schema S and the aggregation operator. As shown later, the primary key and the unique con-

straints in C can be derived from F and the not null constraints in S. Furthermore, the rules

introduced in the sequel use full qualified attribute names (relation name and attribute name)

instead of the position of an attribute in a relation (which is used in [17]) in order to identify

the attributes uniquely. Another extension is that we assume bag semantics, as in SQL.

5.1 Leaf initialization

As stated above, the output schemas of the leaves of the reverse query tree are initialized using

the database schema SD. We assume that a database schema which is used as input of the

bottom-up annotation phase (see Figure 1) defines a schema SR = (A,C,F ) for each relation

R. In order to initialize a leaf of a RRA expression representing a relation R, the bottom-up

phase must extract the corresponding schema SR out of the database schema SD.

FOREIGN KEY constraints defined in the output schema are treated specially in the bottom-

up phase. They are rewritten as a reverse equi-join with a join predicate representing the

key/foreign-key relation.

Example: Assume the table Lineitem in the example of Figure 2a defines a foreign key on

the attribute l oid which refers the primary key attribute oid of the relation Orders. The

query
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SELECT name FROM Lineitem WHERE price>100

would then be rewritten as

SELECT name FROM Lineitem, Orders WHERE price>100 and l oid=oid.

For the rest of the input schema elements of a leaf, they are the same as the elements

of the leaf’s output schema. For the example of Figure 2b, the input and output schemas of

Lineitem and Orders can be represented in the following way (there are no UNIQUE,

FOREIGN KEY, and NOT NULL constraints in this example):

A: lid INTEGER,

name VARCHAR(20),

. . .

l oid INTEGER

C: PRIMARY KEY(lid)

CHECK(1 ≥ discount ≥ 0)

F : {lid} → {name, price, ..., l oid}
SLineitem

A: oid INTEGER

orderdate DATE

C: PRIMARY KEY( oid)

F : {oid} → {orderdate}
SOrders

5.2 Reverse Join

The reverse join has two output schemas called SOUT
left and SOUT

right . Its input schema SIN is

computed from these two output schemas by the following rules:

(1) SIN .A = SOUT
left .A ∪ SOUT

right .A;

(2) SIN .F = closure(SOUT
left .F ∪ SOUT

right .F∪ createFD(p));
– p denotes the join predicate;

– createFD(p) is a function to create functional dependencies from predicates (see

Figure 4).

– the function closure is the function to compute the closure of a given set of functional

dependencies in [17].

(3) SIN .J = SOUT
left .J ∪ SOUT

right .J ∪ JD(SOUT
left .A, SOUT

right .A, p)

(4) SIN .C is defined for each type as follows:

(4.1) SIN .CCK = SOUT
left .CCK ∪ SOUT

right .CCK ∪ p;

– p denotes the join predicate;

(4.2) SIN .CNN = SOUT
left .CNN ∪ SOUT

right .CNN ;

(4.3) (SIN .CPK , SIN .CUN ) =

createPKAndUnique(SIN.F, SIN .CNN , SIN .A);

– createPKAndUniqueis a function to create primary key and unique con-

straints from functional dependencies, not null constraints, and attributes (see Fig-

ure 5).
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createFD(Predicate p)

Output:
-Set F // Set of functional dependencies

(1) //transform p to conjunctive normal form

(2) //cnf p = pOR1 ∧ ... ∧ pORn

(3) cnf p = CNF(p)

(4) //Analyze each conjunct pORi

(5) FOREACH pOR in cnf p

(6) //domain equality: ai = aj

(7) //value equality ai = c;

(8) //ai,aj are attributes; c is a constant

(9) IF(pOR is domain equality)

(10) //e.g. add ({ai} → {aj}), ({aj} → {ai})
(11) F.add({pOR.leftAtt()} → {pOR.rightAtt()})
(12) F.add({pOR.rightAtt()} → {pOR.leftAtt()})
(13) ELSE IF(pOR is value equality)

(14) //e.g. add (∅ → {ai})
(15) F.add(∅ → {pOR.leftAtt()})
(16) //ELSE do nothing for complex predicates

(17) END IF

(18) END FOR

(19) RETURN F

Figure 4: Function createFD

(4.4) SIN .CAGG = SOUT
left .CAGG ∪ SOUT

right .CAGG;

The set of attributes SIN .A of the input schema is the union of the set of attributes from

the reverse join’s output schemas (rule 1).

The functional dependencies SIN .F of the input schema are defined as the closure of the

union of the functional dependencies in the reverse join’s output schemas and the functional

dependencies computed from the join predicate by the function createFD in Figure 4 (rule 2).

The function createFD takes a predicate p as input and outputs a set of derivable functional

dependencies. This function deals with arbitrary predicates by transforming the given predicate

into conjunctive normal form (line 3 in Figure 4). The conjunctive normal form of a predicate

consists of one or more conjuncts, each of which is a disjunction (OR) of one or more literals

(simple predicates with no boolean operator). Afterwards each conjunct is analyzed separately

(line 5 in Figure 4). In case that the conjunct only consists of a simple predicate expressing the

equality, it is transformed into a set of functional dependencies (line 9 to 15).

The join dependencies SIN .J of the input schema are defined as set of the join depen-

dencies in the reverse join’s output schemas and a new join dependency computed from the

attributes of both output schemas and the join predicate p (rule 3). Thus we are able to express

joins on joined relations.

The CHECK constraints (rule 4.1) are the union of the CHECK constraints from the output

schemas and the join predicate. The NOT NULL constraints (rule 4.2) are the union of the NOT
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createPKAndUnique(Functional dependencies F , Not null constraints NN , At-

tributes A)

Output:

-Set PK // Set of primary key constraints

-Set UN // Set of unique constraints
(1) PK = UN = ∅
(2) //analyze F

(3) FOREACH f in F

(4) //if all attributes A are in

(5) //attributes of right side of f

(6) IF(A - f.rightAtts() = ∅)
(7) IF(NN has a constr. for f.leftAtts())

(8) PK.add(PK(f.leftAtts()))

(9) ELSE

(10) UN.add(UNIQUE(f.leftAtts()))

(11) END IF

(12) END IF

(13) END FOR

(14) RETURN (PK,UN)

Figure 5: Function createPKAndUnique

NULL constraints of the output schemas. The unique constraints and primary key constraints

can be derived from F and the join predicate (rule 4.3). The function createPKAndUnique

(see Figure 5) used by that rule takes a set of functional dependencies F , a set of not null

constraints NN , and a set of attributes A as input and outputs all primary key and unique con-

straints implied by F and the not null constraints NN . A functional dependency f expresses

a unique or primary key constraint on the set of attributes A, if all attributes A appear in the

right side of the functional dependency (line 6 in Figure 5). When there are NOT NULL con-

straints on the left side of f , then a PRIMARY KEY constraint is added for the attributes; else a

UNIQUE constraint is added for the attributes (line 7–10 in in Figure 5). The AGGREGATION

constraint (rule 4.4) is a new type of constraint which is explained in the following section.

These constraints are also computed as union of the AGGREGATION constraints of the two

output schemas.

Going back to the example of Figure 2, the two output schemas of the ⋊⋉
−1 are given by

the input schemas of Lineitem and Orders. Following the complete set of rules for ⋊⋉
−1,

the resulting input schema of the ⋊⋉
−1 can be represented as follows:
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A: lid INTEGER, . . ., l oid INTEGER, /*from Lineitem*/

oid INTEGER, orderdate DATE /*from Orders*/

C: PRIMARY KEY(lid), /*from Lineitem*/

CHECK(1 ≥ discount ≥ 0), /*from Lineitem*/

CHECK(oid = l oid) /*join predicate*/

F : {lid} → {name, ..., oid, orderdate} ,

{oid} → {orderdate} ,

{l oid} → {oid} ,

{oid} → {l oid}
J : JD({lid, ..., l oid}, {oid, orderdate}, lid = l oid) ,

5.3 Reverse Aggregation

The input schema of a reverse aggregate operator is defined by the following rules:

(1) SIN .A = Agr ∪ Aagg;
–Agr denotes the GROUP BY attributes,

–Aagg denotes the attributes of the new aggregate columns of the SELECT and HAVING

clause

(2) SIN .F = closure(cleanFD(SOUT .F,Agr) ∪ {Agr → Aagg});

– cleanFD is a function to filter unrelated FDs (see Figure 6).

(3) SIN .J = cleanJD(SOUT .J , Agr)

– cleanJD is a function to filter unrelated JDs (see Figure 7).

(4) SIN .C is defined for each type as follows:

(4.1) SIN .CCK =
cleanConstraints(SOUT .C, (SIN .A ∪ Aagg), CK);

– cleanConstraints is a function to clean constraint (see Figure 8).

(4.2) SIN .CNN =
cleanConstraints(SOUT .C, (SIN .A ∪ Aagg), NN) ∪
createNotNull(Aagg, S

OUT .CNN);

– createNotNull is a function to create not null constraints (see Figure 10).

(4.3) SIN .CAGG =

cleanConstraints(SOUT .C, (SIN .A ∪ Aagg), AGGREGATION) ∪
AGGREGATION(GROUP BY Agr, Aagg)

(4.4) (SIN .CPK , SIN .CUN ) =

createPKAndUnique(SIN.F, SIN .CNN , SIN .A);

– createPKAndUnique: a function to create primary key and unique con-

straints from functional dependencies, not null constraints, and attributes (see Fig-

ure 5).

The attributes, A, are given by the attributes in the GROUP BY clause of the query plus the

aggregate columns specified in the SELECT and HAVING clause of the query (rule 1).
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cleanFD(Functional dependencies FOUT , Attributes AOUT )

Output:

-Set FIN // Cleaned functional dependencies
(1) FIN = ∅
(2) //analyze FDs in FOUT

(3) FOREACH f in FOUT

(4) //if left attributes of f are in AIN

(5) IF(f.leftAtts() ∩ AIN != ∅)
(6) f.rightAtts() = f.rightAtts() ∩ AIN

(7) F IN.add(f)

(8) END IF

(9) END FOR

(10) RETURN F IN

Figure 6: Function cleanFD

The computation of F is listed in rule 2. It first uses the function cleanFDs (Figure 6)

to keep only functional dependencies f with at least one of the attributes of the left side of

f in the input schema (line 5 to 6). Then a new functional dependency which expresses that

all aggregate columns are functional dependent from the attributes in the GROUP BY clause is

added. If no GROUP BY clause exists, an empty set is used as left side of the new functional

dependency.

The computation of J is shown by rule 3. It uses the function cleanJD (Figure 7) to keep

only those attributes in a join dependency j with at least one of the attributes in the GROUP

BY clause.

The check and not null integrity constraints (rule 4.1 and rule 4.2) are inherited from the

output schema only if they are correlated to any attribute of the input schema or a metric at-

tribute of the aggregation function. The function cleanConstraints (Figure 8) takes a

set of integrity constraints COUT , a set of attributes AIN , and the type t of constraints (e.g.

NN ) which should be returned by that function as input and outputs those integrity constraints

CIN of the given type which are correlated to any attribute in AIN . In order to find correlated

integrity constraints, it invokes a function createConstraintGraph (Figure 9) to create

a constraint graph (line 2 in Figure 8) whose vertices represent the given integrity constraints

in COUT and whose edges show if two constraints refer to at least one common attribute. The

function keeps all integrity constraints which are connected to an integrity constraint, which

refers to at least one attribute in AIN (line 9 to 16).

The aggregation constraint (represented by SIN .CAGG) in Rule 4.3 is a new type of con-

straint introduced in [21]. An aggregation constraint specifies the requirements of the ag-

gregation functions and the GROUP BY clause. They are also computed by the function

cleanConstraints plus a new aggregation constraint for that opertator. The primary key

and unique constraints (rule 4.4) can be derived from F , as already described for the reverse

join.

In the example of Figure 2, the output schema of the χ−1 is given by the input schema of

the ⋊⋉
−1. The input schema of the χ−1 is specified as follows.
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cleanJD(Join dependencies JOUT , Attributes AOUT )

Output:
-Set JIN // Cleaned join dependencies

(1) JIN = JOUT.clone()

(2) //analyze JDs in JIN

(3) FOREACH j in JIN

(4) //analyze A1 and A2 in j given by j.atts()

(5) FOREACH set A in j.atts()

(6) //remove attributes not in AOUT minus attributes used in p

(7) A = A ∩ (AOUT − j.p.atts())
(8) //remove j from JIN if A is empty

(9) IF(A = ∅) JIN = JIN - j

(10) END FOR

(11) END FOR

(12) RETURN JIN

Figure 7: Function cleanJD

cleanConstraints(Constraints COUT , Attributes AIN , Type t)

Output:

-Set CIN // Cleaned integrity constraints

(1) //create constraint graph of COUT

(2) GOUT = createConstraintGraph(COUT)

(3) GIN = (∅, ∅)
(4) //analyze attributes AIN

(5) FOREACH a in AIN

(6) //analyze constraints of GOUT

(7) FOREACH c in GOUT .E

(8) //if a is in attributes of c

(9) IF(a ∈ c.atts())
(10) //subgraph calculates all constraints

(11) //connected to vertex c in GOUT

(12) GSUB = GOUT.subgraph(c)

(13) //add constraints to GIN

(14) GIN.add(GSUB)

(15) GOUT.remove(GSUB)

(16) END IF

(17) END FOR

(18) END FOR

(19) //the vertices of GIN are the constraint

(20) CIN := GIN .V

(21) IF(t!=NULL) RETURN CIN
t //e.g. CIN

NN

(22) ELSE RETURN CIN

Figure 8: Function cleanConstraints
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createConstraintGraph(Set C)

Output:
-Graph G = (V, E) // Graph of correlated constraints

(1) V = ∅
(2) E = ∅
(3) //integrity constraints in set C

(4) FOREACH c in C

(5) FOREACH c′ in V

(6) //if c and c′ have common attributes

(7) IF(c.atts() ∩ c′.atts()! = ∅)
(8) E.add(c, c′)

(9) END IF

(10) END FOR

(11) V .add(c)

(12) END FOR

(13) RETURN G = (V, E)

Figure 9: Function createConstraintGraph

A: orderdate DATE, SUM(price) FLOAT, AVG(price) FLOAT

C: PRIMARY KEY (orderdate),

AGGREGATION(GROUP BY orderdate,

{SUM(price), AVG(price)} )

F : {orderdate} → {SUM(price), AVG(price)}

5.4 Reverse Selection

The input schema of a reverse selection inherits A, F , C , and J from its output schema.

The only difference between the output and input schema is that the selection predicate is

added to the CHECK constraints of the input schema. The selection predicate is translated into

corresponding functional dependencies in the same way as for the predicates of a reverse join

(see Figure 4).

In the example of Figure 2, the input schema of the σ−1 is almost identical with the input

schema of the χ−1 (previous paragraph): only, CHECK(AVG(price) ≤ 100) is added to

the constraints (C).

5.5 Reverse Projection

The π−1 operator has similar rules as the χ−1 operator. The rules are as follows:

(1) SIN .A = Aproj ;

– Aproj denotes the projected attributes.
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createNotNull(Aggr. constraints CAGG, Not Null constraints CNN )

Output:
// Not null constraints for aggregation functions

-Set CNN ′

(1) CNN ′ = ∅
(2) //analyze aggregation functions in AGGS

(3) FOREACH agg in AGG

(4) //if all metrics are NOT NULL

(5) IF(agg.atts() - CNN .atts() = ∅)
(6) CNN ′.add(NOT NULL(agg))

(8) END IF

(9) END FOR

(10) RETURN CNN ′

Figure 10: Function createNotNull

(2) SIN .F = cleanFD(SOUT .F , SIN .A);

– cleanFD is the same function as before, see Figure 6.

(3) SIN .J = cleanJD(SOUT .F , SIN .A)

– cleanJD is a function to filter unrelated JDs (see Figure 7).

(4) SIN .C = cleanConstraints(SOUT .C , SIN .A,NULL);

– cleanConstraints is the same function as before, see Figure 8.

The attributes of the input schema (rule 1) are derived from the attributes in the SELECT

clause. The functional and join dependencies (rule 2 and 3) are calculated by the functions

cleanFD and cleanJD just like in reverse aggregation. Also, the integrity constraints (rule

4) are calculated by the function cleanConstraintswhich keep all constraints correlated

to a given set of attributes in this case for all attributes of the input schema.

In the example of Figure 2, the input schema of the π−1 is as follows.

A: SUM(price) FLOAT

C: CHECK(AVG(price) ≤ 100),

AGGREGATION(GROUP BY orderdate,

{SUM(price), AVG(price)} )

F : ∅

In the example, the CHECK constraint is correlated to the AGGREGATION constraint, Thus,

it is kept in the input schema, although the attribute AVG(price) itself is not kept. The

reason is that the function createConstraintGraph which is used in order to calculate

the correlated constraints calls a method atts() of each integrity constraint in the output schema

(see Figure 9 line 7). This method call on an AGGREGATION constraint returns all aggregated

columns (e.g. AVG(price)) plus all metrics of the aggregation functions (e.g. price). Thus

constraints correlated to all aggregation functions and metrics are kept in the input schema.
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5.6 Reverse Union

The reverse union has two output schemas like the reverse join. Its input schema is computed

from the two output schemas by the following rules.

(1) SIN .A = SOUT
left .A;

(2) SIN .F = SOUT
left .F ∩ SOUT

right .F ;

(3) SIN .J = JD(SOUT
left .J ∩ SOUT

right .J);

(4) SIN .C is defined for each type as follows:

(4.1) SIN .CCK = (SOUT
left .CCK) ∨ (SOUT

right .CCK);

(4.2) SIN .CNN = SOUT
left .CNN ∪ SOUT

right .CNN ;

(4.3) SIN .CAGG = SOUT
left .CAGG ∪ SOUT

right .CAGG;

(4.4) (SIN .CPK , SIN .CUN ) =

createPKAndUnique(SIN .F , SIN .CNN , SIN .A);

see Figure 5 for the algorithm

The set of attributes A of the input schema is equal to the set of attributes of its left output

schema (rule 1), if the attribute types of both output schemas match.

The functional dependencies in the input schema (rule 2) are computed by the intersection

of the functional dependencies of the two output schemas. Rule 3 states that the input must be

a result of the set union of two relations with the given join dependencies.

The derivation of the CHECK constraints is more complex (rule 4.1): the set of CHECK

constraints of the input schema is computed by combining the set of CHECK constraints from

the left output schema with the set of CHECK constraints from the right output schema disjunc-

tively. However, as the attribute names could be different in the right output schema they have

to be renamed to the corresponding attribute (by position) of the left output. The NOT NULL

and AGGREGATION constraints are computed by an intersection of these constraints of both

output schemas (rule 4.2 and rule 4.3). The primary key and unique constraints (rule 4.4) are

again derived from F , as already described for the reverse join.

Example: In the reverse union example in Figure 3, the new CHECK constraints (R.a ≤
10)∨ (S.a > 5) of the input schema of the reverse union is defined by the check constraints of

the two output schemas ((R.a ≤ 10) and (S.a > 5)). We can see that the the attributes of the

check constraint of the right output schema are renamed.

5.7 Reverse Minus

According to [17], computing constraints for the minus operator in relational algebra is not

complete and thus undecidable.
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The reverse minus operator has also two output schemas. To derive the input schema we

generally consider its left output schema only. The schema computation for the reverse minus

operator is given by the following rules:

(1) SIN .A = SOUT
left .A

(2) SIN .F = SOUT
left .F

(3) SIN .J = JD(SOUT
left .J − SOUT

right .J);

(4) SIN .C = SOUT
left .C ∪ ¬SOUT

right .CCK ;

The set of attributes of the input schema as well as all functional dependencies and other

integrity constraints are equal to the left output schema (rule 1, 2 and 4). In addition, a CHECK

constraint which is the negation of the conjunction of all CHECK constraint predicates of the

right output schema which involve a relation of the left branch is added. Rule 3 states that the

input must be a result of the set difference of two relations with the given join dependencies.

In the reverse minus example in Figure 3, a CHECK constraint !(b>5) is added to the input

schema of reverse minus but only if the check constraints involves a relation in the left branch.

5.8 Reverse Rename

To derive the input schema we only rename the corresponding attribute respectively relation

names of the output schema in A, C , and F .

5.9 Annotation of Nested Queries

In order to reverse process a nested query, SPQR uses the concept of nested iterations (some-

times called apply operators) which are known from traditional query processing [8], in a

reverse way (see Section 6.10). A nested query has the following general structure:

OUTER QUERY bind predicate INNER QUREY correlation predicate.

In many cases, the bottom-up phase can be applied to the outer and inner query block

separately. However, if the inner query is a query connected by equality (bind predicate) to

the outer query, then the reverse apply operator adds an additional functional dependency to

the outer query. In case that the inner query is correlated to the outer query, the correla-

tion predicate must express the equality, otherwise no functional dependency is added to the

outer query. The functional dependency added by the reverse apply operator has the follow-

ing structure: {correlation attribute} → {bind attribute}, where correlation attribute and

bind attribute are the attributes of the outer query used in the correlation predicate and the

bind predicate.

Example: Assume the query
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SELECT s.age, s.salary FROM Student s WHERE s.age =

SELECT MAX(age) FROM Professor p WHERE p.salary=s.salary

is given. Then, a functional dependency {s.salary} → {s.age} is added to the output schema

of the outer query.

6 Top-down Data Instantiation

The Top-down data instantiation component in Figure 1 interprets the optimized reverse query

execution plan using an RTable R and possibly query parameters as input. It generates a

database instance D as output. The generated database D fulfills the constraints of the database

schema and the overall correctness criterion of RQP under the decidability concerns as men-

tioned in Section 3.1. If this is not possible, then error is returned.

The reverse query execution plan consists of a set of physical RRA operators. As in tra-

ditional query processing, the set of physical RRA operators is called the physical reverse

relational algebra. Each logical RRA operator may have different counterparts in the physical

RRA. The choice is application dependent; for example, different physical implementations

are used for SQL debugging and for scalability testing. This section presents the physical al-

gebra of SPQR, a prototype of RQP. The physical algebra of SPQR tries to keep the generated

database as small as possible.

Moreover, there is a limitation on implementing some physical RRA operators: If the same

database table is referenced multiple times in a reverse query tree, then the physical implemen-

tations of σ−1, ⋊⋉
−1 and −−1 are not allowed to generate additional tuples for that table. This

limitation does not affect the physical RRA in this paper as these operators generate no addi-

tional tuples in order to keep D as small as possible. But this limitation does affect physical

algebras which generate additional tuples (e.g., the physical algebra for performance testing).

Example: That problem can be shown by the following example query which should be reverse

processed disregarding the rule above (Table S has the attributes A,B). We see that table S is

referenced multiple times.

SELECT S1.A,S1.B,S2.A,S2.B

FROM S as S1, S as S2

WHERE S1.B=S2.B AND

S1.A>5 AND S2.A<=5;

Assume that a result R is given which has only one tuple <6,1,5,1>. The reverse query tree

for that query contains two reverse selections (one on S1 and one on S2). The reverse selection

A>5 on S1 pushes <6,1> down to S1 and creates an additional tuple which satisfies !(A>5),

e.g. <5,2> for S1.A, S1.B. The reverse selection A<=5 on S2 pushes <5,1> down to

S2 and creates an additional tuple which satisfies !(A<=5), e.g. <6,2> for S2.A, S2.B.

So at the end S would contain four tuples <6,1>,<5,2>,<5,1>,<6,2>. If we run the
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query above on the generated tuples in S the result would contain two tuples <6,1,5,1>,

<6,2,5,2> and not only one tuple as defined.

The remainder of this section is organized as follows. At the beginning we introduce the

general architecture model used to implement the physical RRA operators. Afterwards a non

blocking implementation is shown for each RRA operator which can be used in most cases.

Some special cases which need a blocking implementation, as well as the reverse processing

of nested queries are discussed afterwards. Finally, optimizations for some RRA operators are

presented.

6.1 Iterator Model

As in traditional query processing, each operator is implemented as an iterator [11]. Unlike tra-

ditional query processing, the iterators are push-based. That is, whenever an operator produces

a tuple, it calls the pushNext method of the relevant child (output) operator and continues

processing once the child operator is ready. Thus, the whole data instantiation is started by

scanning the RTable and pushing each tuple of the RTable one at a time to the root operator of

the reverse query plan. Such a push-based model is required because operators of the RRA can

have multiple outputs; the alternative would be to implement a pull-based model with buffering

which is significantly more complex [18]. All iterators have the same interface which contains

the following three methods:

• open: prepare the iterator for producing data as in traditional query processing;

• pushNext(Tuple t): (a) receive a tuple t, (b) check if t satisfies the input schema SIN of

the operator, (c) produce zero or more output tuples, and (d) for each output tuple, call

the pushNext method of the relevant children operators;

• close: clean up everything as in traditional query processing.

The following subsections show how the operators produce tuples in their pushNext method.

All other aspects (e.g., open and close) are straightforward so that the details are omitted for

brevity.

6.2 Reverse Projection

In SPQR, the reverse project operator produces exactly one output tuple for each input tuple.

In order to generate values for new columns, the reverse project operator calls the decision

procedure of a model checker. The idea is to create a constraint formula which represents the

constraints which have to be satisfied by the output. These constraints represent the values

known from the input tuple on the one hand and the output schema on the other hand. For

example, if the input schema has one column (A), the input tuple is 〈3〉, and the output schema

has two columns (A and B) and an additional constraint that A + B < 30, then the following

constraint formula is generated:

A = 3 & A+B < 30
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π−1.pushNext(Tuple t)

(1) //Instantiate output data

(2) (I,count):=instantiateData(t,SOUT)

(3) IF(I=NULL) //no instantiation found

(4) RETURN error;

(5) ELSE

(6) tout:=createTuple(I,SOUT,1)

(7) //push down the new tuple tout

(8) nextOperator.pushNext(tout)

(9) END IF

Figure 11: Method pushNext of π−1

This constraint formula is passed to the model checker which in turn generates values for all

variables or error if no instantiations that satisfy the formula can be found. In this example, the

model checker would return, say, A = 3, B = 20 and these values would be used to generate

an output tuple.

Figure 11 shows the pseudocode of how the π−1 operator generates an output tuple from

an input tuple. The most important statement is the call of the instantiateData function (Line

2) which does the actual work. Since this function is also used by the implementation of the

χ−1 operator, it has two return parameters: one which defines the instantiated data (variable,

value pairs) and another which indicates how many tuples are used to solve aggregations which

might be part of the formula (see below). The second return value is only needed for the χ−1

operator so that it can be ignored for the moment. If the call to instantiateData was successful

(i.e., I 6= NULL in Line 3), then a new output tuple is created according to the output schema

of the π−1 operator and passed to the next reverse operator (Lines 6 to 8). Otherwise, error is

returned (Line 4).

The pseudocode of a simplified version of the instantiateData function is shown in Figure

12. This function creates a constraint formula L (Line 9) following the semantics of the reverse

operator and executes the decision procedure of the model checker on L (Line 10). As part of

the creation of the constraint formula, restrictions of the model checker need to be taken into

account. For example, the model checker used in the performance experiments (Section 8)

does not support SQL numbers and dates. As a result, all SQL numbers and dates must be

converted into (long) integers and the constraints must be adjusted accordingly. Furthermore,

arithmetic expressions (e.g., A + B) which might appear in the input and output schemas of

the reverse projection must be taken into account.

The most complex part of the instantiateData function deals with the generation of columns

that involve aggregations. In Figure 2, for example, the π−1 operator needs to generate values

for the AVG(price) column. In order to generate correct values, the instantiateData func-

tion needs to guess how many tuples are aggregated by the aggregate function; for instance,

two tuples are aggregated for the second tuple of the RTable in Figure 2. The two tuples are

generated by the χ−1 operator, but the π−1 operator which only generates one output tuple per

input tuple must be aware of this fact in order not to generate values that cannot be matched

by the χ−1 operator. Unfortunately, today’s publicly available model checkers have not been
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instantiateData(Tuple t, Schema SOUT )

Output:

-instantiation I //data instantiation
-int n //number of tuples for aggregation

(1) //number of tuples for aggregation

(2) IF t includes COUNT of aggregation

(3) count,maxcount:=COUNT value in t

(4) ELSE //USER THREHOLD=1 if no aggregation

(5) count:=1; maxcount:=USER THRESHOLD

(6) END IF

(7) FOR(n=count TO maxcount)

(8) //Create constraint formula L

(9) L:=createConstraint(t,SOUT,n)

(10) I:=decisionProcedure(L)

(11) IF(I!=NULL) RETURN (I,n)

(12) END FOR //Trial-and-error

(13) RETURN (NULL,0)

Figure 12: Function instantiateData (simplified)

designed for aggregation so that this guessing must be carried out as part of the instantiateData

function in a trial and error phase (Lines 6 to 11). The guessing iteratively tries different values

of n (the number of tuples aggregated) and calls the decision procedure for each value until the

decision procedure of the model checker was successful and able to instantiate data.

Continuing the example of Figure 2 for the second tuple of the RTable (SUM(price) =

120), the following formula is generated for n = 1:1

sum price=120 &

orderdate!=19900102 & avg price<=100 &

sum price=price1 & avg price=sum price/1

This formula is given to the decision procedure of the model checker and obviously, the

model checker cannot find values for the variables price1 and avg price that meet all

constraints. In the second attempt for n = 2, the following formula is passed to the decision

procedure:

sum price=120 &

orderdate!=19900102 & avg price<=100

sum price=price1+price2 & avg price=sum price/2

This time, the decision procedure finds an instantiation:2

1The constraint on orderdate is generated because orderdate is the primary key of the output schema and,

thus, a different orderdate value must be generated for the SUM(price) = 120 than for the SUM(price)

= 100 tuple. 19900102 is the integer representation for the date January 2, 1990, the orderdate value of the

SUM(price) = 100 tuple.
220060731 is the integer representation of the date July 7, 2006.
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sum price=120, avg price=60,

price1=80, price2=40,

orderdate=20060731

From this instantiation, the values of orderdate, avg price, and sum price are

used in order to generate the output tuple of the reverse project operator. In the SPQR proto-

type, the maximum number of attempts (maxcount in Figure 12) can be constrained by the

user in order to make sure that the whole process does not run for ever. Moreover, all the

guessing is not necessary if the query involves a COUNT aggregation because the values (or

constraints) of the corresponding COUNT column in the tuple (t) can be used (Lines 2 and 3 of

Figure 12). Furthermore, in order to avoid the guessing, several optimizations can be applied

(Section 6.11). These optimization techniques work very well such that in practice not much

guessing is required; in fact, the experimental results in Section 8 show that no guessing is

required for the whole TPC-H benchmark.

The pseudocode of Figure 12 is a simplification for the special case that there are no nested

aggregations (e.g., SUM(AVG(price))) and no joins on aggregated values (e.g., aggrega-

tions in several subqueries). However, the code can easily be generalized for all cases. This

generalization is not shown because it is fairly straightforward. SPQR indeed implements such

a generalized version of the instantiateData function.

6.3 Reverse Aggregation

The reverse aggregation operator can be implemented in an analogous way to the reverse pro-

jection. The difference is that while the π−1 operator only guesses how many tuples are po-

tentially involved in an aggregation, the χ−1 operator actually generates these tuples. The key

idea to use the decision procedure of a model checker, however, is the same.

Figure 13 shows the pseudo-code. The instantiateData function is called in the same way

as for π−1. The only difference is that the return parameter count is now initialized (Line

2) which defines the number of output tuples. If the instantiateData function was successful,

then count tuples are generated (Lines 6 to 9) using the values returned by the instantiateData

function. If not, then error is generated (Lines 3 and 4). Again, an example that shows this

code in action can be seen in Figure 2c (Tables (iii) and (iv)).

6.4 Reverse Join

The reverse join operator can be implemented in different ways, depending on the join pred-

icate. The simplest (and cheapest) implementation is the implementation of an equi-join that

involves a primary key or an attribute with a UNIQUE constraint. Such joins are the most

frequent joins in practice. They can be implemented as a simple projection with duplicate

elimination. The implementation of general joins and Cartesian products is more complex; the

full algorithms are given in Section 6.9.1. In any event, the implementation of reverse joins and

Cartesian products does not involve calls to a model checker so that these operators are much

cheaper than reverse projections and aggregations.
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χ−1.pushNext(Tuple t)

(1) //Instantiate data

(2) (I,count):=instantiateData(t,SOUT)

(3) IF(I=NULL) //no instantiation found

(4) RETURN error;

(5) ELSE

(6) FOR(n=1 TO count)

(7) tout :=createTuple(I,SOUT,n)

(8) nextOperator.pushNext(tout)

(9) END FOR

(10) END IF

Figure 13: Method pushNext of χ−1

∪−1.pushNext(Tuple t)

(1) //Create constraint formulas

(2) Lleft:=createConstraint(t,SOUT
left )

(3) Lright:=createConstraint(t,SOUT
right)

(4) //call model checker

(5) IF(decisionProcedure(Lleft)!=NULL)

(6) left operator.pushNext(t)

(7) //call model checker

(8) ELSE IF(decisionProcedure(Lright)!=NULL)

(9) right operator.pushNext(t)

(10) ELSE

(11) return error

(12) END IF

Figure 14: Method pushNext of ∪−1

6.5 Reverse Selection

The simplest implementation of the σ−1 operator would return its input (i.e., implement the

identity function). For example in Figure 2c, the σ−1 implements the identity function such

that its output relation (Table (iii) in Figure 2c) is identical to its input relation (Table (ii) in

Figure 2c). If any input tuple is not compliant with the output schema, then error is returned.

6.6 Reverse Union

Like the reverse join, the reverse union operator takes one relation as input and generates two

output relations. According to the output schemas of the two output relations, the reverse union

operator distributes the input tuples to the correct output relation.

Figure 14 shows a implementation of the reverse union. The implementation checks for

each input tuple if it is complaint with the output schema of the left output relation by creating

a constraint formula representing the input tuple and the constraints imposed by the output

schema (Line 1 to 3); and pushes the tuple to the left output relation if they are compatible
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(line 6). Otherwise, the reverse union checks the compatibility of the input tuple with the right

output relation (line 8). If an input tuple is not complaint with any output relations, then error

is returned (line 11). Obviously, the reverse union implementation is cheap: its complexity is

linear to the input size.

6.7 Reverse Minus

The implementation of the reverse minus operator is similar to the reverse union operator. It

checks for each input tuple if it is compliant with the left output schema but not the right output

schema; and pushes the input tuple to the left output if possible. Otherwise, it returns error.

Again, the complexity of this implementation is linear to the input size just like the reverse

union operator.

6.8 Reverse Rename

Since the reverse rename operator does not have any data manipulation, its implementation is

the same as the reverse selection: it returns identity.

6.9 RRA Operators in Special Cases

The implementations of the operators discussed so far are all non-blocking. That is, whenever

an operator takes in a tuple, the operator can push the result tuple(s) to the child output operator

immediately after processing. However, in some very special cases, RQP needs to use blocking

RRA operators in order to guarantee correctness and they are discussed in details in this section.

These special cases, however, are very rare in practice. For example, the TPC-H benchmark

used in the experiments does not have any of the special cases and all non-blocking operators

described above were used in the experiments.

6.9.1 Reverse Join

As discussed before the reverse equi-join that involves a primary key or an attribute with a

UNIQUE constraint is trivial. However, all other reverse joins need more complex blocking

implementations which are shown in the following.

Case 1: If the join predicate expresses the equality of two attributes (ai = aj) and both ai

and aj are not the primary key or an attribute with a UNIQUE constraint of the output schemas,

then a blocking implementation of the reverse join operator is needed.

The blocking implementation is shown in Figure 15. First, the complete input relation is

grouped by the attributes of the left output schema (line 1). Afterwards each group is analyzed

(line 3 to 24). If the group does not fulfill the join predicate an error is returned (line 5 to

7). Afterwards, the left and right output are created for that group (line 10,11). If any of both

outputs (in the algorithm we use the left output) of the previous group has the same value for

the join attribute as the current group, then the current right output must be the same as the

previous right output; else an error is returned (line 14 to 19). If all is ok, the current left and
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⋊⋉
−1.pushNext(Relation r)

(1) r groups := groupby(r, SOUT
left .A)

(2) //analyze each group in r groups

(3) FOREACH r group in r groups

(4) //check join predicate

(5) IF(r group not fulfills ⋊⋉
−1.p)

(6) RETURN error

(7) END IF

(8) //projection (with dupl. elimination)

(9) //to attributes of output schemas

(10) leftout := r group[SOUT
left .A]

(11) rightout := r group[SOUT
right .A]

(12) //if join values of previous group

(13) //are equal to current group

(14) IF(leftpre[⋊⋉
−1 .p.att()] = leftout[⋊⋉

−1 .p.att()])
(15) //then right outputs must be the same

(16) IF(rightout! = rightprev)

(17) RETURN error

(18) END IF

(19) END IF

(20) left operator.pushNext(leftout)

(21) right operator.pushNext(rightout)

(22) leftpre := leftout

(23) rightpre := rightout

(24) END FOR

Figure 15: Case 1: Method pushNext of ⋊⋉
−1

right outputs are propagated to the next operators and they are saved as previous outputs for

the next loop execution (line 21 to 24).

Moreover, if one of the output schemas allows duplicates, the reverse join operator has to

find out the correct cardinality of the outputs out of different possibilities. In that case duplicate

elimination is needed in line 10 and line 11. However, this extension is straightforward and not

shown in this report.

Example: An example for that case can be shown by the following query:

SELECT c.id, c.age, s.id, s.age

FROM Customer c, Supplier s

WHERE c.age=s.age

Both relations (Customer and Supplier) have a primary key attribute id. The input

is given by the following two tuples: 〈1, 27, 1, 27〉, 〈2, 27, 2, 27〉. Both tuples are in separate

groups because the attributes of the left output c.id and c.age have different values. As the re-
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verse join produces different supplier tuples for the right output of both groups, although they

have the same attribute value for the join attribute c.age, the input is incorrect. A correct input

should have four tuples: 〈1, 27, 1, 27〉, 〈1, 27, 2, 27〉, 〈2, 27, 1, 27〉, 〈2, 27, 2, 27〉.

Case 2: If the join is not an equi-join and the join predicate is in the form of ai > aj or in

the form of ai ≥ aj , then the blocking version of the reverse join operator is needed.

Example: Consider the following query and the given input:

SELECT c.cid, c.age, s.id, s.age

FROM Customer c, Supplier s

WHERE c.age>s.age

c.id c.age s.id s.age

1 27 1 25 /*1st group*/

1 27 2 26

2 28 1 25 /*2nd group*/

2 28 3 27

With a careful look on the input, it can be seen that the input is not a valid input of the

reverse join since a tuple 〈2, 28, 2, 26〉 is missing in the second group. As a result, the reverse

join operator has to examine all the input before it produces the first result.

The implementation for that case is given in Figure 16. It is similar to the implementation

of case 1 - the differences are marked bold. In particular, the reverse join also has to group

the input by the attributes of the left output schema (e.g., c.id, c.age), and additionally has to

sort the input by the join attribute (e.g., c.age) in ascending order (descending order is used if

the comparison operator is < or ≤) (line 1 and 2). This way, the set of output tuples which

is produced for the right output (e.g. table Supplier) of the the first group must be contained

completely in the set of output tuples which is produced for the second group (line 15). If this

condition holds among all adjacent groups, then the input is valid; otherwise error should be

returned (line 16).

Case 3: If the join is not an equi-join and the join predicate is in the form of !(ai = aj),
then a blocking version of the reverse join operator is needed. The blocking version is imple-

mented similar to the first case: the input tuples are grouped by the left output schema, then

the join operator checks if each group produce the same set of output tuples for right output.

One difference is, that output tuples that violate the join predicate are excluded from the above

checking.

Case 4: In order to process more complex join predicates, the algorithms introduced before

must be combined. For example, to check the input of a reverse join operator with a conjunctive

predicate like ai > aj ∧ ak < al, the input must be grouped by ai and ak and the groups must

be sorted ascending by ai and descending by ak. Moreover, to check the input of a reverse

join operator with a disjunctive join predicate the tuples of the input must be divided into

different input groups each fulfilling one predicate element. E.g. for a join predicate like
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⋊⋉
−1.pushNext(Relation r)

(1) r groups := groupby(r, SOUT
left .A)

(2) r groups := sortbyatt(r groups, SOUT
left .A∩ ⋊⋉

−1 .p.atts(), ⋊⋉
−1 .p)

(3) //analyze each group in r groups

(4) FOREACH r group in r groups

(5) //check join predicate

(6) IF(r group not fulfills ⋊⋉
−1.p)

(7) RETURN error

(8) END IF

(9) //projection (with dupl. elimination)

(10) //to attributes of output schemas

(11) leftout := r group[SOUT
left .A]

(12) rightout := r group[SOUT
right .A]

(13) //right output of successor group

(14) //must be contained in previous group

(15) IF(rightprev − rightout! = ∅)
(16) RETURN error

(17) END IF

(18) END IF

(19) left operator.pushNext(leftout)

(20) right operator.pushNext(rightout)

(21) leftpre := leftout

(22) rightpre := rightout

(23) END FOR

Figure 16: Case 2: Method pushNext of ⋊⋉
−1

32



ai > aj ∨ ak < al we divide the input into two groups - one which fulfills the predicate

ai > aj and another which fulfills the predicate ak < al. If a input tuple fulfills more than

one predicate the tuple is added to all corresponding input groups. Afterwards, each input

groups are checked separately by the algorithms introduced for the previous cases. As each

join predicate can be transformed into disjunctive normal form, we are able to process arbitrary

reverse join operators.

6.9.2 Reverse Projection and Reverse Aggregation

In two special cases, the top down phase of RQP needs the blocking implementation of the

reverse projection operator and the reverse aggregation operator.

Case 1: If the output schema of a reverse projection (or reverse aggregation) operator con-

tains a CHECK constraint in the form of aj < ai < ak or in the form of aj < ai < c or in the

form of c < ai < aj (alternatively the predicate could use the <= instead of the < operator),

where aj and ak are attributes in the input schema and ai is an attribute in the output schema

but not in the input schema and is bound by a unique or primary key constraint, the data in-

stantiation phase should use the blocking implementations of the operators.

Example: An example for this special case is a query like SELECT b FROM R WHERE

b<a and a<10 where the relation R consists of attributes a and b; and a is a primary key. If

there are two input tuples 〈7〉 and 〈8〉, then the reverse projection may generate 〈9, 7〉 for the

first input tuple 〈7〉. If that is the case, the reverse projection could not find an instantiation for

the second tuple 〈8〉 because 〈9, 8〉 is the only possible instantiation (as b < a < 10) but this

instantiation violates the primary key constraints imposed by the first output tuple 〈9, 7〉 on the

attribute a. As a result, a blocking implementation is needed such that the reverse projection

and the reverse aggregation operator consider all input tuples and generates the output in one

batch. For the example above, the reverse projection has to buffer all the input in order to

produce the output 〈8, 7〉 and 〈9, 8〉.

Figure 17 shows a generalized version of the function instantiateData which is used by the

blocking implementation of both operators. This version takes a complete relation as input and

returns an instantiation of the output for the complete input, as well as an array of numbers

which represent the number of tuples, which have to be used for each input tuple in order to

dissolve aggregations (n[i] is the number of output tuples which have to be created for the i-th

input tuple). Therefore the function guesses the right number of output tuples for each input

tuple by creating all possible combinations of count values for all input tuples (line 1 to 13).

Afterwards the function tries to find an instantiation of the output for each possible combina-

tion of count values (line 14 to 20). In case that the function finds an instantiation, it returns

this instantiation and the current combination of count values. If none of the combinations is

satisfiable (NULL,NULL) is returned.

This function is more expensive than the simple instantiateData function, because of

several reasons: One is that the constraint formula is more complex for the complete input and

thus the model checker needs more time; another reason is that the trial-and-error has to be
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instantiateData(Relation r, Schema SOUT )

Output:

//data instantiation
-instantiation I

//number of tuples to ungroup each tuple
-int[] n

(1) //number of tuples to ungroup r

(2) int[] count, maxcount

(3) i := 1
(4) //analyze each tuple t ∈ r

(5) FOREACH t in r

(6) IF t includes COUNT of aggregation

(7) count[i] = maxcount[i]:=COUNT value in t

(8) ELSE //USER THREHOLD=1 if no aggregation

(9) count[i]:=1; maxcount[i]:=USER THREHOLD

(10) i = i + 1
(11) END FOR

(12) //create combinations of count domains

(13) comb:=createCombinations(count,maxcount)

(14) FOREACH n in comb //n is a k−array; k is the cardinality of r

(15) //Create constraint formula L

(16) L:=createConstraint(r,SOUT,n)

(17) I:=decisionProcedure(L)

(18) IF(I!=NULL) RETURN (I,n)

(19) END FOR //Trial-and-error

(20) RETURN (NULL,NULL)

Figure 17: Case 1: Function instantiateData

carried out for the complete input and thus the size of combinations grows exponential with

the number of input tuples.

Case 2: If a reverse projection (or reverse aggregation) operator generates tuples which

are processed by a reverse join operator (implied by a join dependency in the output schema)

and its join predicate does not express the equality on a primary key attribute of one of the

output schemas, then blocking versions of the operators are needed during the data instantiation

phase. Otherwise these operators may generate incorrect values which do not satisfy the join

properties. The implementation of the blocking versions for these two operators in this special

case needs similar algorithms as the blocking version of the reverse join operators in Section

6.9.1 in order to check the input. The algorithms can be adapted easily from that section and

are not shown here.

Additional algorithms are needed in order to produce the output. First, the input must be

grouped as described for the different join predicates in Section 6.9.1. Afterwards, the output

generation is carried out for each group of the input separatelly in order to generate values

which respect the join properties.

In the following we explain the output generation for join predicates which equal to those
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of case 2 in Section 6.9.1. For illustration purposes we use the following example.

Example: Consider the following query and the given input. The query is similar to the

example query of case 2 in Section 6.9.1. However the join attribute s.age is not given by the

input:

SELECT c.cid, c.age, s.id

FROM Customer c, Supplier s

WHERE c.age>s.age

c.id c.age s.id

1 27 1 /*1st group*/

1 27 2

2 28 1 /*2nd group*/

2 28 2

2 28 3

First, the operator analyzes which join attributes are given by the input. If at least one

join attribute is given by the input (e.g. c.age), the input is grouped by the attributes of that

output schema of the corresponding reverse join operator which contains that join attribute

(e.g. c.id, c.age). Afterwards, the input groups are sorted by that join attribute (e.g. c.age)

ascending or descending depending on the relational operator of the join predicate (>, >=
or <, <=). If both join attributes are not given by the input, then the input is grouped by the

attributes of the left output schema of the correspoding reverse join and sorted ascending by the

cardinality of each group. If the value for the join attribute of the output schema we grouped

by is not given by the input (e.g. c.age), then the operator has to generate one distinct value

per group where the values for all groups are sorted ascending or descending depending on

the join predicate (e.g. 27, 28). However, in our example the attribute c.age is given by the

input and thus no values have to be generated. Other values which must be generated for that

output schema must be distinct for each group, too. If the value for the join attribute of the

other output schema is not given by the input (e.g. s.age), then the attribute values generated

for the first group must be reused by the second group (e.g. we generate 25, 26 for the tuples

with s.id = 1, 2). Values generated for other attributes of that output schema (not in the join

predicate) must be reused, too. New values must be generated for those tuples which are in the

second but not in the first group (e.g. we generate 27 for the tuple with s.id = 3). The new

values for the join attribute have to be greater than the maximum value of the join attribute (e.g.

s.age) used in the first group in case that the join operator is > or >= or smaller then than

miminum value of the join attribute in case that the join operator is < or <=. Moreover, all

generated join attribute values have to fulfill the join predicate. These steps have to be carried

out for all adjacent groups.

The algorithms for other join predicates are straightforward. As the previous algorithm,

these algorithms generate values for the join attributes in a similar way such that these values

fulfill the properties of the particular join predicate shown in the different cases of Section

6.9.1.
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6.9.3 Reverse Union

If both output schemas of a reverse union operator have a primary key or a unique constraint

on the same attribute ai and there is a check constraint on another attribute aj in the output

schema, then a blocking version of the reverse union is needed in the top down data instantia-

tion phase.

Example: An example can be shown by the query in Figure 3 (left side). Assume attribute

b is the primary key attribute of both relation R and S and the two input tuples are 〈6, 6〉 and

〈2, 6〉. Using the non-blocking version of the reverse union operator, the first tuple 〈6, 6〉 might

be distributed to the relation R. Then, the second tuple 〈2, 6〉 cannot be distributed to relation

S because a = 2 cannot not fulfill the selection predicate a > 5. Alike, this tuple also could

not be distributed to relation R because of the primary key constraint. Therefore, a blocking

implementation of the reverse union operator is needed which buffers all the input and dis-

tributes 〈6, 6〉 to S and 〈2, 6〉 to R.

Figure 18 shows the implementation of the blocking version of the reverse union operator.

First, the method analyzes which tuple must be distributed to the left, right, and which tuple

can be distributed to both outputs in a similar way as the non-blocking reverse union imple-

mentation (line 1 to 20). Afterwards those tuples which can by distributed to both outputs

(bothout) must be divided into two relations, one for each output (by method call distribute)

(line 22). The method distribute (not shown as algorithm) analyzes possible combinations to

distribute tuples in bothout to leftout and rightout. In order to check if a combination satisfies

the output schemas, two constraint formulas have to be constructed (one for leftout and one

for rightout). These formulas have to be checked by the model checker if they are satisfiable.

If not, the next combination is tried. If no combination is found, the distribute method returns

an error (line 24), else the output is propagated to the left and right branch (line 26, 27) as

specified in the combination.

6.10 Processing Nested Queries

As mentioned in Section 5, SPQR uses the concept of nested iterations (sometimes called ap-

ply operators) which are known from traditional query processing [8], in a reverse way: The

inner subquery can be thought of as a reverse query tree whose input is parameterized on values

generated for correlation variables of the outer query.

Example 1: Assume that the Lineitem table (from Figure 3.3a)) has an extra column

shipdate. Then, the following nested query is processed reversely as follows:

SELECT oid FROM orders

WHERE orderdate IN

(SELECT shipdate FROM lineitem

WHERE l_oid = oid)

First, the reverse query plan of the outer query is executed given an RTable. The values
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∪−1.pushNext(Relation r)

(1) leftout := ∅
(2) rightout := ∅
(3) bothout := ∅
(4) FOREACH t in r

(5) //Create constraint formulas

(6) Lleft:=createConstraint(t,SOUT
left )

(7) Lright:=createConstraint(t,SOUT
right)

(8) //call model checker

(9) IF(decisionProcedure(Lleft ∧ Lright)!=NULL)

(10) bothout.add(t)

(11) //call model checker

(12) ELSE IF(decisionProcedure(Lleft)!=NULL)

(13) leftout.add(t)

(14) //call model checker

(15) ELSE IF(decisionProcedure(Lright)!=NULL)

(16) rightout.add(t)

(17) ELSE

(18) return error

(19) END IF

(20) END FOR

(21) (leftout, rightout) :=

(22) distribute(bothout, leftout, rightout)

(23) IF(leftout, rightout=(NULL,NULL))

(24) return error

(25) END IF

(26) left operator.pushNext(leftout)

(27) right operator.pushNext(rightout)

Figure 18: Method pushNext of ∪−1 in special case
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generated for the bind variable orderdate and the correlation variable oid are used to initialize

the input for the reverse query tree of the inner subquery. Processing nested queries is, thus,

expensive: it has quadratic complexity with the size of the RTable. Section 7 shows how

almost all nested queries can be unnested for reverse query processing in order to improve

performance.

In those cases where the bind or the correlation predicate does not express the equality,

the reverse apply operator has to be implemented as blocking operator. This is obvious, as

each nested RRA expression can be unnested, e.g. by using reverse join operators (as shown

in Section 7). In the case that the reverse join operator uses a inequality predicate, it also must

use blocking implementation. Thus, the algorithms for the blocking reverse apply operators

are similar to the reverse join and not shown in this technical report. The only difference is,

that the reverse apply generates new input values for the inner subquery.

Example 2: Assume a similar query is given as before. The only difference is, that the join

predicate is l oid > oid. In that case the reverse apply operators must generate values for the

attribute l oid which satisfy that predicate.

6.11 Optimization of Data Instantiation

The previous subsections showed that reverse query processing heavily relies on calls to a

model checker. Unfortunately, those calls are expensive. Furthermore, the cost of a call grows

with the length of the formula; in the worst case, the cost is exponential to the size of the for-

mula. The remainder of this section lists techniques in order to reduce the number of calls to

the model checker and reduce the size of the formulae (in particular, the number of variables

in the formulae). The optimizations are illustrated using the example of Figure 2.

Definition: Independent attribute An attribute a is independent with regard to an output

schema SOUT of an operator iff SOUT has no integrity constraints limiting the domain of a

and a is not correlated with another attribute a′ (e.g. by a > a′) which is not independent.

Definition: Constrictive independent attribute An attribute a is constrictive independent,

if it is independent with regard to an output schema SOUT disregarding certain optimization-

dependent integrity constraints.

The following optimizations use these definitions:

OP 1: Default-value Optimization: This optimization assigns a default (fixed) value to an

independent attribute a. The default value assigned to a depends on the type of the attribute.

Attributes which use this optimization are not included in the constraint formula. An example

attribute which could use this optimization is the attribute name of Lineitem. This attribute

could use a default value; e.g., “product”.

OP 2: Unique-value Optimization: This optimization assigns a unique increment counter

value to a constrictive independent attribute a which is only bound by unique or primary key
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constraints. Here, the optimization-dependent integrity constraints which are disregarded in

the definition of constrictive independent attribute are unique and primary key constraints. At-

tributes which use this optimization are not included in the constraint formula. In the running

example, values for the lid attribute could be generated using this optimization. If another

attribute a′ of the same schema exists which is correlated by equality (e.g. a = a′ from an

equi-join) and a′ is an independent or a constrictive independent attribute which is only bound

by unique or primary key constraints, then attribute a′ is set to the same unique value as a and

constraints involving a′ need not be included in calls to the model checker either.

OP 3: Single-value Optimization: This optimization can be applied for a constrictive in-

dependent attribute a which is only bound by CHECK constraints. An example for such an

attribute is the attribute discount of Lineitem. Such attributes are only included in a

constraint formula the first time the top-down phase needs to instantiate a value for them. Af-

terwards, the instantiated value is reused.

OP 4: Aggregation-value Optimization: This optimization can be applied for constrictive

independent attributes a which are only bound by an aggregation constraint. If the attribute a

is used in an aggregation function, e.g., SUM(a) and a result value for the aggregation function

is given, then different techniques to instantiate values for a can be used. Some possibilities

are shown below:

1. If SUM(a) is an attribute in the operator’s input schema, MIN(a) and MAX(a) are not

in the operator’s input schema, and a has type float: Instantiate a value for a by solving

a=SUM(a)/n with n the number of tuples used to solve the aggregation constraint in

the instantiateData function. In this case, no variables a1, a2, . . . , an need to be

generated and used in the constraint formula passed to the model checker.

2. Same as (1), but MIN(a) or MAX(a) are in the operator’s input schema, and n ≥ 3:

Use values for MIN(a) or MAX(a) once to instantiate a. Instantiate the other values

for a by solving a=(SUM(a)-MIN(a)-MAX(a))/(n-2).

3. Same as (1), but a is of data type integer: Again, we can directly compute a by solving

SUM(a)=n1 × a1 + n2 × a2, where a1=⌊sum(a)/n⌋, a2=⌈sum(a)/n⌉, n1=n − n2

and n2=(SUM(a) modulo n).

4. If COUNT(a) is in the operator’s input schema, a can be set using the Default-value

optimization (OP 1) because a is independent in this case.

OP 5 - Count heuristics: Unlike the previous four optimizations, this optimization does not

find instantiations. Instead, this optimization reduces the number of attempts for guessing the

number of tuples (n in Figure 12) to reverse process an aggregation by constraining the value

of n. The heuristics for this purpose are shown below. The theoretical foundations for these

heuristics are given in [21].

1. If SUM(a) and AVG(a) are attributes of the operator’s input schema,

then n=SUM(a)/AVG(a).
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2. If SUM(a) and MAX(a) are attributes of the operator’s input schema,

then n ≥ SUM(a)/MAX(a) (if SUM(a) and MAX(a) ≥ 0; if SUM(a) and MAX(a)

≤ 0 use n ≤ SUM(a)/MAX(a)).

3. If SUM(a) and MIN(a) are attributes of the operator’s input schema,

then n ≤ SUM(a)/MIN(a) (if SUM(a) and MIN(a) ≥ 0; if SUM(a) and MIN(a)

≤ 0 use n ≥ SUM(a)/MIN(a)).

OP 6: Tolerance on precision: As mentioned in Section 3, tolerances can be exploited in

order to speed up model checking. That is, rather than, say, specifying a = 100, a more

flexible constraint 90 ≤ a ≤ 110 can be used. Of course, this optimization is only legal

for certain applications. Our prototype, SPQR has a user-defined tolerance range which is set

to 0 percent by default.

OP 7: Memoization: Another general optimization technique is to cache calls to the model

checker. For example, π−1 and χ−1 often solve similar constraints and carry out the same

kind of guessing. In Figure 2, for instance, the results of guessing for the π−1 operator can be

re-used by the χ−1 operator. Memoization at run-time has been studied in [14] for traditional

query processing; that work is directly applicable in the RQP context.

7 Reverse Query optimization

The job of the reverse query optimizer is to transform a reverse query tree into a more efficient

reverse query tree (Figure 1). As part of such a rewrite, the input and output schemas need to

be adjusted (Section 5). Depending on the application, different optimization goals can be of

interest. The RQP framework allows the integration of different query optimizers for different

goals. In this work, the RQP optimizer tries to minimize the running time of reverse query

processing. Designing optimizers with other optimization goals (e.g., minimizing the size of

the generated database instances) are beyond the scope of this paper.

Just as in traditional query optimization, the reverse query optimizer rewrites a reverse

query tree into an equivalent reverse query tree that is expected to have lower cost (or running

time). There are several possible definitions of equivalence:

• General RQP-equivalence: Reverse Query Trees T1 and T2 are generally RQP equiva-

lent for Query Q iff for all RTables R: Q(T1(R)) = Q(T2(R)) = R.

• Result-equivalence: Reverse Query Trees T1 and T2 are result-equivalent iff for all RTa-

bles R: T1(R) = T2(R).

Traditional query optimization is based on result-equivalence: after a rewrite the same results

should be produced. Query optimization for RQP can be much more aggressive and allows

more rewrites. It is okay if the rewritten reverse query tree generates a different database

instance (in fact, it might even be desired); the only thing that matters is that the overall RQP

correctness criterion (Section 3.1) is met. That is why general RQP-equivalence is used in the

optimizer of the SPQR prototype.
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7.1 Optimizer Design

The most expensive operators of RQP are π−1 and χ−1 because these operators call the deci-

sion procedure of the model checker. The exact cost of these operators is difficult to estimate

for a specific query because there are no robust cost models for model checkers; defining such

cost models is a research topic in its own right in that community. Nevertheless, it is clear that

the simpler and shorter the constraints, the better. One consequence is that it is important to

minimize the number of π−1 and χ−1 operators in a reverse query tree. Therefore, the canoni-

cal translation of a SQL query into an expression of the relational algebra [10] is already good

because it results in at most one π−1 operator at the root of the reverse query tree. Optimiza-

tions that add projections and group-bys as devised for traditional query processing need not

be applied.

In addition to π−1 and χ−1, the execution of nested queries is expensive because it is

O(n2), with n the size of the input (i.e., RTable or intermediate result). Therefore, it is impor-

tant to unnest queries. Rules that make it possible to fully unnest almost all queries are given

in the next subsection. Furthermore, ∪−1 and −−1 operators can be expensive because they

potentially involve calls to the model checker. As for π−1 and χ−1 operators, therefore, the

goal is to minimize the number of ∪−1 and −−1 operators in a reverse query plan. Again, the

canonical translation of SQL queries is good enough in practice for this purpose.

All other operators are cheap. They are linear in the size of their inputs and do not require

any calls to the model checker. In particular, the reverse equi-join that involves a primary key

or an attribute with a unique constraint is cheap. As a result, it is not important to carry out

cost-based join ordering or worry about different reverse join methods. Again, the canonical

relational algebra expression can be used for simple rewrites that eliminate unnecessary oper-

ators (e.g., σ−1’s in certain cases) and/or simplifies the expressions in the reverse query tree.

Such rewrites are presented in the last subsection of this section.

7.2 Query Unnesting

There are three rewrite rules that can be used to fully unnest most SQL queries. Only some

queries that involve the same table in the outer and in the inner query cannot be unnested for

RQP. This very aggressive unnesting is possible because of the relaxed equivalence criterion

presented at the beginning of this section. However, the optimizer has to keep all functional de-

pendencies for the rewritten queries, which are added by the bottom-up phase for the unnested

query.

RR 1: A subquery Qin1 nested inside a NOT IN operator can be removed if (1) the inner

and outer queries refer to different tables and (2) no other subquery Qin2 exists which

refers to the same table as Qin1 and is not nested inside NOT IN. As a result, Query Q1

can be rewritten to Q2 in the following example:

Q1 SELECT name FROM Lineitem WHERE l oid NOT IN

(SELECT MAX(oid) FROM Orders

GROUP BY orderdate);

Q2 SELECT name FROM Lineitem;
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To check the correctness, consider an RTable R with only one tuple: 〈productA〉. Q1

and Q2 are obviously not result-equivalent with respect to R. RQP for Q1 would generate at

least one Lineitem tuple and one Orders tuple; in contrast, RQP for Q2 would only gen-

erate a Lineitem tuple. The queries are general RQP-equivalent, however, because applying

Q1 to both database instance would return the required result; i.e. a single row with value

"productA".

RR 2: An inner query in a nested query can be removed if (1) the columns used in the

SELECT clause of the inner query are also used in the SELECT clause of the outer query

and (2) the two queries are correlated by an equality predicate or by an IN predicate. For

example, the following Query Q3 can be rewritten to Query Q4:

Q3 SELECT name, price FROM Lineitem

WHERE price=(SELECT MIN(price) FROM lineitem)

Q4 SELECT name, price FROM Lineitem

RR 3: If RR 1 and RR 2 are not applicable, all methods proposed in [9] to unnest queries

for traditional query processing can be applied to reverse query processing, too. The proof

is straightforward because result-equivalence for traditional query processing implies general

RQP-equivalence for reverse query processing. However, the optimizer has to take care of the

operator order mentioned in [17] in order to preserve the general RQP-equivalence.

7.3 Other Rewrites

At the begin of this section, we would like to mention the following (somewhat surprising)

rewrite rule:

RR 4: Remove reverse select operators from the reverse query plan. Section 6 showed that

this operator can be implemented using the identity function at run-time. Only a reverse select

at the root of the plan must not be removed in order to make sure that its predicate is checked.

There can be found several rewrite rules that help to simplify expressions (e.g., eliminate

LIKE and other SQL functions from predicates). One such rewrite rule is:

RR 5: A LIKE predicate can be rewritten as a equality predicate without the wildcards

(e.g. %) if (1) the attributes included in the LIKE predicate are not given by the input

and (2) these attributes do not have a UNIQUE constraint. It is obvious, that the instantiated

values for the rewritten equality predicate also fulfills the LIKE predicate, e.g. all values which

fulfill (name=‘A’) also fulfill (name LIKE ‘%A%’)).

8 Performance Experiments and Results

This section presents the results of performance experiments with our prototype system SPQR

and the TPC-H benchmark [1]. These experiments show the running times of reverse query

processing and the size of the generated databases.
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8.1 Experimental Environment

The SPQR system was implemented in Java (Java 1.4) and installed on a Linux AMD Opteron

2.2 GHz Server with 4 GB of main memory. In all experiments reported here, SPQR was con-

figured to allow 0 percent tolerance; that is, OP 6 of Section 6 was disabled. As a backend

database system, PostgreSQL 7.4.8 was used and installed on the same machine. As a deci-

sion procedure, Cogent [7] was used. Cogent is a decision procedure that is publicly available

and has been used in several projects world-wide. Cogent was written using the C program-

ming language. For our purposes, it was configured to generate error if numerical overflows

occurred.

The TPC-H benchmark is a decision support benchmark and consists of 22 business ori-

ented queries and a database schema with eight tables. The queries have a high degree of

complexity: all of them include at least one aggregate function with a complex formula, and

many queries involve subqueries. Some queries (e.g., Q11) are parametrized and their results

and running times depend on random settings of the parameters. The experiments were carried

out in the following way: First, a benchmark database was generated using the dbgen function

as specified in the TPC-H benchmark. As scaling factors, we used 0.1 (100 MB database; 860K

rows), 1 (1 GB; 8.6 million rows), and 10 (10 GB; 86 million rows). Then, the 22 queries were

run, again as specified in the original TPC-H benchmark. The query results were then used

as inputs (RTables) for reverse query processing of each of the 22 queries. We measured the

size of the resulting database instance (as compared to the size of the original TPC-H database

instance) and the running time of reverse query processing.

8.2 Size of Generated Databases

Table 2 shows the size of the databases generated by SPQR for all queries on the three scaling

factors. For queries which include an explicit or implicit3 COUNT value in R, the size of the

generated database for different scaling factors depends on that COUNT value. For example,

Q1 generates many tuples (600,572 tuples for SF=0.1) from a small RTable R because Q1 is an

aggregate query where R explicitly defines big COUNT values for each input tuple. For those

queries which do not define a COUNT value, only a handful of tuples is generated because the

trial-and-error phase starts from creating one output tuple per input tuple (e.g., Q6). In that

case, the size of the generated database is independent from the scaling factor. As a summary,

we see that the generated databases are already as small as possible. Huge databases are only

generated by SPQR if the query result explicitly states the size.

8.3 Running Time (SF=0.1)

Table 3 shows the running times of RQP for the TPC-H benchmark with scaling factor 0.1.

In the worst case, the running time is up to one hour (Query 10). However, most queries can

be reverse processed in a few seconds. Table 3 also shows the cost break-down of reverse

query processing. QP is the time spent processing tuples in SPQR (e.g., constructing constraint

formulae and calls to the pushNext function). For all queries (except Q1), this time is below

3Implicit means that the COUNT value can be calculated by the optimization rule OP 5 in Section 6.11.
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100M 1G 10G

Query RTable Generated RTable Generated RTable Generated

1 4 600,572 4 6,001,215 4 59,986,052

2 44 220 460 2,300 4,667 23,335

3 1216 3,648 11,620 34,860 114,003 342,009

4 5 10,186 5 105,046 5 1,052,080

5 5 30 5 30 5 30

6 1 1 1 1 1 1

7 4 24 4 24 4 24

8 2 32 2 32 2 32

9 175 1,050 175 1,050 175 1,050

10 3767 15,068 37,967 151,868 381,105 1,524,420

11 2541 7,623 1,048 3,144 289,022 867,066

12 2 6,310 2 61,976 2 621,606

13 38 162,576 42 1,629,964 46 16,298,997

14 1 4 1 4 1 4

15 1 2 1 2 1 2

16 2762 23,264 18,314 236,500 27,840 2,372,678

17 1 3 1 3 1 3

18 5 15 57 171 624 1,871

19 1 2 1 2 1 2

20 21 105 204 1,020 1,968 9,840

21 47 2,325 411 20,705 4,009 197,240

22 7 1,282 7 12,768 7 127,828

Table 2: Size of Generated Databases and RTable (rows)

Query RQP QP DB MC M-Invoke

1 26:51 12:01 8:42 6:06 4

2 0:24 < 1ms 0:21 0:02 44

3 19:20 0:14 0:11 18:55 1216

4 0:20 0:05 0:14 < 1ms 5

5 0:12 < 1ms < 1ms 0:11 10

6 0:02 < 1ms < 1ms 0:1 2

7 0:10 < 1ms 0:01 0:9 8

8 0:15 < 1ms 0:02 0:13 12

9 4:23 0:02 0:03 4:17 175

10 56:33 0:42 0:37 55:13 3767

11 42:11 0:13 0:14 41:43 2541

12 7:25 0:16 0:11 6:57 3155

13 2:56 1:38 1:16 < 1ms 21

14 0:08 < 1ms 0:01 0:07 6

15 0:03 < 1ms < 1ms 0:03 3

16 0:29 0:15 0:14 < 1ms 0

17 0:02 < 1ms < 1ms 0:01 2

18 0:01 < 1ms < 1ms < 1ms 15

19 0:02 < 1ms < 1ms 0:01 2

20 0:21 < 1ms < 1ms 0:20 42

21 1:43 0:04 0:05 1:34 465

22 0:26 0:01 0:01 0:23 641

Table 3: Running Time (min:sec): SF=0.1
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Query 100M 1G 10G

1 26:51 207:11 2054:19

2 0:24 0:47 4:02

3 19:20 183:49 1819:48

4 0:20 2:26 24:15

5 0:12 0:12 0:12

6 0:02 0:01 0:01

7 0:10 0:10 0:09

8 0:15 0:17 0:14

9 4:23 4:33 10:20

10 56:33 566:45 5639:13

11 42:11 18:15 4472:00

12 7:25 83:09 719:56

13 2:56 27:47 276:05

14 0:08 0:08 0:15

15 0:03 0:03 0:04

16 0:29 4:04 36:37

17 0:02 0:02 0:08

18 0:01 0:10 1:54

19 0:02 0:02 0:02

20 0:21 3:24 32:27

21 1:43 14:44 140:47

22 0:26 4:08 42:00

Table 4: Running (min:sec): Vary SF

a minute. Q1 is an exception because it generates many tuples and a great deal of work is

necessary in order to carry out the optimizations of Section 6.11 for each tuple. DB shows the

time that is spent by PostgreSQL in order to generate new tuples (processing SQL INSERT

statements through JDBC). Obviously, this time is proportional to the size of the database

instance generated as part of RQP. The MC column shows the time spent by the decision

procedure of the model checker. It can be seen that this time dominates the overall cost of RQP

in most cases; in particular, it dominates the cost for the expensive queries (Q10 and Q11).

This observation justifies the decision to focus all optimization efforts on calls to the decision

procedure (Sections 6 and 7). M-Invoke shows the number of times the decision procedure

is called. Comparing the MC and M-Invoke columns, it can be seen that the cost per call

varies significantly. Obviously, the decision procedure needs more time for long constraints

(e.g., Q10) than for simple constraints (e.g., Q22). We still have not found a way to predict the

cost per call and we are hoping for progress in this matter from the model checking research

community.

We also measured the number of attempts each TPC-H query needed for guessing the

number of tuples in aggregations (Section 6). These results are not shown in Table 3, but the

results are encouraging: in fact, none of the 22 required any trial-and-error. The reason is

that the optimizations proposed in Section 6.11 effectively made it possible to pre-compute the

right number of tuples for all TPC-H queries.

8.4 Running Time: Varying SF

Table 4 shows the running times of reverse processing the 22 TPC-H queries for the three

different scaling factors. In some cases, due to the nature of the queries, the running times
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(as the size of the generated databases, Table 2) is independent of the scaling factor; example

queries are Q5 and Q6. For all those queries, for which the running times were higher for a

larger scaling factor, the running time increased linearly. Examples are queries Q10 and Q21.

Again, these results are encouraging because they show that RQP potentially scales linearly

and that even large test databases can be generated using RQP. Note that Q11 has a parameter

that is set randomly; this observation explains the anomaly that the running time for SF=0.1 is

higher than for SF=1 for that query.

9 Related Work

To the best of our knowledge, there has not been any previous work on reverse query process-

ing. The closest related work is the work on model checking which has a similar goal: find

instantiations of logical expressions. Consequently, we use the results of that research commu-

nity in our design. However, the model checking community has not addressed issues involving

SQL or database applications. In addition, that community has not addressed any scalability

issues that arise if millions of tuples need to be generated as for the TPC-H benchmark. In

order to provide scalability, our design adopted techniques from traditional query processing;

e.g., [13, 11].

As mentioned in Section 2, there are several applications for reverse query processing and

there is a great deal of related work for all these application areas. For example, there has been

significant related work in the area of generating test databases. [19] shows how functional

dependencies can be processed for generating test databases. The bottom-up phase of RQP

(Section 5) makes use of the findings of the work in [17] and extends it for the complete SQL

specification. Likewise, other work on the generation of test databases (e.g., [20, 4]) focuses on

one aspect only and falls short on most other aspects of RQP. [16] discusses a similar problem

statement as RQP but only applicable to a very restricted set of relational expressions. There

has also been work on efficient algorithms and frameworks to produce large amounts of test

data for a given statistical distribution [12, 3]. That work is orthogonal to our work. In the

other potential application areas of RQP (e.g., sampling), to the best of our knowledge, nobody

has tried yet to apply techniques such as RQP.

10 Conclusion and Future Work

This work presented a new technique called reverse query processing or RQP, for short. Re-

verse query processing combines techniques from traditional query processing (e.g., query

rewrite and iterator model) and model checking (e.g., data instantiation based on constraint

formulae of propositional logic). It could be shown that a full-fledged RQP engine for SQL

can be built and that it scales linearly with the size of the database that needs to be generated

for the TPC-H benchmark.

We believe that this work is only the first step into a new research direction. The most

important avenue for future work is to further explore the applications of RQP. Section 2 lists

several ideas for potential applications, but significant additional research is needed in order to

exploit the potential of RQP for these applications. Furthermore, additional work is required
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in order to develop RQP techniques that guarantee certain properties of the generated data

(e.g., minimality). In addition, it is going to be important to leverage recent developments

of the model checking community. Finally, another avenue of future work is to generate a

single consistent database for multiple queries. We are now solving this problem by using

a late instantiation approach: each query is reverse processed individually without any data

instantiation. Then the constraints imposed by different queries on each relation are merged

and data instantiation is done on the database level.
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