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This article is a systematic review of reverse screening methods used to search for

the protein targets of chemopreventive compounds or drugs. Typical chemopreventive

compounds include components of traditional Chinese medicine, natural compounds

and Food and Drug Administration (FDA)-approved drugs. Such compounds are

somewhat selective but are predisposed to bind multiple protein targets distributed

throughout diverse signaling pathways in human cells. In contrast to conventional virtual

screening, which identifies the ligands of a targeted protein from a compound database,

reverse screening is used to identify the potential targets or unintended targets of a

given compound from a large number of receptors by examining their known ligands or

crystal structures. This method, also known as in silico or computational target fishing,

is highly valuable for discovering the target receptors of query molecules from terrestrial

or marine natural products, exploring the molecular mechanisms of chemopreventive

compounds, finding alternative indications of existing drugs by drug repositioning,

and detecting adverse drug reactions and drug toxicity. Reverse screening can be

divided into three major groups: shape screening, pharmacophore screening and reverse

docking. Several large software packages, such as Schrödinger and Discovery Studio;

typical software/network services such as ChemMapper, PharmMapper, idTarget, and

INVDOCK; and practical databases of known target ligands and receptor crystal

structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are

available for use in these computational methods. Different programs, online services and

databases have different applications and constraints. Here, we conducted a systematic

analysis and multilevel classification of the computational programs, online services and

compound libraries available for shape screening, pharmacophore screening and reverse

docking to enable non-specialist users to quickly learn and grasp the types of calculations

used in protein target fishing. In addition, we review the main features of these methods,

programs and databases and provide a variety of examples illustrating the application of

one or a combination of reverse screening methods for accurate target prediction.

Keywords: drug design, reverse screening, shape similarity, pharmacophore modeling, reverse docking,
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INTRODUCTION

New drugs can be designed via traditional receptor structure-
based virtual screening, which enables the discovery of bioactive
compounds that bind the target protein, but they can also
originate from reverse virtual screening, which finds the
unknown protein targets of active compounds or additional
targets of existing drugs (drug repositioning; Hurle et al., 2013).
Among the 84 drug products introduced to the market in 2013,
new indications of existing drugs accounted for 20%, implying
that drug repositioning plays a key role in drug discovery
(Graul et al., 2014; Li J. et al., 2016). The majority of drugs or
bioactive compounds exert their functions by interacting with
protein targets. With an increasing number of drugs showing
the ability to target multiple proteins, target identification plays
an important role in the fields of drug discovery and biomedical
research (Wang J. et al., 2016). Many reverse screening methods
can be used to search for the protein targets of molecules
(Ziegler et al., 2013), although the earliest approaches involved
expensive and time-consuming biological assays (Drews, 1997).
However, with the continuous development of Big Data and
computational techniques, computer-aided reverse screening
methods are playing an increasingly important role in the
prediction of the off-target effects and side effects of drugs as
well as in drug repositioning (Rognan, 2010; Liu et al., 2014;
Schomburg and Rarey, 2014).

Abbreviations: 4-HT, 4-Hydroxy-tamoxifen; 5-Aza-dC, 5′-Aza-2′-deoxycytidine;
5-HT1AR, 5-Hydroxytryptamine 1A receptor; 5-HT2A, 5-Hydroxytryptamine
receptor 2A; 67DiOHC8S, 6,7-Dihydroxycoumarin-8-sulfate; 6BIO, 6-Bromo-
indirubin-3′oxime; ABL, BCR-ABL tyrosine kinase; ACE, Angiotensin converting
enzyme; ACHE, Acetylcholinesterase; ACM2, Muscarinic acetylcholine receptor
2; ADA, Adenosine deaminase; ADH, Alcohol dehydrogenase; AdrA3, Adenosine
receptors A3; ADRB1, Human beta-1 adrenergic receptor; AGS-IV, Astragaloside
IV; AKR1B1, Aldo-keto reductase family 1, member B1; ANXA5, Annexin A5;
Apaf-1, Apoptotic protease activating factor-1; APH(2′)-Iva, Aminoglycoside-
2′-phosphotransferase type Iva; AR, Aldose reductase; AR′, Androgen receptor;
ASA, Aspirin; BACE1, ASC, Astragalus Salvia compound; Beta-secretase 1; BBR,
Berberine; Braf, B-raf kinase; Bub1, Human spindle checkpoint kinase Bub1; CA,
Carnosic acid; CA1, Carbonic anhydrase 1; CA2, Carbonic anhydrase 2; CaM,
Calmodulin; CASP-3, Cysteinyl aspartate specific proteinase 3; CB1, Cannabinoid
receptor 1; CB2, Cannabinoid receptor 2; CBS, Cystathionine beta-synthase;
c-di-GMP, Cyclic diguanylate monophosphate; CDK2, Cyclin dependent
kinase-2; CHS, Chitin synthase; CK2, Casein kinase 2; CN, Calcineurin; CO,
Curculigo orchioides; Complex I, NADH:ubiquinone oxidoreductase; COMT,
Catechol-O-methyltransferase; COX-1, Prostaglandin G/H synthase 1; COX1,
Cyclooxygenase-1; COX2, Cyclooxygenase-2; CT, Cryptotanshinone; CYP450,
Cytochrome p450; D2R, Dopamine D2 receptor; DAPDC, Diaminopimelate
decarboxylase; DAPH, Dialkylphosphorylhydrazone; DHFR, Dihydrofolate
reductase; DHODH, Dihydroorotate dehydrogenase; DIP, Dipyridamole; DPD,
Dihydropyrimidine dehydrogenase; DPP-IV, Dipeptidyl peptidase IV; DRD2,
Dopamine receptor D2; EB1, Microtubule-associated protein RP/EB family
member 1; EGFR, Epidermal growth factor receptor; EphA7, Ephrin receptor
EphA7; ErbB-1, ErbB-1 tyrosine kinase; ErbB-2, ErbB-2 tyrosine kinase; ERK1,
Extracellular regulated protein kinases 1; ERR-γ, Estrogen-related receptor-γ;
ERα, Human estrogen receptor alpha; ESR1, Estrogen receptor alpha; ESR2,
Estrogen receptor beta; FAK, Focal adhesion kinase; FGFR-4, Fibroblast growth
factor receptor 4; GAD, Ganoderic acid D; GAPDH, Glyceraldehyde-3-phosphate
Dehydrogenase; GBA3, Cytosolic beta-glucosidase; GCN5, General control
non-derepressible 5; GCR, Glucocorticoid receptor; GFW, Guizhi Fuling Wan;
GK, Glucokinase; GMP reductase, Guanosine 5′-monophosphate oxidoreductase;
GPX1, Glutathione peroxidase 1; GR, Glucocorticoid receptor; GR′, Glutathione
reductase; GS, β(1,3)-Glucan synthase; GSH-S, Glutathione synthetase; GSK3β,

These computational methods can be divided into three
classes according to their underlying principles: shape screening,
pharmacophore screening, and reverse docking. In the absence
of receptor crystal structures, shape or pharmacophore screening
facilitates the discovery of the potential targets of a query
molecule by comparing its overall shape or key pharmacophore
features with those of the compounds from a ligand database
annotated with target information (Schuffenhauer et al., 2003;
Hawkins et al., 2007; Chen et al., 2009). The annotated targets
of the matched ligands can then be considered potential targets
of the query molecule. Reverse docking, in contrast to the
traditional molecular docking used to find the ligands of a target
protein, refers to the successive docking of a query molecule into
the active pocket of each protein from a protein 3D structure
database based on spatial and energy principles to identify
protein targets with strong binding affinity as potential targets of
the query molecule (Li et al., 2013). Reverse screening methods
are important computational techniques for identifying new

Glycogen synthase kinase-3 beta; GST, Glutathione S-transferase; GSTA1,
Glutathione S-transferase A1; GSTP1, Glutathione s-transferase PI-1; GTPase,
Guanosine triphosphatase; GTs, Ganoderma triterpenes; HDAC2, Histone
deacetylase 2; HDPR, 6-hydroxyl-1,6-dihydropurine ribonucleoside; HEXB,
beta-Hexosaminidase; HGFR, Hepatocyte Growth Factor Receptor; HGPRT,
Hypoxanthine-guanine phosphoribosyltransferase; HIV-1 PR, HIV-1 protease;
HMGCR, 3-Hydroxy-3-methylglutaryl-coenzyme A reductase; HpPDF, H.
pylori PDF; HPRT, Hypoxanthine phosphoribosyltransferase; HRAS, Harvey
rat sarcoma; HRH4, Histamine receptor H4; HSD11B1, 11 beta-Hydroxysteroid
dehydrogenase type 1; HSPA8, Heat shock protein family A member 8; HSYA,
Hydroxysafflor yellow A; IDO, Indoleamine 2,3-dioxygenase; IDV, Indinavir;
I-FABP, Intestinal fatty acid binding protein; IGF1-R, Insulin-like growth
factor 1 receptor; IL-2, Interleukin-2; IMPDHII, Inosine 5′-monophosphate
dehydrogenase II; JNK, c-Jun N-terminal kinase; LCN-2, Lipocalin-2; LDH,
L-lactate dehydrogenase; LTA4H, Leukotriene A4 hydrolase; lysC, Lysozyme C;
MAO-B, Monoamine oxidase B; MAP2K1, Mitogen-activated protein kinase
kinase 1; MAPK-14, Mitogen-activated protein kinase 14; MCDF, 6-Methyl-
1,3,8-trichlorodibenzofuran; MDM2, Mouse double minute 2 homolog; MEK1,
Mitogen-activated protein kinase 1; MIF, Migration inhibitory factor; MMP3,
Metalloproteinase 3; MMP8, Metalloproteinase 8; MPO, Myeloperoxidase; MTX,
Methotrexate; NBP, DL-3-n-Butylphthalide; NF-kB, Nuclear factor kB; NK2
receptor, Neurokinin NK2 receptors; NMT, N-myristoyltransferase; NQO1,
NAD(P)H quinone oxidoreductases; Nrf2, Nuclear factor erythroid 2-related
factor 2; OBA, Obacunone; OPRK, Kappa opioid receptor; OSC, Oxidosqualene
cyclase; p38 MAPK, p38 Mitogen-activated protein kinase; PARP1, Poly [ADP-
ribose] polymerase 1; PAs, Pyrrolizidine alkaloids; PBP4, Penicillin binding
protein 4; PDE4, Phosphodiesterase 4; PDF, Peptide deformylase; PDGFR,
Platelet-Derived Growth Factor Receptor; PDK1, Phosphoinositide-dependent
kinase-1; PEPCK, Phosphoenolpyruvate carboxykinase; PGS, Phenolic acid
glycoside sulfate; PI-3K, Phosphoinositide 3-kinase; PKA, cAMP-dependent
protein kinase; PLA2, Phospholipase A2; PLMF1, Periodic leaf movement factor
1; POLB, DNA polymerase beta; PPARγ, Peroxisome proliferator-activated
receptor γ; PPARδ, Peroxisome proliferator-activated receptor delta; PRDX3,
Thioredoxin-dependent peroxide reductase mitochondrial precursor; PRIMA-1,
P53 reactivation and induction of massive apoptosis; PTP1B, Protein tyrosine
phosphatase 1B; PTPNT1, Protein tyrosine phosphatase non-receptor type 1;
RA, Rosmarinic acid; RARα, Retinoic acid receptor alpha; REN, Renin; SAA,
Salvianolic acid A; SB, Salvianolic acid B; SFJD, Shufengjiedu Capsule; SHBG, Sex
hormone-binding globulin; SND, Sini decoction; STAT3, Signal transducer and
activator of transcription 3; SULT1E1, Estrogen sulfotransferase; TCDD, 2,3,7,8-
tetrachlorodibenzo-p-dioxin; TDP1, Tyrosyl-DNA phosphodiesterase 1; THRa,
Human thyroid hormone receptor alpha; TOP1, DNA topoisomerase 1; UA,
Ursolic acid; TrxR, Thioredoxin reductase; VEGFR-2, Vascular endothelial growth
factor receptor; VGKC, Voltage gated potassium channel; WB, Wentilactone B;
XO, Xanthine oxidase.
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macromolecular targets of existing drugs or active molecules
and for analyzing their functional mechanisms or side effects
(Patel et al., 2015). Based on the principles of the methods
and the availability of existing large-scale small-molecule [e.g.,
ChEMBL, the European Molecular Biology Laboratory (Gaulton
et al., 2017)] or macromolecule (e.g., the PDB; Rose et al., 2015)
databases, researchers worldwide have developed a variety of
software and online services for predicting the protein targets of
small molecules. Representative examples include SEA (Keiser
et al., 2007), PharmMapper (Liu et al., 2010) and INVDOCK
(Chen and Zhi, 2001), which are among the earliest tools for
shape screening, pharmacophore screening and reverse docking,
respectively. In recent years, these three methods have been
widely used in the prediction of protein targets to clarify
the molecular mechanisms of active small molecules against
various diseases (Kharkar et al., 2014; Cereto-Massagué et al.,
2015). Many of these molecules are derived from Chinese
herbal medicine, and while their pharmacological or biological
activities are known, their cellular and molecular mechanisms
remain unclear. For example, Lim et al. (2014) used shape
screening to determine that curcumin (compound 1, Figure 1),
extracted from Zingiberaceae, suppresses the proliferation of
human colon cancer cells by targeting cyclin dependent kinase
2 (CDK2). Marine compounds are another class of bioactive
small molecules. For example, wentilactone B (WB, compound
2) is a tetranorditerpenoid derivative extracted from the
marine algae-derived endophytic fungus Aspergillus wentii EN-
48. Zhang et al. (2013) used reverse docking to discover that
this small molecule induces G2/M phase arrest and apoptosis
of human hepatocellular carcinoma cells by co-targeting the
Ras/Raf/MAPK proteins in their signaling pathways.

Here, we begin by introducing the basic principles of
these three types of reverse screening methods, i.e., shape
screening, pharmacophore screening and reverse docking, for
the prediction of the protein targets of small molecules. Then,
representative and classical software and online services for
each method as well as the relevant databases are hierarchically
categorized and systematically presented. Finally, we reviewed
nearly all articles on the applications of these methods since 2000
and selected some typical examples to illustrate the use of these
methods. By statistically analyzing these articles, we reveal the
trends in the application of these three methods for computer-
aided protein target prediction. In addition, we discuss their
shortcomings and possible solutions as well as previous reviews
of these reverse screening approaches for predicting the protein
targets of small molecules.

METHODS

Reverse screening to search for unknown targets, unintended
targets, or secondary targets of small-molecule drugs can be
achieved by shape similarity screening, pharmacophore model
screening, or reverse protein-ligand docking (Figure 2). These
three different calculation approaches are complementary and
can be used in conjunction with each other. By comparison,
shape, and pharmacophore screening are simpler and faster,

while reverse docking is more complex and slower. We will
introduce these three methods in detail in the following
sections.

Shape Screening
The basic principle of shape screening, from a two-dimensional
(2D) perspective, is that structurally similar molecules may
have similar bioactivity by targeting the same proteins. From a
three-dimensional (3D) perspective, the basic principle is that
molecules with similar volumes may have the potential to bind
effectively to spaces of the same or similar size (considering the
ligand-induced fit effect; Koshland, 1958) in the active pockets of
proteins (Shang et al., 2017). To use shape screening to predict
the targets of small molecules, a small-molecule ligand database
annotated with protein targets is necessary. Then, the overall
shape similarity of a querymolecule to each ligand in the database
can be measured individually. Finally, the protein targets for
matched molecules with high similarity scores can be considered
potential targets of the query molecule (Schuffenhauer et al.,
2003). Shape screening involves two levels of mapping: the
first mapping between the query molecule and the ligands in
the database and the second mapping between the matched
ligands in the database and their annotated protein targets
(Figure 2).

Shape similarity comparison is based on the 2D or 3D
topological structures of small molecules. Notably, 2D methods
were originally created to obtain more of the same part between
paired molecules, whereas 3D methods can be used to enhance
scaffold diversity (Nettles et al., 2006). A universal descriptor for
molecular similarity comparison in 2Dmethods is FingerPrint2D
(FP2), which employs a simple bit vector to represent a variety
of chemical characteristics and is encoded in a variety of
software and databases (Bender et al., 2004). The most frequently
used type of FP2 is extended-connectivity fingerprints (ECFPs),
which are circular fingerprints. ECFPs symbolize circular atomic
neighborhoods based on the Morgan algorithm and are designed
especially for structural activity modeling (Rogers and Hahn,
2010). They have variable length: for example, ECFP4 refers to
a diameter of 4 and ECFP6 to a diameter of 6 (Glem et al.,
2006), both of which are encoded in TargetHunter (Wang L.
et al., 2013). Molecular ACCess System (MACCS; Durant et al.,
2002) is another commonly used FP2. It is a structure key-
based fingerprint and is encoded in the 2D approach of the
ChemMapper server (Gong et al., 2013). In addition to FP2,
other descriptors are based on 2D topologies or paths, including
the daylight fingerprint (http://www.daylight.com) encoded in
ChemProt 3.0 (Kringelum et al., 2016) and the MDL structural
key, another 2D descriptor (Durant et al., 2002). Structural
matching based on 3D topology mainly compares the 3D
geometries of the molecules, sometimes with the addition of
pharmacophores (Lo et al., 2016), ElectroShapes (Armstrong
et al., 2010), Spectrophores (Smusz et al., 2015), or other
additional information. For example, WEGA (Yan et al., 2013)
and gWEGA (Yan et al., 2014) compare only the volumes
of two molecules, but SHAFTS (Lu et al., 2011), encoded
in ChemMapper, incorporates pharmacophore matching when
calculating the volume similarity.

Frontiers in Chemistry | www.frontiersin.org 3 May 2018 | Volume 6 | Article 138

http://www.daylight.com
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Huang et al. A Systematic Review of Reverse Screening Methods

The similarity of the descriptors in both 2D and 3D methods
can be measured by the Tanimoto coefficient. The Tanimoto
coefficient represents the ratio of the union to the intersection
of the shapes of two molecules (Salim et al., 2003). For example,
TargetHunter uses the Tanimoto coefficient to calculate the
similarity among molecular fingerprints (Wang L. et al., 2013).
The City-Block distance (CBD, also called the Manhattan or
Hamming distance), which represents the difference between
the sum of two molecular shapes and twice the overlap
of two molecular shapes, can also be used to calculate the
molecular similarity (Awale and Reymond, 2014). For example,
SwissTargetPrediction uses this formula to calculate ElectroShape
vectors in 3D comparisons (Gfeller et al., 2014).

Shape screening can be divided into two subclasses: indirect
target prediction and direct target prediction. Indirect target
prediction indicates that the potential targets of the query
molecule are manually selected from the annotated protein
targets of the matched database ligands. ROCS (Rush et al.,
2005) and TargetHunter (Wang L. et al., 2013) are representative
examples. These programs merely calculate the similarity scores
between the query molecule and the matched ligands in the
database but cannot reveal the complex relationships among the
annotated protein targets of multiple matched ligands. In general,
the annotated targets of any database ligand are not unique, and
a protein target may also be annotated with multiple compounds

(Rognan, 2010). Therefore, these programs can have high rates
of false positives in target prediction and low accuracy in target
searching.

Direct target prediction not only calculates the similarity score
between the query molecules and the ligands in the database but
also estimates the probability that the annotated targets of the
matched ligands are targets of the query molecule. This extra
process can reduce the false positive rate of target prediction
and improve the accuracy of the target search. The probability
that the annotated targets of the matched ligands are targets of
the query molecule can be evaluated by multiple computational
models or algorithms (the dotted line in Figure 2). For example,
ChemMapper (Gong et al., 2013), which is based on a compound-
protein network constructed from the top similar structures
and their annotated targets, employs a random walk algorithm
(Köhler et al., 2008) to calculate the probabilities of interaction
between the query structure and the annotated targets of the
hit compounds. In addition, SwissTargetPrediction (Gfeller et al.,
2014) and CSNAP3D (Lo et al., 2016) use a cross-validation
method and a network algorithm, respectively, to assess the
probabilities that the annotated targets of the matched ligands are
targets of the query molecule.

Because shape screening is based on the comparison of
overall molecular shape, it may not be suitable for predicting
the potential targets of molecules that are excessively large or

FIGURE 1 | Compounds described in the manuscript.
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FIGURE 2 | The principle and workflow of shape screening, pharmacophore screening, and reverse docking.

small. Judging the potential targets of an oversized molecule
is difficult because its best matched ligands usually show a
low similarity score, and selecting the potential targets of an
undersized molecule is difficult because its matched ligands are
numerous with high similarity scores. Shape screening is suitable
for predicting potential targets whose available inhibitors have
sizes similar to that of the query molecule but is less fit for
finding novel targets whose current inhibitors differ greatly in
size from the query molecule but whose active pocket space is
easily adjusted to bind diverse ligands due to a strong induced-fit
effect.

Pharmacophore Screening
The basic principle of pharmacophore screening is that the
binding of certain drugs with their protein targets is primarily
determined by key functional pharmacophores (Rognan, 2010).

Thus, the matching of these important pharmacophores can be
used to search for new targets of small-molecule drugs (Fang
and Wang, 2002). A pharmacophore is the spatial arrangement
of functional characteristics that allows molecules to interact
with target proteins in a particular binding mode, such as a
hydrophobic center (H), hydrogen bond acceptor vector (HBA),
hydrogen bond donor vector (HBD), positively charged center
(P), or negatively charged center (N) (Kurogi and Güner, 2001).
A pharmacophore model is the combination of pharmacophores
in a pattern of ligand-protein interaction that give the final
pharmacological effect (Leach et al., 2010). Similar to a
ligand database for shape screening, a pharmacophore database
also requires annotation with target protein information. In
pharmacophore screening, the pharmacophore features of the
query molecule are successively matched with the features of
the pharmacophore models in the database. A higher matching
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degree indicates that the annotated protein target of the matched
pharmacophore model has greater potential to be a target of the
query molecule (Steindl et al., 2006). Pharmacophore screening
also undergoes two levels of mapping: the first mapping is
between the pharmacophore models of the query molecule and
of the ligands in the database, and the second mapping is
between the matched pharmacophore models of the ligands in
the database and their annotated protein targets (Figure 2).

The pharmacophore database is built by pharmacophore
modeling. The three construction methods are the use of
ligands only, receptor structures only, or co-crystallized complex
structures, which can be defined as ligand-based, structure-based
and complex-based pharmacophore modeling, respectively.
Ligand-based pharmacophore modeling was initially designed
and is often used for traditional ligand-based virtual screening;
an example is the quantitative structure–activity relationship
(QSAR; Pulla et al., 2016). Themost substantial common features
shared by a group of active molecules can be easily extracted by
using this method to form a good pharmacophoremodel to guide
the further optimization of active compounds (Leach et al., 2010;
Gaurav and Gautam, 2014). However, this approach is seldom
used in reverse pharmacophore modeling due to the arbitrariness
of pharmacophore models based on a single protein-annotated
ligand.

The other two main methods, the use of only receptor
structures and the use of protein-ligand complex structures, are
forms of structure-based pharmacophore modeling (Gaurav and
Gautam, 2014). In receptor-based methods, the pharmacophore
features are first extracted from potential binding sites detected
by specific protocols, and the pharmacophore models are then
derived from the clustering of interaction point information and
further refined or validated by using the input of the known
ligands and their available or even calculated binding data (Chen
and Lai, 2006). For instance, Pocket v.2 (Chen and Lai, 2006)
and Catalyst SBP in Discovery Studio (DS) (BIOVIA, 2017) can
both produce this type of pharmacophore database. In complex-
based methods, pharmacophore models are simply generated via
knowledge-based topological rules by using all features, such
as hydrogen bonding information, charge, and hydrophobic
contacts, based on the interactions between the co-crystallized
ligands and receptor atoms (Sutter et al., 2011; Meslamani et al.,
2012). Complex-based pharmacophore modeling is commonly
used to construct pharmacophore databases, such as PharmaDB
in Discovery Studio (Meslamani et al., 2012) and PharmTargetDB
in PharmMapper (Liu et al., 2010), due to the stronger association
between the built pharmacophore models and the experimentally
verified ligand-protein interactions, which can improve the
accuracy of target prediction.

The matching process between a pharmacophore model of
the query molecule and the pharmacophore models in the
pharmacophore database considers the alignment of two core
components: pharmacophore feature types and the positions of
the feature types (Wolber and Langer, 2005). The alignment
of feature types is the matching between the pharmacophore
features shared by the query molecule and the database ligands,
such as matching between a hydrophobic feature in the
molecular structure and those in database ligand pharmacophore

models. The alignment of the feature positions is the pairwise
matching of the distances between the fitted feature types
in the pharmacophore models (Kabsch, 1976). For example,
PharmMapper groups pharmacophores into triplets (e.g., H-H-
H, H-HBA-HBD) and uses the vertexes of a triangle to represent
the pharmacophore feature types and the side length of the
triangle to measure the relative positions of these feature types
(Liu et al., 2010).

In pharmacophore screening, the pairwise fitness score
between pharmacophore models can be used directly as a basis
for target evaluation. The fitness score includes the scores
obtained from both the alignments between feature types and the
alignments between the positions of each pair of pharmacophore
models from the query molecule and database ligands. Higher
fitness scores indicate higher probabilities (Wang X. et al., 2016).
In addition, other matching information, such as the number
of matched features and overall shape similarity, can also be
used as additional references for target evaluation (Khedkar
et al., 2007). If the pharmacophore scoring process does not
consider the overall shape of the query molecules, it will be
more likely to find pseudo protein targets with high fitness scores
for a smaller query molecule because its limited pharmacophore
features can be easily matched in the database (Wang X. et al.,
2016). Thus, the target score must be recalculated to improve the
prediction accuracy (the dotted line in Figure 2). For example,
PharmMapper utilizes a normalized fitness score to re-rank the
potential targets by standardizing a normal distribution of the
fitness score to achieve a higher accuracy (Wang X. et al., 2017).

Since the construction of the pharmacophore database
by structure-based pharmacophore modeling is not easy,
the development of corresponding tools based on this
principle has been somewhat limited. However, compared
with shape screening, pharmacophore screening can improve the
accuracy of prediction because it focuses on matching the key
pharmacophore functional groups. In addition, it can ignore the
total size of the molecule. As a result, pharmacophore screening
can be used to search for potential targets of a query molecule
with a large or small volume and can also be employed to find
novel protein targets capable of binding a large diversity of
ligands. Although PharmTargetDB, the PharmMapper in-house
repository, does incorporate protein structural information, a
pharmacophore database can be built to use ligands only. That
is, constructing a pharmacophore database based on ligands
with currently unavailable target structures is also useful for
pharmacophore screening.

Reverse Docking
The basic principle of reverse docking is that the binding strength
of a small-molecule ligand and a potential protein target is
determined by their interaction energy (docking energy). To
use reverse docking to predict the targets of a query molecule,
a structure grid database of a large number of protein targets
is normally required. Then, the query molecule is individually
docked with each protein structure in the database. Each
docking score is calculated. Finally, the protein targets are
sorted according to their docking energy. Generally, a higher
rank indicates a greater probability that the protein is a target
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of the query molecule. In contrast to shape screening and
pharmacophore screening, reverse docking involves one level
of mapping, which reflects the direct relationship between the
query molecule and the target proteins (Figure 2). However, it
is a complex process that includes recognition of a binding site,
construction of the docking grid, a molecular docking algorithm,
docking score calculation and target evaluation, among other
steps (Lee et al., 2016).

In most cases, the active site of a protein is already known and
can be determined from its co-crystallized small-molecule ligand.
However, for some apo-form structures without co-crystallized
ligands, the docking program must first recognize the active
binding site of these proteins. If the apo-form structure is from
a protein for which other co-crystallized structures are available,
its active site can also be identified from those protein structures
with co-crystallized ligands. Otherwise, de novo detection of the
active site of the apo-form structure is required. The literature
describes multiple ways to achieve this task. For example, Wang
et al. (2012) uses the “divide-and-conquer” method in idTarget
to search the surface structure of the entire protein and possible
allosteric structures to find potential binding sites. Kuntz et al.
(1982) describes a method that was later used in INVDOCK
(Chen and Zhi, 2001) to define a binding site by a group
of overlapping probe spheres of certain radii, which fill up
a cavity and whose inward-facing surfaces cover the van der
Waals surfaces of the protein atoms at the interface. Active site
recognition is very useful in attempts to dock a query molecule
into cavities other than the binding pockets of known ligands,
which can increase the diversity of the binding between the query
molecule and protein targets and improve the accuracy of reverse
docking.

The database of protein targets used in reverse docking
can be a library of protein crystal structure grids with
recognized binding sites determined by co-crystallized ligands or
available cavities. We can build these databases by continuously
downloading a series of protein crystal structures from the
Protein Data Bank (PDB); the time-consuming human-computer
interaction processes (such as the deletion of water molecules,
the addition of hydrogen atoms, and energy optimization) can
be accomplished by using a molecular docking program, and
the protein structure grids are finally generated. Traditional
molecular docking programs, such as DOCK (Allen et al., 2015),
AutoDock (Di Muzio et al., 2017), Schrödinger (Schrödinger,
2018) and Discovery Studio (BIOVIA, 2017), can be used to
construct a custom target database for reverse docking to search
for potential targets of a small molecule. Alternatively, the protein
target database can also be a simply processed, automatically
constructed protein structure database, and the grids can be
generated after the programmed identification of active sites
in the process of reverse docking; an example is the idTarget
in-house database (Wang et al., 2012). Notably, the lack of a
universal protein structure grid database and the need to build
a new one for each docking program are the main reasons that
reverse docking cannot be used as often as traditional structure-
based virtual screening.

At present, reverse screening uses two main types of
molecular docking techniques, originally developed in

DOCK and AutoDock. DOCK (Ewing et al., 2001) adopts
a “geometry matching method” to perform molecular docking
by complementing the geometric shape of the docking ligands
with that of the protein active site, usually including hydrogen
binding sites and locally accessible sites (Shoichet et al., 2010).
The matching process is performed by an “anchor and grow
algorithm,” in which the anchor is a rigid portion of the ligand
that is used to initialize a pruned conformation search, and
grow refers to the generation of multiple conformations of
the remaining segments to simulate the flexible docking of
the ligand (Ewing et al., 2001). AutoDock uses a “docking
simulation method” that employs the “genetic algorithm” to
sample the conformations of a docking molecule inside a grid of
the receptor binding pocket (Willett, 1995). In this algorithm, the
molecule starts randomly at the receptor surface and undergoes
orientation, translation and rotation to cause conformational
changes until the ideal binding pose with the best binding energy
is found (Morris et al., 2015). Among three reverse docking
programs, INVDOCK (Chen and Zhi, 2001) and TarFisDock
(Li et al., 2006) use the DOCK geometry matching method for
molecular docking, while idTarget uses the AutoDock genetic
algorithm for reverse docking (Wang et al., 2012).

Currently, almost all molecular docking programs can
perform flexible-ligand docking due to the small size of
the ligands; however, these programs still have difficulty in
performing molecular docking with a fully flexible protein.
Therefore, depending on the flexibility of the receptor proteins,
reverse docking can also be classified into two types: rigid protein
docking and semi-flexible protein docking. Although reverse
docking with a rigid receptor is fast, it ignores ligand/receptor-
induced fit effects. An example of a rigid protein docking
program for reverse screening is TarFisDock (Li et al., 2006).
Reverse docking with semi-flexible receptors can be achieved
by various methods such as side-chain rotations (Liu H. et al.,
2015), stretching of active pocket residues (Halgren et al., 2004),
and ensemble docking (Lorber and Shoichet, 1998). For example,
INVDOCK allows the amino acid residues of the receptor
binding sites to rotate with the entry of the ligand, thereby
simulating the ligand induced-fit conformational changes of
receptors (Chen and Zhi, 2001). idTarget uses the docking
of a query molecule into an ensemble of different receptor
crystal structures after clustering (Wang et al., 2012) and thus
simulates semi-flexible receptor docking by possible binding of
the molecule with the distinct locations of the active pocket
residues of the receptor in its different structures.

The docking score between a query molecule and receptors
is an evaluation criterion for ranking its potential targets in
reverse screening. Docking energy is a major method of scoring
docking poses and normally refers to the interaction energy
between the ligand and protein but may also include the
energy of the ligand or the energies of both the ligand and
the protein (or a part of the protein such as the binding
pocket). For example, INVDOCK evaluates the docking structure
by calculating the interaction energy between the ligand and
receptor (Chen and Zhi, 2001), whereas idTarget scores the
docking pose by calculating the energy of the ligand, the
protein binding pocket and the interaction between them (Wang
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et al., 2012). According to the principle that the most stable
structure has the lowest energy, a more negative docking energy
results in stronger binding between the ligand and protein.
The docking energy is calculated based on energy functions,
which are mainly divided into three types: molecular mechanics
energy functions, empirical energy functions, and semi-empirical
energy functions. The molecular mechanics energy functions
are more comprehensive and are rigorously defined by the
sum of terms with clear physical meaning, including bond
stretching, angle bending, torsion angles, van der Waals
forces, electrostatic interactions, desolvation, or hydrophobic
interactions, conformational entropy, and potentially others
(Huang and Zou, 2010; Wang et al., 2011). In reality, the
molecular mechanics energy functions used in the docking
programs may include only some of these terms. For example,
TarFisDock uses energy functions including only van der
Waals and electrostatic interaction terms (Li et al., 2006).
Empirical energy functions comprise weighted energy terms
whose coefficients are obtained by reproducing the binding
affinities of a benchmark data set of protein-ligand complexes
(Gilson et al., 1997; Gilson and Zhou, 2007). For example,
INVDOCK uses an empirical energy function based on simple
contact terms, including hydrogen bond and non-bond terms,
to calculate the ligand-protein interactive energy as the binding
affinity (Chen and Zhi, 2001). Semi-empirical energy functions
combine some molecular mechanics energy terms with empirical
weights and/or empirical functional forms and have been widely
used in computational docking methods (Raha and Merz, 2005).
For example, idTarget follows the AutoDock 4 robust scoring
functions (Huey et al., 2007) and employs a semi-empirical free
energy function that includes hydrogen bonding, electrostatics,
desolvation, and torsional entropy, whose weighting coefficients
are derived from regression analysis of the experimental binding
affinity information (Wang et al., 2011). In addition, reverse
docking allows visual assessment of the docking poses by
analyzing the number of hydrogen bonds, the presence or
absence of critical hydrogen bonds and pi-pi conjugation, etc., as
in traditional virtual screening, to further assist target evaluation
for a more accurate prediction.

Reverse docking considers key elements of both shape
screening and pharmacophore modeling. It determines whether
or not the size of a query molecule can fit inside the binding
pocket of a protein target by docking and scores the interaction
of the key pharmacophore groups in the molecule and the targets
to perform target evaluation. Thus, reverse docking could be the
most comprehensive of the three methods in principle. However,
similar to traditional molecular docking, it also has the following
shortcomings: incompleteness of the search space, inaccuracy of
the scoring function, and extensive calculation (Lee et al., 2016).
Relative to traditional docking, reverse docking has the additional
problem that the sizes of the active pockets of proteins defined
by co-crystallized ligands are inconsistent. Even if the docking
pockets can be defined as being a universally equal size, the
residue density of different protein binding pockets may vary,
resulting in differences in the calculation ranges for the binding
interaction energies. Therefore, reverse docking suffers from a
rationality problem, as it is unable to normalize binding energies

for the correct sorting of potential targets. Nevertheless, reverse
docking can serve as an effective method to complement shape
and pharmacophore screening when the protein structures are
available.

Software and Online Services
Many software programs, some of which are available as online
services, can be used for reverse screening to predict protein
targets of small molecules, but the numbers of online tools
available for the three methods are quite different. Shape
screening tools are the most numerous and include more than
a dozen, such as ChemProt (Kringelum et al., 2016), ROCS
(Rush et al., 2005), ChemMapper (Gong et al., 2013), and the
SEA search server (Keiser et al., 2007). They are listed in the
outer ring of Figure 3. By contrast, the only tool available for
pharmacophore screening is PharmMapper (Liu et al., 2010), as
shown in the inner ring of Figure 3. The main tools available
for target searching by reverse docking are TarFisDock (Li et al.,
2006), idTarget (Wang et al., 2012) and INVDOCK (Chen and
Zhi, 2001), which are illustrated in the middle ring of Figure 3. A
few large software packages, such as Schrödinger and Discovery
Studio, also contain related modules that perform reverse
screening, but they can be used only for the indirect prediction
of potential targets of small molecules. These tools require
users to build their own databases or perform other relevant
processing steps. We have summarized the basic information
on these tools, organized according to their characteristics, in
Table 1. In addition, for each type of software and online service,

FIGURE 3 | Software and online services for shape screening,

pharmacophore screening, and reverse docking.
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we have provided more detailed descriptions of a few classic
representatives.

Shape Screening
At present, many online services are available to search for
targets of small-molecule drugs by shape screening. According
to whether these services and software programs can directly sort
the potential protein targets by probability or not, we classified
them into direct target prediction tools, such as SuperPred
(Dunkel et al., 2008), HitPick (Liu et al., 2013), ChemMapper,
SEA search server, ReverseScreen3D (Kinnings and Jackson,
2011), TarPred (Liu et al., 2015a), and SwissTargetPrediction,
and indirect target prediction tools, such as SwissSimilarity
(Zoete et al., 2016), ChemProt, TargetHunter (Wang L. et al.,
2013), CSNAP3D (Lo et al., 2016), and ROCS. These categories,
respectively, are located on the inside and outside of the
outer ring in Figure 3. A brief introduction to these services,
including their input and output formats, shape similarity
calculation methods, database information and website links, is
provided in Table 1. Because indirect target prediction services
require the manual selection of protein targets, we do not
provide a more detailed overview of these tools here. We
chose the SEA search server among the direct target prediction
services as a representative for further description because it
is the oldest and most widely used shape-screening service
(Keiser et al., 2007).

As a web-based target prediction tool, SEA was developed
in 2007, and it performs quantitative classification and target
association based on the chemical similarity of protein-related
ligands (Keiser et al., 2007). SEA supports only the SMILES
format for the input of query molecules for target prediction.
After receiving the relevant information about the query
compound, SEA performs a pairwise comparison of a 2D
similarity metric in a collection of ∼65,000 ligands annotated
with drug targets, in which most annotations contain hundreds
of ligands (Keiser et al., 2007). SEA then clusters the ligands based
on their chemical similarity into hundreds of sets, relating their
corresponding annotated targets to each other quantitatively, and
further uses a model resembling that of BLAST (Mount, 2007) to
link these sets together in a minimal spanning tree (Keiser et al.,
2007). Next, a statistical model is used to rank the significance
(E-value) of the resulting similarity scores of each set in the
minimum spanning tree. Finally, SEA produces a list of Max
Tanimoto coefficients (MaxTc) and E-values. A larger similarity
score (maxTC) with smaller significance score (E-value) indicate
a higher rank, and there is a greater probability that the protein is
a potential target.

Pharmacophore Screening
PharmMapper, the only web server to screen the potential
protein targets of a query molecule based on pharmacophore
modeling (Figure 3), was developed in 2010 (Liu et al., 2010;
Wang X. et al., 2017). PharmMapper uses a triangle hashing
mapping method to match the pharmacophore models between
the compound and the internal database ligands to predict
potential protein targets of a query molecule (Liu et al., 2010).
A brief introduction to this online tool is also given in Table 1,

including the input and output formats, database information
and website link. Its in-house database, PharmTargetDB, will
be described in detail in the Databases section. PharmMapper
supports the Tripos Mol2, MDL and SDF formats for the input
of a 2D or 3D query molecule structure to begin a job. Next,
PharmMapper flexibly aligns the molecule with each protein
pharmacophore model in its database and calculates the fit score
between the query molecule and the pharmacophore models
(Liu et al., 2010). Subsequently, PharmMapper ranks candidate
targets according to the fit score (Liu et al., 2010) or according
to normalized fit scores standardized by using a two-dimensional
Z-transformation algorithm on the ligand and pharmacophore
target dimensions (Wang X. et al., 2016), and records the aligned
pharmacophore pose for the query molecule and targets. With
the default setting, the top 300 target hits of the prioritizing list
are outputted, and users can select candidate proteins based on
both these fit scores and the aligned pose for further bioassay
experiments (Liu et al., 2010; Wang X. et al., 2017).

Reverse Docking
TarFisDock, idTarget, and INVDOCK (Figure 3) are three
reverse docking programs that are currently widely used
in predicting the targets and mechanisms of various active
biomolecules. A brief introduction to these tools is given in
Table 1, including the input and output formats, database
information and website links. Here, we will also provide a
slightly more detailed description of these three tools.

TarFisDock, a web-based tool for predicting the potential
binding targets of a given ligand, was first released in 2006
(Li et al., 2006) and last updated in 2008 (Gao et al., 2008).
TarFisDock uses reverse docking to search for all possible protein
binding partners of small molecules from a potential drug target
database called PDTD (Li et al., 2006), which will be described
further in the Databases section. This program supports only the
mol2 format for the input of the query molecule. TarFisDock (Li
et al., 2006) uses the docking program DOCK 4.0 to perform
molecular docking between the given molecule and each protein
in the PDTD, and it calculates their binding energy based on van
derWaals and electrostatic interaction terms by using the Amber
force field (Weiner et al., 1984). TarFisDock can output a list
of the top 2, 5, or 10% target hits according to binding energy.
The main limitation of TarFisDock is the insufficient number
of target proteins in the PDTD. The PDTD initially released
in 2006 contained only 698 protein structures (Li et al., 2006)
and was expanded to contain >830 protein targets in 2008 (Gao
et al., 2008). TarFisDock considers the flexibility of the small
molecules but has yet to consider the flexibility of the protein
targets.

In 2012, the web server idTarget (Wang et al., 2012) was
developed to predict the potential binding targets of small
molecules via a divide-and-conquer reverse docking approach.
To improve the efficiency of target prediction, idTarget uses a
contraction-and-expansion strategy to differentiate the protein
structures at different levels for molecular docking into the
families of homologous structures by clustering almost all of the
protein structures deposited in the PDB (Wang et al., 2012).
idTarget supports multiple coordinate formats, including pdbqt
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and mol2, for the input of the given molecule. Then, the program
uses MEDock (Chang et al., 2005) to initially generate a large
number of conformations of the query molecule and directly
orient them inside the grid box of the binding site for molecular
docking (Wang et al., 2012). Subsequently, idTarget assesses the
binding pose by using semi-empirical score functions derived
from quantum chemical charge models and robust regression
analysis (Wang et al., 2012). Finally, the program outputs two
sets of results, both of which are ranked in ascending order of
the predicted binding free energy (1GPred). One set of results
is listed according to the names of the proteins, while the other
is listed according to the names of the homologous families
(Wang et al., 2012). In addition, idTarget provides two modes
for searching binding poses, scanning mode and fast mode
(Wang et al., 2012). In “scanning mode,” molecular docking is
performed individually for each protein structure in the database.
In “fast mode,” the ligand is docked simultaneously to the binding
sites of the superposed homologous protein structures, and the
binding poses are further minimized by adaptive local sampling
(Shindyalov and Bourne, 1998). The fast mode performs quick
searches via docking between the ligand and the common
binding sites after the protein structures of each homologous
family are pre-aligned, but the scanning mode does not limit the
docking conformation searches to these predetermined binding
sites (Wang et al., 2012). Both modes uses the strategy of
ensemble docking (Lorber and Shoichet, 1998) to consider the
flexibility of the receptor indirectly (Wang et al., 2012).

INVDOCK (Chen and Zhi, 2001), an online service for ligand-
protein reverse docking that runs on both Windows and Unix
platforms, was developed in 2001. INVDOCK has an in-house
protein target database of 9000 protein and nucleic acid entries
(Chen and Zhi, 2001). It supports standard 3D ligand structure
files, such as the SDF and MOL formats. INVDOCK sets cavities
on the protein surface that are covered by a large portion
of spherical probes as active binding pockets. The automatic
docking is performed by multi-configuration shape matching
between the molecule and cavities. Then, torsion optimization
and energy minimization are performed on the molecule and on
the protein residues in the binding region (Chen and Zhi, 2001).
Finally, the simplified DOCK scoring method is used to score the
binding energy, and the protein targets are ranked in ascending
order by the ligand-protein interaction energy function (1ELP;
Chen and Zhi, 2001). INVDOCK also considers the flexibility
of the protein via a limited torsion space sampling of rotatable
bonds in the side chains of the target residues at the binding site
(Chen and Zhi, 2001).

Integrated Software Suites
Some drug design software suites, such as Schrödinger (2018)
and Discovery Studio (BIOVIA, 2017), can also be used in shape
screening, pharmacophore screening, and reverse docking to
predict the protein targets of small molecules.

The Schrödinger modules for reverse screening are “Shape
Screening,” “Pharmacophore Modeling,” and “Docking”.
However, Schrödinger does not provide any ligand or protein
database that can be used for reverse screening, and thus, users
must provide the databases themselves. “Shape Screening” and

“Pharmacophore Modeling” require a protein-annotated ligand
database that can be generated by a simple process from the
ligand library Ligand Expo, which can be downloaded from
the PDB database (Feng et al., 2004; Rose et al., 2015). Each
small-molecule ligand in this library is annotated with its
co-crystallized protein target information. The protein structure
grid database for reverse docking can be constructed by users
via grid generation by the “Docking” module after the “Protein
Presentation Wizard” is used to pre-process the protein crystal
structure coordinates from the PDB, such as to remove water
molecules and add hydrogens. Then, reverse docking can be
performed by using “Glide Cross Docking” to dock a given
molecule with multiple proteins simultaneously. Although the
number of proteins for simultaneous docking in “Glide Cross
Docking” is limited (normally ∼ 50), users can write their own
scripts to run reverse docking for one ligand and many proteins.
We have performed several reverse screening tasks by using
these modules in the Schrödinger software package (Kim et al.,
2014; Lim et al., 2014; Wang Z. et al., 2016).

The “Pharmacophore” and “Receptor-Ligand Interaction”
modules of Discovery Studio can be used for reverse screening.
Users can select shape screening or pharmacophore screening by
using the “Ligand Profiler” tool in the “Pharmacophore” module.
This tool allows users to upload a database or use the Ligand
Profiler Pharmacophore Database, PharmaDB, provided in the
software. This database is generated from an annotated database
of druggable binding sites called scPDB (Desaphy et al., 2015)
based on the PDB and contains the molecular structure and
corresponding pharmacophores for calculation of the shape and
pharmacophore similarity. The protein crystal structure database
for reverse docking must be prepared by the user. These crystal
structures can be defined by the “Define and Edit Binding
Site” in the “Tools” menu of the “Receptor-Ligand Interaction”
module. “Libdock Batch Mode” in the “Protocols” menu of the
“Receptor-Ligand Interaction” module can be used for batch
docking and has the same effect as reverse docking. Because of the
different algorithms and databases needed, the advantages and
disadvantages of these two software suites for reverse screening
have yet to be evaluated.

Databases
Databases, whether protein-annotated ligand
structure/pharmacophore databases or protein structure
grid databases, are key elements of reverse screening. Although
reverse screening has been under development for nearly two
decades, no general or benchmarked database is available for
use in different methods or programs. Here, we have classified
the existing relevant databases at different levels (Figure 4).
The first class of databases is associated with software built
by software developers and used for program running. We
call these databases “software databases” or “direct databases”
(shown at the bottom layer of Figure 4). Each database in this
class is named for its corresponding software or referred to as
the software in-house database. The second class of databases
provides resources describing annotated ligands or target
structures, but the users must process and collect these resources
to construct direct databases for reverse screening. We call these
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FIGURE 4 | The relationships among direct databases, indirect databases, and reference databases used in reverse screening.

databases “indirect databases” (shown in the middle layer of
Figure 4), and examples include the PDB (Rose et al., 2015) and
ZINC (Sterling and Irwin, 2015). The third class of databases
can provide a large amount of information about ligands or
proteins that can be used for reverse screening, but collecting and
organizing the information from these databases to construct
direct databases is difficult. However, we can use them to search
for various information resources, such as additional targets, the
bioactivities of matched molecules, or the signaling pathways
of potential target proteins for further analysis of the reverse
screening results. We call these databases “reference databases”
(shown in the upper layer of Figure 4); examples include
PubChem (Kim et al., 2016) and UniProt (Pundir et al., 2015).
Relevant information on several direct databases used for reverse
screening can be found in Table 1. In addition, information
on indirect and reference databases, including the database
coverage and website links, is listed in Table 2. In the following
paragraphs, we provide a slightly more detailed introduction to
these three classes of databases and their relationships with each
other.

Direct Databases
Direct Databases Used in Shape Screening
Each online service for shape screening has its own in-house
database, except ROCS (Rush et al., 2005), which requires users
to prepare their own protein-annotated ligand databases (Mori
et al., 2015). The database information for 12 shape-screening
software programs is shown in the “coverage” column of Table 1.
Among the 11 direct databases, TargetHunter, CSNAP3D and
ReverseScreen3D do not give specific capacity data; for the
former two, the information is not published, and the latter is
noted only as updated with updates to the RCSB PDB, according
to the literature (Kinnings and Jackson, 2011).

Figure 4 shows 10 direct databases with clear
sources, including HitPick, CSNAP3D, TargetHunter,
SwissTargetPrediction, SuperPred, SwissSimilarity, ChemProt,
ChemMapper, SEA, and ReverseScreen3D. These databases
are basically constructed by extracting data from indirect
databases (Figure 4). For example, ChemMapper is built from
several public databases, including ChEMBL (Gaulton et al.,
2017), DrugBank (Law et al., 2014), BindingDB (Gilson et al.,

Frontiers in Chemistry | www.frontiersin.org 12 May 2018 | Volume 6 | Article 138

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Huang et al. A Systematic Review of Reverse Screening Methods

T
A
B
L
E
2
|
C
h
a
ra
c
te
ris
tic
s
o
f
in
d
ire

c
t
a
n
d
re
fe
re
n
c
e
d
a
ta
b
a
se

s.

D
a
ta
b
a
s
e
n
a
m
e

A
im

s
C
o
v
e
ra
g
e

W
e
b
s
it
e

L
a
s
t
u
p
d
a
te

IN
D
IR

E
C
T
D
A
T
A
B
A
S
E

S
T
IT
C
H

A
d
a
ta
b
a
se

o
f
kn

o
w
n
a
n
d
p
re
d
ic
te
d
in
te
ra
c
tio

n
s

b
e
tw

e
e
n
c
h
e
m
ic
a
ls
a
n
d
p
ro
te
in
s

9
.6

m
ill
io
n
p
ro
te
in
s,

0
.5

m
ill
io
n
c
h
e
m
ic
a
ls

h
tt
p
:/
/s
tit
c
h
.e
m
b
l.d

e
/

2
0
1
7

H
M
D
B

A
c
o
m
p
re
h
e
n
si
ve
,
h
ig
h
-q
u
a
lit
y,
fr
e
e
ly
a
c
c
e
ss
ib
le

o
n
lin
e
d
a
ta
b
a
se

o
f
sm

a
ll-
m
o
le
c
u
le
m
e
ta
b
o
lit
e
s

fo
u
n
d
in

th
e
h
u
m
a
n
b
o
d
y

7
4
,5
0
7
m
e
ta
b
o
lit
e
e
n
tr
ie
s,

5
,7
0
1
p
ro
te
in

se
q
u
e
n
c
e
s

lin
ke

d
to

m
e
ta
b
o
lit
e
e
n
tr
ie
s

h
tt
p
:/
/w

w
w
.h
m
d
b
.c
a
/

2
0
1
7

Z
IN
C

D
a
ta
b
a
se

o
f
c
o
m
m
e
rc
ia
lly

a
va
ila
b
le
c
o
m
p
o
u
n
d
s
fo
r

vi
rt
u
a
ls
c
re
e
n
in
g

>
1
0
0
m
ill
io
n
p
u
rc
h
a
sa

b
le
c
o
m
p
o
u
n
d
s

h
tt
p
:/
/z
in
c
1
5
.d
o
c
ki
n
g
.o
rg
/

2
0
1
5

C
h
E
M
B
L

A
n
o
p
e
n
la
rg
e
-s
c
a
le
b
io
a
c
tiv
ity

d
a
ta
b
a
se

2
,1
0
1
,8
4
3
c
o
m
p
o
u
n
d
re
c
o
rd
s,

1
,7
3
5
,4
4
2
d
is
tin

c
t

c
o
m
p
o
u
n
d
s

h
tt
p
s:
//
w
w
w
.e
b
i.a
c
.u
k/
c
h
e
m
b
l/

2
0
1
7

B
in
d
in
g
D
B

D
a
ta
b
a
se

o
f
m
e
a
su

re
d
b
in
d
in
g
a
ffi
n
iti
e
s

2
0
3
7
F
D
A
-a
p
p
ro
ve
d
sm

a
ll-
m
o
le
c
u
le
d
ru
g
s,

2
4
1

F
D
A
-a
p
p
ro
ve
d
b
io
te
c
h
(p
ro
te
in
/p
e
p
tid

e
)
d
ru
g
s,

9
6

n
u
tr
a
c
e
u
tic
a
ls
,
>
6
0
0
0
e
xp

e
rim

e
n
ta
ld

ru
g
s

h
tt
p
s:
//
w
w
w
.b
in
d
in
g
d
b
.o
rg
/b
in
d
/i
n
d
e
x.
js
p

2
0
1
1

D
ru
g
B
a
n
k

D
a
ta
b
a
se

c
o
m
b
in
in
g
d
e
ta
ile
d
d
ru
g
d
a
ta

w
ith

c
o
m
p
re
h
e
n
si
ve

d
ru
g
ta
rg
e
t
in
fo
rm

a
tio

n

8
,2
6
1
d
ru
g
e
n
tr
ie
s,

4
,3
3
8
n
o
n
-r
e
d
u
n
d
a
n
t
p
ro
te
in

se
q
u
e
n
c
e
s

h
tt
p
s:
//
w
w
w
.d
ru
g
b
a
n
k.
c
a
/

2
0
1
7

P
D
B

C
ry
st
a
ls
tr
u
c
tu
re
s
o
f
m
a
c
ro
m
o
le
c
u
le
s
a
n
d
lig
a
n
d
s

1
3
3
,0
9
3
m
a
c
ro
m
o
le
c
u
la
r
st
ru
c
tu
re
s,

5
3
,0
2
5

c
ita
tio

n
s,

2
3
,7
1
1
lig
a
n
d
s

h
tt
p
:/
/w

w
w
.r
c
sb

.o
rg
/p
d
b
/h
o
m
e
/h
o
m
e
.d
o

2
0
1
7

sc
P
D
B

D
ru
g
g
a
b
le
b
in
d
in
g
si
te
s
fr
o
m

th
e
P
D
B

9
2
8
3
e
n
tr
ie
s,

3
6
7
8
p
ro
te
in
s,

5
6
0
8
lig
a
n
d
s

h
tt
p
:/
/b
io
in
fo
-p

h
a
rm

a
.u
-s
tr
a
sb

g
.f
r/
sc

P
D
B
/

2
0
1
3

T
T
D

In
fo
rm

a
tio

n
o
n
th
e
ra
p
e
u
tic

p
ro
te
in

a
n
d
n
u
c
le
ic
a
c
id

ta
rg
e
ts
,
re
le
va
n
t
d
is
e
a
se

s,
p
a
th
w
a
y
in
fo
rm

a
tio

n
a
n
d

th
e
c
o
rr
e
sp

o
n
d
in
g
d
ru
g
s

2
,5
8
9
ta
rg
e
ts
,
3
1
,6
1
4
d
ru
g
s,

2
0
,2
7
8
sm

a
ll

m
o
le
c
u
le
s,

6
5
3
a
n
tis
e
n
se

d
ru
g
s

h
tt
p
:/
/b
id
d
.n
u
s.
e
d
u
.s
g
/g
ro
u
p
/c
jtt
d
/

2
0
1
1

R
E
F
E
R
E
N
C
E
D
A
T
A
B
A
S
E

P
u
b
C
h
e
m

In
fo
rm

a
tio

n
o
n
c
h
e
m
ic
a
ls
u
b
st
a
n
c
e
s
a
n
d
th
e
ir

b
io
lo
g
ic
a
la
c
tiv
iti
e
s

>
2
3
5
m
ill
io
n
su

b
st
a
n
c
e
d
e
sc

rip
tio

n
s,

9
0
m
ill
io
n

u
n
iq
u
e
c
h
e
m
ic
a
ls
tr
u
c
tu
re
s,

2
3
0
m
ill
io
n
b
io
a
c
tiv
ity

o
u
tc
o
m
e
s
fr
o
m

o
ve
r
o
n
e
m
ill
io
n
b
io
lo
g
ic
a
la
ss
a
y

e
xp

e
rim

e
n
ts

h
tt
p
s:
//
p
u
b
c
h
e
m
.n
c
b
i.n
lm

.n
ih
.g
o
v/

2
0
1
7

C
H
E
B
I

A
d
a
ta
b
a
se

a
n
d
o
n
to
lo
g
y
o
f
m
o
le
c
u
la
r
e
n
tit
ie
s

fo
c
u
se

d
o
n
“s
m
a
ll”

c
h
e
m
ic
a
lc
o
m
p
o
u
n
d
s

>
5
2
,4
5
0
c
o
m
p
o
u
n
d
s

h
tt
p
:/
/w

w
w
.e
b
i.a
c
.u
k/
c
h
e
b
i/

2
0
1
7

U
n
iP
ro
t

R
e
so

u
rc
e
fo
r
p
ro
te
in

se
q
u
e
n
c
e
s
a
n
d
fu
n
c
tio

n
a
l

in
fo
rm

a
tio

n

S
w
is
s-
P
ro
t
(5
5
5
,1
0
0
),
Tr
E
M
B
L
(8
8
,0
3
2
,9
2
6
)

h
tt
p
:/
/w

w
w
.u
n
ip
ro
t.
o
rg
/

2
0
1
7

P
D
S
P
K
id

a
ta
b
a
se

A
u
n
iq
u
e
re
so

u
rc
e
in
th
e
p
u
b
lic

d
o
m
a
in
th
a
t
p
ro
vi
d
e
s

in
fo
rm

a
tio

n
o
n
th
e
a
b
ili
tie
s
o
f
d
ru
g
s
to

in
te
ra
c
t
w
ith

a
n
e
xp

a
n
d
in
g
n
u
m
b
e
r
o
f
m
o
le
c
u
la
r
ta
rg
e
ts

6
0
,2
3
1
a
n
n
o
ta
te
d
lig
a
n
d
s

h
tt
p
s:
//
ki
d
b
d
e
v.
m
e
d
.u
n
c
.e
d
u
/d
a
ta
b
a
se

s/
ki
d
b
.p
h
p

2
0
1
7

Frontiers in Chemistry | www.frontiersin.org 13 May 2018 | Volume 6 | Article 138

http://stitch.embl.de/
http://www.hmdb.ca/
http://zinc15.docking.org/
https://www.ebi.ac.uk/chembl/
https://www.bindingdb.org/bind/index.jsp
https://www.drugbank.ca/
http://www.rcsb.org/pdb/home/home.do
http://bioinfo-pharma.u-strasbg.fr/scPDB/
http://bidd.nus.edu.sg/group/cjttd/
https://pubchem.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/chebi/
http://www.uniprot.org/
https://kidbdev.med.unc.edu/databases/kidb.php
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Huang et al. A Systematic Review of Reverse Screening Methods

2016), KEGG (http://www.kegg.jp/kegg/) and the PDB. It
collects bioactive targets and pharmacological information
on small molecules, each of which has various pre-generated
conformations for 3D similarity screening (Gong et al., 2013).
ChemProt 3.0 (Kringelum et al., 2016) includes all chemical-
protein interaction data from the available open source databases,
including ChEMBL (version 19), BindingDB, the Psychoactive
Drug Screening Program (PDSP) Ki database (Roth et al.,
2000), and DrugBank, as well as clinical information from the
Anatomical Therapeutic Chemical (ATC) Classification System
(Wang Y. C. et al., 2013) and side effect data from Sider (Kuhn
et al., 2016). The SwissSimilarity database gathers protein-
annotated ligands mainly from four indirect databases, namely,
HMDB (Wishart et al., 2009), ZINC, ChEMBL, and DrugBank,
as well as from some reference databases, such as Chemical
Entries of Biological Interest (ChEBI; Hastings et al., 2016). The
SuperPred (Nickel et al., 2014) database consists of a large data
set of ligand-target interactions from two indirect databases,
ChEMBL and BindingDB. The CSNAP3D (Lo et al., 2016),
Target Hunter (Wang L. et al., 2013), SwissTargetPrediction
(Gfeller et al., 2014), and SEA (Keiser et al., 2007) databases are
all constructed by taking ligands with protein target information
from ChEMBL. The HitPick (Liu et al., 2013) database collects
information from the STITCH database (Szklarczyk et al.,
2015), and the information in ReverseScreen3D (Kinnings and
Jackson, 2011) is extracted from the PDB database. In addition,
the TarPred (Liu et al., 2015a) database, which is not shown
in Figure 4, is a compound-target-disease database built by
gathering information from the Comparative Toxicogenomics
Database (CTD; Davis et al., 2017) and UniProt.

Direct Databases Used in Pharmacophore Screening
Two direct databases used for pharmacophore screening are
shown in Figure 4. PharmTargetDB is the in-house database
of the PharmMapper server (Liu et al., 2010), and PharmaDB
(Meslamani et al., 2012) is the direct database deposited and used
in Discovery Studio. Since these two databases are updated when
the software updates, the different versions of PharmTargetDB
and PharmaDB have different data capacities. The numbers of
pharmacophore models in the newest versions are also shown in
Table 1.

The pharmacophore models in PharmTargetDB are derived
from the DrugBank, BindingDB, PDB, and PDTD databases.
These models are built by extracting pharmacophore features
within cavities by using the receptor-based pharmacophore
modeling program Pocket 2.0 (Chen and Lai, 2006) after the
binding sites of given protein structures are detected and ranked
based on their druggability scores by using the software CAVITY
(Yuan et al., 2013) for binding site detection (Wang X. et al.,
2017). The original version of PharmTargetDB contained more
than 7,000 pharmacophore models built from co-crystallized
complex structures of protein targets (Liu et al., 2010). A
new version of PharmMapper was published in 2017 (Wang
X. et al., 2017), and the new PharmTargetDB is six times
larger than the previous one, with a total of 23,236 proteins
covering 51,431 pharmacophore models. PharmaDB is the
pharmacodynamics database for Discovery Studio drug design

software, and its pharmacophoremodels are constructed by using
the Receptor-Ligand Pharmacophore Generation Protocol with
default settings based on the binding information of ligand and
protein complexes in the scPDB database. The original version of
PharmaDB contained 68,056 pharmacophore models annotated
with receptor information (Meslamani et al., 2012). The latest
version of PharmaDB includes 140,000 pharmacophore models
(BIOVIA, 2017), and users can utilize it in Discovery Studio to
perform rapid reverse pharmacophore screening to search for
protein targets of small molecules.

Direct Databases Used in Reverse Docking
The direct databases used in reverse docking are collections
of target structure grids, which are usually generated from
protein crystal structures by using docking programs or their
auxiliary software tools. Before grid generation, the target crystal
structures downloaded from the PDB must be preprocessed
to remove ions and waters, add hydrogens and define the
binding pocket. The original 3D protein structures can also be
downloaded from some PDB derivative databases, such as the
PDBbind-CN Database (Liu Z. et al., 2015), where all valid
ligand-protein structures in the PDB are identified and collected.

PDTD, INVDOCK, and idTarget are the three direct databases
used for reverse docking shown in Figure 4. Among them,
PDTD is the only open database, and it can be downloaded as
a compressed file, which is then decompressed as a collection
of two types of structure files. The first type is the preprocessed
protein structure file in the PDB and mol2 formats, and the
second type is the active site structure file in PDB format. These
two types of structure files for any PDB entry can be downloaded
independently and viewed using the molecular visualization tool
plug-in (Gao et al., 2008). Currently, this database contains
more than 1,100 protein entries with 3D structures in the PDB
and covers 841 diverse drug targets associated with diseases,
biological functions, and signaling pathways (Gao et al., 2008).
The binding (active) sites of these protein structures were defined
by a data set of amino acid residues within 6.5 Å of the
bound ligand (Gao et al., 2008). The INVDOCK and idTarget
databases are not published but are the in-house databases of
the corresponding programs. In addition, in contrast to the
binding sites defined by the co-crystallized ligands in the PDTD,
the binding sites in the INVDOCK and idTarget databases are
generated from the available cavities by a search performed with
spherical probes. The protein structures in these two databases
also originate from the PDB. The INVDOCK in-house database,
constructed in 2001, collects 9000 proteins and nucleic acid
structures from the PDB database (Chen and Zhi, 2001). Each
receptor structure grid in this database is constructed by first
calculating the inward-facing surface covering the interface of
van der Waals surfaces of the receptor crystal structure with a
probe sphere 1.4 Å in radius. The binding site is then defined
as the surrounding space within 15 Å of the center of the cavity
formed by the combination of neighboring spheres covered by
protein atoms in more than 50% of directions. Finally, grid
generation is performed (Chen and Zhi, 2001). The idTarget
database collects all protein structures in the PDB and is regularly
updated when the PDB updates (Wang et al., 2012). The binding
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sites of each protein in the database are dynamically determined,
and the grids are constructed by the “divide-and-conquer”
method according to the size of the query molecule (Wang et al.,
2012). Theoretically, idTarget could be the most extensive and
complete database among the three for reverse docking.

Indirect Databases
Indirect databases are rich in ligand and target information
and can be simply processed to build direct databases for
reverse screening. Nine indirect databases are shown in the
middle layer of Figure 4, and a brief introduction to these
databases, including the coverage, update time and website
link, is given in Table 2. Among these nine indirect databases,
ZINC, ChEMBL, BindingDB, and DrugBank mainly include
structural information on ligands and their target annotations,
whereas the PDB, scPDB, and Therapeutic Target Database
(TTD) mainly provide 3D structures of proteins with ligand
binding information. The 15 direct and in-house software-
associated databases used for reverse screening are essentially
extracted or constructed from these indirect databases. These
indirect databases are also extensively linked to reference
databases. For example, DrugBank and ChEMBL have mutual
data exchange with PubChem, ChEBI, and UniProt. BindingDB
(Gilson et al., 2016) collects data from the PubChem and PDSP
Ki databases. The scPDB and PDB share protein information
with UniProt, including sequences and crystal structures. In
addition, HMDB (Wishart et al., 2007) and ZINC share
compound information with ChEBI, and the TTD database
collects its information on therapeutic protein targets from
UniProt.

Users can employ indirect databases to build their own
databases when they use large commercial software suites for
molecular drug design, such as Schrödinger and Discovery
Studio, to perform reverse screening. For example, users can
collect small molecules with explicit target annotation from
the DrugBank, ChEMBL, and ZINC databases to construct a
ligand database for shape screening. They can also use ligand-
protein binding information from the BindingDB, scPDB, and
PDB databases to build a pharmacophore model database for
pharmacophore screening or a protein structure grid database for
reverse docking. Notably, Ligand Expo (Feng et al., 2004) from
the PDB can be easily used to build in-house program databases
for shape or pharmacophore screening after non-ligand small
molecules, including metal ions and solvent molecules, are
removed. In addition, a collection of protein crystal structures
downloaded from the PDB can be used to generate a protein
structure grid database for reverse screening. In fact, we built
our own databases for use in Schrödinger based on this Ligand
Expo database and the protein structures in the PDB, and we then
performed shape screening and reverse docking to search for the
protein targets of several natural compounds (Kim et al., 2014;
Lim et al., 2014; Wang Z. et al., 2016).

Reference Databases
Reference databases normally contain a very large amount
of information on small-molecule compounds and proteins.
However, extracting the rich information resources from these

databases to establish direct databases for reverse screening
can be difficult for users. Nevertheless, we can utilize these
databases to search for additional information on the matched
molecules and their potential protein targets from reverse
screening results.

The four main reference databases, PubChem, ChEBI, PDSP
Ki, and UniProt, which are closely associated with the nine
indirect databases, are shown in the upper layer of Figure 4. A
brief introduction to these four databases is also provided in
Table 2. PubChem consists of three interrelated sub-databases:
substances, compounds, and bioassays. The first two sub-
databases provide information on the chemical structure and
other properties of small molecules, and the sub-database of
bioassays gives information on their pharmacological properties
and biological targets (Kim et al., 2016). ChEBI is a freely
available dictionary of molecular entities focused on “small”
chemical compounds. ChEBI and ChEMBL are both sites of
the European Molecular Biology Laboratories, and their data
occasionally overlap. Compared with ChEMBL, ChEBI is more
focused on “molecular entity” information, such as the chemical
and biological roles and applications of a small molecule, rather
than on biological target information (Hastings et al., 2013, 2016).
The PDSP Ki database is a unique open resource that provides
information on the ability of drugs to interact with increasing
numbers of molecular targets. The key data in this database
are the Ki activity data on ligands internally derived or from
published articles, but it also includes information on protein-
annotated ligand structures, protein-ligand affinities, and article
sources (Roth et al., 2000). UniProt (Pundir et al., 2015) is a freely
accessible resource of protein sequence and function information
extracted from gene sequencing and published literature that
undergoes quality assurance by curator-evaluated computational
analysis (Poux et al., 2017).

The PubChem, ChEBI, UniProt, and Ki databases are the
four major reference databases used by researchers. However,
more reference databases containing information on proteins or
ligands are available, and readers who are interested in learning
about them can read two further database review papers authored
by Zhang Y. et al. (2011) and Moura Barbosa and Del Rio (2012).

Applications
We reviewed nearly all articles on the applications of shape,
pharmacophore screening and reverse docking in searching
for the potential targets of small molecules published since
2000 and conducted a systematic analysis. In addition, we
have provided slightly more detailed descriptions of some
representative examples of the application of existing services to
drug discovery. In reviewing these previous studies, we found two
approaches to method application: the use of a single method
and the use of combined methods. In general, shape screening,
pharmacophore screening and reverse docking have all been
successfully applied individually. However, these methods have
their own limitations in terms of features and application scopes,
as mentioned above. The majority of newer examples involve the
combined application of multiple methods. Finally, it is noted
that all the compounds as examples for illustration in this section
are shown in Figure 1.
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Shape Screening
Shape-screening services have a wide range of applications.
Table 3 shows 18 examples of the use of SEA, TargetHunter,
ROCS, SwissTargetPrediction, etc. to perform shape screening
for molecular target prediction. Here, even if an article involves
several query molecules, we still present them as one example.

Reverse screening based on shape similarity has multiple
types of applications. First, it is used to search for the targets
of molecules from Chinese herbal medicine. For instance,
using TargetHunter, Zhang et al. predicted human beta-1
adrenergic receptor (ADRB1) as the protein target of aconitine
(compound 3), an experimentally active component of Sini
Decoction in the treatment of cardiovascular disease, and this
prediction has been experimentally verified (Zhang H. et al.,
2016). Shape screening is also helpful for drug repositioning and
for clarifying the mechanisms of action of existing drugs. For
example, Keiser et al. conducted shape screening using SEA to
reposition 3,665 FDA-approved and investigational drugs, and
they successfully predicted unintended targets of several drugs,
such as the antagonism of the β1 receptor by the transporter
inhibitor prozac (compound 4), the inhibition of the 5-HT
transporter by the ion channel drug vadilex (compound 5), and
the antagonism of the histamine H4 receptor by the enzyme
inhibitor rescriptor (compound 6; Keiser et al., 2009).

Pharmacophore Screening
Reverse screening based on pharmacophore modeling is also
widely used to search for the targets of components of various
Chinese traditional medicines. Table 4 shows 27 examples of

the use of PharmMapper and Discovery Studio to perform
pharmacophore screening for the prediction of molecular targets.

For example, Liu et al. used PharmMapper to predict p38,
glucocorticoid receptor (GR) and dihydroorotate dehydrogenase
(DHODH) as potential targets of berberine (BBR, compound
7) and further elucidated the possible molecular mechanisms
by which these protein targets participate in the anti-melanoma
activity of BBR (Liu et al., 2017). Lei et al. employed the
Pharmacophore module of Discovery Studio 3.5 in reverse
screening and found that the isoquinoline alkaloids (such as
compound 8) extracted from Macleaya cordata (Bo Luo Hui)
might target macrophage migration inhibitory factor (MIF),
potentially leading to the broad-spectrum antitumor effects of the
plant (Lei et al., 2015).

Reverse Docking
Reverse screening based on molecular docking is widely used
to search for the targets of small molecules to elucidate
their mechanisms of action. Tables 5, 6 show 25 and 20
examples with and without experimental validation, respectively,
of the application of reverse docking to the prediction of
molecular targets by using TarFisDock, idTarget, INVDOCK, and
conventional virtual screening software such as DOCK, MDock,
and AutoDock.

For example, several research groups used INVDOCK to
predict that p53 (Lu et al., 2010), calmodulin (CaM; Ma et al.,
2013), annexin A5 (ANXA5) and heat shock protein family A
member 8 (HSPA8; Lu et al., 2012) might be protein targets
of the broad-spectrum anticancer drug BBR (compound 7).

TABLE 3 | Applications of shape screening in predicting protein targets of small molecules.

Query molecule Target information Reverse screening tool References

EXPERIMENTALLY VERIFIED

Prozac1, Vadilex2, Rescriptor3 β1 receptor1, 5-HT transporter2, HRH43 SEA Keiser et al., 2009

Wuweizi (compound 11/12) GBA311,12, SHBG11,12 SEA Wang et al., 2015

Lignan 5-HT1AR SEA Zheng et al., 2015

Plumbagin TrxR, GR’ SEA Hwang et al., 2015

Obacunone MIF SEA Gao et al., 2018

5-aza-dC HDM2 SuperPred Putri et al., 2017

Sini decoction (aconitine1, liquiritin2, 6-gingerol3) ADRB11, ACE2, HMGCR1,3 TargetHunter Zhang H. et al., 2016

Salvinorin A* OPRK, CB1, CB2, DRD2 TargetHunter Xu et al., 2016b

NOT EXPERIMENTALLY VERIFIED

NBP NQO1, IDO, NADH-ubiquinone oxidoreductase SEA Wang Y. et al., 2017

Quinoline derivative (83b1) PPARδ SEA Pun et al., 2017

Tributyltin (Ch-409) RamC SwissTargetPrediction Waseem et al., 2017

Xeronine Adr A3, TDP1, muscleblind-like proteins 1 SwissTargetPrediction Sanni et al., 2017

KNOWN TARGETS COMPUTATIONALLY VERIFIED

Methadone1, emetine2, loperamide3 Muscarinic M31, α2 adrenergic2, NK2 receptors3 SEA Keiser et al., 2007

CID 46907796 Nrf2 TargetHunter Wang L. et al., 2013

Chlorotrianisene COX-1, ESR1 SwissTargetPrediction Gfeller et al., 2014

Entecavir POLB TarPred Liu et al., 2015a

Taxol mimetics Tubulin CSNAP3D Lo et al., 2016

Caffeine D2R ChemProt Kringelum et al., 2016

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.
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TABLE 4 | Applications of pharmacophore screening in predicting protein targets of small molecules.

Query molecule Target information Reverse screening tools References

EXPERIMENTALLY VERIFIED

CT MAP2K1 PharmMapper Yuan et al., 2014

Arctigenin PDK1 PharmMapper Fang et al., 2015

HSYA XO PharmMapper Xu et al., 2016a

ZYZ-488 Apaf-1 PharmMapper Wang Y. et al., 2016

NCI 748494/1 c-Met kinase PharmMapper El-Wakil et al., 2017

UA CASP-3, JNK2, ERK1 PharmMapper Ma et al., 2017

BBR GR, p38, DHODH PharmMapper Liu et al., 2017

5,7-dihydroxy-4′-methoxy-8-

prenylflavanone

AChE PharmMapper Das et al., 2017

Phytoestrogens (genistein1, daidzein2,

secoisolariciresinol3 )

AKR1B11, H-Ras2, GSTP13 PharmMapper Dutta et al., 2017

NOT EXPERIMENTALLY VERIFIED

MCDF GR PharmMapper Chitrala and Yeguvapalli, 2014

Capsaicin CA2 PharmMapper Ye et al., 2015

SID 242078875 DPP-IV, PTP1B, PEPCK, GSK-3B, GK PharmMapper Krishnasamy and Muthusamy, 2016

Flavanoid analogs CDK2 PharmMapper Simon et al., 2017

Chalcones and chalcone-like compounds Cysteine proteases PharmMapper Gomes et al., 2017

16E-arylideno-nitrogen mustard

hybrids(3/4)

GRs PharmMapper Acharya et al., 2018

Components of CO ESR1, ESR2, HSD11B1, cortisone reductase PharmMapper Wang N. et al., 2017

N-substituted tetrahydro-β-carboline

imidazolium salt derivatives

MEK-1 PharmMapper Liang et al., 2017

ASC AKR1B1, ALB, AR, BACE1, CDK2, F2 PharmMapper Zeng et al., 2017a

GFW compounds F2, MMP3, CA2, AKR1B, CDK2 PharmMapper Zeng et al., 2017b

Thiadiazole compounds c-Met PharmMapper Meshram et al., 2017

Components in SFJD Multi-targets in ERK pathway PharmMapper Li et al., 2017

Isoquinoline alkaloids MIF, ZipA-FtsZ, GAPDH, etc. Discovery Studio 3.5 Lei et al., 2015

Six GTs GCN5, CDK2 Discovery Studio 4.0 Shao et al., 2016

Pinctada fucata oligopeptide 5HT2A, BACE-1 Discovery Studio Chen et al., 2017

KOWN TARGETS COMPUTATIONALLY VERIFIED

Tamoxifen ERRγ PharmMapper Liu et al., 2010

S-adenosyl-L-homocysteine Modification methylase TaqI PharmMapper Wang X. et al., 2016

Kanamycin APH(2′)-Iva PharmMapper Wang X. et al., 2017

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.

Zhang et al. employed TarFisDock in the reverse docking of 19
compounds extracted from the traditional Chinese medicines
Bacopa monnieri (L.) Wettst and Daphne odora Thunb. Var.
Marginata, and they concluded that five of the compounds (such
as compound 9) might target dipeptidyl peptidase IV (DPP-
IV), thus accounting for the effectiveness of these medicines
in the treatment of diabetes and their anti-inflammatory effects
(Zhang S. et al., 2011). Scafuri et al. (2016) applied idTarget
to predict that the proteins guanosine triphosphatase (GTPase),
guanosine 5′-monophosphate oxidoreductase (GMP reductase)
and hypoxanthine-guanine phosphoribosyltransferase (HGPRT)
might be key targets of apple polyphenols (such as compound
10 and 11), resulting in their cancer-preventive effects. Grinter
et al. used MDock to fish for the protein targets of the compound
PRIMA-1 (compound 12) in the PDTD database and discovered
that PRIMA-1 could inhibit the cholesterol synthetic pathway by
directly binding with oxidosqualene cyclase (OSC), considerably

reducing the viability of BT-474 and T47-D breast cancer cells
(Grinter et al., 2011).

Hybrid Applications
The combinations of methods include shape screening with
reverse docking, shape screening with pharmacophore screening,
pharmacophore screening with reverse docking, and the
combination of all three methods. Table 7 shows 22 examples of
the use of these four combinations to predict molecular targets.

Eight target prediction examples were performed by
combining shape similarity and molecular docking. Kozielewicz
et al. employed ReverseScreen3D and TarFisDock to predict the
targets of oxindole pentacyclic alkaloids (such as compound
13) and found that the biological ability of these compounds
to induce cancer cell apoptosis may potentially involve the
inhibition of several important targets, including dihydrofolate
reductase (DHFR) and mouse double minute 2 homolog
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TABLE 5 | Applications of reverse docking in predicting protein targets of small molecules with experimental verification.

Query molecule Target information Reverse screening tools References

Triptonide1, triptolide2, triptriolide3 ERα1,2,3 AutoDock 4.2 Liu et al., 2015b

c-di-GMP Human LCN2 protein DOCK 6 Li et al., 2015

Derivatives of indirubin (6BIO) PDK1 GlamDock Zahler et al., 2007

DAPH Hexokinase GOLD Da Matta et al., 2015

Apple polyphenols GMP reductase, GTPase H-ras, HGPRT idTarget Scafuri et al., 2016

Anti-HIV drugs (Pis, NRTIs)* POLB, TOP1, etc. INVDOCK Ji et al., 2006

Analgesics* ErbB-2, PLA2, GSH-S INVDOCK Pan et al., 2014

GAD EphA7, EB1, PRDX3 INVDOCK Yue et al., 2008

BBR p53 INVDOCK Lu et al., 2010

SB EGFR INVDOCK Feng et al., 2011

BBR HSPA8, ANXA5 INVDOCK Lu et al., 2012

AGS-IV CN, ACE, JNK INVDOCK Zhao et al., 2012

SB* ACE, REN INVDOCK Ye et al., 2012

WB CDK2, PAK4, BRaf1 INVDOCK Zhang et al., 2013

BBR CaM INVDOCK Ma et al., 2013

Ophiobolin O GSK3β INVDOCK Lv et al., 2015

PRIMA-1 OSC Mdock Grinter et al., 2011

Meranzin COX1, COX2, PPARγ SELNERGY Do et al., 2007

Tofisopam PDE4 SELNERGY Bernard et al., 2008

Anti-Helicobacter pylori drugs (compound 1/2) HpPDF1,2 TarFisDock Cai et al., 2006

[6]-gingerol LTA4H TarFisDock Jeong et al., 2009

5 of 19 natural products DPP-IV TarFisDock Zhang S. et al., 2011

Bezafibrate CDK2 TarFisDock Liu et al., 2015c

Bicyclol IMPDHII TarFisDock Zhang Y. W. et al., 2016

Esculentoside A CK2 TarFisDock Li Y. et al., 2016

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.

(MDM2; Kozielewicz et al., 2014). The combination of shape
screening and pharmacophore screening has been applied in
three instances to predict molecular targets. Biplab Bhattacharjee
and Jhinuk Chatterjee used PharmMapper and ReverseScreen3D
to perform reverse screening and demonstrated that eucalyptol
(compound 14), the effective component of cardamom,
might target CASP-3 and cAMP-dependent protein kinase
(PKA), resulting in its anti-apoptosis, anti-inflammation,
anti-proliferation, anti-invasion and anti-angiogenesis activities
in cancer prevention (Bhattacharjee and Chatterjee, 2013).
The combination of pharmacophore modeling and reverse
docking has been used most frequently to predict the targets
of small molecules, as shown by the 10 applications given in
Table 7. For example, Ge et al. used PharmMapper and idTarget
in reverse screening and predicted that dihydropyrimidine
dehydrogenase (DPD) and human spindle checkpoint kinase
Bub1 were the potential unintended or secondary targets of
the antithrombotic agent dipyridamole (DIP, compound 15),
resulting in its anti-cancer activity (Ge et al., 2016). Finally, one
application combined all three methods for reverse screening.
Gao et al. used the Pharmacophore Modeling and Docking
modules in Schrödinger as well as RerverseScreen3D jointly to
predict molecular targets and found that baicalein (compound
16), an anti-Parkinson disease drug, played a protective role in
the nervous system by targeting catechol-O-methyltransferase
(COMT) and monoamine oxidase B (MAO-B); these targets
were confirmed experimentally (Gao et al., 2013).

DISCUSSION

Comparison of the Applications of the
Three Types of Reverse Screening
Software and Online Services in the
Prediction of Small-Molecule Targets

To provide a better understanding of the application of reverse
screening for small-molecule target prediction, we collected as
many reverse screening tools and databases as possible, most of
which have been updated since 2016 (Tables 1, 2). In addition,
we counted the number of applications of these three methods
since 2000, the number of applications of their representative
software programs, and the application trends over the years. All
information is shown in Tables 3–7 and Figures 5A,B.

Different types of reverse screening tools have characteristic
features. Many software programs and online services are
based on shape similarity, and they have a rich supply of
ligand databases. These shape screening tools have rapidly
updated in-house databases, can screen large chemical databases
rapidly, and therefore can be used for large-scale preliminary
reverse screening. Although shape-screening methods have
the smallest number of applications, a slow upward trend is
evident in recent years (Figure 5A). Notably, few studies have
applied TarPred, SwissSimilarity, and ChemMapper. The main
software and online services based on pharmacophore modeling
are PharmMapper and Discovery Studio, each with its own

Frontiers in Chemistry | www.frontiersin.org 18 May 2018 | Volume 6 | Article 138

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Huang et al. A Systematic Review of Reverse Screening Methods

TABLE 6 | Applications of reverse docking in predicting protein targets of small molecules without experimental verification.

Query molecule Target information Reverse screening tool Reference

NOT EXPERIMENTALLY VERIFIED

Tea polyphenols LTA4 hydrolase Autodock, TarFisDock Zheng et al., 2011

4 compounds PBP4 Autodock Vina Sarangi et al., 2015

Lenalidomide VEGFR-2, erbB-3, FGFR-4, ABL, p38MAPK,

MMP-3

Autodock Hu et al., 2017

Torcetrapib PDGFR, HGFR, IL-2, ErbB1 Discovery Studio Fan et al., 2012

Melamine and cyanuric acid GPX1, HEXB, LDH, lys C INVDOCK Ma et al., 2011

PAs GSTA1, GPX1 INVDOCK Yan et al., 2016

Icariin PI3K, AChE INVDOCK Cui et al., 2016

Dioscin TOP1 MDock Yin et al., 2015

Ginsenosides MEK1, EGFR, thrombin, Aurora A Schrödinger Park and Cho, 2017

TCDD MMP8, MMP3, OSC, MPO TarFisDock Oliveroverbel et al., 2010

Ganoderic acid HIV-1 proteasein TarFisDock Akbar and Yam, 2011

Fullerene derivatives HPRT, BACE1 TarFisDock Gupta et al., 2011

Alpha lipoic acid LTA4 hydrolase, VGKC TarFisDock Maldonado-Rojas, 2011

Aryl-aminopyridine derivatives CDK2, aurora kinase, KIT receptor TarFisDock Erić et al., 2012

KNOWN TARGETS COMPUTATIONALLY VERIFIED

4-HT, vitamin E ER, GST INVDOCK Chen and Zhi, 2001

ASA1, gentamicin2, ibuprofen3, IDV4,

neomycin5, penicillin G6, 4-HT7, vitamin C8
Antithrombin1, CA12,5, SULT1E13, IFABP4,

GST6, ADH7, alphaamylase8
INVDOCK Chen and Ung, 2001

Biotin1, 4-HT2, HDPR3, methotrexate4 Streptavidin1, ERa2, ADA3, DHFR4 GOLD Paul et al., 2004

ε-viniferin PDE4 SELNERGY Do et al., 2005

Vitamin E1, 4-HT2 AChE1, DHFR2 TarFisDock Li et al., 2006

DRV1, 6BIO2,

N-(4-aminobiphenyl-3-yl)-benzamide3
HDAC21, HIV-1 PR2, CDK23 idTarget Wang et al., 2012

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.

pharmacophore database. PharmMapper is a free online service,
whereas Discovery Studio is commercial software, leading to
more widespread use of PharmMapper. Among the three reverse
screening methods, pharmacophore modeling has the fewest
applications before 2016 (Figures 5A,B), but its application
exhibited a significantly escalating trend in 2017 (Figures 5A,B).
The reverse docking method has been applied the most; however,
the applications of reverse docking have shown a downward
trend in recent years. The possible reasons are that some online
services, such as TarFisDock, have undergone limited expansion
of the existing protein crystal structure grid database, while
others, such as idTarget, have a long computational time and high
computational cost. Figure 5A also illustrates the trend of the
practical applications of hybrid methods, with a slow rise in the
use of combinations of multiple reverse screening methods for
target prediction in recent years.

In addition, we downloaded from PubChem or sketched
in Schrödinger the structures of 57 small-molecule ligands
whose targets were predicted by reverse screening and
further verified experimentally, as reported in these
application articles. We used the Cluster Analysis Module
in Schrödinger via the two-tiered drop-down menu of Maestro’s
Scripts/Cheminformatics/Clustering of Ligands and a pop-up
window titled Clustering based on Volume Overlap to conduct
a cluster analysis of these small molecules. Figure 6 shows
representative compounds in the 28 clusters we obtained.

Their targets were predicted separately by shape screening,
pharmacophore screening and reverse docking. By comparing
the structures of these molecules, we may be able to summarize
some rules regarding the application ranges of each type of
method according to the structures of the query molecules.
For example, shape screening may be suitable for a query
molecule whose structure shows stereoscopic sense even in a
two-dimensional structural view and that is neither very large
nor very small (Compounds 3 and 17–23). Pharmacophore
screening is appropriate for query molecules whose structures
contain diverse pharmacophore functional groups with a good
balance between them (compounds 24–30). Reverse docking
is suitable for the most diverse range of query molecules
(compounds 31–39). We hope that this type of cluster analysis
can provide some guidance for the effective use of reverse
screening to predict small-molecule targets in the future.

Deficiencies in Current Reverse Screening
Methods and Potential Solutions
Each reverse screening tool has its own characteristics and
appropriate application scope in terms of principle, algorithm
and program. However, we need to know the application scopes
of these tools in order to select the most appropriate software
for making accurate predictions. Thus, a horizontal comparison
can provide a better understanding of the advantages and
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TABLE 7 | Applications of hybrid screening in predicting protein targets of small molecules.

Query molecule Target information Method Reverse screening tool References

EXPERIMENTALLY VERIFIED

Rosemary components (carnosol,CA,UA,RA)* CDK2, MAPK-14, AR’, PPARγ RD&PS PharmMapper, idTarget Deshmukh et al., 2013

DIP* DPD, Bub1 RD&PS PharmMapper, idTarget Ge et al., 2016

Magnaporthe oryzae inhibitor C1 CYP450, NMT, GS, CHS RD&PS PharmMapper, TarFisDock Chen et al., 2016

SAA* AR RD&PS DRAR-CPI, PharmMapper Chen and Cui, 2017

Curcumin CDK2 RD&SS Schrödinger Lim et al., 2014

Naproxen PI 3-K RD&SS Schrödinger Kim et al., 2014

GV2–20 CA2 RD&SS ROCS, AutoDock Mori et al., 2015

Kinetin Chitinase RD&SS idTarget, ReverseScreen3D Kumar et al., 2015

Glabridin Braf, MEK1/2 RD&SS Schrödinger Wang Z. et al., 2016

Macrocyclic amidinoureas Chitinase RD&SS ROCS, OEDocking Maccari et al., 2017

α-FMH GST PS&SS PharmMapper, ReverseScreen3D Considine et al., 2017

Baicalein COMT, MAO-B RD&PS&SS Schrödinger, ReverseScreen3D Gao et al., 2013

NOT EXPERIMENTALLY VERIFIED

Saffron bioactive ingredients (picrocrocin) HSP 90-α RD&PS PharmMapper, idTarget Bhattacharjee et al., 2012

Danshensu GTPase Hras RD&PS PharmMapper, idTarget Chen and Ren, 2014

Tanshinone IIA RARα RD&PS PharmMapper, AutoDock Vina Chen, 2014

2-thiazolylimino-5-benzylidin-thiazolidin-4-one COX2, AChE, AR, THRα RD&PS PharmMapper, TarFisDock Iyer et al., 2015

Glycopentalone CDK-2, VEGFR-2 RD&PS AutoDock4.2, PharmMapper Gurung et al., 2016

PGS1, PLMF12, 67DiOHC8S3 GSTA11, PTPNT12,3, CBS3 RD&PS PharmMapper, DRAR-CPI Pereira et al., 2017

Oxindole pentacyclic alkaloids DHFR, MDM2 RD&SS TarFisDock, ReverseScreen3D Kozielewicz et al., 2014

Quercetin PARP1 RD&SS SHAFTS, idTarget Carvalho et al., 2017

Cardamom bioactive components (eucalyptol) CASP-3, PKA PS&SS PharmMapper, ReverseScreen3D Bhattacharjee and Chatterjee,

2013

Amai alkaloid and pyridine derivatives in maca AR’, CA2, ERα, MAPK14, etc. PS&SS Discovery Studio4.5 Yi et al., 2016

*Target prediction confirmed by the literature. Superscript values denotes that the protein targets in the second column correspond to the query molecules in the first column respectively.

disadvantages of these reverse screening tools and their in-
house databases. Some clear deficiencies are present in the
programs and in-house databases of current reverse screening
tools, making a comparison of the efficiency or the accuracy
of target prediction by these tools difficult. None of the online
services has a general interface module that can be used to upload
and recognize user databases. Because these tools cannot use
external databases, evaluating the methods or services based on
benchmark databases is infeasible. However, researchers may be
able to test the pros and cons of these tools in a way that does
not require a benchmark database: we may not need to know the
superiority of these tools over each other but may instead need to
learn their practical uses and application scopes so that they can
be better applied in real-life practice. This comparison requires
studies to select some benchmarking query compounds whose
known targets represent a large category and whose secondary
targets or non-targets have also been studied thoroughly. We can
use evaluation indexes such as the enrichment factor and receiver
operating characteristic (ROC) curve (Truchon and Bayly, 2007)
to assess the practical effects of reverse screening tools on the
prediction of targets within this large category for other small
molecules, thus achieving a horizontal comparison of existing
software and online services. This theory is not yet perfected,
and successful examples of this approach remain lacking, but
it may provide prospects for developing assessments of reverse
screening methods and tools.

Moreover, reverse screening servers also lack general-type
databases, and their in-house databases are not publicized. We
cannot learn the inclusion and exclusion criteria for building
these direct databases. Almost all direct databases are bound
to the corresponding software, and we are unable to conduct
potential data mining. The resources of different online services
are also undisclosed, and the services cannot refer to each other’s
databases. Hence, we encourage the developers of all software
and online services to disclose their own databases and their
construction processes to facilitate user comprehension and
utilization. Only in this way can these software databases be better
applied in practice, and this approach could also promote the
production of more excellent protein-annotated ligand or target
structure grid databases for reverse screening.

Previous Reviews and Prospective Studies
on Reverse Screening in Molecular Target
Prediction
To date, five reviews of reverse screening are available in the
literature, which we will discuss briefly below. Readers can also
peruse these reviews to deepen their understanding of molecule
target prediction algorithms. We will not address other reviews
that involve the use of experimental methods or a combination
of computational and experimental methods to predict molecular
targets (Schenone et al., 2013).
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FIGURE 5 | The number and trend of applications using the three reverse screening methods and representative software since the year 2000.

Three of the five reviews are similar to our work and provide
broad overviews of in silico target fishing. They describe the
principles, databases and software involved in computer-aided
small-molecule target prediction in terms of different aspects,
perspectives and levels (Rognan, 2010; Zheng et al., 2013; Cereto-
Massagué et al., 2015). Cereto-Massagué et al. (2015) categorize
the methods of target fishing into four classes according
to computational principles: molecular similarity methods,
protein structure-based methods, data mining/machine learning
methods, and methods based on the analysis of bioactivity
spectra. Our review covers the principles and applications of the
first two classes, molecular similarity and protein structure, but

does not address the latter two categories of machine learning
and bioactivity spectra. Therefore, readers can review the article
by Cereto-Massagué et al. carefully if they are interested in
the calculation methods used in those latter two categories.
Rognan et al. (Rognan, 2010) describe only protein structure-
based approaches and further classify them into protein-ligand
docking, structure-based pharmacophore searches, binding site
similarity measurements, and protein-ligand fingerprints. Based
on the principle of receptor structure-based screening, the
authors describe these four sub-methods in detail and discuss
their pros and cons for target fishing and ligand profiling.
That review features descriptions of protein pocket similarity
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FIGURE 6 | Twenty-eight representative compounds obtained by the clustering of 57 bioactive compounds for target prediction by different reverse screening

methods.
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matching and the molecular fingerprinting of protein-ligand
interaction information, which is worth reading and comparing
to our paper. In addition, Zheng et al. (2013) provide
a comprehensive overview of computer-aided drug design
methods, including conventional (forward) virtual screening and
reverse screening, in terms of five aspects: drug target prediction,
drug repositioning, protein-ligand interaction, virtual screening
and lead optimization, and ADME/T (absorption, distribution,
metabolism, excretion, and toxicity) property prediction. The
three reverse screening methods we reviewed are closely related
to drug target prediction, drug repositioning and protein-ligand
interaction. The above review can help readers systematically
study and understand the field of computer-aided virtual
screening in drug design.

The other two reviews address only reverse docking and
its applications. Specifically, Kharkar et al. (2014) give a
detailed description of reverse docking programs and their target
databases and further discuss the applications of reverse docking
in target identification and the prediction of target functions and
off-target effects. Lee et al. (2016) summarize target databases,
software programs and services and discuss the application of
reverse docking in small-molecule target recognition and drug
discovery. They also professionally discuss four issues related to
reverse docking that remain to be solved: the standardization
of database construction, the inclusion of receptor flexibility,
the time-consuming nature of flexible receptor docking, and the
inaccuracy of binding free energy calculations and ligand binding
pose prediction. Readers may refer to these two reviews for a
more comprehensive understanding of reverse docking methods.

CONCLUSION

In this review article, based on previous studies, we selected
the three most commonly used types of reverse screening
methods, i.e., methods based on shape similarity, pharmacophore
modeling and molecular docking, and provided a detailed and
comprehensive introduction, including a description of the
principles underlying eachmethod and a systematic classification
of software, online services, and databases. In addition, we

collected nearly all the articles related to the application of
computer-aided target reverse screening prediction published
since 2000 and analyzed the possible relationships or correlations
between compound structures and screening methods by using
cluster analysis. The purpose of this review is to help readers
quickly understand these three methods and the characteristics
of the software and online services based on these methods,
to familiarize readers with the status and applications of
the different levels of ligand and protein databases used in
reverse screening and to provide a better understanding of how
existing tools can be applied to molecule target prediction. We
strongly believe that more accurate predictions resulting from the
familiarity of users with the existing online services and databases
will increase the importance of reverse screening in drug
repositioning and future research on the pharmacodynamics and
pharmacological mechanisms of bioactive compounds.

AUTHOR CONTRIBUTIONS

HH, GZ, YZ, CL, SC, YL, and SM: Information retrieval and
analysis and reverse tools identification and classification; HH,
GZ, LC, YL, and ZH: Database classification; HH, GZ, YZ, and
ZH: Reference classification; HH, GZ, YZ, LC, SC, YL, SM, and
ZH: Manuscript writing; HH, GZ, and ZH: Manuscript revision;
HH, GZ, SC, YL, and ZH: Figure processing and table processing;
HH, GZ, CL, and ZH: Cluster analysis; ZH:Manuscript guidance,
communication work, and financial support.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (31770774), the Natural Science
Foundation of Guangdong Province, China (2015A030313518),
the Provincial Major Project of Basic or Applied Research in
Natural Science, Guangdong Provincial Education Department
(2016KZDXM038), and the 2013 Sail Plan The Introduction
of the Shortage of Top-Notch Talent Project (YueRenCaiBan
[2014] 1). We also thank American Journal Experts (AJE) for
their help in revising English language.

REFERENCES

Acharya, P. C., Bansal, R., and Kharkar, P. S. (2018). Hybrids of steroid and
nitrogen mustard as antiproliferative agents: synthesis, in vitro evaluation and
in silico inverse screening. Drug Res. 68, 100–103. doi: 10.1055/s-0043-118538

Akbar, R., and Yam, W. K. (2011). Interaction of ganoderic acid on
HIV related target: molecular docking studies. Bioinformation 7:413.
doi: 10.6026/97320630007413

Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang,
P. T., et al. (2015). DOCK 6: impact of new features and current docking
performance. J. Comput. Chem. 36, 1132–1156. doi: 10.1002/jcc.23905

Armstrong, M. S., Morris, G. M., Finn, P. W., Sharma, R., Moretti, L., Cooper, R. I.,
et al. (2010). ElectroShape: fast molecular similarity calculations incorporating
shape, chirality and electrostatics. J. Comput. Aided Mol. Des. 24, 789–801.
doi: 10.1007/s10822-010-9374-0

Awale, M., and Reymond, J. L. (2014). A multi-fingerprint browser for the ZINC
database. Nucleic Acids Res. 42, W234–W239. doi: 10.1093/nar/gku379

Bender, A., Mussa, H. Y., Glen, R. C., and Reiling, S. (2004). Molecular similarity
searching using atom environments, information-based feature selection,

and a naive Bayesian classifier. J. Chem. Inf. Comput. Sci. 44, 170–178.
doi: 10.1021/ci034207y

Bernard, P., Dufresne-Favetta, C., Favetta, P., Do, Q. T., Himbert, F.,
Zubrzycki, S., et al. (2008). Application of drug repositioning strategy to
TOFISOPAM. Curr. Med. Chem. 15, 3196–3203. doi: 10.2174/092986708786
848488

Bhattacharjee, B., and Chatterjee, J. (2013). Identification of proapoptopic,
anti-inflammatory, anti- proliferative, anti-invasive and anti-angiogenic
targets of essential oils in cardamom by dual reverse virtual screening
and binding pose analysis. Asian Pac. J. Cancer Prev. 14, 3735–3742.
doi: 10.7314/APJCP.2013.14.6.3735

Bhattacharjee, B., Vijayasarathy, S., Karunakar, P., and Chatterjee, J. (2012).
Comparative reverse screening approach to identify potential anti-neoplastic
targets of saffron functional components and binding mode. Asian Pac. J.

Cancer Prev. 13, 5605–5611. doi: 10.7314/APJCP.2012.13.11.5605
BIOVIA (2017). Discovery Studio Modeling Environment, Release 2017. San Diego,

CA: Dassault Systèmes
Cai, J., Han, C., Hu, T., Zhang, J., Wu, D., Wang, F., et al. (2006). Peptide

deformylase is a potential target for anti-Helicobacter pylori drugs: reverse

Frontiers in Chemistry | www.frontiersin.org 23 May 2018 | Volume 6 | Article 138

https://doi.org/10.1055/s-0043-118538
https://doi.org/10.6026/97320630007413
https://doi.org/10.1002/jcc.23905
https://doi.org/10.1007/s10822-010-9374-0
https://doi.org/10.1093/nar/gku379
https://doi.org/10.1021/ci034207y
https://doi.org/10.2174/092986708786848488
https://doi.org/10.7314/APJCP.2013.14.6.3735
https://doi.org/10.7314/APJCP.2012.13.11.5605
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Huang et al. A Systematic Review of Reverse Screening Methods

docking, enzymatic assay, and X-ray crystallography validation. Protein Sci. 15,
2071–2081. doi: 10.1110/ps.062238406

Carvalho, D., Paulino, M., Polticelli, F., Arredondo, F., Williams, R. J., and
Abincarriquiry, J. A. (2017). Structural evidence of quercetin multi-target
bioactivity: a reverse virtual screening strategy. Eur. J. Pharm. Sci. 106, 393–403.
doi: 10.1016/j.ejps.2017.06.028

Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Pujadas, G., and Garcia-
Vallve, S. (2015). Tools for in silico target fishing. Methods 71, 98–103.
doi: 10.1016/j.ymeth.2014.09.006

Chang, D. T., Oyang, Y. J., and Lin, J. H. (2005). MEDock: a web server for efficient
prediction of ligand binding sites based on a novel optimization algorithm.
Nucleic Acids Res. 33, W233–W238. doi: 10.1093/nar/gki586

Chen, H., Wang, X., Hong, J., Rui, L., and Hou, T. (2016). Discovery of the
molecular mechanisms of the novel chalcone-based Magnaporthe oryzae
inhibitor C1 using transcriptomic profiling and co-expression network analysis.
Springerplus 5:1851. doi: 10.1186/s40064-016-3385-9

Chen, J., and Lai, L. (2006). Pocket v.2: further developments on receptor-
based pharmacophore modeling. J. Chem. Inf. Model. 46, 2684–2691.
doi: 10.1021/ci600246s

Chen, S. J. (2014). A potential target of Tanshinone IIA for acute promyelocytic
leukemia revealed by inverse docking and drug repurposing. Asian Pac. J.

Cancer Prev. 15, 4301–4305. doi: 10.7314/APJCP.2014.15.10.4301
Chen, S. J., and Cui, M. C. (2017). Systematic understanding of the mechanism

of salvianolic acid A via computational target fishing. Molecules 22:E644.
doi: 10.3390/molecules22040644

Chen, S. J., and Ren, J. L. (2014). Identification of a potential anticancer target
of danshensu by inverse docking. Asian Pac. J. Cancer Prev. 15, 111–116.
doi: 10.7314/APJCP.2014.15.1.111

Chen, Y. K., Qiao, L. S., Huo, X. Q., Zhang, X., Han, N., and Zhang, Y. L.
(2017). [Pharmacological mechanism analysis of oligopeptide from Pinctada
fucata based on in silico proteolysis and protein interaction network].
Zhongguo Zhong Yao Za Zhi 42, 3417–3423. doi: 10.19540/j.cnki.cjcmm.
20170731.002

Chen, Y. Z., and Ung, C. Y. (2001). Prediction of potential toxicity
and side effect protein targets of a small molecule by a ligand-
protein inverse docking approach. J. Mol. Graph. Model. 20, 199–218.
doi: 10.1016/S1093-3263(01)00109-7

Chen, Y. Z., and Zhi, D. G. (2001). Ligand-protein inverse docking and its potential
use in the computer search of protein targets of a small molecule. Proteins
43, 217–226. doi: 10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.
0.CO;2-G

Chen, Z., Li, H. L., Zhang, Q. J., Bao, X. G., Yu, K. Q., Luo, X. M., et al.
(2009). Pharmacophore-based virtual screening versus docking-based virtual
screening: a benchmark comparison against eight targets. Acta Pharmacol. Sin.

30, 1694–1708. doi: 10.1038/aps.2009.159
Chitrala, K. N., and Yeguvapalli, S. (2014). Computational prediction and analysis

of breast cancer targets for 6-methyl-1, 3, 8-trichlorodibenzofuran. PLoS ONE
9:e109185. doi: 10.1371/journal.pone.0109185

Considine, K. L., Stefanidis, L., Grozinger, K. G., Audie, J., and Alper, B. J.
(2017). Efficient synthesis of α-fluoromethylhistidine di-hydrochloride and
demonstration of its efficacy as a glutathione S-transferase inhibitor. Bioorg.
Med. Chem. Lett. 27, 1335–1340. doi: 10.1016/j.bmcl.2017.02.024

Cui, Z., Sheng, Z., Yan, X., Cao, Z., and Tang, K. (2016). In silico insight into
potential anti-Alzheimer’s disease mechanisms of Icariin. Int. J. Mol. Sci.

17:E113. doi: 10.3390/ijms17010113
Da Matta, C. B., de Queiroz, A. C., Santos, M. S., Alexandre-Moreira,

M. S., Gonçalves, V. T., Del Cistia C. N., et al. (2015). Novel
dialkylphosphorylhydrazones: synthesis, leishmanicidal evaluation and
theoretical investigation of the proposed mechanism of action. Eur. J. Med.

Chem. 101, 1–12. doi: 10.1016/j.ejmech.2015.06.014
Das, S., Laskar, M. A., Sarker, S. D., Choudhury, M. D., Choudhury, P.

R., Mitra, A., et al. (2017). Prediction of anti-Alzheimer’s activity of
flavonoids targeting acetylcholinesterase in silico. Phytochem. Anal. 28,
324–331. doi: 10.1002/pca.2679

Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., King, B. L., McMorran, R.,
et al. (2017). The comparative toxicogenomics database: update 2017. Nucleic
Acids Res. 45, D972–D978. doi: 10.1093/nar/gkw838

Desaphy, J., Bret, G., Rognan, D., and Kellenberger, E. (2015). sc-PDB: a 3D-
database of ligandable binding sites−10 years on. Nucleic Acids Res 43, D399–
D404. doi: 10.1093/nar/gku928

Deshmukh, D. S., Madagi, S., and Savadatti, V. (2013). Identification of potential
anti-tumorigenic targets for rosemary components using dual reverse screening
approaches. Int. J. Pharm. Bio. Sci. 3, 399–408.

Di Muzio, E., Toti, D., and Polticelli, F. (2017). DockingApp: a user friendly
interface for facilitated docking simulations with AutoDock Vina. J. Comput.

Aided Mol. Des. 31, 213–218. doi: 10.1007/s10822-016-0006-1
Do, Q. T., Lamy, C., Renimel, I., Sauvan, N., André, P., Himbert, F., et al.

(2007). Reverse pharmacognosy: identifying biological properties for plants by
means of their molecule constituents: application to meranzin. Planta Med. 73,
1235–1240. doi: 10.1055/s-2007-990216

Do, Q. T., Renimel, I., Andre, P., Lugnier, C., Muller, C. D., and Bernard, P.
(2005). Reverse pharmacognosy: application of selnergy, a new tool for lead
discovery. The example of epsilon-viniferin. Curr. Drug Discov. Technol. 2,
161–167. doi: 10.2174/1570163054866873

Drews, J. (1997). Strategic choices facing the pharmaceutical industry: a case for
innovation. Drug Discov. Today 2, 72–78. doi: 10.1016/S1359-6446(96)10051-9

Dunkel, M., Gunther, S., Ahmed, J., Wittig, B., and Preissner, R. (2008). SuperPred:
drug classification and target prediction. Nucleic Acids Res. 36, W55–W59.
doi: 10.1093/nar/gkn307

Durant, J. L., Leland, B. A., Henry, D. R., and Nourse, J. G. (2002). Reoptimization
ofMDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci. 42, 1273–1280.
doi: 10.1021/ci010132r

Dutta, S., Kharkar, P. S., Sahu, N. U., and Khanna, A. (2017). Molecular docking
prediction and in vitro studies elucidate anti-cancer activity of phytoestrogens.
Life Sci. 185, 73–84. doi: 10.1016/j.lfs.2017.07.015

El-Wakil, M. H., Ashour, H. M., Saudi, M. N., Hassan, A. M., and Labouta, I.
M. (2017). Target identification, lead optimization and antitumor evaluation of
some new 1,2,4-triazines as c-Met kinase inhibitors. Bioorg. Chem. 73, 154–169.
doi: 10.1016/j.bioorg.2017.06.009
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