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Abstract— This paper introduces a new enumeration tech- set of discovered regions be stored in main memory for
nique for (multi)parametric linear programs (pLPs) based on  comparison, and makes the complexity of discovering a new
the reverse—search paradigm. We prove that the proposed egion a function of the number of regions discovered so
a]gorlthm has a computational complexity tha}t is Ilngar in the far. Th b f . in th timal PWA functi
size of the output (number of so-called critical regions) ad .ar. € number of regions In the Op_ |m_a . unction
a constant space complexity. This is an improvement over the IS known to be worst-case exponential in the size of the
quadratic and linear computational and space complexitieof  data [1], and to grow very quickly with the dimension of the
current approaches. parameter, and therefore the requirement to store andhsearc

Current implementations of the proposed approach become  5qainst the entire set of regions is the factor that limits th

faster than existing methods for large problems. Extensios ; .
of this method are proposed that make the computational SIZ€ of problems that can be tackled by currently available

requirements lower than those of existing approaches in all algorithms.

cases, while allowing for efficient parallelisation and bonded In this paper we present a new method of computing the
memory usage. optimiser of pLP (1) based onraverse—searchpproach [5].
| INTRODUCTION By defining a tree over the set of regions in the solution,

) ] ] __ reverse—search is a depth—first enumeration method in which
It is standard practice to implement a model predictivg| gecisions can be made based lonal information and

controller (MPC) by solving an optimisation problem on—herefore the set of regions seen so far does not need
line. For example, when the system is linear, the consainfy pe stored in main memory, or consulted when a new
are polyhedral and the cost is linear (€lg: or co—norm),  yegion is discovered. There are three benefits of the prapose
this amounts to computing a single linear program at eaghethod over existing approaches: First, the online memory

sampling instant. In recent years, it has become well-knowgquirements are fixed, second the computational complexit
that for this class of systems the optimal input is a piecewiss not a function of the number of regions in the solution

affine function (PWA) defined over a polyhedral partitionyng finally, the approach is readily parallelisable. These

of the feasible states. By pre—computing this PWA functiopoperties make the reverse-search approach very efficient
off-line, the on-line calculation of the control input then,, large pLP problems.

becomes one of evaluating the PWA function at the current +ro" remainder of this paper is organised as follows

.measure.d state, which allows for significant Improvement§e ion || provides required background on parametricline
in sampling speed [1]. _ _ . programming. Section Il introduces a polytope such that
The computation of the optimal PWA function, mappingyere is a one-to-one mapping from its vertices to the affine

the mgasured ;tate to th_e c_ontrol input, can be posed as mgces of the solution. The reverse-search approach Hedcri
following (multi)parametric linear program (pLP) [1]: in [5] is then applied to this polytope, and hence to the

min {¢"u | (z,u) € P}, (1) associated pLP in Section IV. The complexity of the method
u is analysed and compared with existing methods in Section V
wherez € R? is the parameter, or state, € R™ is the and two important extensions are given in Section VI.
optimiser, or control input and slack variables aRdis a
polyhedror, which incorporates the system constraints and NOTATION
is assumed bounded.
Several methods of computing the solution to pLP (1) f A € R™*™andI C {1,...,n}, then A, | € R 1]
can be found in the literature (e.g., [1]-[4]). All of these!S the matrix formed by the columns of indexed by!/.
approaches enumerate the affine regions of the optimal PW ¢ € R” is a vector therc; is the vector formed by the
function one at a time. As each new region is discoveregiéments ot in I. If R C {1,...,m} then we will use the

it must be compared with the list of regions seen so fdfotationAp . € RI*" to denote the matrix formed by the
in order to determine if it is new. This requires that thd©WS Of A indexed byR. Wherever the ordering of the index

set is important, we shall assume that the set is ordered from
1A polyhedron is the intersection of a finite number of haltsm the smallest index to the largest.



A polyhedronis the intersection of a finite number of whereFp ., & —A; LA, N, Fn. 2 1.
halfspaces and polytopeis a bounded polyhedron. P = Theorem 1 (Opfimality Condition)Let A be an element
{z |Az < b} is a polyhedron andl = {z |a”z < d} isa of the polyhedronD. A necessary and sufficient condition
halfspace such thaP C H, thenP N {:v ]aTx = d} isa for A to be a global minimum of the linear program (2) is
faceof P. One— and zero—dimensional faces are catdges ¢~ > 0 for all feasible directionsy at \.
andverticesrespectively. Definition 2: The normal cone td at \ is the orthogonal

A vectorr € R? defines aray asR = {ra' | « >0}. A complement of the tangent cone:
setC is called a cone if for every € C' and scalax > 0,
we haveaz € C. The columns of a matrix’ € R™*" Np(A) = {v ’ ?}.TV <0, VyeTp(N) }
are called thegeneratorsof the coneC = cone(F) 2 F_rom th(_e above Qef|g|t!on and (5), the normal cone to the
{Fa | a>0}. The generatolF, ; is called redundantif basic feasible solution™ is:

F.; € cone(F, (1, np ;) andirredundant or extreme Np(\B)={v| FTv <0} (6)
otherwise. _ - _
The Minkowski sunof two sets, denoted & B is defined A direct result of Theorem 1 and (6) is that the basic
asA@B2{z+y|xzcA yec B} solution A2, and hence the basB, is optimal if and only
if3
1. PRELIMINARIES 5
A. Linear Programming —c € Np(A7). 7
Consider the following linear program: C. Parametric Linear Programming
min {CT/\ B D} ’ @) The prQbIgm we will consider in this paper is the following
A parametric linear program:
where A € R™ is the optimiserc € R™ is a vector and the . T
. . . . Ex)"A| AXe Dy, ex 8
constraint polytopeD is defined by the matrid € R™*", o {( ) A } v (8)
m < n, rank A = m and the vectob € R™ as wherez € X is the parametert’ C R? is a polyhedron
D2{\| AAx=b, A>0}. (3) andE e R"*4 is a matrix of rankd, d < n. It is assumed
B throughout this paper that the set of feasible parameters
Any set B C {l,...,n} such that|B| = m and s full-dimensional, which is common to most pLP algo-
rank A, g = m is called abasis and we writt N = rithms [2], [7]. This assumption can be easily guaranteed
{1,....n}\B for its complement and callz and Ay the through a pre-processing operation [8]. The standard as-

basic and non-basic variables respectively. Every basis sumption is also made that pLP (8) has an optimal bounded
defines abasic solutiof \” to the linear equations in (3), solution for everyr € X4
which is given by restricting the non-basic constraintsdmz Definition 3 (Critical Region [4]):If B is a basis of

A\B — A*‘le, AB = 0. (4) pLP (8), then thecritical region %’B. is dgfined as the set

of all parameters:, € X such thatB is optimal forz = ..

A basis is called primal feasible if the resulting solutidsoa It can be seen from (7) and (8) that the critical regigp
satisfies the inequality constraints in (3); ;b > 0. Note is the polyhedral set
that all solutions represented by bases occur aéréex of T
the constraint polyhedro. Ap = {x ‘ FlEz<0}n&X
Our goal is to enumerate all full-dimensional critical Ggs.
I The approach adopted to handle potential degeneracy is
Definition 1 (Tangent cone [6])Let A be an element of lexicographic perturbatiorof the problem, where an arbi-

the polyhgdrolnD < Rn A vect_or'y € Rn IS sa|q_to be a trarily small symbolicvector is added to the right-hand side
feasible directiorat \ if there exists a strictly positive scalar of the constraints

« for which A + ay € D. The set of all feasible directions Theorem 2: [3] There exists a positive numbér > 0,

at A is called thetangent conend is writtenZp (\). such that wheneved < ¢, < ¢, the following perturbed

G|yen aBba3|sl_3, the e_xtreme_ feasible d|rect|ons at_the roblem is primal non-degenerate for every value of the
solution \® are given by increasing each non-basic Va”ablgarametetc c X

in a feasible (positive) direction:

B. Optimality Conditions

in {(Ex)"\ [AN=1b A>0 9
A=A — A:BA*,M@ Aiz 0, Avp =0 VieN e {( ) A te Az } ©)
The set of all convex combinations of the extreme rays givwheree” £ [ o 5 ... ¢ |. Furthermore, each criti-
the tangent cone: cal region is uniquely defined by a single basis, the relative

5 interiors of critical regions do not overlap and the union
Tp(A\") = cone(F), (5)
3The vector —F'T¢ is often referred to as the reduced castand
2Where clear from the context, we will refer to the basic dolutas  condition (7) then becomes> 0.
simply the solution. “Note that this also implies that the dual solution is fe@s#ud bounded.



of all full-dimensional critical regions is the set of fdalsi positive, one can see that the basis is optimal for pLP (11)
parametersy. for the value of the parameter if and only if it is also

In the remainder of this paper we will assume thabptimal for pLP (12) fori = z/t. [ |
the problem has been lexicographically perturbed and will Remark 1:Note that in order to satisfy the assumption
therefore not discuss possible degeneracy of the solgitiomade in Section 1I-C, we must here assume l{hdf c ]
The reader is referred to [3] for details on the computationds full rank.
mechanics of a lexicographically perturbed problem.

D. Affine Offset .
o ) The following theorem demonstrates that the goal of
The standard parametric linear program resulting fro, merating all bases that define full-dimensional cfitica
model predictive control problems takes the form [1]: regions can be re—posed as a vertex enumeration problem of
u*(z) = argmin {—bTu | ATu < Ex+c}, (10) @ linear transform Qf the co.nstraint.polyto;iﬂa .

u Theorem 4:1f B is a feasible basis of pLP (8) and® is
wherez € X is the measured state vector, and the decisiathe basic solution, the® defines a full-dimensional critical
variableu is a sequence of inputs that will be applied to theegion if and only if E”\? is a vertex of the polytope
system and some slack variables. The goal is to compute ai’'D £ {ET/\ | AA=0b, A > O}.
optimal inputu*(z) as a function of the state. The set of Proof: pLP (8) can be re-written in the following form
feasible statest’ is assumed to be a polytope and thereforénrough the change of variable2 ET X:
bounded, and the pLP (10) is assumed to have a bounded . T’ -
optimiser for every feasible value of the parameter X min {z"2 | z€E'D}, (13)

In this section we will demonstrate how to transform I . .
pLP (10) into an equivalent pLP of the form used in thislt follows from (7) and Definition 3 that is in the crit-

; ; ) | regionZp if and only if —z is in th I
paper (8). We begin by posing the dual of pLP (10): ffaETf(g}_lc%n/\Bf FI:inetl':IIy (:Eey r:ormxallf:clge o? ;%r;?r%Ti\ane

IIl. PLP AS VERTEX ENUMERATION

min {(Ez +¢)"A | AA=0b, A\>0} (11) in a polytopeE™ D is full-dimensional if and only " \?
A _ “is a vertex of ET D [10, §13.2.2]. ]
The pLP (10) is assumed to have a bounded optimal solution
for every feasible value of the parameter. Therefore, eshasi IV. REVERSESEARCH

optimal for the dual problem (11) if and only if it is optimal
for the primal (10) [9]. Given an optimal basisof pLP (11),
the primal optimiser of (10) is given by:

In this section an algorithm based on the reverse search
approach of Avis and Fukuda [11] is introduced. The goal of
reverse search is to remove the need to store or operate on

u*(z) = AIE(EB,*I +¢B), T € R the critical regions that have been discovered so far, tiagul
' in constant space complexity and a time complexity that is

The parametric linear program (11) differs from thajinear in the number of regions in the solution.
considered in this paper by the affine offseThe following Reverse search achieves its aim by convertingkeeton
theorem demonstrates that any problem of the form (11) cgj 4 polytope, or graph formed from its vertices and edges,
be homogenizedhto an equivalent problem of the form usedinig g tree. The root of the tree is taken to be any critical-

in this paper. _ _ region defining basis; we shall call this rodt. If V is
Theorem 3:B is an optimal basis of pLP (11) for the {he set of vertices of the polytope, a single-valued mapping
parameterr if and only if it is an optimal basis of G : V\{R} — V is defined over the remaining vertices.
ANT This function is defined in such a way thatdf.) is applied
min <[ E c] <x>> M AN=b, A>03, (12) recursively to any vertex we will eventually arrive at the
A t root R. In other wordsG(-) defines a unique directed path

from every vertex to the root. Note that the definition implie
that there are no circuits in the graph and that for each
vertex there is exactly one edge pointing towards the rodt an

: > _ possibly several pointing away. As a result, the mapgitg

is the same in both cases for the basic solutiéh Let ' gefines a tree over the polytope skeleton. The reverse search

be a generator matrix for the normal cone\ét, cone(F) = gigorithm proceeds to enumerate all vertices ryersing
N(A7). Then the optimality condition (7) is Sat[Sf'Ed if andihe paths taken to the root and enumerating this tree in a

. T —fi i
only if FI'(Exz +c¢) > 0 and FI'[ E ¢ | >0 depth-first fff‘Sh'On' i o
t The algorithm begins at the root, chooses the first incom-
for pLP (11) and pLP (12) respectively. Sineds strictly ing path and follows it backwards one step to a new vertex.
A recursive call is then made on this new vertex, which also
5Note that our definition of a critical region differs from thgenerally defines a tree. Once the first path has been enumerated, the
found in the literature. However, under the assumption that problem | ith h d d ilallb F]
is non—degenerate, or equivalently, lexicographicallytysbed, the two algorithm moves onto the second, and so on until all branches

definitions are equivalent. have been enumerated.

for parametert = x/t andt > 0.
Proof: Let B be a feasible basis of pLP (11). Cleaiby
is also a feasible basis of (12) and the normal caf@”?)



The key to the efficiency of this approach is that alAlgorithm 1 Multiparametric Linear Programming: Reverse
decisions can be made based losal information. When Search for Enumeration
a new vertex is discovered it does not need to be checkd@Put:  Basis 2 of pLP (8) such thatZ” \ is a vertex of 57 D
against previously discovered vertices because if it igherr Functionsg(:) andneighbour(, )

. . The dimensionnaxzcnt of the polytopeD
down the tree, we can be certain that it has not been see&utput: All bases that define critical regions

before. 1 B—R Begin at the root
Each vertexv € ETD is joined along the edges that # ;’”t iRO Neighbour counter
3: ReportR

intersect atv to a set of adjacent vertices, which are the
) ; . 4: loop
neighbours ofv. The algorithm must determine from these
. . . . Downward traverse
edges which ones define paths moving down the tree, which.\ hiie cnt < mazent do

one up and which neither. There are a maximurmoef m 6: Incrementent «—— ent + 1

edges leaving each vertex, which is the dimension of ther: Compute neighbounext «— neighbour(B, cnt)
polytope D®. We assume a functiomeighbour : V x N — 8: if next # 0 andG(next) = B then

V U {0} that maps a vertew € ETD and an integer 12:» enﬁf"e”’ ent < 0, Report3

i€ {1,...,n—m} to the set of vertices that neighbour ;. eng while

or _to the Qmp_ty set if _integ_erdoes_ r_10t defi_ne a neighbour. Upward traverse
This function is described in detail in Section IV-A below. 15 it B £ R then

The proposed reverse—search method is shown as Algas: B' «— B, B— G(B), ecnt — 0 Move up the tree
rithm 1, which is a standard implementation and is noti4 repeat Restorecnt
B ; B 15: ent «— cent + 1
m_uch dlf'fel’el’_lt fr_om the generic algorithm _of [5]. The o until Neighbour(B, ent) — B
differences arise in the definitions of the functigh§) and ;. .4

neighbour(-,-), which allow the reverse—search algorithm 1g: end loop

to be applied to the parametric linear programming problem.
The process is a simple depth-first search, where the cost

function G(-) is used to avoid the requirement of a stacknat defines a verteE” A5 of ET D. The function returns a

and hence achieve fixed memory requirements. The iNNgksis3 of D that defines the vertek” A2, which is theit"

‘while” loop (Stepss-11) first moves the algorithm down 10 neighbour ofE” AB. The notion of ordering over neighbours

a leaf of the tree. Steps then backtracks up the tree oneanq an efficient computational method to find them is given
level and Steps4-18 determine which branch the algorithm;, this section.

followed to get to the leaf. The neighbour countet is then Two vertices of a polytope are called neighbours, or
incremented by one (Steg) and the next branch is followed ggjacent, if they are contained in the same edge, or one—
back down to a leaf. By contlnu_mg this u_ntll the_re_ are Njimensional face of the polytope. The edges of a poly®Bpe
more branches to follow, the entire tree will be visited in gnat intersect at a vertexc P are given by the intersection
depth—first manner. of P with the extreme rays of the tangent cofig(v) [9].

~ An example reverse-search tree is shown in Figure 1. Thee following lemma describes the tangent cone of a basic
figure on the left shows the path that the functig) would ¢4 ution of ETD.

take from each vertex of the cube, and the figure on the right | s ima 1:1f ) is an element in the polytopB, then
is the resulting reverse search tree. '

Terp(ETN) = ETTH())
Proof: From Definition 1,y € R? is in ETTp()) if
and only if there exists a scalar> 0 and a vectoly such
that

AT
/?76

g d

v = ETg, A+ageD. (14)

By assumption is rankd and therefore such a always
exists. Under the mapping”, (14) becomes
(a) Path that the functior(b) Reverse search tree ET\ taye ET D,

G(+) would take from each

tex to the rootR L . .
veriextfo e foo which is true if and only ify € Tgrp(ETN). [

Fig. 1. Reverse Search lllustration (Figure taken from)11] Lemma 1 and (5) give a description of the tangent cone
to a vertexEX\B of ET D defined by the basi®:
A. Neighbour Function

This section defines the functioli = neighbour(B, i),
which takes an integer and a basisB of the polytopeD  \here Fp, 2 —A7LA. N, Fy. 2 1. Note however,

BT )
SRecall that the polytope is assumed to be in general position due tothat not every columne F*,i defines an extreme ray of
the lexicographic perturbation 2 Terp(ETAB), as some of them may well be redundant.

Terp(ETAB) = cone(ET F)



Remark 2: Testing if a ray is extreme or redundant re-B. FunctionG(-)

quires a single linear p.rolgrarn of dime_nsidn This_ is_ a We follow a similar approach to [11] and define the func-
standard redundancy elimination operation, which is irt fag;,, G(-) via the simplex algorithm. Consider the following
equivalent to the redundancy elimination operations ireoth |,qr program:

pLP approaches [1]-[4]. The reader is reffered to [12] for

computational details. ) min {p”"z | z€ E'D}, 17)
We can now define the functioB = neighbour(B,i). :

If the ray r* £ {ETF*,ia | o> 0} is an extreme ray of Where the cosp is chosen such that it is not parallel to any

the tangent con@y+ (ET AB), then the neighbour function of the edges ofs” D®. At each vertexs € E* D, there are
returns the basi®€ such thatET A\ is the vertex of(ri @ @ number of edges intersectingwathat can be followed to
{ETAE})NET D, which is different fromE” \”. Note that  @n adjacent vertex (the extreme rays of the tangent cone).
there are exactly two vertices on each edge. If another indd%ie functiong(-) chooses the edge along which the cpst
j defines the same ray, i.&67F,; = ETF,;, then the decreases most rapidly. Note that this edge is unique via the
neighbour function returns3 for the smallest index, and above assumption. If the cost decreases most rapidly along
the empty set for all others. Similarly, if an index defineghe rayr* of the tangent cone, then the functigy) returns
a redundant ray, then the empty set is returned. the neighbour in the directiorf by computing LP (15).

1) Efficient Computation of NeighbourThe following .
theorem provides an efficient method of computing the bas% G() Complexity
that represents the adjacent vertex given an irredundgnt ra Evaluating the functionG(-) requires the determination

of the tangent cone. of the irredundant extreme ray of the tangent cone along
Theorem 5:If B is a feasible basis ofD, ETAE is which the cost decreases most rapidly. Finding the set of
a vertex of ETD and rt = {ETF*,ia| a > 0} is an all irredundant rays requires, in the worst case— m

irredundant ray of the tangent cofig@r, (ET\P), then the d—dimensional redundancy elimination LPs. Computing the
adjacent vertex of2” A2 in the directionr* is the optimal neighbour requires one LP (15) of dimension

basis of the LP: Og = O(eLP(d,e) + LP(m,n)), (18)
min {(E"F.;))TETA | Xe D, \; =0, Vj ¢ T}, (15)
A wheree £ n — m.
whereT £ {j | 3¢ >0, ETF,; = ETF, je} andFp, £
~ A BA N, Fn. 2 1.
Proof: The adjacent vertex is reached by movingA. Time Complexity

i T\B T T\B
along edge(r’ & { ETAP}) N ETD away fEEom ETAT. The time complexity of the reverse search enumeration
Every pointA € D can be written as\ = A” + Iy, for - mathod s clearly a function of Steps 8, 13 and 16 in
somevy > 0, where I is as defined in the statement OfAIgorithm 1.

the theorem. Consider the colunf, ; and the resulting
points A\ = AP + F.;v;, 75 > 0. Clearly, ET\ €
(r'e {ETAP}) if and only if there exists amx > 0
such thatETF, ; = ETF, ;a. Therefore, the face) of

V. COMPLEXITY

For each critical region in the solution, the reverse search
algorithm traverses once down the tree past the region
(Stepsr—10) and once up away from the region (Stapsis).

p ; B A In the worst case, each region can havé n — m neigh-
D such thatE"Q = (r' & {ETA"}) N E"D is given by ;s (the dimension of the polytop®) and therefore the

Q={A| )‘i_: 0’_ VigTyND. computational complexity of the reverse—search algorigim
The LP given in the statement of the theorem then max-

imises in the direction of the ray’, while restricting\ to Ors = O(Ny(€(Oneign + Og()) + €Oneign + Og()),
be inQ. [ |

2) neighbour(-,-) Complexity: Computing the'” neigh-
bour of the basisB requires two linear programs. The
first tests the redundancy of the rayin the tangent cone where N, is the number of critical regions in the solution.
Terp(ETAB), and the second, LP (15), computes the optiFrom Equations (16), (18) and (19), the complexity can be
mal basis of the neighbour. EP(v, w) is the complexity of re-written as:
a single linear program of dimensien with w constraint,
then in the worst case, the complexity of the neighbour
function is

Steps7-10 Steps13-16
(19)

O,s = O(N,(e?LP(d,e) + eLP(m,n))). (20)

Equation (20) demonstrates that the complexity of the
Oneign = O(LP(d,e) + LP(m,n)), (16) reverse—search algorithm isliaear function of the size of

the output (number of critical regions in the solution).
where the dimension of the parameiers d, the constraint
matrix A is in R™*" and we define the variableZ n —m. 8This ensures that there will be no dual—degeneracy in LP, (@fich is
a condition that can be made almost certain via a random teelecf p.
7If the LP is written in the form (2)(3), then the dimensionrisand the  Certainty can be achieved through a primal-dual lexicdg@perturbation
number of constraints ia, for A € R"*™, as outlined in [3].



B. Space Complexity

One of the most important features of reverse—search is
the small memory requirement. Since the algorithm does not
need to compare a newly discovered region with those seen
before, the only data that must be stored in main memory
is the datal’, A, b of the pLP, the current basiB and the
neighbour countnt. The space complexity of the algorithm
is therefore constar®(1).

w/

(a) PolytopeET D (b) Reverse—Search Tree

Fig. 2. Reverse Search Tree for Example VII

C. Comparison to Existing Approaches Nt

All current approaches for computing solutions tOJ*(ch):minZ(HQa?kHoo+||Ruk|\oo)+\|Qfo||oo

(multi)parametric linear programs require that as each new k=0
region is discovered, an operation must be carried out that subject to
is a function of all regions discovered so far. It followsttha 11 1
both the space and time complexities of these algorithms Tht1 = ( )l’k + ( )uk
grows in a super-linear fashion with the size of the output. . 0.5
It is important to state that while the complexity of the llzklloo <5, lup-1lloo <1, VEE{L,...,N},

proposed reverse search approach is superior to currentyhere the objective weight matrices are set}te= Q; =
algorithms, there is a large complexity coefficient hidden i ; and R = 1. The task is to regulate the system to the origin
the big-© notation. As a result, the reverse—search methaghile fulfilling the input and state constraints. Conversif

as given as Algorithm 1 is slower for small problems thanhe example to the form of pLP (1) is discussed in [2]. The
the current most efficient implementations available in thgoution consists of4 critical regions and can be seen as the
literature and only comes into its own on larger examplegolytope E” D and the resulting reverse—search tree, which
However, the following section introduces extensions t@re shown in Figure 2.

the reverse—search approach that allow the parallelfsatio Space limitations prevent the inclusion of detailed ex-
of the method and a significant computational efficiency;lmp|es in this paper. However, code and examples will be

improvement at the cost of an increase in memory usage.available as part of the Multiparametric Toolbox MPT [13].

VI. EXTENSIONS
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the tree can be assigned to a different processor and no data

will need to pass between the machines, since all decisiorﬁ]
can be made locally using the functigi(-). If the tree is
well-balanced this will result in a speed improvement equal
to the number of processors used, although there ig no 2
priori guarantee that a problem will be well-balanced.

Second, the computation speed can be significantly imf3]
proved through the use of memory. Storing the path taken
down the tree in a stack removes the requirement to dgy
any computations while traversing up the tree (Stepss).
Recording adjacent critical regions that are discoverethdu
the downward traverse (Stepsi1), but are not children of
the current critical region removes any duplication of work
Note that because none of the stored data is strictly retdquirem
for the implementation of the algorithm, it is possible to
set the amount of memory used to a fixed value. This usés]
of memory makes the number of linear programs required
exactly equal to that of the current fastest approachedewhi (g
still maintaining the complexity as a linear function of the[10]
number of regions, the ability to parallelise the algorithm 11]
and arbitrarily bound memory usage. Future implementatiorg
will take advantage of this ability.

(5]
(6]

[12]
VII.

Consider the following problem:

EXAMPLE [13]
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