
Reverse Search for Parametric Linear Programming

Colin N. Jones
Automatic Control Laboratory

Swiss Federal Institute of Technology
Physikstrasse 3, CH-8092 Zurich

Switzerland
colin.jones@cantab.net

Jan M. Maciejowski
Control Group, Department of Engineering

University of Cambridge
Trumpington St, Cambridge, UK

jmm@eng.cam.ac.uk

Abstract— This paper introduces a new enumeration tech-
nique for (multi)parametric linear programs (pLPs) based on
the reverse–search paradigm. We prove that the proposed
algorithm has a computational complexity that is linear in the
size of the output (number of so-called critical regions) and
a constant space complexity. This is an improvement over the
quadratic and linear computational and space complexitiesof
current approaches.

Current implementations of the proposed approach become
faster than existing methods for large problems. Extensions
of this method are proposed that make the computational
requirements lower than those of existing approaches in all
cases, while allowing for efficient parallelisation and bounded
memory usage.

I. INTRODUCTION

It is standard practice to implement a model predictive
controller (MPC) by solving an optimisation problem on–
line. For example, when the system is linear, the constraints
are polyhedral and the cost is linear (e.g.1− or∞−norm),
this amounts to computing a single linear program at each
sampling instant. In recent years, it has become well-known
that for this class of systems the optimal input is a piecewise
affine function (PWA) defined over a polyhedral partition
of the feasible states. By pre–computing this PWA function
off–line, the on–line calculation of the control input then
becomes one of evaluating the PWA function at the current
measured state, which allows for significant improvements
in sampling speed [1].

The computation of the optimal PWA function, mapping
the measured state to the control input, can be posed as the
following (multi)parametric linear program (pLP) [1]:

min
u

{
cT u | (x, u) ∈ P

}
, (1)

where x ∈ R
d is the parameter, or state,u ∈ R

m is the
optimiser, or control input and slack variables andP is a
polyhedron1, which incorporates the system constraints and
is assumed bounded.

Several methods of computing the solution to pLP (1)
can be found in the literature (e.g., [1]–[4]). All of these
approaches enumerate the affine regions of the optimal PWA
function one at a time. As each new region is discovered
it must be compared with the list of regions seen so far
in order to determine if it is new. This requires that the

1A polyhedron is the intersection of a finite number of halfspaces.

set of discovered regions be stored in main memory for
comparison, and makes the complexity of discovering a new
region a function of the number of regions discovered so
far. The number of regions in the optimal PWA function
is known to be worst–case exponential in the size of the
data [1], and to grow very quickly with the dimension of the
parameter, and therefore the requirement to store and search
against the entire set of regions is the factor that limits the
size of problems that can be tackled by currently available
algorithms.

In this paper we present a new method of computing the
optimiser of pLP (1) based on areverse–searchapproach [5].
By defining a tree over the set of regions in the solution,
reverse–search is a depth–first enumeration method in which
all decisions can be made based onlocal information and
therefore the set of regions seen so far does not need
to be stored in main memory, or consulted when a new
region is discovered. There are three benefits of the proposed
method over existing approaches: First, the online memory
requirements are fixed, second the computational complexity
is not a function of the number of regions in the solution
and finally, the approach is readily parallelisable. These
properties make the reverse-search approach very efficient
for large pLP problems.

The remainder of this paper is organised as follows.
Section II provides required background on parametric linear
programming. Section III introduces a polytope such that
there is a one-to-one mapping from its vertices to the affine
pieces of the solution. The reverse-search approach described
in [5] is then applied to this polytope, and hence to the
associated pLP in Section IV. The complexity of the method
is analysed and compared with existing methods in Section V
and two important extensions are given in Section VI.

NOTATION

If A ∈ R
m×n and I ⊆ {1, . . . , n}, thenA∗,I ∈ R

m×|I|

is the matrix formed by the columns ofA indexed byI.
If c ∈ R

n is a vector thencI is the vector formed by the
elements ofc in I. If R ⊆ {1, . . . , m} then we will use the
notationAR,∗ ∈ R

|R|×n to denote the matrix formed by the
rows ofA indexed byR. Wherever the ordering of the index
set is important, we shall assume that the set is ordered from
the smallest index to the largest.

A polyhedron is the intersection of a finite number of
halfspaces and apolytopeis a bounded polyhedron. IfP =
{x |Ax ≤ b} is a polyhedron andH =

{
x
∣
∣ aT x ≤ d

}
is a

halfspace such thatP ⊆ H , thenP ∩
{
x
∣
∣ aT x = d

}
is a

faceof P . One– and zero–dimensional faces are callededges
andverticesrespectively.

A vector r ∈ R
d defines aray asR = {rα | α ≥ 0}. A

setC is called a cone if for everyx ∈ C and scalarα ≥ 0,
we haveαx ∈ C. The columns of a matrixF ∈ R

m×n

are called thegeneratorsof the coneC = cone(F) ,

{Fα | α ≥ 0}. The generatorF∗,i is called redundant if
F∗,i ∈ cone(F∗,{1,...,n}\{i}) and irredundant, or extreme
otherwise.

TheMinkowski sumof two sets, denotedA⊕B is defined
asA⊕B , {x + y | x ∈ A, y ∈ B }.

II. PRELIMINARIES

A. Linear Programming

Consider the following linear program:

min
λ

{
cT λ | λ ∈ D

}
, (2)

whereλ ∈ R
n is the optimiser,c ∈ R

n is a vector and the
constraint polytopeD is defined by the matrixA ∈ R

m×n,
m ≤ n, rankA = m and the vectorb ∈ R

m as

D , {λ | Aλ = b, λ ≥ 0} . (3)

Any set B ⊂ {1, . . . , n} such that |B| = m and
rankA∗,B = m is called a basis and we write N =
{1, . . . , n} \B for its complement and callλB and λN the
basic and non-basic variables respectively. Every basisB
defines abasic solution2 λB to the linear equations in (3),
which is given by restricting the non-basic constraints to zero

λB
B = A−1

∗,Bb, λB
N = 0. (4)

A basis is called primal feasible if the resulting solution also
satisfies the inequality constraints in (3):A−1

∗,Bb ≥ 0. Note
that all solutions represented by bases occur at avertexof
the constraint polyhedronD.

B. Optimality Conditions

Definition 1 (Tangent cone [6]):Let λ be an element of
the polyhedronD ⊆ R

n. A vector γ ∈ R
n is said to be a

feasible directionat λ if there exists a strictly positive scalar
α for which λ + αγ ∈ D. The set of all feasible directions
at λ is called thetangent coneand is writtenTD(λ).

Given a basisB, the extreme feasible directions at the
solutionλB are given by increasing each non-basic variable
in a feasible (positive) direction:

λB = λB
B −A−1

∗,BA∗,iλi, λi ≥ 0, λN\{i} = 0 ∀i ∈ N

The set of all convex combinations of the extreme rays give
the tangent cone:

TD(λB) = cone(F), (5)

2Where clear from the context, we will refer to the basic solution as
simply the solution.

whereFB,∗ , −A−1
∗,BA∗,N , FN,∗ , I.

Theorem 1 (Optimality Condition):Let λ be an element
of the polyhedronD. A necessary and sufficient condition
for λ to be a global minimum of the linear program (2) is
cT γ ≥ 0 for all feasible directionsγ at λ.

Definition 2: The normal cone toD atλ is the orthogonal
complement of the tangent cone:

ND(λ) ,
{
v
∣
∣ vT γ ≤ 0, ∀γ ∈ TD(λ)

}

From the above definition and (5), the normal cone to the
basic feasible solutionλB is:

ND(λB) =
{
v
∣
∣ FT v ≤ 0

}
(6)

A direct result of Theorem 1 and (6) is that the basic
solutionλB , and hence the basisB, is optimal if and only
if3

−c ∈ ND(λB). (7)

C. Parametric Linear Programming

The problem we will consider in this paper is the following
parametric linear program:

min
λ

{
(Ex)T λ | λ ∈ D

}
, x ∈ X (8)

where x ∈ X is the parameter,X ⊆ R
d is a polyhedron

andE ∈ R
n×d is a matrix of rankd, d < n. It is assumed

throughout this paper that the set of feasible parametersX
is full–dimensional, which is common to most pLP algo-
rithms [2], [7]. This assumption can be easily guaranteed
through a pre-processing operation [8]. The standard as-
sumption is also made that pLP (8) has an optimal bounded
solution for everyx ∈ X .4

Definition 3 (Critical Region [4]): If B is a basis of
pLP (8), then thecritical region RB is defined as the set
of all parametersx◦ ∈ X such thatB is optimal forx = x◦.

It can be seen from (7) and (8) that the critical regionRB

is the polyhedral set

RB =
{
x
∣
∣ FT Ex ≤ 0

}
∩ X

Our goal is to enumerate all full–dimensional critical regions.
The approach adopted to handle potential degeneracy is

lexicographic perturbationof the problem, where an arbi-
trarily small symbolicvector is added to the right-hand side
of the constraints.

Theorem 2: [3] There exists a positive numberδ > 0,
such that whenever0 < ǫ0 < δ, the following perturbed
problem is primal non-degenerate for every value of the
parameterx ∈ X :

min
λ

{
(Ex)T λ |Aλ = b + ǫ, λ ≥ 0

}
(9)

whereǫT ,
[

ǫ0 ǫ20 . . . ǫm
0

]
. Furthermore, each criti-

cal region is uniquely defined by a single basis, the relative
interiors of critical regions do not overlap and the union

3The vector −F T c is often referred to as the reduced costc̄ and
condition (7) then becomes̄c ≥ 0.

4Note that this also implies that the dual solution is feasible and bounded.

of all full–dimensional critical regions is the set of feasible
parametersX .

In the remainder of this paper we will assume that
the problem has been lexicographically perturbed and will
therefore not discuss possible degeneracy of the solution.5

The reader is referred to [3] for details on the computational
mechanics of a lexicographically perturbed problem.

D. Affine Offset

The standard parametric linear program resulting from
model predictive control problems takes the form [1]:

u⋆(x) = argmin
u

{
−bT u

∣
∣ AT u ≤ Ex + c

}
, (10)

wherex ∈ X is the measured state vector, and the decision
variableu is a sequence of inputs that will be applied to the
system and some slack variables. The goal is to compute an
optimal inputu⋆(x) as a function of the statex. The set of
feasible statesX is assumed to be a polytope and therefore
bounded, and the pLP (10) is assumed to have a bounded
optimiser for every feasible value of the parameterx ∈ X .

In this section we will demonstrate how to transform
pLP (10) into an equivalent pLP of the form used in this
paper (8). We begin by posing the dual of pLP (10):

min
λ

{
(Ex + c)T λ | Aλ = b, λ ≥ 0

}
(11)

The pLP (10) is assumed to have a bounded optimal solution
for every feasible value of the parameter. Therefore, a basis is
optimal for the dual problem (11) if and only if it is optimal
for the primal (10) [9]. Given an optimal basisB of pLP (11),
the primal optimiser of (10) is given by:

u⋆(x) = A−T
∗,B(EB,∗x + cB), x ∈ RB

The parametric linear program (11) differs from that
considered in this paper by the affine offsetc. The following
theorem demonstrates that any problem of the form (11) can
behomogenizedinto an equivalent problem of the form used
in this paper.

Theorem 3:B is an optimal basis of pLP (11) for the
parameterx if and only if it is an optimal basis of

min
λ̂







(

[
E c

]

(

x̂

t

))T

λ̂
∣
∣
∣ Aλ̂ = b, λ̂ ≥ 0






, (12)

for parameter̂x = x/t and t > 0.
Proof: Let B be a feasible basis of pLP (11). ClearlyB

is also a feasible basis of (12) and the normal coneN (λB)
is the same in both cases for the basic solutionλB. Let F
be a generator matrix for the normal cone atλB , cone(F) =
N (λB). Then the optimality condition (7) is satisfied if and

only if FT (Ex + c) ≥ 0 and FT
[

E c
]

(

x̂

t

)

≥ 0

for pLP (11) and pLP (12) respectively. Sincet is strictly

5Note that our definition of a critical region differs from that generally
found in the literature. However, under the assumption thatthe problem
is non–degenerate, or equivalently, lexicographically perturbed, the two
definitions are equivalent.

positive, one can see that the basis is optimal for pLP (11)
for the value of the parameterx if and only if it is also
optimal for pLP (12) forx̂ = x/t.

Remark 1:Note that in order to satisfy the assumption
made in Section II-C, we must here assume that

[
E c

]

is full rank.

III. PLP AS VERTEX ENUMERATION

The following theorem demonstrates that the goal of
enumerating all bases that define full–dimensional critical
regions can be re–posed as a vertex enumeration problem of
a linear transform of the constraint polytopeD.

Theorem 4:If B is a feasible basis of pLP (8) andλB is
the basic solution, thenB defines a full–dimensional critical
region if and only if ET λB is a vertex of the polytope
ET D ,

{
ET λ | Aλ = b, λ ≥ 0

}
.

Proof: pLP (8) can be re-written in the following form
through the change of variablez , ET λ:

min
z

{
xT z

∣
∣ z ∈ ET D

}
, (13)

It follows from (7) and Definition 3 thatx is in the crit-
ical region RB if and only if −x is in the normal cone
NET D(ET λB). Finally, the normal cone of a pointET λB

in a polytopeET D is full–dimensional if and only ifET λB

is a vertex ofET D [10, §13.2.2].

IV. REVERSESEARCH

In this section an algorithm based on the reverse search
approach of Avis and Fukuda [11] is introduced. The goal of
reverse search is to remove the need to store or operate on
the critical regions that have been discovered so far, resulting
in constant space complexity and a time complexity that is
linear in the number of regions in the solution.

Reverse search achieves its aim by converting theskeleton
of a polytope, or graph formed from its vertices and edges,
into a tree. The root of the tree is taken to be any critical-
region defining basis; we shall call this rootR. If V is
the set of vertices of the polytope, a single-valued mapping
G : V \ {R} → V is defined over the remaining vertices.
This function is defined in such a way that ifG(·) is applied
recursively to any vertex we will eventually arrive at the
root R. In other words,G(·) defines a unique directed path
from every vertex to the root. Note that the definition implies
that there are no circuits in the graph and that for each
vertex there is exactly one edge pointing towards the root and
possibly several pointing away. As a result, the mappingG(·)
defines a tree over the polytope skeleton. The reverse search
algorithm proceeds to enumerate all vertices byreversing
the paths taken to the root and enumerating this tree in a
depth-first fashion.

The algorithm begins at the root, chooses the first incom-
ing path and follows it backwards one step to a new vertex.
A recursive call is then made on this new vertex, which also
defines a tree. Once the first path has been enumerated, the
algorithm moves onto the second, and so on until all branches
have been enumerated.

The key to the efficiency of this approach is that all
decisions can be made based onlocal information. When
a new vertex is discovered it does not need to be checked
against previously discovered vertices because if it is further
down the tree, we can be certain that it has not been seen
before.

Each vertexv ∈ ET D is joined along the edges that
intersect atv to a set of adjacent vertices, which are the
neighbours ofv. The algorithm must determine from these
edges which ones define paths moving down the tree, which
one up and which neither. There are a maximum ofn−m
edges leaving each vertex, which is the dimension of the
polytopeD6. We assume a functionneighbour : V ×N→
V ∪ {∅} that maps a vertexv ∈ ET D and an integer
i ∈ {1, . . . , n−m} to the set of vertices that neighbourv,
or to the empty set if integeri does not define a neighbour.
This function is described in detail in Section IV-A below.

The proposed reverse–search method is shown as Algo-
rithm 1, which is a standard implementation and is not
much different from the generic algorithm of [5]. The
differences arise in the definitions of the functionsG(·) and
neighbour(·, ·), which allow the reverse–search algorithm
to be applied to the parametric linear programming problem.

The process is a simple depth-first search, where the cost
function G(·) is used to avoid the requirement of a stack
and hence achieve fixed memory requirements. The inner
‘while’ loop (Steps5–11) first moves the algorithm down to
a leaf of the tree. Step13 then backtracks up the tree one
level and Steps14–18 determine which branch the algorithm
followed to get to the leaf. The neighbour countercnt is then
incremented by one (Step6) and the next branch is followed
back down to a leaf. By continuing this until there are no
more branches to follow, the entire tree will be visited in a
depth–first manner.

An example reverse-search tree is shown in Figure 1. The
figure on the left shows the path that the functionG(·) would
take from each vertex of the cube, and the figure on the right
is the resulting reverse search tree.

R

f

a b

e

dg

c

ET D

(a) Path that the function
G(·) would take from each
vertex to the rootR

R

a

b

e

f

g
c

d

(b) Reverse search tree

Fig. 1. Reverse Search Illustration (Figure taken from [11])

A. Neighbour Function

This section defines the function̂B = neighbour(B, i),
which takes an integeri and a basisB of the polytopeD

6Recall that the polytopeD is assumed to be in general position due to
the lexicographic perturbation 2

Algorithm 1 Multiparametric Linear Programming: Reverse
Search for Enumeration
Input: BasisR of pLP (8) such thatET λ is a vertex ofET D

FunctionsG(·) andneighbour(·, ·)
The dimensionmaxcnt of the polytopeD

Output: All bases that define critical regions
1: B ←− R Begin at the root
2: cnt←− 0 Neighbour counter
3: ReportR
4: loop

Downward traverse
5: while cnt < maxcnt do
6: Incrementcnt←− cnt + 1
7: Compute neighbournext←− neighbour(B, cnt)
8: if next 6= ∅ andG(next) = B then
9: B ←− next, cnt←− 0, ReportB

10: end if
11: end while

Upward traverse
12: if B 6= R then
13: B′ ←− B, B ←− G(B), cnt←− 0 Move up the tree
14: repeat Restorecnt
15: cnt←− cnt + 1
16: until Neighbour(B, cnt) = B′

17: end if
18: end loop

that defines a vertexET λB of ET D. The function returns a
basisB̂ of D that defines the vertexET λB̂ , which is theith

neighbour ofET λB . The notion of ordering over neighbours
and an efficient computational method to find them is given
in this section.

Two vertices of a polytope are called neighbours, or
adjacent, if they are contained in the same edge, or one–
dimensional face of the polytope. The edges of a polytopeP
that intersect at a vertexv ∈ P are given by the intersection
of P with the extreme rays of the tangent coneTP (v) [9].
The following lemma describes the tangent cone of a basic
solution ofET D.

Lemma 1: If λ is an element in the polytopeD, then

TET D(ET λ) = ET TD(λ)
Proof: From Definition 1,γ ∈ R

d is in ET TD(λ) if
and only if there exists a scalarα > 0 and a vectorg such
that

γ = ET g, λ + αg ∈ D. (14)

By assumption,E is rank d and therefore such ag always
exists. Under the mappingET , (14) becomes

ET λ + αγ ∈ ET D,

which is true if and only ifγ ∈ TET D(ET λ).
Lemma 1 and (5) give a description of the tangent cone

to a vertexET λB of ET D defined by the basisB:

TET D(ET λB) = cone(ET F)

where FB,∗ , −A−1
∗,BA∗,N , FN,∗ , I. Note however,

that not every columnET F∗,i defines an extreme ray of
TET D(ET λB), as some of them may well be redundant.

Remark 2:Testing if a ray is extreme or redundant re-
quires a single linear program of dimensiond. This is a
standard redundancy elimination operation, which is in fact
equivalent to the redundancy elimination operations in other
pLP approaches [1]–[4]. The reader is reffered to [12] for
computational details.

We can now define the function̂B = neighbour(B, i).
If the ray ri ,

{
ET F∗,iα | α ≥ 0

}
is an extreme ray of

the tangent coneTET D(ET λB), then the neighbour function
returns the basiŝB such thatET λB̂ is the vertex of(ri ⊕
{
ET λB

}
)∩ET D, which is different fromET λB. Note that

there are exactly two vertices on each edge. If another index
j defines the same ray, i.e.ET F∗,i = ET F∗,j , then the
neighbour function returnŝB for the smallest index, and
the empty set for all others. Similarly, if an index defines
a redundant ray, then the empty set is returned.

1) Efficient Computation of Neighbour:The following
theorem provides an efficient method of computing the basis
that represents the adjacent vertex given an irredundant ray
of the tangent cone.

Theorem 5:If B is a feasible basis ofD, ET λB is
a vertex of ET D and ri =

{
ET F∗,iα | α ≥ 0

}
is an

irredundant ray of the tangent coneTET D(ET λB), then the
adjacent vertex ofET λB in the directionri is the optimal
basis of the LP:

min
λ

{
(ET F∗,i)

T ET λ | λ ∈ D, λj = 0, ∀j /∈ T
}

, (15)

whereT ,
{
j
∣
∣ ∃ǫ > 0, ET F∗,i = ET F∗,jǫ

}
andFB,∗ ,

−A−1
∗,BA∗,N , FN,∗ , I.
Proof: The adjacent vertex is reached by moving

along edge
(
ri ⊕

{
ET λB

})
∩ ET D away from ET λB.

Every pointλ ∈ D can be written asλ = λB + Fγ, for
someγ ≥ 0, where F is as defined in the statement of
the theorem. Consider the columnF∗,j and the resulting
points λ = λB + F∗,jγj , γj ≥ 0. Clearly, ET λ ∈
(
ri ⊕

{
ET λB

})
if and only if there exists anα ≥ 0

such thatET F∗,j = ET F∗,iα. Therefore, the faceQ of
D such thatET Q =

(
ri ⊕

{
ET λB

})
∩ ET D is given by

Q = {λ | λi = 0, ∀i /∈ T } ∩D.
The LP given in the statement of the theorem then max-

imises in the direction of the rayri, while restrictingλ to
be in Q.

2) neighbour(·, ·) Complexity:Computing theith neigh-
bour of the basisB requires two linear programs. The
first tests the redundancy of the rayri in the tangent cone
TET D(ET λB), and the second, LP (15), computes the opti-
mal basis of the neighbour. IfLP (v, w) is the complexity of
a single linear program of dimensionv, with w constraints7,
then in the worst case, the complexity of the neighbour
function is

Oneigh = O(LP (d, e) + LP (m, n)), (16)

where the dimension of the parameterx is d, the constraint
matrix A is in R

m×n and we define the variablee , n−m.

7If the LP is written in the form (2)(3), then the dimension ism and the
number of constraints isn, for A ∈ R

n×m.

B. FunctionG(·)

We follow a similar approach to [11] and define the func-
tion G(·) via the simplex algorithm. Consider the following
linear program:

min
z

{
ρT z

∣
∣ z ∈ ET D

}
, (17)

where the costρ is chosen such that it is not parallel to any
of the edges ofET D8. At each vertexv ∈ ET D, there are
a number of edges intersecting atv that can be followed to
an adjacent vertex (the extreme rays of the tangent cone).
The functionG(·) chooses the edge along which the costρ
decreases most rapidly. Note that this edge is unique via the
above assumption. If the cost decreases most rapidly along
the rayri of the tangent cone, then the functionG(·) returns
the neighbour in the directionri by computing LP (15).

C. G(·) Complexity

Evaluating the functionG(·) requires the determination
of the irredundant extreme ray of the tangent cone along
which the cost decreases most rapidly. Finding the set of
all irredundant rays requires, in the worst case,n − m
d−dimensional redundancy elimination LPs. Computing the
neighbour requires one LP (15) of dimensionm.

OG = O(eLP (d, e) + LP (m, n)), (18)

wheree , n−m.

V. COMPLEXITY

A. Time Complexity

The time complexity of the reverse search enumeration
method is clearly a function of Steps7, 8, 13 and 16 in
Algorithm 1.

For each critical region in the solution, the reverse search
algorithm traverses once down the tree past the region
(Steps7–10) and once up away from the region (Steps13–16).
In the worst case, each region can havee , n −m neigh-
bours (the dimension of the polytopeD) and therefore the
computational complexity of the reverse–search algorithmis:

Ors = O(Nr(e
(
Oneigh +OG(·)

)

︸ ︷︷ ︸

Steps7–10

+ eOneigh +OG(·)
︸ ︷︷ ︸

Steps13–16

)),

(19)

whereNr is the number of critical regions in the solution.
From Equations (16), (18) and (19), the complexity can be
re-written as:

Ors = O(Nr(e
2LP (d, e) + eLP (m, n))). (20)

Equation (20) demonstrates that the complexity of the
reverse–search algorithm is alinear function of the size of
the output (number of critical regions in the solution).

8This ensures that there will be no dual–degeneracy in LP (17), which is
a condition that can be made almost certain via a random selection of ρ.
Certainty can be achieved through a primal-dual lexicographic perturbation
as outlined in [3].

B. Space Complexity

One of the most important features of reverse–search is
the small memory requirement. Since the algorithm does not
need to compare a newly discovered region with those seen
before, the only data that must be stored in main memory
is the dataE, A, b of the pLP, the current basisB and the
neighbour countcnt. The space complexity of the algorithm
is therefore constantO(1).

C. Comparison to Existing Approaches

All current approaches for computing solutions to
(multi)parametric linear programs require that as each new
region is discovered, an operation must be carried out that
is a function of all regions discovered so far. It follows that
both the space and time complexities of these algorithms
grows in a super-linear fashion with the size of the output.

It is important to state that while the complexity of the
proposed reverse search approach is superior to current
algorithms, there is a large complexity coefficient hidden in
the big–O notation. As a result, the reverse–search method
as given as Algorithm 1 is slower for small problems than
the current most efficient implementations available in the
literature and only comes into its own on larger examples.
However, the following section introduces extensions to
the reverse–search approach that allow the parallelisation
of the method and a significant computational efficiency
improvement at the cost of an increase in memory usage.

VI. EXTENSIONS

One of the main strengths of the reverse–search method is
that it can be parallelised very efficiently, as each branch of
the tree can be assigned to a different processor and no data
will need to pass between the machines, since all decisions
can be made locally using the functionG(·). If the tree is
well-balanced this will result in a speed improvement equal
to the number of processors used, although there is noa
priori guarantee that a problem will be well-balanced.

Second, the computation speed can be significantly im-
proved through the use of memory. Storing the path taken
down the tree in a stack removes the requirement to do
any computations while traversing up the tree (Steps13–18).
Recording adjacent critical regions that are discovered during
the downward traverse (Steps5–11), but are not children of
the current critical region removes any duplication of work.
Note that because none of the stored data is strictly required
for the implementation of the algorithm, it is possible to
set the amount of memory used to a fixed value. This use
of memory makes the number of linear programs required
exactly equal to that of the current fastest approaches, while
still maintaining the complexity as a linear function of the
number of regions, the ability to parallelise the algorithm,
and arbitrarily bound memory usage. Future implementations
will take advantage of this ability.

VII. E XAMPLE

Consider the following problem:

(a) PolytopeET D (b) Reverse–Search Tree

Fig. 2. Reverse Search Tree for Example VII

J⋆(x0) =min

N−1∑

k=0

(‖Qxk‖∞ + ‖Ruk‖∞) + ‖QfxN‖∞

subject to

xk+1 =

(

1 1

0 1

)

xk +

(

1

0.5

)

uk

||xk||∞ ≤ 5, ||uk−1||∞ ≤ 1, ∀k ∈ {1, . . . , N} ,

where the objective weight matrices are set toQ = Qf =
I andR = I. The task is to regulate the system to the origin
while fulfilling the input and state constraints. Conversion of
the example to the form of pLP (1) is discussed in [2]. The
solution consists of84 critical regions and can be seen as the
polytopeET D and the resulting reverse–search tree, which
are shown in Figure 2.

Space limitations prevent the inclusion of detailed ex-
amples in this paper. However, code and examples will be
available as part of the Multiparametric Toolbox MPT [13].

ACKNOWLEDGEMENTS

The authors would like to thank Eric Kerrigan and Komei
Fukuda for their valuable discussions on this paper.

REFERENCES

[1] A. Bemporad, F. Borrelli, and M. Morari, “Model predictive control
based on linear programming - the explicit solution,”IEEE Transac-
tions on Automatic Control, vol. 47, no. 12, pp. 1974–1985, 2002.

[2] F. Borrelli, A. Bemporad, and M. Morari, “A Geometric Algorithm
for Multi-Parametric Linear Programming,”Journal of Optimization
Theory and Applications, vol. 118, no. 3, pp. 515–540, 2003.

[3] C. Jones, E. Kerrigan, and J. Maciejowski, “Lexicographic pertur-
bation for multiparametric linear programming with applications to
control,” Automatica, 2005, submitted.

[4] T. Gal, Postoptimal Analyses, Parametric Programming and Related
Topics, 2nd ed. Walter de Gruyter, 1995.

[5] D. Avis and K. Fukuda, “Reverse search for enumeration,”Discrete
Applied Math, vol. 65, pp. 21–46, 1996.

[6] D. Bertsimas and J. Tsitsiklis,Introduction to Linear Optimization.
Athena Scientific, 1997.

[7] J. Spjøtvold, P. Tøndel, and T. Johansen, “A method for obtaining con-
tinuous solutions to multiparametric linear programs,” inProceedings
of the16th IFAC World Congress, Prague, 2005.

[8] F. Borrelli, Constrained Optimal Control Of Linear And Hybrid
Systems, ser. Lecture Notes in Control and Information Sciences.
Springer, 2003, vol. 290.

[9] K. Murty, Linear Programming. John Wiley & Sons, 1983.
[10] J. E. Goodman and J. O’Rourke, Eds.,Handbook of Discrete and

Computational Geometry. CRC Press, 1997.
[11] D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls and

vertex enumeration of arrangements and polyhedra,”Discrete and
Computational Geometry, vol. 8, pp. 295–313, 1992.

[12] K. Fukuda, “Frequently asked questions in polyhedral computation,”
http://www.ifor.math.ethz.ch/fukuda/polyfaq/polyfaq.html.

[13] M. Kvasnica, P. Grieder, and M. Baotić, “Multi-Parametric Toolbox
(MPT),” 2004, http://control.ee.ethz.ch/ mpt/.

