
The VLDB Journal (2023) 32:501–524
https://doi.org/10.1007/s00778-022-00759-9

REGULAR PAPER

Reverse spatial top-k keyword queries

Pritom Ahmed1 · Ahmed Eldawy1 · Vagelis Hristidis1 · Vassilis J. Tsotras1

Received: 21 June 2021 / Revised: 13 March 2022 / Accepted: 20 June 2022 / Published online: 25 July 2022
© The Author(s) 2022

Abstract
We introduce the Reverse Spatial Top-k Keyword (RSK) query, which is defined as: given a query term q, an integer k and a
neighborhood size find all the neighborhoods of that size where q is in the top-k most frequent terms among the social posts in
those neighborhoods. An obvious approach would be to partition the dataset with a uniform grid structure of a given cell size
and identify the cells where this term is in the top-k most frequent keywords. However, this answer would be incomplete since
it only checks for neighborhoods that are perfectly aligned with the grid. Furthermore, for every neighborhood (square) that is
an answer, we can define infinitely more result neighborhoods by minimally shifting the square without including more posts
in it. To address that, we need to identify contiguous regions where any point in the region can be the center of a neighborhood
that satisfies the query. We propose an algorithm to efficiently answer an RSK query using an index structure consisting of a
uniform grid augmented by materialized lists of term frequencies. We apply various optimizations that drastically improve
query latency against baseline approaches. We also provide a theoretical model to choose the optimal cell size for the index to
minimize query latency.We further examine a restricted version of the problem (RSKR) that limits the scope of the answer and
propose efficient approximate algorithms. Finally, we examine how parallelism can improve performance by balancing the
workload using a smart load slicing technique. Extensive experimental performance evaluation of the proposedmethods using
real Twitter datasets and crime report datasets, shows the efficiency of our optimizations and the accuracy of the proposed
theoretical model.

Keywords Top-K · Reverse top-K · Spatial data · Social networks

1 Introduction

The wide availability of tracking devices has drastically
increased the role of geolocation in social networks. Several
online social sites, such as Twitter [39], Instagram [17] and
Foursquare [13], are allowing users to geotag their social
posts. This creates novel data analytic problems, such as
detecting popular topic trends [20],most frequent trajectories
[36], etc. These previous works apply various top-k algo-
rithms in the spatio-temporal domain: given a query region,
find the top-k most frequent terms, trajectories, etc. In this

B Pritom Ahmed
pahme002@ucr.edu

Ahmed Eldawy
eldawy@cs.ucr.edu

Vagelis Hristidis
vagelis@cs.ucr.edu

Vassilis J. Tsotras
tsotras@cs.ucr.edu

1 University of California Riverside, Riverside, CA, USA

paper, we focus on the reverse problem: given a keyword,
we want to find the spatial (or temporal) regions where this
keyword is in the top-k most frequent keywords.

This query has many applications and, depending on the
application, the query size and time window can be adjusted.
Consider an advertiser who wants to monitor Twitter posts
and identify neighborhoods where a particular product is
among the top-k terms discussed. Smaller result areas (say
few blocks in size) may be preferable, where electronic
billboards can be utilized, to advertise a new product or
offer coupons based on the expressed interest in those areas.
Location-based social media ads can also be instantly pur-
chased. On the other hand, a political candidate’s campaign
may be interested in identifying larger areas (so that a
political rally can be organized) where a specific topic is
popular/unpopular. In this application, posts from a wider
time window may be considered (the time window is not an
explicit parameter in our problem, as it determines the posts
collection size; we consider different collection sizes in our
experiments). Using geo-located crime datasets as we show

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00759-9&domain=pdf
http://orcid.org/0000-0002-4430-4749
http://orcid.org/0000-0002-6584-1455
http://orcid.org/0000-0001-8679-4988
http://orcid.org/0000-0001-5462-9451

502 P. Ahmed et al.

later in the paper, we can find areas where a particular crime
is more common/frequent. As shown by these examples, in
addition to the query term and its importance, the neighbor-
hood size should also be a query parameter.

In this paper, we investigate such reverse top-k queries
on geotagged social posts. Given a user-specified query term
q, rank k and a neighborhood size l, the Reverse Spatial
Keyword Query (RSK) find all the neighborhoods of size l
where q is among the k most frequent terms among the posts
in those regions.

The problem is challenging because of the large number
of possible neighborhoods (which is O(N 2) for N posts). A
neighborhood is unique for our problem if the posts inside
the neighborhood’s region are different. As a result, for every
post, it is theoretically possible to have (N−1) unique neigh-
borhoods.As a result, any pair of coordinates from two points
can be a corner for a unique neighborhood for a total of
N 2 pairs. Instead of searching the whole space, we propose
an (exact) algorithm that uses a filtering step to prune the
search space (withoutmissing any answers) and a scan-based
refinement step to find the answers in the resulting pruned
space. We use a grid-based index structure augmented with a
materialized sorted term list at each cell to avoid repeated pro-
cessing of the tweets during query time. To further minimize
the RSK query latency, we propose a theoretical model that
estimates the optimal grid index cell size. Nevertheless, the
refinement step can be slow because of the sheer number of
neighborhoods it has to process to find all the answers. Thus
we also explore a restricted version of the problem (RSKR)
that limits the possible answers to the cells of a query pro-
vided grid. In addition to an exact solution, for the RSKR
query, we present faster but approximate algorithms where
we restrict the number of neighborhood checks using a bud-
get. The proposed algorithms for RSK and RSKR are highly
parallelizable. To take advantage of parallelism, we propose
a slicing technique that enables distributing the workload of
the refinement step among different nodes and thus further
reduce the query latency. In summary, our contributions are:

– We introduce the Reverse Spatial Keyword (RSK) query
on geo-tagged posts and provide an exact filtering and
refinement solution. We also consider a restricted ver-
sion of the query (RSKR) and provide faster exact and
approximate algorithms.

– To minimize the RSK and RSKR query latency we pro-
pose a theoretical model that finds the optimal index cell
size and experimentally evaluate its accuracy using valid-
ity tests.

– We explore parallelism for all proposed algorithms, using
an efficient load slicing technique to evenly distribute the
workload among nodes.

– Using real Twitter datasets, we present a thorough exper-
imental evaluation that verifies our methods’ efficiency.

The rest of the paper is organized as follows: Sect. 2 dis-
cusses related work, while Sect. 3 formulates the RSK and
RSKR queries. Section 4 presents our algorithms for the
RSK and RSKR queries. The proposed model to estimate
the optimal grid cell size is discussed in Sect. 5. The par-
allel implementation using the slicing technique appears in
Sect. 6. Our algorithms and theoretical models are experi-
mentally evaluated in Sect. 7, while conclusions and future
work appear in Sect. 8.

2 Related work

2.1 Top-k spatial queries

There are several variants of top-k spatial queries studied
extensively in literature. A top-k spatial query returns k
objects according to various query-provided spatial prop-
erties. For example, top-k spatial preference queries return
a ranked set of the k best objects based on the scores of
objects in their spatial neighborhood [33,53–55]. The top-k
spatial join query retrieves the k spatial objects from two sets
that intersect the largest number of objects from the other
set [32,58]. There are also several variations of top-k spatial
queries that deal with similarity among trajectories [26,50].
Recent research focused on retrieving the k most frequent
or trending keywords over query-provided spatio-temporal
ranges. [27,35] address this query over a streamed dataset,
while in [2] we considered a disk-resident archived dataset.
We are different from these works in that we address reverse
top-k queries where the keyword is a query parameter. A
top-k spatial keyword query takes into account not only the
objects’ spatial properties, but also keywords provided in the
query. For example, [5,12] consider the problem of finding
k objects that are closest to the query location and contain
the query keywords. Similar problems have also been stud-
ied in the context of spatially annotated web objects [4,9].
Our work is orthogonal as we return areas where the query
keyword is among the top-k most frequent.

2.2 Reverse spatial queries

An example in this category is the reverse k-nearest neigh-
bor (RkNN) query which returns all data objects that have
the query object in the set of their k-nearest neighbors [1].
Other examples include RkNN for spatial–textual similar
objects [24,25], decision support and identifying potential
customers [21,37], Reverse Spatial and Textual k Nearest
Neighbor (RSTkNN) query used for interested sets [8,56]
and the Reverse top-k Boolean spatial keyword query [14].
While we also look at ‘reverse’ queries, we return regions
instead of data objects.

123

Reverse spatial top-k keyword queries 503

Vlachou et al. [45] introduced the Reverse top-k query,
which, given a “product” p, returns the “weighting vec-
tors” w for which p is in the top-k set. Here, p can be a
keyword, while w can be ranges of various types like time
interval, spatial region. [45,46,49] propose several threshold-
based algorithms to solve reverse top-k queries, while [30]
addresses parallel and distributed processing of the reverse
top-k query. Reverse top-k queries can be used to identify
the most influential products [48] or monitor the popularity
of locations based on user mobility [47].

The Spatial Reverse Top-k query considers the spatial dis-
tance between the locations of users and facilities as one of
the criteria [31,52]. The distance between a user u and a facil-
ity f depends on the locations of u and f . Consequently, the
distance value of a facility is different for each user. PCK [31]
can only handle k = 1 and two attribute/criterion (including
the distance criterion). Yang et al. [52] present a region-
based pruning algorithm that can handle arbitrary number
of attributes and k ≥ 1. Our work does not consider the dis-
tance between the posts but rather focuses on the keywords
in the post and the location associated with the post.

More related to ourwork is theReverse spatial Top-kKey-
word Query, which, given a keyword as input, returns spatial
regions based on query-provided preferences like frequency
or trend. For example, given a term and a positive integer
k, the Reverse Frequent Spatial (RFS) query [11] finds the
top k locations on the geographical map where the term is
frequent. The key difference is that we can return results of
any size, while the RFS query returns a list of k cells from
the index grid, sorted by the confidence score which is the
approximate frequency of the term. GARNET [20] is a sys-
tem optimized for top-k most trending keyword queries over
spatiotemporal streams. As a by-product they also support a
restricted version of the proposed RSKR query. We discuss
the differences with RSKR in detail in Sect. 7.5, including
an experimental comparison.

2.3 Density and burstiness queries

Related are also works on density-based queries over mov-
ing object databases. A spatial area is dense if the number

of moving objects it contains is above some threshold [15].
Related queries include finding ROIs [34,41,42], convoys
[19], flocks [44], assemblies [43], etc. While we consider
density to identify the result query regions, we are different
in that we find regions where a keyword is among the top-k
most frequent.

A burst is identified when an unusually high frequency (a
deviation from the expected frequency) is observed for user-
provided keyword [22]. [28] examines spatial bursts: given
an interval and a term q, identify geographical regions where
the observed frequency of q was unusually high, within the
interval. In [23], we extended the problem to identifying
spatio-temporal regions where a term is bursty. Our work dif-
fers in that we provide regions where the term is in the top-k
(instead of simply being bursty); also instead of streaming
we focus on a disk-based dataset that can be indexed.

3 Problem definition

Let D = {o1, o2, . . . , oN } be a dataset with N posts over
a spatial rectangle of area A. Each post o ∈ D is a tuple
〈Loc,Terms〉. Here, o.Loc is a spatial point (x, y) that iden-
tifies the location of the post and o.Terms = {t1, t2, . . .}
denotes the post’s terms, where we ignore duplicate terms
in the same post. Let V = {∪o∈D o.Terms} be the vocab-
ulary of all terms. For example, Fig. 1 shows a collection
of 10 posts. The vocabulary, i.e., {∪10

i=1oi .Terms} contains
9 terms. Given a region R, the frequency of a term t in R
is fR(t) = {count(oi)|t ∈ oi .Terms & oi .Loc ∈ R}. An l-
square neighborhood is a square region with side length l
and sides parallel to longitude and latitude. A query term q
is (k, l)-frequent at a spatial point p if the frequency of q
is among the top-k highest term frequencies in the l-square
neighborhood centered at p.

Throughout the paper, we assume the existence of a grid
index I that will facilitate query answering (Fig. 1a). Each
cell in I stores the posts within that cell, sorted along the
x-axis. In each cell we also store a Sorted Term List (STL),
which is a materialized list of (term, frequency) pairs, sorted

Fig. 1 Sample dataset containing 10 posts. a The post locations and grid cells, b the post terms, c STLs for Cell 1 and Cell 3

123

504 P. Ahmed et al.

Fig. 2 RSK (deep blue) and RSKR (light blue) results for keyword
“york” (colour figure online)

by decreasing frequency. A pair (t,f) of the STL indicates
that that term t appears in f posts in that grid cell (Fig. 1c).

3.1 Reverse spatial top-k keyword (RSK) query

AnRSKquery Q is defined by a tuple 〈k, q, l〉. The answer to
RSK Q is the set of spatial regions where q is (k, l)-frequent
at each and every point in these regions. Figure 2 shows an
example of the result regions (deep blue) of an RSK query
for the query keyword “york”. Any point in the deep blue
areas is a center of an l-square neighborhood where q is in
the top-K. Note that such result regions can be anywhere
(independently of the index cells).

Computing the exact answer to the RSK problem involves
checkingmany neighborhoods and is thus expensive. For that
reason, we also propose a restricted version of the problem
(RSKR) defined next. In particular, RSKR returns cells with
at least one point where q is (k,l)-frequent.

3.2 RSK-restricted (RSKR) query

An RSKR query QR is again a tuple 〈k, q, l〉; however, the
answer to QR is the set of cells from the index grid I that
contain at least one point where q is (k, l)-frequent. It is
called ‘restricted’ since the answer is limited among the grid
cells. Figure 2 shows the result of an RSKR query in light
blue (for the same q as above). Note that all the results of
RSKR are orthogonal polygons whose sides coincide with
the grid, but the results of RSK are orthogonal polygons with
sides parallel to longitude and latitude. Moreover, from the
query definitions, the RSKR result polygons always contain
the RSK ones.

The query choice (RSK vs RSKR) depends on the appli-
cation’s need in: (1) query speed and (2) spatial accuracy.
Answering RSKR queries is swift (ms) compared to address-
ing RSK queries, as we will see in the experiments (Sect. 7).

On the other hand, by definition, the RSKR query is less
accurate as it only requires one answer per returned Grid cell
(while in RSK, each point in the areas returned is an answer).
We further discuss accuracy in Sect. 7.3.

3.3 System architecture

There are several works that study how to efficiently select
posts based on various criteria like location [40], time [3,40],
keywords [3,38,40], sentiment [55,57], or topic [38,40]. We
rely on theseworks to select relevant posts thatwill be input to
our algorithms to answer RSK and RSKR queries, as shown
in Fig. 3. We assume that after the data is selected, it is
indexed using the uniformGRIDand building the STLs.Here
we focus on the query execution time (that includes the filter-
ing and refinement steps). The time to index the data, which
corresponds to the Indexing module in Fig. 3, is negligible
(around 1%) compared to the RSK algorithm execution, but
not compared to the much faster RSKR algorithm, as we will
see in Sect. 7.

Note that we do not need to re-execute the Data Selection
and Indexing phaseswhen using a different keyword as input.
This is only neededwhenwe change the selection criteria that
pick the relevant posts for the input to the query (for example,
only keep posts related to a topic or change the time or spatial
range).

As long as the Data Selection criteria remain the same,
we can reuse the STLs created for one query across multiple
queries if l is at least 2c where c is the side length of the
cells in the GRID (this condition is elaborated later in the
paper). By choosing a small enough cell size, this case is
highly likely to happen.

4 Proposed algorithms

Consider an RSK query 〈k, q, l〉. The straightforward algo-
rithm to find all the results for this query needs to scan the
whole spatial rectangle A. Unfortunately, the cost of this
algorithm is prohibitively expensive for large datasets, as
there are O(N 2) different l × l square windows that must
be checked. Assuming that the cost of processing each post
is constant, the amount of work for each window is O(l

2N
A),

Fig. 3 System architecture to answer RSK and RSKR queries

123

Reverse spatial top-k keyword queries 505

resulting to O(N 3) behavior (since area A and neighborhood
size l are not dependent on N). Here, A is the area covered by
the dataset, N is the number of posts, and l is the side length
of the neighborhood. So, a square-shaped neighborhoodwith
the area of l*l contains an average of l2N

A posts. To determine
whether the l × l neighborhood is an answer to the problem
or not, we need to process the textual content of each of the
posts at least once. Assuming processing textual content of a
post is constant, we estimate the work for each l × l window
to be O(l

2N
A).

For both the RSK and RSKR queries, our proposed query
processing algorithmconsists of two steps: (a)Filtering step:
This step aims to quickly prune the search space by separating
the most promising (GREEN) and most unpromising areas
(RED), hence the naming of the step. This step is critical in
reducing query latency. Using the stored STLs, we identify
the cells that are guaranteed to be in the answer (accepts) and
those that are guaranteed not to be in the answer (rejects). The
rest of the cells are candidate cells, i.e., the filtering step can-
not decide whether they are answers or not. We process these
candidate cells in the refinement step. (b) Refinement step:
In this step, we take a closer look at the candidate cells to find
out whether they are answers or not, i.e., refine the results.
For RSK queries, for each candidate cell, we propose an effi-
cient plane-sweep algorithm to compute the points in that cell
where q is (k, l)-frequent. For RSKR queries, the refinement
step decides, with some confidence, if there is any point in a
candidate cell where the query is (k, l)-frequent (recall that
for RSKR, the answer is returned at the cell granularity). We
proceed with the common filtering step; the refinement step
for RSK appears in Sect. 4.2, while the (several variants of
the) refinement step for RSKR in Sect. 4.3.

4.1 Filtering step

Let lmin be the minimum l size that we want to support in the
RSK and RSKR queries. Then, the cell size (c) of the grid
index I must follow c ≤ lmin

2 . This condition is necessary
for the filtering step of the algorithm to be applicable as we
discuss below. Let l×l be the size of the query neighborhood
and c× c be the size of cells in the grid index. Let ηH = � l

2c 	
and ηL =
 l

2c �. Inspired by the work in [29], we define the
conservative region CRi, j for a cellCi, j as the union of cells
Cu,v forwhich i−ηL ≤ u ≤ i+ηL and j−ηL < v < j+ηL .
Similarly, we define the expansive region Ei, j for a cell Ci, j

as the union of cellsCu,v for which i−ηH ≤ u ≤ i+ηH and
j − ηH ≤ v ≤ j + ηH . Figure 4a and b shows the expansive
and conservative regions of a cell, respectively, using l = 3c.

Any point p in cell Ci, j is at most l/2 distance away from
the edges of CRi, j , so p’s l-square neighborhood completely
contains CRi, j . Hence, the CRi, j score is a lower bound for
the frequency of the query keyword. Similarly, any point p

Fig. 4 a Cell expansive region for ηH = 2, b cell conservative region
for ηL = 1

Fig. 5 Example output of the filtering step

in cell Ci, j is at least l/2 distance away from the edges of
Ei, j , so p’s l-square neighborhood is completely contained
in Ei, j . Thus the score in Ei, j is an upper bound for the
frequency of the query keyword. Therefore, if the frequency
of the query term q in CRi, j is greater than the frequency of
the kth term in Ei, j , then Ci, j is accepted as an answer. This
means q is (k, l)-frequent for all the points in Ci, j and we
color the cell as GREEN (accept). On the other hand, if the
frequency of q in Ei, j is less than the frequency of the kth
term in CRi, j , then there cannot be any point in Ci, j that is
an answer. Thus q is not (k, l)-frequent for any point in Ci, j

and we color the cell as RED (reject).
The rest of the cells are candidate cells and we color them

as GRAY. Only partial regions of GRAY cells might be in the
answer so they have to go through the refinement step (next
section) to calculate which parts of the cell (if any) where q
is (k, l)-frequent. Figure 5 shows an example output of the
filtering step.

4.2 Refinement step for the RSK query

In this step, we process each candidate cell to find all points
in the candidate cell Ci, j that are (k, l)-frequent. Let candi-
date cell Ci, j have left-bottom corner (xl , yb) and right-top
corner (xr , yt). The expansive region, Ei, j ofCi, j , is a square
whose left-bottom corner is (xl−l/2, yb−l/2), and right-top
corner is (xr + l/2, yt + l/2). Clearly, it contains all posts
that appear in the l-square neighborhood of any point p ∈
Ci, j (see Fig. 4).

123

506 P. Ahmed et al.

Fig. 6 Steps of the proposed algorithm for RSK query

We use a plane-sweeping algorithm to identify all the l-
square neighborhoods within the expansive region (Ei, j) of
the cell Ci, j . Throughout the paper, we discuss one way to
traversing the XY-plane by initially fixing the region on X-
axis and moving on the Y-axis. After we are done on X-axis,
we can move on Y-axis. The order of axes can be easily
swapped, but it would not change the answer. Before we
begin describing the steps of the algorithm, let us define some
terms we will frequently use in the paper.

4.2.1 Vertical strip (VS)

A vertical strip is a rectangle whose top and bottom border
equals to that of the expansive region. Its width over X-axis
is equal to l. In Fig. 6a, we see both a vertical strip and an
l-square neighborhood with respect to an expansive region.
We start from the left side of the expansive region, Ei, j (we

could have started from the right side as well). We put the
vertical slide on the left side of Ei, j and the 1st l-square
neighborhood, along the top border as shown in Fig. 6a.

It takes a lot of time to process the posts that are con-
tained in the l-square neighborhood and add them in a hash
table (we call it termFreqMap). As we already have pro-
cessed the posts for each cell in the grid, we can leverage
STLs to save time. Whenever we are processing an l-square
neighborhood, we find out the cells CR that are fully con-
tained in the l-square neighborhood. Then, we calculate the
regions P that are not covered by the regions covered by the
cells in CR. After that, we process the posts in P to cal-
culate the hashtable termFreqMap. Finally, we combine all
the STLs from the cells in CR into termFreqMap. Then we
fetch the frequency fq of q and fk of the kth most frequent
keyword, from termFreqMap. We use the QuickSelect algo-
rithm [16] to fetch the score for the kth most frequent term

123

Reverse spatial top-k keyword queries 507

in the termFreqMap which takes O(n) time. This allows to
avoid the additional cost of sorting all the terms in termFre-
qMap based on their frequencies, to fetch the score of the
k-th most frequent term. If fq ≥ fk then q is (k, l)-frequent
in the l-square neighborhood, otherwise it is not. In either
case, we find the next l-square neighborhood. As we started
from the top of the vertical strip, we can only go down along
the Y-axis.

4.2.2 Getting the next l-square neighborhood by shifting

If we change (add/remove) one post in the l-square neigh-
borhood, we get a new l-square neighborhood. We do this
by finding the post (o1) that is closest to the top border and
the post (o2) that is closest to the bottom border, both on the
bottom side. Then, we compute the distance (d1) between top
border and o1 and the distance (d2) between the bottom bor-
der and o2. If d1 < d2, we choose the Y coordinate of 01 as
the new top border and find our next l-square neighborhood
to check. If d1 > d2, we choose the Y coordinate of o2 as the
new bottom border and find our next l-square neighborhood
to check.

We propose further optimizations by introducing verti-
cal and horizontal jumps. Instead of going post by post to
find new windows, we can skip several posts at once. The
number of posts that we can safely skip without change of
answer is equal to the difference between the worst-case fre-
quency of q, fw and the kth most frequent term in STLCF

i.e., |(fw − fk)|. It means that all the l-square neighborhoods
that can be created by these skipped posts have the same
result as the previous one. Thus the total number of l-square
neighborhoods we have to check to find all the answers dras-
tically reduces. We can speed up the refinement process of
sweeping along the Y-axis, by using a Vertical Jump. In the
Vertical Jump, instead of shifting by one post, we shift by
| fq - fk | posts. Since a term is considered present in a post at
most once, we are not missing any results. If a vertical jump
starts from an l-square neighborhood which is an answer
(i.e., q is (k, l)-frequent), then it generates a line segment,
starting from the center of the current l-square neighborhood
to the center of the next l-square neighborhood which is an
answer, as shown in Fig. 6b. The length of these line seg-
ments depends on the size of vertical jumps. Any point along
this line can be the center of an answer.

4.2.3 Reuse previous calculation

Due to the nature of the algorithm, there is much overlap
between two consecutive l-square neighborhoods.As inmost
cases, we jump only a portion of the total posts contained in
the query region. As a result, there are many posts that are
common between two consecutive l-square neighborhoods.
As there is an overlap between two consecutive l-square

Fig. 7 Horizontal jump length
estimation

neighborhoods, we can use the calculation of the previous
window to assist in the calculation of the next window. To
use the calculation of the previous window, we remove the
scores of the posts that were part of the previous window
but not part of the new l-square neighborhood. Similarly, we
add the scores of the posts that are newly added i.e., part of
the new l-square neighborhood but not part of the previous
l-square neighborhood.We create two separate lists, one con-
taining the removed posts and the other containing the newly
added posts. We use these two lists to update the termFre-
qMap from the previous l-square neighborhood to get the
termFreqMap for the new l-square neighborhood. We con-
tinue until the new l-square neighborhood’s bottom border
reaches or goes beyond the bottom border of the expansive
region as shown in Fig. 6c. It means we have completed the
processing of the current vertical strip. Nowwe start process-
ing of a new vertical strip by shifting on the right side along
the X-axis.

After we reach the bottom border of the expansive region
or the vertical strip, we have the information for all the l-
square neighborhoods that were checked in that vertical strip
including their individual jump sizes i.e., { j1, j2, . . . jn}. In
the lemma below, we show that we canmake a safe jump of j
= jmin

2 posts on the X-axis (Horizontal Jump) without losing
any results, where jmin = min(j1, j2, . . . jn) is the minimum
amount of vertical jump in the vertical strip.

Lemma 1 If a vertical strip makes a horizontal jump of j =
jmin
2 posts, where jmin was the minimum amount of vertical

jump in the vertical strip, we will not miss any result.

Proof Intuitively, we are looking for the minimum safe jump
radius around any point that can be the center of an l-square
neighborhood in the current vertical strip (i.e., the point in
along the middle vertical line of the current vertical strip).
Let A be the point with the minimum safe vertical jump jmin,
and B the destination of the jump as shown in Fig. 7. The
point x between A and B (and also in the whole middle line
of the current vertical strip) with minimum safe jump radius
is the one where we go with a vertical jump of jmin

2 from

A. x has a remainder safe jump radius of jmin
2 , which is the

horizontal safe jump amountwe can do. If wewould consider
another point X ′ farther from x , then x ′ would be closer to
B (and hence its horizontal safe jump would be bounded by

123

508 P. Ahmed et al.

jB
z , where z would be smaller than 2 (closer to B than the

midpoint x) and jB ≥ jmin, so
jB
z ≥ jmin

2 .
�

Figure 6d shows an example of horizontal jump. Next,
we process the new vertical strip in the same way as men-
tioned above. We keep shifting vertical strips, until the right
border of the new vertical strip reaches or goes beyond the
right border of the expansive region, Ei, j . This concludes the
processing of one candidate cell. The overall algorithm is for-
mally presented in Algorithm 1. Figure 6e shows an example
where the 6th vertical strip is beyond the expansive region
boundary (shown as a purple vertical line on the right), so the
refinement step stops at the 5th vertical strip. Each horizontal
jump stretches the line segment(s) generated in one vertical
strip into rectangles (as shown in Fig. 6d). The width of these
rectangles depends on the horizontal jump size. The orthog-
onal polygons in the RSK query result (Fig. 2) are created by
the union of all these rectangles. Note that q is (k, l)-frequent
at any point within these polygons.

Using vertical and horizontal jumps, the total number of
l-square neighborhoods that the RSK algorithm checks is N2

j

(where j is the average jump size), which results to O(l
2N3

j A)

running time. This is still O(N 3); however, j is a large con-
stant resulting in much better performance in practice than
the straightforward algorithm.

4.3 Refinement step for the RSKR query

The refinement step of the RSK query algorithm checks a
large number of l-square neighborhoods which leads to high
query latency. One approach to lower the query latency is to
stop processing within a candidate cell as soon as the first
l-square neighborhood where q is (k, l)- f requent is found
in that cell. Thus the refinement step of the RSKR query
algorithm returns exactly those cells that have answers. But
for the candidate cells where there is no result, this simple
approach will still check all windows centered within this
cell (i.e., the same approach as the exact solution).

4.3.1 Coordinate division

To reduce query latency, we propose an approach that divides
the search space and checks a bounded number of l-square
neighborhoods per candidate cell, based on a technique we
call Coordinate Division (CD). This technique is applied on
each candidate cell in iterations. In one iteration, within each
candidate cell, a random point is chosen and used as the
center of the l-square neighborhood. If that neighborhood is
an answer, the algorithm stops processing that cell. If not,
the chosen point is used to divide the cell space into four
regions. A random point is then chosen in each of the four
regions. If an answer is found in any of the four l-square

Algorithm 1 RSK (cell, q)

Require: Query term q and cell contains a STL for the posts in that
CELL

Ensure: Return all the l × l sized squares where q is among the top-k
1: posts ← get Ad jacentposts(c)
2: sortpostsLongitude(posts)
3: while true do
4: cell ← Cell(le f t, topBorder)
5: current Posts ← posts I n(posts, cell)
6: sortpostsLati tude(current Posts)
7: top ← topBorder
8: while true do
9: cellY ← newCell(VerticalStrip, le f t, top)

10: for each post in currentposts do
11: current PostsY ← post
12: if not in previousGrid then
13: newly Addedpost ← post
14: if prevGridexists then
15: termFreqMap ← processRemovedposts()
16: termFreqMap ← processNewly Addedposts()
17: else
18: termFreqMap ← processposts(current PostsY)

19: qscore ← termFrequencyMap.get(q)

20: kth Score ← quickSelect(termFreqMap.values(), k)
21: if qscore ≥ kth Score then
22: result ← cellY
23: c.color ← GREEN
24: jump ← |kth Score - qscore|
25: jumps ← add(jump)
26: prevGrid ← cellY
27: if cell.bottom ≥ bottomBorder then
28: break
29: minJump ← min(jumps)
30: VerticalStrip ← jump(VerticalStrip,minJump)
31: if cell.right ≥ right Border then
32: break
33: return result

neighborhoods centered on these points, the algorithm stops
processing this cell. Otherwise, a diff_value is calculated for
each of the four l-square neighborhoods; this diff_value is
the difference between the score of the query term q and the
score of the kth most frequent term in the l-square neighbor-
hood. The algorithm picks the region with the point that has
the lowest diff_value and continues by dividing that region
into four parts as before. This iteration stops either when a
result is found or an upper bound for the number of divisions
is reached. Checking whether an l-square neighborhood is
an answer or not is similar as with the RSK query algo-
rithm with one variation. Since we randomly choose points,
the algorithm will update the previous termFreqMap only
when there is enough overlap (at least 50%) between subse-
quent l-square neighborhoods; otherwise, it will calculate a
new termFreqMap from scratch. Note that because points are
picked randomly, a CD iteration over a candidate cell may
miss some results. Hence, we allow the RSKR query algo-
rithm to run multiple iterations on candidate cells where no
answer is found.

123

Reverse spatial top-k keyword queries 509

There are thus two parameters affecting the RSKR query
algorithm performance: (i) the number of divisions and (ii)
the number of iterations. Increasing any of these parameters
improves the accuracy at the expense of query latency. The
overall algorithm is formally presented in Algorithm 2.

Algorithm 2 RSK R − Approximate(GRI D, q)

Require: Query term q and GRIDINDEX is the space covered divide
into cells. Each CELL in GRIDINDEX contains a STL for the posts
in that CELL

Ensure: Color all the cells in the GRIDINDEX to indicate whether
there is any l× l sized squares in the cell where q is among the top-k

1: while there is more randomRestart do
2: while true do
3: randomPoint ← calculateRandomPoint(cell)
4: topLe f tCell ← calculateT opLe f tCell(cell)
5: scoreT opLe f t ← calculateScore(topLe f tCell)
6: if scoreT opLe f t > 0 then
7: cell.color ← GREEN
8: break
9: topRightCell ← calculateT opRightCell(cell)

10: scoreT opRight ← calculateScore(topRightCell)
11: if scoreT opRight > 0 then
12: cell.color ← GREEN
13: break
14: bottomLe f tCell ← calculateBottomLe f tCell(cell)
15: scoreBottomLe f t ← calculateScore(bottomLe f tCell)
16: if scoreBottomLe f t > 0 then
17: cell.color ← GREEN
18: break
19: bottomRightCell ← calculateBottomRightCell(cell)
20: scoreBottomRight ← calculateScore(bottomRightCell)

21: if scoreBottomRight > 0 then
22: cell.color ← GREEN
23: break
24: max ← max(scoreT L, scoreT R, scoreBL, scoreBR)

25: if max ≤ score then
26: break
27: if max == scoreForT opLe f t then
28: right Border ← randomX
29: bottomBorder ← randomY
30: if max == scoreForT opRight then
31: le f t Border ← randomX
32: bottomBorder ← randomY
33: if max == scoreFor BottomLe f t then
34: right Border ← randomX
35: topBorder ← randomY
36: if max == scoreFor BottomRight then
37: le f t Border ← randomX
38: topBorder ← randomY
39: else
40: break
41: return result

We implemented two additional heuristics on the RSKR
query algorithm: (i) Partial STL: When a cell is partially
contained in the l-square neighborhood, instead of identify-
ing and processing the posts that are contained in this l-square
neighborhood, we access the STL of that cell and multiply
its scores by the percentage of overlap under the assumption

that the posts are uniformly distributed. (ii) STLOnly: We
can further speed up latency by only considering the STLs of
the cells that are fully contained in the l-square neighborhood.
The effects of these heuristics on query latency and accuracy
are examined in the experimental section. The RSKR results
are produced by the union of the returned grid cells; hence
they are orthogonal polygons aligned to the grid (shown in
light blue in Fig. 2).

5 Optimal cell size estimation

This section presents a theoretical analysis for the processing
cost of the RSK and RSKR queries. The objective is to find
the optimal cell size that minimizes the processing cost of the
two corresponding refinement steps presented in Sects. 4.2
and 4.3. Note that the cell size can be fixed in advance. Using
the optimal cell size for indexing the data will result in better
query latency for the RSK and RSKR problems. However,
given any user-chosen cell size c, the algorithms presented
will still support a query as long as l ≥ 2c. First, we discuss
estimating the optimal cell size for RSKR which is necessar-
ily the calculation we need to estimate optimal cell size for a
single l-square neighborhood. After that, we will use the cal-
culation to estimate the optimal cell size for RSK problem.
Table 1 summarizes the notation used in the analysis.

5.1 Analysis of the RSKR refinement step

Let, N be the total number of posts in the input dataset, c be
the side length of the square cells, l be the side length of the
square l-square neighborhood, and A be the total area of the
minimum bounding rectangle (MBR) that covers the input
dataset. The area of one cell is c2, area of the l-square neigh-
borhood is l2 and the total number of cells is A

c2
. Assuming a

uniform distribution of the data points, the average number
of posts per cell is ρ = Nc2

A . Let the number of cells that
are fully contained and partially contained in the l-square
neighborhood be I and P , respectively. The total cost of pro-
cessing an l-square neighborhood is divided into two parts,
the cost of processing fully contained cells and the cost of
the partially contained cells.

5.2 Cost of processing fully contained cells

To compute the cost of processing fully contained cells, we
compute the total number of fully contained cells I and mul-
tiply this by the average cost of processing one cell.

Lemma 2 There are at least (lc − 1)2 cells that are fully
contained in the l-square neighborhood.

Proof As illustrated in Fig. 8, there are at most two partially
overlapping cells along each dimension, i.e., one partial cell

123

510 P. Ahmed et al.

Table 1 Notations used throughout theoretical analysis

Symbol Description

N Total number of posts in the input

A Total area covered by the dataset

c Side length of the square cell

l Side length of the l-square neighborhood

ρ Average number of posts per cell

y Average number of terms per post

K First parameter in Heap’s law [10]

β Second parameter in Heap’s law

I Number of cells fully contained in
l-square neighborhood

P Number of partial cells in the l-square
neighborhood

NC Number of posts in a cell

NV S Number of posts in a vertical strip

NE Number of posts in an expansive region

Fig. 8 Fully contained cells and partially intersecting cells in the l-
square neighborhood

on each end. The length of overlap between the query region
and a partial cell is less than c. This means that the length
of all fully contained cells is > l − 2c. Along that length,
the number of cells is larger than �l/c	 − 2 cells. Since the
number of cells is an integer, the number cells along one
dimension are at least �l/c	− 1. This means that there are at
least (l/c − 1)2 fully contained cells.
�

From Lemma 2, the total number of fully contained cells
is I = (lc − 1)2. Next, we will calculate the average cost of
processing one fully contained cell.

The RSKR refinement step processes fully contained cells
by simply merging their STLs into one. Each STL contains a
list of term frequencies. First,we need to compute the average
size of one STL, i.e., the number of unique terms in one cell.
To estimate the number of unique terms in one cell we use
Heap’s Law [10], ST Lsize = K (ρ · y)β , where ρ = c2N

A is
the total number of posts in a cell, y is the average number of
words per post, K and β are two free parameters of Heap’s
Law that are calculated once for the entire dataset. The total

processing cost of all fully contained cells,

TI = I · STLsize

=
(
l

c
− 1

)2

· K (ρ · y)β

=
(
l

c
− 1

)2

· K
(
c2Ny

A

)β

5.3 Cost of processing partially intersected cells

We compute the cost of processing partially intersected cells
by splitting it into two steps, fetching and processing. The
fetching step scans all posts inside partially intersected cells
to find the posts that are inside the l-square neighborhood.
The processing step scans all the terms in all the fetched
posts to update the overall term frequencies in the l-square
neighborhood. The details are provided below.

Lemma 3 There are at most 4 l
c partially intersecting cells in

the l-square neighborhood.

Proof According to Lemma 2, there are at least l
c − 1 fully

contained cells along each of the two dimensions. Addition-
ally, there are at most two partially intersecting cells on each
end of these cells. This makes the total number of partially
intersecting cells that surround the fully contained cells from
the four directions 4(lc − 1). In addition, there are four addi-
tional partially intersecting cells on the four corners. This
makes the total number of partially intersecting cells 4 l

c .
�

According toLemma3, there are 4 l
c cells intersectingwith

the l-square neighborhood. Since these cells are not fully
contained in the l-square neighborhood, we cannot simply
use their STLs and we will need to fetch and process the
individual posts inside the l-square neighborhood. Assuming
no index inside each cell and a unit cost of processing each
post, the cost of fetching the posts is equal to the total number
of posts in partially contained cells which is 4 l

c · c2NA = 4lcN
A .

Second, the cost of processing the posts is equal to the total
number of terms (not unique terms) in all posts inside the l-
square neighborhood. The area of l-square neighborhood is
l2, the area covered by the fully contained cells is (lc −1)2 ·c2,
thus, the area covered by partial cells is l2 − (lc − 1)2 · c2 =
2lc−c2. Assuming uniformdistribution and y terms per post,
the total cost of processing all partially intersecting cells,
TP = 4lcN

A + yN
A (2lc − c2). The total cost for processing a

single l-square neighborhood, θ is shown in Eq. 1.

θ(c) =
(
l

c
− 1

)2

· K
(
c2yN

A

)β

+ 4lcN

A

+ yN

A
(2lc − c2) (1)

123

Reverse spatial top-k keyword queries 511

The optimal cell c∗ is the cell size that minimizes the value
of θ in Eq. 1; to find c∗ we use Wolfram Alpha [51].

If the filtering step generates a total of G number of can-
didate (gray) cells for a query keyword, in the worst case, the
refinement step of RSKR will check B

G · θ(c) l-square neigh-
borhoods, where B is the total budget allocated for a query
keyword which is equally divided among the candidate cells.
With the change in the number of candidate cells, the budget
per candidate cell changes as well.
Example: Let N = 15 million, y = 3, l = 1, A = 220,
K = 1.92 andβ = 0.07197. Equation 1 has a localminimum
at c = 0.0346488 and local maximum at c = 0.840214.

5.4 Analysis of the RSK refinement step

We use the same notations used in the previous section to
analyze the running time of the exact RSK refinement algo-
rithm.We break down the running time of the RSK algorithm
as follows: 1. All the posts in the expansive region are sorted
by x . 2. The posts in the first vertical strip are sorted by y.
3. The first l-square neighborhood is processed as analyzed
in Sect. 5.1. 4. Subsequent l-square neighborhoods in each
vertical strip are processed through vertical jump. 5. The next
vertical strip is identified, and steps 2–4 are repeated until all
vertical strips are processed.

In the next part, we analyze the processing cost for the
above steps in order.

1. To estimate the sorting cost, we need to estimate the total
number of posts in the expansive region. The number of
cells in the expansive region is (2 · l

2c + 1)2 = (lc + 1)2.
Assuming uniform distribution of posts over the space,

post count in expansive region, NE = (l
c + 1

)2 · c2N
A .

So cost of sorting posts in expansive region, sort E =
NE log(NE).

2. Similarly, the area of the vertical strip is l · c · (lc + 1).
Assuming uniform distribution, post count in vertical
strip is: sortV S = l · c · (l

c + 1
) · N

A log(NV S).
3. The first l-square neighborhood in a vertical strip is

processed similar to RSKR query in Sect. 5.1, and the
processing cost is given by Eq. 1.

4. To compute the cost of subsequent l-square neighbor-
hoods, we need to estimate the size of the vertical jump
j . We estimate the jump size to be the absolute difference
between the estimated frequencies of the query keyword
and the kth keyword, | fq − fk | in the l-square neighbor-
hood, j =

∣∣∣ l2c2yNA ·
(

1
rq

− 1
k

)∣∣∣, Where rq is the rank of

the query keyword in the dataset. Given the jump size,
we can estimate the number of l-square neighborhoods

checked per vertical strip, lCountVS =
(
NVS − N ·l2

A

)
/ j .

From steps 2–4, the cost of processing one vertical strip
is, costVS = sortVS + θ + j · y · lCountVS .

5. To estimate the number of vertical strips, VSCount, we
compute the size of the horizontal jump to be half that of
the vertical jump, i.e., j/2. Estimated number of vertical

strips is, VSCountE =
⌈
2·(NE−NVS)

j

⌉
.

To sum it up, step 1 is performed only once, steps 2–4 are
performed for each vertical strip, and step 5 determines the
number of vertical strips. Therefore, the total cost of the RSK
refinement step is as follows

θF (c) = sortE + costV S

= sortE + (sortVS + θ + j y · lCountVS) · VSCountE
= NE log(NE)

+ (NVS log(NVS) + θ + j y · lCountVS) · VSCountE
The optimal cell c∗ is the cell size that minimizes θF (c)

as before, we find c∗ using Wolfram Alpha [51].

6 Parallel implementation

6.1 RSK parallelism

As the experimental results will show, the RSK query pro-
vides an exact answer, but it is time-consuming. Among the
two parts of the algorithm, filtering is very fast because it
only processes the STLs (i.e., not the actual posts). In con-
trast, the refinement step processes the actual posts; hence, it
takes much longer (about 99% of the query latency). In this
section, we explore how parallelism can be used to further
improve query latency for the refinement step. Our aim is
to divide the work among the participating nodes so as to
achieve balanced load. Our proposed technique assumes a
shared-nothing configuration which makes it highly portable
to many distributed processing systems such as Hadoop or
Spark. During the RSK refinement step, the time taken by
each candidate cell varies substantially (see Fig. 9). Since
the RSK algorithm as presented, checks l-square neighbor-
hoods first along the Y-axis, we introduce a vertical slicing
mechanism that divides the work from busy candidate cells
into smaller independent units (slices) that can be processed
in parallel.

6.2 Indicators of large refinement time

Since the actual refinement time for a particular candidate
cell is query dependent and not known until the refinement
step is executed, we would like to find indicators that can
accurately estimate the refinement time and are either pre-
computed (i.e., query independent), or easy to compute at
query time. For each candidate cell we considered four such
indicators, namely: (a) its post count, (b) the post count in

123

512 P. Ahmed et al.

Fig. 9 Refinement time for different candidate cells for q = “home”
and k = 5

Fig. 10 Correlation between refinement time and cell post count (left),
expansive region post count (right), for q = “home”, k = 5

the expansive region of the cell, (c) its jump size and (d) the
jump size in its expansive region. Among them, (a) is query
independent, while the rest are easy to compute after the
filtering step. For example, (c) uses the jump size (| fq − fk |),
while (d) depends on the jump size and l. Similarly, (b) can
be easily computed per candidate cell using l and cell post
counts.

Our experiments showed that the jump size indicators are
also dependent on the post count (which is to be expected
because the maximum possible jump is equal to the post
count). Hence we concentrate on the post count-based indi-
cators; Fig. 10 plots the correlation between the refinement
time and the post counts (cell or expansive region). Clearly,
the post count in the expansive region (termed as NE) is
the indicator of choice as it has the highest correlation with

Fig. 11 Equal-width (left) and equal-post slicing (right)

refinement time. Intuitively, the posts in the expansive region
are a better representative of the posts needed to answer the
RSK query for a given candidate cell.

6.3 Workload distribution

Our next step is to choose an efficient workload distribution
strategy to balance the workload of each cluster node. The
naïve way to do this would be to distribute the candidate cells
among the nodes randomly so that each node gets similar
number of candidate cells to process. This approach is not
very efficient as we show in Sect. 7.4. The reason is that
the refinement time for each candidate cell varies widely
(Fig. 9), as the refinement time is highly correlated with the
posts count in the expansive region. Instead, we distribute
the candidate cells among the cluster nodes in such a way
that each node may have different number of candidate cells
but has similar number of posts to process in the refinement
step (i.e., based on the sum of the total number of posts in
the expansive regions of the candidate cells assigned to that
node).

6.4 Slicing

Even with a perfect load balance, the running time of the par-
allel algorithm will be bounded by the most expensive cell.
In this part, we propose how to increase the parallelization
granularity and reduce the upper-bound of the cell computa-
tion time by slicing candidate cells, so that expensive cells
can be refined in parallel.

LetG be the set of the candidate cells providedby aquery’s
filtering step. Below we discuss a heuristic that slices candi-
date cells with high NE . In particular, each candidate cell is
assigned a slice count s (the number of slices for that cell).

Let M be the number of cores in the cluster. Summing
NE for all cells in G represents the amount of work (all posts
that need to be considered) needed by the RSK refinement
step. Ideally, we would like to divide this workload equally
among all nodes, but this is not possible since each NE is
of different size. To enable easier distribution we divide the
workload into γ · M slices where γ is a constant which

123

Reverse spatial top-k keyword queries 513

indicates the average number of slices per node. By varying
γ , we can control the total number of slices created. The

average work per slice is τ =
∑
G

NE

M·γ and the slice count for

a given candidate cell is s =
 NE
τ

�. The proposed heuristic
assigns s slices to the candidate cells with s > 1.

Figure 11 (left) shows a cell sliced vertically into four
equal-width slices (s = 4). While processing a slice in the
refinement step, we use the boundary of the slice instead of
the boundary of the cell. For example, processing the third
slice only checks for the l-square neighborhoods whose cen-
ters are in the rectangle with left-bottom corner (xl+2d , yb)
and right-top corner (xl+3d , yt) (where d = c

s). Since posts
may not be uniformly distributed within a cell, we also
explored equal-post slicing. Figure 11 (right) shows an exam-
ple. Here, the vertical strips are positioned on the X-axis so
that each slice has the similar number of posts. Our exper-
iments (not shown) showed that using equal-post slicing
offered 8–15% improvement in query latency.

Processing a particular slice needs to be independent;
hence the node that is assigned a given slice should have
all the data needed for processing the refinement step on this
slice. Ideally, one could identify the posts and STLs for the
expansive region of each slice. Since this is time-consuming,
we instead send to the assigned node the posts and STLs
included in the expansive region of the parent cell. We call
this data the Cell Data Store (CDS). All slices of a given cell
get the same CDS.

The final step assigns the slices (and their CDS) to the
M cluster nodes. All slices are stored in a sorted list (in
decreasing order) according to their parent cell’s NE . We
start with M empty buckets (one bucket for each cluster
node) and assign the top M slices from the list sequentially
to the buckets. Buckets are then added in a priority queue that
orders them (in decreasingorder) according to their aggregate
NE . The bucket with the smallest aggregate NE is assigned
the next slice from the sorted list; this process continues until
all slices are assigned.

We presented slicing in a vertical way since it has to obey
the same direction as the plane sweep algorithm. If instead
we had used a horizontal sweep line, slicing would be hor-
izontal. However, we have found that performing slicing in
both directions would not be as effective. This is because
slicing in both dimensions will reduce the number of vertical
jumps. Further, the size of a horizontal jump is equal to half

of the minimum of all the vertical jump sizes (
jumpmin

2) and
thus is typically smaller than a vertical jump.

6.5 RSKR parallelism

We also explore parallelism for the RSKR query algorithm.
Since this algorithm terminates as soon as a result is found

while processing a given cell, slicing will not help. Since
slices of a cell are processed at different nodes, if a result is
found on a slice we would need to terminate all other slices
of the same cell. Instead, to parallelize RSKR, we distribute
the candidate (gray) cells among nodes using a bucket-based
approach as above (so that every node gets a similar amount
of tweets).

7 Experiments

7.1 Setup

7.1.1 Hardware

We experimentally evaluate the presented algorithms, both
for single-node and multi-node environments. All single-
node experiments are run on a machine featuring an Intel
Core i-7 processor (8 cores) with 16 GB of RAM and
7200 rpm hard drive. The single-node experiments use all
available (eight) cores on theprocessor.Allmulti-node exper-
iments are run on an AWS Spark cluster. Each slave machine
was r5.xlarge with 4 vCPUs and 32 GB of memory. We run
one executor per core (vCPU).

7.1.2 Datasets

Using the Twitter streaming API [39], we collected all geo-
tagged (i.e., tweets that have the user’s GPS location or the
user’s ‘Twitter Place’), English-based tweets (i.e., excluding
empty tweets or tweets with only URLs) from a rectangle
that contains the New York state and surrounding areas (i.e.,
region A has GPS coordinates: −91, −66, 46, 36) for the
6-month period from August 2014 to January 2015. This
resulted in a dataset with 15M geo-tagged tweets (12 GB in
size). In particular, since most users do not typically reveal
their phone’s GPS [6,18], there were only about 3% tweets
with actual GPS location. For the rest of the geo-tagged
tweets (i.e., those with the user’s ‘Twitter Place’) we used
as location, a random point in the provided polygon that
the Twitter API shares for ‘Place’. Each tweet record has
the tweet’s spatio-temporal coordinates and its terms. After
removing stop-words, each tweet has an average of 5 terms.

In addition to the Twitter dataset, we also used theChicago
crime dataset [7] for some experiments. This dataset reflects
reported incidents of crime that occurred in the City of
Chicago from 2001 to February 11th, 2022. This dataset has
7Mcrime reports fromChicago and surrounding areas. Every
crime report contains point location, time, crime type, and
textual description. It is 4.1 GB in size and contains the fol-
lowing fields: Crime Report Type, Latitude, Longitude, and
so on. We conducted experiments with the location (latitude
and longitude) and crime report type field, which will give us

123

514 P. Ahmed et al.

Table 2 Keyword ranks, Twitter dataset (left), Crime dataset (right)

Symbol Rank Keyword Symbol Rank Keyword

Q1 1 Love Q1 1 Theft

Q5 5 Good Q2 2 Battery

Q10 10 Sorry Q5 5 Narcotics

Q25 25 Home Q7 7 Assault

Q50 50 Hope Q10 10 Vehicle

Q200 200 Change Q15 15 Trespass

areas where a particular crime is among the top-k most fre-
quent crimes (that are reported). Each crime report contains
around two terms on average, as most crime types are short.
Belowmost experiments use the Twitter dataset (by default);
when the crime dataset is used it is specifically mentioned.

As discussed in Sect. 4, the RSK query is computationally
very expensive with respect to the number of tweets involved
in the query,which is application dependent. This number can
increase either by collecting (over time) more tweets over an
area or by increasing the area’s size. Our experiments use
datasets derived from the full dataset above (by keeping the
area fixed but limiting the time interval), with sizes varying
from 10K tweets to the full dataset of 15M tweets. This is
needed for testing the scalability of our algorithms as well
for emulating scenarios where an application deals with an
area/interval that contains fewer data. For comparison pur-
poses, today’s Twitter API provides around 28.5 K tweets
with GPS location per day for the above rectangle A. For all
our experiments, we assume that the dataset size fits in main
memory. This is a realistic assumption as our picked dataset
of 15 million tweets covers around 6 months for the larger
New York State and fits in the main memory of our cluster.

7.1.3 Query keywords

In our experiments, we use query keywords that have differ-
ent ranks in the dataset based on their frequencies. Table 2
shows six keywords with ranks 1, 5, 10, 25, 50, and 200
based on their frequency in the full 15M dataset. Depending
on the dataset used in each experiment, the actual keyword
at a specific rank may be different. Furthermore, throughout
this section, if not otherwise specified, we use k = 10. For
the Chicago crime dataset, we use keywords with ranks 1,
2, 5, 7, 10, 15 based on the frequency in the full dataset,
as shown in Table 2. Given the limited types of crime, the
vocabulary for this dataset is small. That is why the query
keywords’ ranks are chosen as such; for the same reason, we
chose the value of k = 3.

7.1.4 Index structure

We divided the space covered by each dataset into a uniform
grid of square cells with each cell containing tweets that are
in the geographical area covered by that cell. Each cell is
enhanced with a STL of it’s tweets.

7.2 Model validation

To check the optimal cell size estimator model, we run sta-
bility and validity tests. In the stability tests, we depict how
the optimal cell size produced by the model differs from
the experimentally obtained ‘best’ cell size. In particular, we
experimented with a fixed set of square cell sizes, with side
length: 0.5, 0.25, 0.125, 0.1, 0.05, 0.025, 0.02, 0.01, 0.005
(degrees of longitude and latitude). In each experiment, we
report the experimentally best cell size as the cell size that
showed the smallest query latency.

The validity results with respect to cell size for the
RSK and RSKR problem appear in Fig. 12a–c. In these
experiments, we used the RSK algorithm with vertical and
horizontal jumps (Algorithm 1) on the full dataset (15M)
and varied k (from 1 to 100), the query keyword rank (Q1

through Q200) and the query neighborhood size l (from 0.1
to 5 degrees). As it can be seen, the theoretically optimal cell
size for RSK and the experimentally ‘best’ are very close in
all experiments, while varying different parameters. We also
observe that with the change of parameters i.e., k, Q, and
keywords, the optimal cell size remains stable and does not
show any abrupt changes. Figure 12d–f presents the validity
tests with respect to speedup for the RSK problem using
the same dataset and varying the same parameters. Here
the normalized difference between the query latencies, for
the theoretically optimal cell size cθ and the experimentally

‘best’ cexp is depicted as speedup:
Latency(cθ)−Latency(cexp)

Latency(cθ)
.

As it can be observed from these figures, the difference
between the query latencies remains low (within 10%). We
also run stability and validity tests for the RSKR problem
using Algorithm 2 on the large dataset (15M) varying the
same parameters. As before, we observe that the model is
quite accurate.

For simplicity, in the rest of the paper for the Twitter
dataset, we fix the value of k to 10; for this k the theoret-
ically optimal cell size c was close to 0.25 which is the cell
size we used in the following experiments (unless otherwise
mentioned). For the crime dataset, we use cell size c = 0.05
and l = 0.1 because the area covered by the dataset is rel-
atively smaller compared to the area covered by the Twitter
dataset.

123

Reverse spatial top-k keyword queries 515

Fig. 12 Validity test with respect to cell sizes and speedup for cell size estimator

7.3 Single-node evaluation

We first examine the performance of the RSK query. The
aim of these experiments is to analyze the query latencies
among the different approaches used to answer the RSK
query. For these experiments, we use a dataset of 10K tweets
taken by random sampling from the full dataset. We compare
three algorithms, namely, the baseline (RSK-W, i.e., with-
out jump), RSKwith only vertical jump (RSK-V), RSKwith
vertical and horizontal jump without filtering step (RSK-
no Filter), and RSK with both vertical and horizontal jump
(RSK-VH, described in Algorithm 1). Figures 13 and 14
present the query latencies of the algorithms while varying
the query keyword positions q (using l = 0.5) and the query
neighborhood size l (using keyword Q5), respectively. Fig-
ures 15 and 16 present the same experiment results for the
crime database with varied query keyword positions q (using
l = 0.1) and the query neighborhood size l (using keyword
Q5), respectively. The baseline approach (RSK-W) is too
slow (took almost an hour) and hence is omitted from the
figures. In all of the figures, we see significant performance
improvement (note the logarithmic scale on the latency axis)
with the introduction of the horizontal jump which drasti-
cally reduces the number of checked l-square neighborhoods.
RSK-no Filter performs better than RSK-V, but because of
lacking the filtering step to prune its search space, RSK-VH
is around 1.5–7 times faster than RSK-no Filter for different
keywords. The more popular and less popular terms benefit
the most from the filtering step.

We also observed in Fig. 13 that the query latency spikes
for keywords whose rank is closer to k (in these experiments

Fig. 13 RSKquery latency for varying query keyword (Twitter dataset)

Fig. 14 RSK query latency for varying neighborhood sizes (Twitter
dataset)

Q10). When q is close to the kth keyword (in rank), the jump
size becomes smaller; as a result, more l-square neighbor-
hoods are checked increasing the query latency for Q10. For

123

516 P. Ahmed et al.

Fig. 15 RSK query latency for varying query keyword (crime dataset)

Fig. 16 RSK query latency for varying neighborhood sizes (crime
dataset)

keywords ranked below Q10, the jump size (| fq − fk |) is
large because fq is higher which leads to larger jumps and
hence fewer l-square neighborhood checks improving the
query latency. A similar justification explains the reduction
of query latency for keywords with larger rank than Q10;
here fq is much smaller, but the jump size increases since
it is an absolute value of the difference. Based on the these
results, for the remaining experiments we will use the algo-
rithm RSK-VH (Algorithm 1) for the (spatial) RSK query.

The next experiments consider the RSKR query perfor-
mance using the same datasets (random sample with 10K
tweets). The goal of these experiments is to (i) analyze the
query latencies of the solutions to answer RSKR query, (ii)
analyze the accuracy of the solutions. Unless otherwise spec-
ified, both number of random restarts and number of divisions
for each algorithm are set to 5.As in each coordinate division,
we check 4 l-square neighborhoods; the budget per candidate
cell was 100. We compare five approximate algorithms (i-v)
and one exact algorithm (vi). These algorithms are: (i) Full
STL (FS), which uses the STLs of the cells that are fully
contained in the l-square neighborhood; (ii) Full STL and
Previous Calculation (FS-PC), which uses the termFreqMap
from previously checked l-square neighborhoods; (iii) Par-
tialSTL; (iv) STLOnly, (v) FS-PC(25), where the number
of random restarts increased to 25; (vi) RSK-Exact, which

Fig. 17 RSKR query latency for varying query keyword (Twitter
dataset)

Fig. 18 RSKR query latency for varying neighborhood sizes (Twitter
dataset)

is a variation of the RSK-VH algorithm that terminates pro-
cessing a candidate cell as soon as one result is found for that
cell. Figures 17 and 18 depict the query latency performance
of the RSKR algorithms using different neighborhood sizes
l (for keyword Q5) and for different query keyword posi-
tions q (using l = 0.5), respectively, for the Twitter dataset.
Figures 19 and 20 present the same experiment results for
the crime database with varied query keyword positions q
(using l = 0.1) and the query neighborhood size l (using
keyword Q5), respectively. In all four figures the RSK-Exact
algorithm is the slowest among the RSKR algorithms since
it explores the whole expansive region of a candidate cell,
while all approximate algorithms use coordinate division to
quickly focus to the part that is most likely to contain a result.
Moreover, as expected, the latency for the RSKR query is
much smaller (in ms) than the latency of the RSK query (in
seconds).

In comparing the approximate algorithms, one has to also
consider their precision and recall (to be examined later).
In both figures we observe that the approximate algorithms’
performance (higher to lower) is as follows: FS-PC(25) >

FS > FS-PC > PartialSTL > STLOnly. Note that unless
a result is found in a candidate cell, algorithm FS-PC(25)
can randomly restart 25 times, while the other approximate
algorithms can restart 5 times. Hence, when FS-PC(25) can-
not find a result, it restarts more times making it the slowest
(and also most accurate) approximate algorithm. Note that

123

Reverse spatial top-k keyword queries 517

Fig. 19 RSKRquery latency for varying query keyword (crime dataset)

Fig. 20 RSKR query latency for varying neighborhood sizes (crime
dataset)

the difference between the FS and FS-PC algorithms is that
the latter uses the termFreqMap of the previously checked
l-square neighborhood. Since l ≥ 2c, there is a lot of over-
lap between two consecutive l-square neighborhoods. As a
result, FS-PC is faster than FS since the use of the previ-
ous termFreqMap allows it to take advantage of this overlap.
PartialSTL and STLOnly do not check any tweet; instead,
they find results based on the STLs only, which adds another
level of approximation. These algorithms are thus faster than
the other approximate algorithms, but their precision suffers
from the extra approximation. STLOnly is the fastest (and
has the lowest precision/recall as we will see in Figs. 23
and 24) as it only considers the cells that are fully contained
in the l-square neighborhood, completely ignoring the par-
tially contained cells.

Another observation from Fig. 17 is that RSK-Exact
shows the same spike in query latency for the query posi-
tioned at rank k (Q10), which is expected since it follows
the RSK algorithm. We also observe that the behavior of the
approximate algorithms is different, as it starts with a query
latency decline from Q1 to Q5, followed by a maximum at
Q25 and another decline until Q200. There are two factors
affecting this behavior, namely: (i) the number of candidate
cells and (ii) the number of l-square neighborhoods checked.
Figure 21 depicts the number of candidate (gray) cells as the

rankof the query keyword increases. It also shows the number
of red and green cells for reference purposes. Clearly, as the
keyword rank increases the number of gray cells decreases.
The sum of red, green and gray cells is constant for all key-
words. As the keyword rank increases, the keyword becomes
less popular and hence there are more cells for which we can
easily decide that they have no answer, i.e., they become red
cells. Since there are very few green cells, the numbers of
gray and red cells change in opposite directions. This figure
also shows the actual effectiveness of our filtering step. We
can see that the filtering step prunes a substantial portion of
the total search space (77–99%), as all cells have the same
area. In Figs. 22 (RSK) and 23 (RSKR), we will see that the
time taken for filtering is negligible compared to the time
taken by the refinement step. This filtering step plays a cru-
cial role in reducing the overall query latency for RSK and
RSKR queries, as shown in Figs. 13, 14, 15, and 16 from the
difference of query latency between RSK-VH and RSK-no
Filter.

Figure 22 shows the (average) number of l-square neigh-
borhoods checked per gray cell by algorithm FS-PC; the
other approximate algorithms behave similarly. As the rank
of the keyword increases, there are fewer possible answers
(keyword is less popular) and thus we have to check more
l-square neighborhoods to find an answer. The difference
becomes more apparent in larger ranks since there are much
fewer answers. Figure 22 also shows the total number of
l-square neighborhoods that the FS-PC algorithm checks
(over all gray cells); this is calculated by multiplying the
number of gray cells in Fig. 21 with the l-square neighbor-
hoods checked per cell. This graph behaves similarlywith the
behavior seen inFig. 17. From Q1 to Q5 the latency decreases
since results are still easy to find, but the number of candidate
cells decreases and dictates the query latency. For Q10 the
number of candidate cells decreases slightly in comparison
with Q5; however, it is relatively harder to find an answer
because the rank of the keyword is no longer less than k (and
thus we have to check more l-square neighborhoods). This
behavior continues until Q25, after which the decline on the
number of candidate cells dominates and reduces the query
latency. Moreover, the higher ranked keywords have higher
latency over the lower ranked keywords. As higher ranked
keywords have much fewer answers, the approximate algo-
rithm keeps checking random l-square neighborhoods (until
it finds an answer or runs out of budget).

We compare the precision and recall of the different
approximate algorithms for the RSKR query in Figs. 23
and 24, respectively. While faster, the approaches that find
results by looking only within STLs (namely the PartialSTL
and STLOnly) suffer both in precision and recall when com-
pared to the other approximate algorithms. The precision of
all the approximate algorithm is worst for Q10, because its
rank is equal to k. For the approximate algorithms, candidate

123

518 P. Ahmed et al.

Fig. 21 Different cell counts for different query keywords

Fig. 22 Number of checked l-square neighborhoods for different query
keywords

cells for this particular keyword are the hardest to classify
because the difference between the frequency of the k-th
keyword and the frequency of Q10 is minimal. The FS and
FS-PC algorithms have the same precision and recall since
they use the same budget and differ only in the use of Pre-
vious Calculation. Overall, the algorithm using the Full STL
and Previous Calculation (FS-PC) outperforms the other ver-
sionswith respect to both precision and query latency.Hence,
in the remaining experiments we will use FS-PC to answer
RSKR query (Algorithm 2).

7.3.1 Using the RSKR algorithm to answer a RSK query

Figure 25 shows the total area (sum of all rectangles returned
as results) when using the RSKR (FS-PC) and the RSK-VH
algorithms to answer various RSK queries. The total area
returned by the RSKR algorithm is approximately between
1.5 times (for query Q1) and 9 times (for query Q200) more
than the total area returned by the RSK algorithm. Figure 26
shows the accuracywhen using theRSKR algorithm for RSK

queries. We calculate the accuracy as: RSKArea
RSKRArea

. The accu-
racy varies from65%(for query Q1) to 10% (for query Q200).

Fig. 23 Precision of RSKR approximate algorithms for different query
keywords

Fig. 24 Recall of RSKR approximate algorithms for different query
keywords

Fig. 25 Total area returned as answer by RSK and RSKR queries

7.3.2 Dataset scalability

Having identified the best algorithm for each of the RSK and
RSKR problems, we proceed with examining the effect of
the dataset size. Figures 27 and 28 show the query latency
for each problem, respectively, for different keywords while

123

Reverse spatial top-k keyword queries 519

Fig. 26 Accuracy of RSKR algorithm when answering RSK queries

varying the dataset sizes from 10K tweets to the full dataset
of 15M tweets. We used neighborhood size, l = 0.5 and cell
size, c = 0.25 for these experiments. We see similar trends
for different query keywords for different sizes of dataset.
Nevertheless, the query latency increases significantly with
the increase of dataset size. This is expected as many more
tweets must be processed. Even for the faster RSKR algo-
rithm, the query latency becomes prohibitively large for big
datasets (note the logarithmic scale). This leads us to explore
scaling both the RSK and RSKR problems tomultiple nodes.

7.3.3 Index time versus query time

As discussed in Sect. 3 (see system architecture in Fig. 3),
this paper assumes that the indexing is done beforehand and
only considers the filtering and refinement steps as part of
the query time.Here, we explore how significant the indexing
time is when compared to the algorithms’ execution time (fil-
tering and refinement). Figures 29 and 30 show the times for
the indexing, filtering, and refinement steps to answer RSK
and RSKR queries, respectively. As the size of the dataset
increases, so does the time required to finish each step. We
also notice that for the RSK, both the filtering and indexing
steps take time that is negligible (around 1%) compared to the
refinement step. Note that the indexing and filtering steps are
the same for both the RSK or RSKR queries. On the other
hand, the refinement step of RSKR is typically faster than
the indexing step. This is because RSKR checks much fewer
l-square neighborhoods than RSK.

7.4 Multi-node evaluation

7.4.1 Effect of slicing

Our algorithms to answer the RSK and RSKR queries are
highly parallelizable as each candidate (gray) cell can be pro-
cessed independently. Moreover, the RSK algorithm slices
each gray cell so that a single cell can be processed in par-
allel by multiple machines. In this part, we first examine the
effectiveness of slicing; then we present scalability experi-
ments for both problems. All multi-node experiments below

Fig. 27 RSK query latency while varying the dataset size

Fig. 28 RSKR query latency while varying the dataset size

Fig. 29 Time comparison between Indexing, Filtering, and Refinement
steps to execute the RSK query

were performed using the full 15M tweets dataset with neigh-
borhood size l = 0.5 and cell size c = 0.25. To test the
effectiveness of slicing and workload balancing, we experi-
mentally evaluated three versions of the RSK algorithm; (i)
RSK using straightforward random distribution (Not Sliced -
Random), (ii) RSK using post count-based distribution (Not
Sliced), and (iii) RSK with slicing using post count-based
distribution (Sliced), where we applied equal-post slicing
using the approach discussed in Sect. 6. The results appear in
Fig. 31 for different query keyword positions (q).We observe

123

520 P. Ahmed et al.

Fig. 30 Time comparison between Indexing, Filtering, and Refinement
steps to execute the RSKR query

Fig. 31 Comparing effect of slicing on query latency (in minutes) of
RSK for different query keywords

significant query latency speedup if we distribute the candi-
date cells among the nodes by balancing the total post count
in the expansive regions in each node compared to the ran-
domdistribution.This is because the refinement timehas high
correlation with the post count in the expansive region (NE)
as discussed in Sect. 6 and the refinement time accounts for
almost 99%of the total query latency of RSKquery (Fig. 29).
We also observe significant improvement in query latency
by using slicing. This is because slicing provides even better
workload balancing among the nodes.

Since individual slices can be processed at different cores,
themaximum time taken to process any of the slices is impor-
tant. Figure 32 shows the relationship between the number
of slices and the maximum processing time per slice. For this
experiment we applied slicing to three different cells that we
term busy, medium and light, based on their tweet density
(with 303k, 3k, and 587 tweets, respectively). As the figure
shows, slicing helps until a certain point, after which regard-
less of the number of slices, the maximum time taken by a
slice does not improve. The reason there is a lower bound
that we cannot go below is because we expand the region of
each slice equal to the query neighborhood size l, so even
the thinnest slice has to be expanded by l. This holds for all
cell densities we experimented. As expected, slicing is more
advantageous for busy (followed by medium and light) cells

Fig. 32 Max. time for a slice for Q1

Fig. 33 Average slice count per core (γ)

as it provides a larger reduction in latency. This asserts the
findings of Fig. 10 where we also showed that the number of
posts is directly correlated with the time needed to process a
cell.

We also examined the effect of γ , the average number
of slices assigned to each core. Figure 33 shows the query
latency while varying γ from 1 to 20, using a fixed number
of cores (M = 300). For all keywords, as we increase γ

we increase the number of slices (γ ∗ M), which improves
latency as it enables better distribution of workload. We
observe again thatmore slicing (higher γ) is not going to help
after a certain point when the time required per slice stops
improving. Further adding slices per core will start deterio-
rating latency. This is because we always have to expand the
slice by l regardless how thin the slice is. So slicing too much
does not help. In the remaining experiments, we set γ = 10
as it depicted the best query latency.

7.4.2 Cluster speedup

To measure the speedup performance we started with a clus-
ter of 50 cores doubling them until 400 cores. Figure 34
shows the RSK query latency (using Algorithm 1) for differ-
ent keywordswhile varying the number of cores in the cluster.
For all queries, adding more cores improves the latency. The
relative latencies of the keywords follow the same order as

123

Reverse spatial top-k keyword queries 521

Fig. 34 RSK query latency with varying number of cores for different
keywords

Fig. 35 RSKR query latencywith varying number of cores for different
keywords

Fig. 36 Speedup of RSK algorithm with varying number of cores for
different keywords

Fig. 37 Speedup of RSKR algorithm with varying number of cores for
different keywords

Fig. 38 RSK scale-up experiments for different keywords

with the single-node experiments (Fig. 13). Figure 35 shows
query latencies for RSKR (Algorithm 2) for different query
keywords with different number of cores in the cluster. The
query latencies for the less popular query keywords (Q25,
Q50, Q200) suffer for the same reason as mentioned for the
single-node experiments (Fig. 17).

The actual speedup is shown in Figs. 36 and 37 for
RSK and RSKR, respectively. We calculated speedup as
S = L(50)

L(p) . Here, L(p) is the query latency with p cores;
we used 50 cores as the baseline. The speedup for both par-
allel algorithms is increasing with the number of cores. It is
however not proportional to the increase in the number of
cores as the query latency depends on the slowest core to
finish. While we distribute slices across cores to create equal
loads, some slices can take much longer than others (as was
seen in Fig. 32) thus affecting load balancing.

7.4.3 Cluster scale-up

To explore the scale-up performance, we keep the workload
constant (in terms of number of tweets per core) as we add
more cores to the cluster. We start with a cluster of 100 cores
and 5M tweets (i.e., 50K tweets/core), then 200 cores and
10Mtweets, andfinally 300 cores and15Mtweets. Figures 38
and 39 show query latency of RSK and RSKR (for different
keywords) for the above scale-up experiments, respectively.
Clearly both algorithms achieve very good scale-up perfor-
mance; the query latency per keyword remains similar, which
means that the additional data is processed in roughly the
same amount of time if the cores are increased proportion-
ately.

7.5 Comparison with GARNET

GARNET [20] is the closest work to ours; however, it has two
key limitations compared to our approach. First, the neigh-
borhood size in GARNET has to be equal to the cell size.
Second, all the results have to be aligned with the cell of the

123

522 P. Ahmed et al.

Fig. 39 RSKR scale-up experiments for different keywords

Fig. 40 Comparison of number of results found by GARNET, RSK-
Exact, and FS-PC algorithm

grid. Hence, GARNET provides an approximate answer to
the RSKR (restricted) query. In particular, a cell is answer of
the RSKR problem if there is at least one point in the cell that
is (k, l)-frequent, whereas GARNET returns that cell if the
center of the cell is (k, l)-frequent. Figure 40 depicts the total
number of results returned by the two systems. For RSKR
we depict both approaches, namely RSK-Exact and FS-PC.
As expected, GARNET misses lots of results as it tests only
the center of the cell, while our approaches test numerous
shifted l-square neighborhoods within each cell.

8 Conclusions and future work

We introduce the Reverse Spatial Keyword (RSK) Query on
geo-tagged posts that allows a user to identify where a partic-
ular keyword is popular. Using materialized term frequency
lists we present algorithms to solve RSK queries. We further
propose a restricted version of the query (RSKR) for which
we present an exact andmultiple faster but approximate algo-
rithms. Parallelism is explored for both exact and restricted
problems. An interesting future direction is to explore RSK-
related queries over spatio-temporal data.

Acknowledgements This work was partially supported by NSF grants
SES-1831615, IIS-1954644, IIS-1901379 and IIS-1838222.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A.,
Renz, M.: Efficient reverse k-nearest neighbor search in arbi-
trary metric spaces. In: Chaudhuri, S., Hristidis, V., Polyzotis,
N. (eds.) Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Chicago, Illinois, USA, June
27–29, 2006, pp. 515–526. ACM (2006). https://doi.org/10.1145/
1142473.1142531

2. Ahmed, P., Hasan, M., Kashyap, A., Hristidis, V., Tsotras, V.J.:
Efficient computation of top-k frequent terms over spatio-temporal
ranges. In: Salihoglu, S., Zhou, W., Chirkova, R., Yang, J., Suciu,
D. (eds.) Proceedings of the 2017 ACM International Conference
onManagement of Data, SIGMODConference 2017, Chicago, IL,
USA, May 14–19, 2017, pp. 1227–1241. ACM (2017). https://doi.
org/10.1145/3035918.3064032

3. Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., Lin,
J.J.: Earlybird: Real-time search at twitter. In: Kementsietsidis, A.,
Salles, M.A.V. (eds.) IEEE 28th International Conference on Data
Engineering (ICDE 2012), Washington, DC, USA (Arlington, Vir-
ginia), 1–5 April, 2012, pp. 1360–1369. IEEE Computer Society
(2012). https://doi.org/10.1109/ICDE.2012.149

4. Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based
relevant spatial web objects. Proc. VLDB Endow. 3(1), 373–384
(2010). https://doi.org/10.14778/1920841.1920891

5. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query
processing: An experimental evaluation. Proc. VLDBEndow. 6(3),
217–228 (2013). https://doi.org/10.14778/2535569.2448955

6. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a
content-based approach to geo-locating twitter users. In: Huang,
J., Koudas, N., Jones, G.J.F., Wu, X., Collins-Thompson, K., An,
A. (eds.) Proceedings of the 19th ACM Conference on Informa-
tion and Knowledge Management, CIKM 2010, Toronto, Ontario,
Canada, October 26–30, 2010, pp. 759–768. ACM (2010). https://
doi.org/10.1145/1871437.1871535

7. Chicago crime dataset, https://star.cs.ucr.edu/?Chicago
%20Crimes#center=42.013,-86.749&zoom=9

8. Choudhury, F.M., Culpepper, J.S., Sellis, T., Cao, X.: Maximiz-
ing bichromatic reverse spatial and textual k nearest neighbor
queries. Proc. VLDB Endow. 9(6), 456–467 (2016). https://doi.
org/10.14778/2904121.2904122

9. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most
relevant spatial web objects. Proc. VLDB Endow. 2(1), 337–348
(2009). https://doi.org/10.14778/1687627.1687666

10. Egghe, L.: Untangling Herdan’s law andHeaps’ law: mathematical
and informetric arguments. J. Assoc. Inf. Sci. Technol. 58(5), 702–
709 (2007). https://doi.org/10.1002/asi.20524

11. Farazi, S., Rafiei, D.: Top-k frequent term queries on streaming
data. In: ICDE, pp. 1582–1585. IEEE (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1142473.1142531
https://doi.org/10.1145/1142473.1142531
https://doi.org/10.1145/3035918.3064032
https://doi.org/10.1145/3035918.3064032
https://doi.org/10.1109/ICDE.2012.149
https://doi.org/10.14778/1920841.1920891
https://doi.org/10.14778/2535569.2448955
https://doi.org/10.1145/1871437.1871535
https://doi.org/10.1145/1871437.1871535
https://star.cs.ucr.edu/?Chicago%20Crimes#center=42.013,-86.749&zoom=9
https://star.cs.ucr.edu/?Chicago%20Crimes#center=42.013,-86.749&zoom=9
https://doi.org/10.14778/2904121.2904122
https://doi.org/10.14778/2904121.2904122
https://doi.org/10.14778/1687627.1687666
https://doi.org/10.1002/asi.20524

Reverse spatial top-k keyword queries 523

12. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial
databases. In: Alonso, G., Blakeley, J.A. , Chen, A.L.P. (eds.)
Proceedings of the 24th International Conference on Data Engi-
neering, ICDE 2008, April 7–12, 2008, Cancún, Mexico, pp.
656–665. IEEEComputer Society (2008). https://doi.org/10.1109/
ICDE.2008.4497474

13. Foursquare, https://foursquare.com/
14. Gao, Y., Qin, X., Zheng, B., Chen, G.: Efficient reverse top-k

Boolean spatial keyword queries on road networks. IEEE Trans.
Knowl. Data Eng. 27(5), 1205–1218 (2015). https://doi.org/10.
1109/TKDE.2014.2365820

15. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.:
On-line discovery of dense areas in spatio-temporal databases.
In: Hadzilacos, T., Manolopoulos, Y., Roddick, J.F., Theodoridis,
Y. (eds.) Advances in Spatial and Temporal Databases, 8th Inter-
national Symposium, SSTD 2003, Santorini Island, Greece, July
24–27, 2003, Proceedings, Lecture Notes in Computer Science,
vol. 2750, pp. 306–324. Springer (2003). https://doi.org/10.1007/
978-3-540-45072-6_18

16. Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4(7), 321–322
(1961). https://doi.org/10.1145/366622.366647

17. Instragam, https://www.instagram.com/
18. Izbicki, M., Papalexakis, V., Tsotras, V.J.: Geolocating tweets in

any language at any location. In: Zhu, W., Tao, D., Cheng, X.,
Cui, P., Rundensteiner, E.A., Carmel, D., He, Q., Yu J.X. (eds.)
Proceedings of the 28th ACM International Conference on Infor-
mation and KnowledgeManagement, CIKM 2019, Beijing, China,
November 3–7, 2019, pp. 89–98. ACM (2019). https://doi.org/10.
1145/3357384.3357926

19. Jeung, H., Yiu,M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery
of convoys in trajectory databases. Proc.VLDBEndow.1(1), 1068–
1080 (2008). https://doi.org/10.14778/1453856.1453971

20. Jonathan, C., Magdy, A., Mokbel, M.F., Jonathan, A.: GARNET:
A holistic system approach for trending queries in microblogs, pp.
1251–1262 (2016). https://doi.org/10.1109/ICDE.2016.7498329

21. Korn, F.,Muthukrishnan, S.: Influence sets based on reverse nearest
neighbor queries. SIGMOD Rec. 29(2), 201–212 (2000). https://
doi.org/10.1145/335191.335415

22. Lappas, T., Arai, B., Platakis, M., Kotsakos, D., Gunopulos,
D.: On burstiness-aware search for document sequences. In: IV,
J.F.E., Fogelman-Soulié, F., Flach, P.A., Zaki, M.J. (eds.) Pro-
ceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France, June 28–
July 1, 2009, pp. 477–486. ACM (2009). https://doi.org/10.1145/
1557019.1557075

23. Lappas, T., Vieira, M.R., Gunopulos, D., Tsotras, V.J.: On the spa-
tiotemporal burstiness of terms. Proc.VLDBEndow.5(9), 836–847
(2012)

24. Lu, J., Lu, Y., Cong, G.: Reverse spatial and textual k nearest
neighbor search. In: Sellis, T.K., Miller, R.J., Kementsietsidis, A.,
Velegrakis, Y. (eds.) Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2011,
Athens, Greece, June 12–16, 2011, pp. 349–360. ACM (2011).
https://doi.org/10.1145/1989323.1989361

25. Luo, C., Li, J., Li, G.,Wei,W., Li, Y., Li, J.: Efficient reverse spatial
and textual k nearest neighbor queries on road networks. Knowl.
Based Syst. 93, 121–134 (2016). https://doi.org/10.1016/j.knosys.
2015.11.009

26. Ma, C., Lu, H., Shou, L., Chen, G.: KSQ: top-(k) similarity query
on uncertain trajectories. IEEE Trans. Knowl. Data Eng. 25(9),
2049–2062 (2013). https://doi.org/10.1109/TKDE.2012.152

27. Magdy, A., Aly, A.M., Mokbel, M.F., Elnikety, S., He, Y.,
Nath, S., Aref, W.G.: Geotrend: spatial trending queries on real-
time microblogs, pp. 7:1–7:10 (2016). https://doi.org/10.1145/
2996913.2996986

28. Mathioudakis, M., Bansal, N., Koudas, N.: Identifying, attributing
and describing spatial bursts. Proc.VLDBEndow. 3(1), 1091–1102
(2010). https://doi.org/10.14778/1920841.1920978

29. Ni, J., Ravishankar, C.V.: Pointwise-dense region queries in spatio-
temporal databases. In: Chirkova, R., Dogac, A., Özsu, M.T.,
Sellis, T.K. (eds.) Proceedings of the 23rd International Conference
on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul,
Turkey, April 15–20, 2007, pp. 1066–1075. IEEE Computer Soci-
ety (2007). https://doi.org/10.1109/ICDE.2007.368965

30. Nikitopoulos, P., Sfyris,G.A.,Vlachou,A.,Doulkeridis,C., Telelis,
O.: Parallel and distributed processing of reverse top-k queries. In:
35th IEEE International Conference on Data Engineering, ICDE
2019, Macao, China, April 8–11, 2019, pp. 1586–1589. IEEE
(2019). https://doi.org/10.1109/ICDE.2019.00148

31. Park, J.H., Chung,C.W.,Kang,U.: Reverse nearest neighbor search
with a non-spatial aspect. Inf. Syst. 54(C), 92–112 (2015). https://
doi.org/10.1016/j.is.2015.06.010

32. Qiao, B., Hu, B., Zhu, J., Wu, G., Giraud-Carrier, C.G., Wang, G.:
A top-k spatial join querying processing algorithm based on spark.
Inf. Syst. 87 (2020). https://doi.org/10.1016/j.is.2019.101419

33. Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Nørvåg, K.: Effi-
cient processing of top-k spatial preference queries. Proc. VLDB
Endow. 4(2), 93–104 (2010). https://doi.org/10.14778/1921071.
1921076

34. Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Search-
ing trajectories by regions of interest. IEEE Trans. Knowl. Data
Eng. 29(7), 1549–1562 (2017). https://doi.org/10.1109/TKDE.
2017.2685504

35. Skovsgaard, A., Sidlauskas, D., Jensen, C.S.: Scalable top-k spatio-
temporal term querying. In: Cruz, I.F. , Ferrari, E., Tao, Y., Bertino,
E., Trajcevski, G. (eds.) IEEE 30th International Conference on
Data Engineering, Chicago, ICDE 2014, IL, USA,March 31–April
4, 2014, pp. 148–159. IEEE Computer Society (2014). https://doi.
org/10.1109/ICDE.2014.6816647

36. Stieglitz, S., Mirbabaie, M., Ross, B., Neuberger, C.: Social media
analytics: challenges in topic discovery, data collection, and data
preparation. Int. J. Inf.Manag. 39, 156–168 (2018). https://doi.org/
10.1016/j.ijinfomgt.2017.12.002

37. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary
dimensionality. In: VLDB (2004)

38. tweetreach, https://tweetreach.com/
39. Twitter, http://twitter.com/
40. Twitter api, https://developer.twitter.com/
41. Uddin, M.R., Ravishankar, C.V., Tsotras, V.J.: Finding regions of

interest from trajectory data. In: Zaslavsky,A.B., Chrysanthis, P.K.,
Lee,D.L., Chakraborty,D.,Kalogeraki,V.,Mokbel,M.F., Chow,C.
(eds.) 12th IEEE International Conference on Mobile Data Man-
agement, MDM 2011, Luleå, Sweden, June 6–9, 2011, Volume
1, pp. 39–48. IEEE Computer Society (2011). https://doi.org/10.
1109/MDM.2011.12

42. Uddin, M.R., Ravishankar, C.V., Tsotras, V.J.: Online identifica-
tion of dwell regions for moving objects. In: Aberer, K., Joshi, A.,
Mukherjea, S., Chakraborty, D., Lu, H., Venkatasubramanian, N.,
Kanhere, S.S. (eds.) 13th IEEE International Conference onMobile
Data Management, MDM, pp. 248–257 (2012)

43. Uddin, R., Rice, M.N., Ravishankar, C.V., Tsotras, V.J.: Assembly
queries: Planning and discovering assemblies of moving objects
using partial information. In: Hoel, E.G., Newsam, S.D., Ravada,
S., Tamassia, R., Trajcevski, G. (eds.) Proceedings of the 25th
ACMSIGSPATIAL International Conference onAdvances inGeo-
graphic Information Systems„ pp. 24:1–24:10. ACM (2017)

44. Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock
patterns in spatio-temporal data. In: Agrawal, D., Aref, W.G., Lu,
C.,Mokbel,M.F., Scheuermann, P., Shahabi, C.,Wolfson, O. (eds.)
17th ACM SIGSPATIAL International Symposium on Advances
in Geographic Information Systems, ACM-GIS 2009, November

123

https://doi.org/10.1109/ICDE.2008.4497474
https://doi.org/10.1109/ICDE.2008.4497474
https://foursquare.com/
https://doi.org/10.1109/TKDE.2014.2365820
https://doi.org/10.1109/TKDE.2014.2365820
https://doi.org/10.1007/978-3-540-45072-6_18
https://doi.org/10.1007/978-3-540-45072-6_18
https://doi.org/10.1145/366622.366647
https://www.instagram.com/
https://doi.org/10.1145/3357384.3357926
https://doi.org/10.1145/3357384.3357926
https://doi.org/10.14778/1453856.1453971
https://doi.org/10.1109/ICDE.2016.7498329
https://doi.org/10.1145/335191.335415
https://doi.org/10.1145/335191.335415
https://doi.org/10.1145/1557019.1557075
https://doi.org/10.1145/1557019.1557075
https://doi.org/10.1145/1989323.1989361
https://doi.org/10.1016/j.knosys.2015.11.009
https://doi.org/10.1016/j.knosys.2015.11.009
https://doi.org/10.1109/TKDE.2012.152
https://doi.org/10.1145/2996913.2996986
https://doi.org/10.1145/2996913.2996986
https://doi.org/10.14778/1920841.1920978
https://doi.org/10.1109/ICDE.2007.368965
https://doi.org/10.1109/ICDE.2019.00148
https://doi.org/10.1016/j.is.2015.06.010
https://doi.org/10.1016/j.is.2015.06.010
https://doi.org/10.1016/j.is.2019.101419
https://doi.org/10.14778/1921071.1921076
https://doi.org/10.14778/1921071.1921076
https://doi.org/10.1109/TKDE.2017.2685504
https://doi.org/10.1109/TKDE.2017.2685504
https://doi.org/10.1109/ICDE.2014.6816647
https://doi.org/10.1109/ICDE.2014.6816647
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://tweetreach.com/
http://twitter.com/
https://developer.twitter.com/
https://doi.org/10.1109/MDM.2011.12
https://doi.org/10.1109/MDM.2011.12

524 P. Ahmed et al.

4–6, 2009, Seattle, Washington, USA, Proceedings, pp. 286–295.
ACM (2009). https://doi.org/10.1145/1653771.1653812

45. Vlachou,A.,Doulkeridis,C.,Kotidis,Y.,Nørvåg,K.:Reverse top-k
queries. In: Li, F., Moro, M.M., Ghandeharizadeh, S., Haritsa, J.R.,
Weikum, G., Carey, M.J., Casati, F., Chang, E.Y., Manolescu, I.,
Mehrotra, S., Dayal, U., Tsotras, V.J. (eds.) Proceedings of the 26th
International Conference on Data Engineering, ICDE 2010, March
1–6, 2010, LongBeach, California, USA, pp. 365–376. IEEECom-
puter Society (2010). https://doi.org/10.1109/ICDE.2010.5447890

46. Vlachou, A., Doulkeridis, C., Kotidis, Y., Nørvåg, K.: Monochro-
matic and bichromatic reverse top-k queries. IEEE Trans. Knowl.
Data Eng. (2011)

47. Vlachou, A., Doulkeridis, C., Nørvåg, K.: Monitoring reverse top-
k queries over mobile devices. In: Kollios, G., Tao, Y. (eds.)
Proceedings of the Tenth ACM International Workshop on Data
Engineering for Wireless and Mobile Access, MobiDE 2011,
Athens, Greece, June 12, 2011, pp. 17–24. ACM (2011). https://
doi.org/10.1145/1999309.1999313

48. Vlachou, A., Doulkeridis, C., Nørvåg, K., Kotidis, Y.: Identifying
the most influential data objects with reverse top-k queries. Proc.
VLDB Endow. 3(1), 364–372 (2010). https://doi.org/10.14778/
1920841.1920890

49. Vlachou, A., Doulkeridis, C., Nørvåg, K., Kotidis, Y.: Branch-
and-bound algorithm for reverse top-k queries. In: Ross, K.A.,
Srivastava, D., Papadias, D. (eds.) Proceedings of the ACM SIG-
MOD International Conference onManagement ofData, SIGMOD
2013, New York, NY, USA, June 22–27, 2013, pp. 481–492. ACM
(2013). https://doi.org/10.1145/2463676.2465278

50. Wang, S., Bao, Z., Culpepper, J.S., Sellis, T., Sanderson, M., Qin,
X.: Answering top-k exemplar trajectory queries. In: 33rd IEEE
International Conference on Data Engineering, ICDE 2017, San
Diego, CA,USA,April 19–22, 2017, pp. 597–608. IEEEComputer
Society (2017). https://doi.org/10.1109/ICDE.2017.114

51. Wolframalpha, https://www.wolframalpha.com/
52. Yang, S., Cheema, M.A., Lin, X., Zhang, Y., Zhang, W.: Reverse

k nearest neighbors queries and spatial reverse top-k queries.
VLDB J. 26(2), 151-176(2017). https://doi.org/10.1007/s00778-

016-0445-2
53. Yiu, M.L., Dai, X., Mamoulis, N., Vaitis, M.: Top-k spatial pref-

erence queries. In: Chirkova, R., Dogac, A., Özsu, M.T., Sellis,
T.K. (eds.) Proceedings of the 23rd International Conference on
Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul,
Turkey, April 15–20, 2007, pp. 1076–1085. IEEE Computer Soci-
ety (2007). https://doi.org/10.1109/ICDE.2007.368966

54. Yiu,M.L., Lu,H.,Mamoulis,N.,Vaitis,M.:Ranking spatial data by
quality preferences. pp. 433–446 (2011). https://doi.org/10.1109/
TKDE.2010.119

55. Younis, E.M.: Sentiment analysis and text mining for social media
microblogs using open source tools: an empirical study. Int. J. Com-
put. Appl. 112(5) (2015)

56. Zhao, J., Gao, Y., Chen, G., Jensen, C.S., Chen, R., Cai, D.: Reverse
top-k geo-social keyword queries in road networks. In: 2017 IEEE
33rd International Conference on Data Engineering (ICDE), pp.
387–398 (2017). https://doi.org/10.1109/ICDE.2017.97

57. Zhou, X., Tao, X., Yong, J., Yang, Z.: Sentiment analysis on tweets
for social events. In: Shen, W., Li, W., Barthès, J.A., Luo, J., Zhu,
H., Yong, J., Li, X. (eds.) Proceedings of the 2013 IEEE 17th Inter-
national Conference on Computer Supported Cooperative Work
in Design (CSCWD), Whistler, BC, Canada, June 27–29, 2013,
pp. 557–562. IEEE (2013). https://doi.org/10.1109/CSCWD.2013.
6581022

58. Zhu, M., Papadias, D., Zhang, J., Lee, D.L.: Top-k spatial joins.
IEEE Trans. Knowl. Data Eng. 17(4), 567–579 (2005). https://doi.
org/10.1109/TKDE.2005.65

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/1653771.1653812
https://doi.org/10.1109/ICDE.2010.5447890
https://doi.org/10.1145/1999309.1999313
https://doi.org/10.1145/1999309.1999313
https://doi.org/10.14778/1920841.1920890
https://doi.org/10.14778/1920841.1920890
https://doi.org/10.1145/2463676.2465278
https://doi.org/10.1109/ICDE.2017.114
https://www.wolframalpha.com/
https://doi.org/10.1007/s00778-016-0445-2
https://doi.org/10.1007/s00778-016-0445-2
https://doi.org/10.1109/ICDE.2007.368966
https://doi.org/10.1109/TKDE.2010.119
https://doi.org/10.1109/TKDE.2010.119
https://doi.org/10.1109/ICDE.2017.97
https://doi.org/10.1109/CSCWD.2013.6581022
https://doi.org/10.1109/CSCWD.2013.6581022
https://doi.org/10.1109/TKDE.2005.65
https://doi.org/10.1109/TKDE.2005.65

	Reverse spatial top-k keyword queries
	Abstract
	1 Introduction
	2 Related work
	2.1 Top-k spatial queries
	2.2 Reverse spatial queries
	2.3 Density and burstiness queries

	3 Problem definition
	3.1 Reverse spatial top-k keyword (RSK) query
	3.2 RSK-restricted (RSKR) query
	3.3 System architecture

	4 Proposed algorithms
	4.1 Filtering step
	4.2 Refinement step for the RSK query
	4.2.1 Vertical strip (VS)
	4.2.2 Getting the next l-square neighborhood by shifting
	4.2.3 Reuse previous calculation

	4.3 Refinement step for the RSKR query
	4.3.1 Coordinate division

	5 Optimal cell size estimation
	5.1 Analysis of the RSKR refinement step
	5.2 Cost of processing fully contained cells
	5.3 Cost of processing partially intersected cells
	5.4 Analysis of the RSK refinement step

	6 Parallel implementation
	6.1 RSK parallelism
	6.2 Indicators of large refinement time
	6.3 Workload distribution
	6.4 Slicing
	6.5 RSKR parallelism

	7 Experiments
	7.1 Setup
	7.1.1 Hardware
	7.1.2 Datasets
	7.1.3 Query keywords
	7.1.4 Index structure

	7.2 Model validation
	7.3 Single-node evaluation
	7.3.1 Using the RSKR algorithm to answer a RSK query
	7.3.2 Dataset scalability
	7.3.3 Index time versus query time

	7.4 Multi-node evaluation
	7.4.1 Effect of slicing
	7.4.2 Cluster speedup
	7.4.3 Cluster scale-up

	7.5 Comparison with GARNET

	8 Conclusions and future work
	Acknowledgements
	References

