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ABSTRACT With the wide application of mobile Internet techniques an location-based services (LBS),

massive multimedia data with geo-tags has been generated and collected. In this paper, we investigate a

novel type of spatial query problem, named reverse spatial visual top-k query (RSVQk ) that aims to retrieve

a set of geo-images that have the query as one of themost relevant geo-images in both geographical proximity

and visual similarity. Existing approaches for reverse top-k queries are not suitable to address this problem

because they cannot effectively process unstructured data, such as image. To this end, firstly we propose

the definition of RSVQk problem and introduce the similarity measurement. A novel hybrid index, named

VR2-Tree is designed, which is a combination of visual representation of geo-image and R-Tree. Besides,

an extension of VR2-Tree, called CVR2-Tree is introduced and thenwe discuss the calculation of lower/upper

bound, and then propose the optimization technique via CVR2-Tree for further pruning. In addition, a search

algorithm named RSVQk algorithm is developed to support the efficient RSVQk query. Comprehensive

experiments are conducted on four geo-image datasets, and the results illustrate that our approach can address

the RSVQk problem effectively and efficiently.

INDEX TERMS Geo-image, reverse top-k query, spatial visual query, hybrid index.

I. INTRODUCTION

With the wide application of mobile Internet techniques and

location-based services (LBS), massive multimedia data with

geo-tags (geo-multimedia for short) has been generated and

collected by smartphones and tablets with local sensors, and

then uploaded and stored on the Internet. On the one hand,

the multimedia sharing platform and online social network-

ing provide geo-multimedia storage and sharing service. For

example, more than 95 million photos with location infor-

mation captured by smartphones and digital cameras are

stored on Flickr,1 which is one of the largest picture sharing

platforms. more than 140 million Twitter2 users post 400 mil-

lion tweets in the form of text and image with geo-location

information (referred as geo-text and geo-image). In China,

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .
1http://www.flickr.com/
2http://www.twitter.com/

lots of users of WeChat,3 the most popular mobile appli-

cation, share texts, images and short videos with geo-tags

every day. On the other hand, geo-multimedia data are used

in many location-based services. For instance, Dianping4

provides the rating and review services for finding restau-

rant, hotel, gym, cinema, etc. via sharing the geo-texts and

geo-images uploaded by users. Another LBS application is

Foursquare,5 which helps users to share the places visited and

find the best places nearby via geo-multimedia data. These

geo-multimedia data is a fusion of multimedia content [1], [2]

and geo-location information [3], which enables queries con-

sider geographical proximity andmultimedia content similar-

ity simultaneously.

Spatial keyword query [4] is one of the significant prob-

lems that has attracted much attention in the spatial database

and information retrieval community. This query aims to find

3https://web.wechat.com/
4https://www.dianping.com/
5https://foursquare.com/
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FIGURE 1. An example of reverse spatial visual top-k query.

spatial objects by taking into account both spatial proximity

and relevance of keywords. Several types of spatial keyword

search, i.e., collective spatial keyword query [5], m-closest

keywords search [6], best keyword cover search [7], group

top-k spatial keyword query [8] and etc., are studied deeply

and applied widely in many scenarios to provide efficient

spatial keyword query.

A. MOTIVATION

Reverse spatial keyword query [9] is another important search

problem, which is to find a set of geo-objects that have the

query as one of the most relevant objects in both geographical

proximity and textual similarity. Many researches [10]–[13]

propose efficient algorithms to speed up the reverse search on

Euclidean space and road network space. However, previous

works only focus on keyword search, which are suitable

for unstructured data, such as geo-image. In other words,

these techniques cannot be applied directly to the reverse

spatial query for geo-multimedia data. To this end, this paper

consider geo-image that is the most common type of geo-

multimedia. Thus, we propose a novel type of reverse top-k

query, named reverse spatial visual top-k query (RSVQk for

short), which takes into account both geo-location proximity

and visual similarity between images. In other words, users

can submit a reverse query with geo-images, rather than

keywords. To the best of our knowledge, this is the first time

to investigate RSVQk problem. To introduce this problem

more intuitively, we provide an example of reverse spatial

visual top-k query as follows:

Example 1: As shown in Fig. 1, a manager of a steak house

wants to know the consumer preferences of people nearby

so as to carry out more accurate advertising. She submits a

reverse spatial visual top-k query by taking a picture of steak

with a smartphone in this steak house. The system will return

the users who have this steak house as one of the k most desir-

able restaurants in both aspects of geographical proximity

and the visual similarity between their posed images and the

query image.

B. OUR METHOD

To overcome this challenge, firstly, this paper defines reverse

spatial visual top-k query in formal, and introduces the rel-

evant notions, i.e., the geographical proximity measurement

and visual similarity measurement. As far as we know, this

is the first time to propose the definition of RSVQk and

no existing approach has been proposed for this problem.

Thus, a baseline that uses R-Tree and the threshold algo-

rithm [14] is proposed. To organizing the geo-image data

more efficiently, we careful design a novel hybrid index,

named VR2-Tree, which is a integration of the visual repre-

sentation of geo-images and R-Tree. The visual representa-

tion of an image in this work is a vector of visual words. Two

operations of visual words vector, namely Weight OR and

Weight AND are proposed to support the generation of the

non-leaf nodes of VR2-Tree. Besides, an extension of VR2-

Tree, named CVR2-Tree is developed to enhance the pruning

power by its specific entry in tree node, namely CEntry

set. Furthermore, we discuss the calculation of lower bound

and upper bound via CVR2-Tree, and then introduce the

optimization technique via CVR2-Tree to tighter the bounds.

In addition, the CVR2-Tree based query processing algorithm

with the optimization is introduced.

C. CONTRIBUTIONS

The main contributions of this work are summarized as

follows:

• We propose the definition of reverse spatial visual top-k

query and the relevant notions. Besides, a baseline for

reverse spatial visual search is introduced. To the best

of our knowledge, this work is the first time to study

RSVQk problem.

• We present a novel hybrid index, named VR2-Tree

which is a combination of visual representations of
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geo-images and R-Tree. In addition, an extension of

VR2-Tree, called CVR2-Tree is designed, which can

further improve the pruning power during the reverse

search.

• We carefully develop the efficiency RSVQk algorithm,

which utilizes the optimization technique via CVR2-

Tree to enhance the search performance significantly.

• We have conducted extensive performance evalua-

tion on four geo-image datasets. Experimental results

demonstrate that ths proposed approach has really high

performance.

D. ROADMAP

In the remainder of this paper, we review the previous studies

about this work in Section II. In Section III, we propose the

definition of reverse spatial visual top-k query and the related

notions. Besides, a baseline is introduced in this section.

In Section IV, a novel hybrid index, named VR2-Tree and its

extension, i.e. CVR2-Tree are proposed. Furthermore, an effi-

cient reverse spatial visual search algorithm named RSVQk

is carefully designed. In Section V, we evaluate the proposed

algorithms on four geo-image datasets. Finally, we conclude

this paper in Section VI.

II. RELATED WORK

In this section, we review the previous studies of image

retrieval and collective spatial keyword query, which are

related to our work. To the best of our knowledge, we are

the first to study the problem of collective geo-image query.

A. IMAGE RETRIEVAL

Image retrieval is one of the classical problems in the commu-

nity of multimedia and computer vision, and it can be applied

in versatile big data applications [15]–[23]. Lots of researches

have been proposed to combat this challenge. As two pow-

erful visual feature representation tools, Scale-Invariant Fea-

ture Transform (SIFT) [24], [25] and Bag-of-Visual-Word

(BoVW) [26] are widely utilized. For example, Ke et al. [27]

proposed an effective PCA-based local feature representation

method called PCA-SIFT to improve the accuracy and effi-

ciency.Mortensen et al. [28] proposed to augment the original

SIFT descriptor by combining SIFT feature with a global

context vector to enhance the matching rate. Li and Ma [29]

improved SIFT descriptor by integrating color and global

information which provides powerfully distinguishable infor-

mation. Dimitrovski et al. [30] improved BoVW model by

using predictive clustering trees to construct codebook to

reduce the number of local descriptors.

More recently, with the rise of deep learning [31]–

[33], lots of researchers employed more powerful tools

such as CNN [34], RNN [35] and LSTM [36] to greatly

hoist the image retrieval accuracy [37], [38]. In 2012,

AlexNet [39] markedly improved the image classification

accuracy and won the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC). Matsuo et al. [40] proposed

a CNN-based style vector that is transformed from style

matrix with PCA dimension reduction. Gordo et al. [41]

proposed a CNN-based global fixed-length representation for

image retrieval, which is generated by a ranking framework.

Tan et al. [42] utilized different CNN models to extract the

multiple visual features that are fused into weighted aver-

age feature. Liu et al. [17] introduced a method that fuses

high-level features fromCNNand low-level features to gener-

ate two-layer codebook features. Seddati et al. [43] combined

multi-scale and multi-layer feature extraction from improved

RMAC approaches, which generates short descriptors and

get better performance without the need of CNN fine tuning.

Yang et al. [44] introduced a method in which a dynamic

match kernel is constructed by calculating the matching

thresholds between query and candidate.

It is obvious that the deep learning based methods have

much better performance than the traditional hand-crafted

feature based methods. In our previous works [45], [46],

we proposed to combine the spatial search techniques

and visual feature representations to solve geo-multimedia

retrieval problem. However, as far as we know there is no

existing image retrieval approach that is suitable to address

the reverse spatial visual query (RSVQ) problem. In this

work, we attempt to design efficient index structure and

algorithm for RSVQ problem.

B. SPATIAL KEYWORD QUERY

Spatial keyword query [47], [48] is a significant problem in

the community of spatial database [49]–[51], which is well

studied by researchers in recent years. It aims to returns

spatial-textual objects that are spatially and textually rele-

vant to the query. Several spatial indexing structures such as

R-Tree [52], R∗-Tree [53], IR-Tree [54], [58], KR∗-Tree [55],

IL-Quadtree [56], etc. have been proposed to improve the

spatial keyword search effectively.

Felipe et al. [57] proposed to address the top-k spatial

keyword queries by using a novel index called Information

Retrieval R-Tree (IR2-Tree) that is a combination of R-Tree

and superimposed text signatures. Cong et al. [58] introduced

a new indexing framework, in which the inverted file is

employed for text retrieval and R-tree for spatial proxim-

ity search. Rocha-Junior et al. [59] proposed a novel index

named Spatial Inverted Index (S2I) which maps each distinct

term to a set of objects containing the term. Zhang et al. [60]

developed I3 that is an integrated inverted index with quadtree

to partition the data space into cells in a hierarchical man-

ner. In another work of them [61], they modeled the top-k

distance-sensitive spatial keyword query as top-k aggregation

problem, and then an extension of CA algorithm, called

Rank-aware CA algorithm, to enhance the search.

Unfortunately, These researches whether in European

space or road network space can only be applied to structured

data, e.g., keywords. That means they are not suitable to cope

with spatial unstructured data, such as geo-image. To the

best of our knowledge, this paper is the first time to develop

effective and efficient technique for the geo-image search

task.
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C. REVERSE QUERY PROCESSING

Reverse query [11], [62], [63] is another significant prob-

lem in the area of spatial-textual search, which is from the

perspective of point of interest (POI), e.g. restaurant, super-

market, store, tourist attraction, etc, rather than users. More

specifically, it aims to retrieve the users for which the query

objects is one of the most preferences, such as geographical

proximity [64]–[67]. Reverse query can be applied in lots of

applications, e.g., advertising, recommendation, marketing,

etc.

Many researches have been proposed to combat this

challenge in the last decade. Vlachou et al. [64] pro-

posed the reverse top-k query and introduced two versions,

namely monochromatic and bi-chromatic. In their another

work [68], they proposed distance-based reverse top-k query

problem which can be applied in the mobile environment.

For the reverse k nearest neighbor (RkNN) problem,

Cheema et al. [69] proposed a novel notion, named influence

zone, which is the area such that every point inside this area is

the results of RkNN query and every point outside it is not the

results. Yu et al. [70] studied the reverse top-k search by using

random walk with restart in large graphs. In road network

space, Wang et al. [71] investigated continuous monitoring

of RkNN queries. They utilized the influence zone to boost

the search.

Not only the proximity of space distance, the textual

similarity is considered into the reverse query. For exam-

ple, Lin et al. [9] proposed the reverse keyword search for

spatio-textual top-k queries (RSTQ) at the first time and

developed a novel hybrid index, called KcR-tree, to store

and summarize the spatial and textual information of objects.

Yang et al. [11] proposed to extend half-space-based prun-

ing technique to solve the spatial reverse top-k queries

and introduced a novel regions-based pruning algorithm

according to SLICE [72] that is a regions-based prun-

ing algorithm for reverse k nearest neighbors queries to

improve the efficiency. Instead in the Euclidean space,

Luo et al. [73] investigated reverse spatial and textual k near-

est neighbor queries on road networks. Besides, they pro-

posed several spatial keyword pruning techniques to speed

up the search. Gao et al. [10] introduced another novel

query paradigm, called reverse top-k Boolean spatial key-

word (RkBSK) retrieval on Road Networks that considers

both spatial and textual information. To boost the system per-

formance significantly, they developed a new data structure

named count tree to overcome the drawback of the count

list.

However, these solutions for reverse queries cannot be

extended to the geo-image query problem since they are

not suitable for unstructured data such as image. To combat

this limit, in this work we propose to address the reverse

spatial visual top-k query problem that takes into account

both visual similarity and geographical proximity simulta-

neously. To the best of our knowledge, we are the first to

propose this query paradigm and try to solve it effectively and

efficiently.

III. PRELIMINARY

In this section, for the first time, we formulate the definition

of reverse spatial visual top-k query problem and introduce

the relevant notions. Then we propose the baseline to combat

this challenge. Table 1 summarizes the notations frequently

used throughout this paper to facilitate the discussion.

TABLE 1. The summary of notations.

A. PROBLEM DEFINITION

Before defining the reverse spatial visual top-k query prob-

lem, we introduce the notion of geo-image that contains two

aspects of information, i.e., geo-location and visual content.

Let I =
{

I1, I2, . . . I|I|
}

be a geo-image dataset. Each

geo-image I ∈ I is represented by a tuple 〈I .λ, I .ν〉, where

I .λ is the geo-location descriptor that is a 2-dimensional vec-

tor to represent the geographical information in the form of

longitude X and latitude Y , i.e., I .λ = (X ,Y ). I .ν is the visual

descriptor which is a γ -dimensional vector to represent the

visual features of the image, i.e., I .ν =
(

ν(1), ν(2), . . . ν(γ )
)

.

In this paper, we employ BoVW [26] model to construct

the visual descriptor, thus each item ν represents a visual

word.

Definition 1 (Reverse Spatial Visual Top-k Query): Given

a geo-image dataset I and a queryQ = 〈Q.λ,Q.ν〉. A reverse

spatial visual top-k query (RSVQk ) aims to retrieve all the

geo-images in I that consider the query Q as one of the top-k

most relevant geo-images in both aspects of geo-location and

visual content. Formally, it is described as follows:

RSVQk (I,Q, k) = {I |Q ∈ SVQk (I, I , k), I ∈ I} (1)

where SVQk (I, I , k) represents the spatial visual top-k query

that aims to return k most similar geo-images by a query

I considering geographical proximity and visual similarity

VOLUME 8, 2020 21773
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FIGURE 2. An example of reverse spatial visual top-k query (RSVQk ). There are ten geo-images I1, I2, . . . I10, and a query Q containing ten different
visual words in this example. The left is the spatial distribution of these ten geo-images. The table on the right demonstrates the details of them: the
geo-location descriptor and the visual descriptor.

simultaneously, formulated as follows:

SVQk (I, I , k)

=
{

Î |Sim(Î , I ) ≥ Sim(I ′, I ),∀Î , I ′ ∈ I

}

,

|SVQk (I, I , k)| ≤ k (2)

where Sim(Î , I ) is the similarity function to measure both

geographical proximity and visual similarity between Î and I .

Herein we define it in formal as follows:

Sim(Î , I ) = µ× GeoSim(Î .λ, I .λ)

+(1− µ)× VisSim(Î .ν, I .ν) (3)

where µ ∈ [0, 1] is a parameter to balance the propor-

tion between geographical proximity and visual similarity,

i.e., GeoSim(Î .λ, I .λ) and VisSim(Î .ν, Iν). If µ = 1 (or µ =

0), the query is just considering the geographical proximity

(or visual similarity). In our solution, the users are allowed to

set this parameter according to their query preferences.

In the next we formulate the definition of geographic prox-

imity and visual similarity measurement and introduce how

to implement GeoSim(Î .λ, I .λ) and VisSim(Î .ν, Iν).

Definition 2 (Geographical Proximity Measurement):

Given a geo-image dataset I, ∀I , Î ∈ I are two geo-images.

The geographical proximity between Î and I is measured by

the following function:

GeoSim(Î .λ, I .λ) = 1−
EucliDst(Î .λ, I .λ)

MaxDst(I)
(4)

where EucliDst(Î .λ, I .λ) is the function to calculate the

Euclidean distance between Î .λ and I .λ, shown as follows:

EucliDst(Î .λ, I .λ)

=

√

(Î .λ.X − I .λ.X )2 + (Î .λ.Y − I .λ.Y )2
(5)

The function MaxDst(I) in Eq. 4 measures the maximum

Euclidean distance between any two geo-locations in the

dataset I, which is to normalize the Euclidean distance into

[0, 1], i.e.,

MaxDst(I)

= Max
({

EucliDst(Î .λ, I .λ)|∀Î , I ∈ I

}) (6)

where Max(·) is to return the largest element from the input

collection.

Definition 3 (Visual Similarity Measurement): Given a

geo-image dataset I, ∀I , Î ∈ I are two geo-images. The

visual similarity between these two geo-images is measured

by the following function:

VisSim(Î .ν, I .ν) =
ExJacc(Î .ν, I .ν)

MaxVisSim(I)
(7)

where ExJacc(Î .ν, I .ν) is the extended Jaccard distance mea-

surement shown as following:

ExJacc(Î .ν, I .ν)

=

γ
∑

i=1

W (v̂(i))×W (v(i))

γ
∑

i=1

W (v̂(i))2 +
γ
∑

i=1

W (v(i))2 −
γ
∑

i=1

W (v̂(i))×W (v(i))

(8)

to simplify the description, hereinwe use v̂(i) and v(i) to denote

i-th visual word of Î .ν and I .ν, i.e., v̂(i) ∈ Î .ν and v(i) ∈ I .ν.

The functionW (·) in Eq. 8 is to calculate the weight of visual

word by TF-IDF [74]. Similar to the role of MaxDst(I) in

Eq. 4, the function MaxVisSim(I) in Eq. 7 is to return the

maximum visual similarity, i.e.,

MaxVisSim(I)

= Max
({

ExJacc(Î .ν, I .ν)|∀Î , I ∈ I

}) (9)

In the following, we give a simple example to present

reverse RSVQk problem and how to find the results by com-

paring to the conventional reverse top-k query.

Example 2: As shown in Fig. 2, there is an example to

describe the reverse spatial visual top-k query (RSVQk )

task. Ten geo-images, i.e., I1, I2, . . . I10 illustrated by black
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FIGURE 3. The structure of VR2-Tree. It is a combination of visual representations and R-Tree. As described above, the visual representation of geo-image
is the visual word vector and the geographical partition is implemented by MBR. Each tree node contains both geo-location information and visual
content information.

spots, are distributed in a region represented by longitude

X and latitude Y . N1,N2, . . .N7 is the minimum bound-

ing rectangles (MBRs) that is to describe the approximate

location. The visual dictionary is the collection of visual

words that are contained by these geo-images. The table

on the right shows the geographical information and the

weights of each visual words that are contained in each

geo-image. Given a query Q (the red spot), and Q.λ =

(9, 9),Q.ν = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 9.0, 9.0, 7.5, 8.5).

For the conventional reverse top-k query that consider only

the geographical proximity (Euclidean distance), and let

k = 2, the set of results is {I2, I5, I8}. However, for the

RSVQk , let µ = 0.5, now the set of results is {I8, I6, I9}

because Q is more similar to I6 and I9 in the aspects of visual

content.

B. BASELINE INTRODUCTION

As far as we know, there is no study that focus on RSVQk

problem and no baselines have been proposed. Obviously,

the existing reverse spatial textual search methods cannot be

directly applied to RSVQk since the necessity of visual rep-

resentation and similarity measurement. According to Eq. 3,

both geographical proximity and visual similarity should be

considered simultaneously during the search. Thus, it is not

feasible that perform reverse spatial search and reverse visual

search separately and then combine the results of them to

answer RSVQk query.

In this work, we propose a baseline for RSVQk , named

RSVQk -R. A pre-computation is processed to calculate

the geographical proximity and visual similarity between

the query Q and all the geo-images in the dataset I, and the

results are stored in two lists. The threshold algorithm [14]

is employed to retrieve top-k geo-images which have the

highest similarity computing by Eq. 3 on these two lists.

In the process of computing, if the similarity between the

query Q and a geo-image Ii is larger than the similarity of the

k-th geo-image Ik , then Ii become the new k-th geo-image by

replacing Ik .

For the visual representation of geo-image, we utilize the

hand-crafted features, namely SIFT descriptor, and combin-

ing with BoVW model to encode the visual content, which

is a conventional way used in many image search tasks [46],

[75], [76]. Specifically, the visual features are extracted by

SIFT technique and clustered by k-means method to generate

visual dictionary. Each geo-image is represented by a visual

word vector in which each element is the weight of the visual

word measured by TF-IDF. The spatial index employed in

RSVQk -R is R-Tree.

IV. THE PROPOSED APPROACH

In this section, we propose an effective approach to overcome

the challenge of RSVQk . Firstly, a novel hybrid index, named

VR2-Tree, is introduced in subsection IV-A, which can orga-

nize the geo-images efficiently in both aspects of geographi-

cal distribution and visual representation. In subsection IV-B

we analyze the lower and upper bound of the search in theory.

Then we develop a VR2-Tree based algorithm to speed up the

search markedly.

A. HYBRID INDEX

1) VR2-TREE

The Structure. To efficiently organize the geo-images,

we integrate the visual representation of geo-images and

R-Tree to construct a novel hybrid index, named Visual

Representation R-Tree (VR2-Tree). As shown in Fig. 3,

VR2-Tree is a balanced tree built on a geo-image database I.

Each leaf node contains several tuples in the form of

T = 〈I .λ, I .ν,PTR(I )〉, I ∈ I. As defined in Section III,

I .λ = (X ,Y ) is the geo-location descriptor and I .ν =
(

v(1), v(2), . . . , v(n)
)

is the visual descriptor modeled by

BoVW technique. PTR(I ) is the pointer of a geo-image I in

database. Each non-leaf node contains quadruples in the form

VOLUME 8, 2020 21775
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of 〈MBR,ANDOR,NUM ,PTR(Child)〉, where MBR repre-

sents the minimum bounding rectangle of the child node,

ANDOR refers to two visual vectors, namely visual word

weight AND vector (AND-vector for short) and visual word

weight OR vector (OR-vector for short), which are generated

by two novel operations for weighted visual word vector. The

definitions of them is given thereinafter. NUM is the total

number of geo-images in the leaf nodes which belong to the

subtree of this non-leaf node. PTR(Child) is the pointer to the

child node.

Definition 4 (Weight AND): Given two γ -dimensional

visual word vectors ν1 = (v
(1)
1 , v

(2)
1 , . . . , v

(γ )
1 ) and ν2 =

(v
(1)
2 , v

(2)
2 , . . . , v

(γ )
2 ),W (·) is the visual word weight function.

Theweight AND operation on ν1 and ν2, denoted as ν1
⊗

ν2,

is to choose the minimum value of corresponding elements in

ν1 and ν2, namely:

ν1

⊗

ν2 = (Min(W (v
(1)
1 ),W (v

(1)
2 )),

Min(W (v
(2)
1 ),W (v

(2)
2 )), . . . ,

Min(W (v
(γ )
1 ),W (v

(γ )
2 ))) (10)

whereMin(·, ·) is to return the minimum of the two inputs.

Definition 5 (Weight OR): Given two γ -dimensional visual

word vectors ν1 = (v
(1)
1 , v

(2)
1 , . . . , v

(γ )
1 ) and ν2 =

(v
(1)
2 , v

(2)
2 , . . . , v

(γ )
2 ),W (·) is the visual word weight function.

The weight OR operation on ν1 and ν2, denoted as ν1
⊕

ν2,

is to choose the maximum value of corresponding elements

in ν1 and ν2, namely:

ν1

⊕

ν2 = (Max(W (v
(1)
1 ),W (v

(1)
2 )),

Max(W (v
(2)
1 ),W (v

(2)
2 )), . . . ,

Max(W (v
(γ )
1 ),W (v

(γ )
2 ))) (11)

where Max(·, ·) is to return the maximum of the two

inputs.

For a non-leaf node N of a VR2-Tree, it assumes that

the geo-images contained in its subtree are {I1, I2, . . . .Im},

the visual word weight AND vector of a quadruple in N

is denoted as AND(I1, I2, . . . .Im) = I1.ν
⊗

I2.ν . . .
⊗

Im.ν.

Similarly, the visual word weight OR vector is

OR(I1, I2, . . . , Im) = I1.ν
⊕

I2.ν . . .
⊕

Im.ν.

According to Definition 4 and 5, we calculate the visual

word weight AND vector and visual word weight OR vector

of non-leaf nodes, i.e., N5,N6,N7 in Example 2, as shown

in Fig. 4. For example, I1, I2, I3 are contained in the left

subtree of N5, and I4, I5 are contained in the right subtree.

Thus, for non-leaf node N5, the weight AND vectors of

two quadruples are AND(I1, I2, I3) and AND(I4, I5), respec-

tively. Likewise, the weight OR vectors are OR(I1, I2, I3) and

OR(I4, I5).

Visual Representation. Instead of hand-crafted visual

features, we propose to utilize deep CNN features to rep-

resent each geo-images since CNN features are power-

ful to represent semantic concept information. Specifically,

AlexNet [39] is employed to extract the visual features

FIGURE 4. The visual word weight AND and OR vectors of non-leaf nodes
N5, N6, N7 in Example 2.

from each geo-image in I, i.e., (x
(1)
i , x

(2)
i , . . . , x

(n)
i )5 =

ALEX (Ii),∀Ii ∈ I, where (x
(1)
i , x

(2)
i , . . . , x

(n)
i )5 is

the output of 5-th convolutional layer. We sill use

BoVW model to generate the visual word vector as the

visual representation. Similar to the conventional manner,

k-means technique is exploited to construct the CNN

visual word dictionary containing γ different words. Then

each geo-image is encoded into the γ -dimensional visual

word vector, i.e., Ii.ν = BOVW ((x
(1)
i , x

(2)
i , . . . , x

(n)
i )5) in

which each word is weighted by TF-IDF method, namely

(W (v
(1)
i ),W (v

(2)
i ), . . . ,W (v

(γ )
i )) = TF-IDF(Ii.ν). In the

following discussion, we denote the weighted visual words

vector by Ii.ν̄.

2) THE CONSTRUCTION ALGORITHM

Inspired by the R-Tree [52] insert operation, we develop

a similar insertion algorithm based on the heuristics of

minimizing the MBR to implement construction of the

VR2-Tree, as described in Algorithm 1 detailedly. What is

slightly different from the above is that, instead of using

the form of (W (v
(1)
j ),W (v

(2)
j ), . . . ,W (v

(γ )
j )), we propose to

store the visual representation vector in a node N in the new

form of (〈h̄
(1)
j ,W (v

(1)
j )〉, 〈h̄

(2)
j ,W (v

(2)
j )〉, . . . , 〈h̄

(α)
j ,W (v

(α)
j )〉),

where h̄
(1)
j is a code hashed from visual word v

(1)
j , α is the

total number of visual words in N . To implement the hashing

operation, we employ the technique proposed in [77], namely

order preserving minimal perfect hashing.

Specifically, the procedure OPMP-HASH (I .ν̄) in Line 5

is to generate the hash codes by order preserving mini-

mal perfect hashing from the original visual words vec-

tor and produce the new representation vector, namely

V = (〈h̄
(1)
j ,W (v

(1)
j )〉, 〈h̄

(2)
j ,W (v

(2)
j )〉, . . . , 〈h̄

(α)
j ,W (v

(α)
j )〉).

The procedure ChooseLeaf (MBR) in Line 6 is invoked to

choose the leaf node according to the MBR, which is similar

to the implementation of R-Tree [52]. From Line 7 to 12,

the procedures N .Add(I .ν̄,MBR), N .SplitNode() and

M .AddNode(O,P) are similar to the processes of insertion
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Algorithm 1 Insert(I .ν̄, MBR)

1: INPUT an original weighted visual representation vector

I .ν̄, aMBR.

2: Initializing: A vector V ← null;

3: Initializing: A node N ← null;

4: Initializing: A nodeM ← null;

5: V ← OPMP-HASH (I .ν̄);

6: N ← ChooseLeaf (MBR);

7: N .Add(I .ν̄,MBR);

8: if N needs to be split then

9: {O,P} ← N .SplitNode();

10: if N is the root node then

11: M .AddNode(O,P);

12: SetRoot(M );

13: else

14: AdjustTree(N .Parent,O,P);

15: end if

16: else if N is not the root node then

17: AdjustTree(N .Parent,N , null);

18: end if

FIGURE 5. The non-leaf node structure of CVR2-Tree.

in a R-Tree. Different from the algorithm AdjustTree in a

R-Tree, the procedure AdjustTree(·) invoked in Line 14 and

Line 17 is modified for the better compatibility with visual

representations.

3) THE EXTENSION OF VR2-TREE

There is a limitation of the VR2-Tree: although the VR2-Tree

can organize geo-images according to geographical prox-

imity (by using MBR) as effectively as R-Tree, it ignores

the visual similarity during the tree construction. In other

words, it could well be that the visual similarity between the

geo-images that close to each other in geographical is very

small. This phenomenon is easy to find in real environment.

For example, on a commercial street, the facilities usually fall

into different categories, e.g. restaurant, clothing shop, cafe,

cinema, etc. This leads to the low visual similarity between

the geo-images collected in these different facilities.

To overcome this limitation, we propose to extend theVR2-

Tree by exploiting visual content clustering to modify the

structure of the non-leaf node, and we call this extension

as Clustering based VR2-Tree (CVR2-Tree). Specifically,

before the construction of the tree, we use k-means method

to partition the geo-image dataset I into k clusters according

to the visual similarity, i.e., {C1, C2, . . . , Ck} = KMEANS(I).

Different from the VR2-Tree, the tuple T in non-leaf nodes of

CVR2-Tree, as shown in Fig. 5, contain a novel entry named

CEntry set SC = {EC }. Each CEntry EC corresponding to a

cluster is in the following form: EC : 〈Cid , Inum〉, where Cid
is the id of the cluster, Inum is the total number of geo-images

belong to this cluster. For a non-leaf node, its CEntry set is the

specific superposition of all the CEntry sets in its child nodes.

To describe it clearly, we propose a novel operation, named

CEntry set sum to define this calculation formally, as shown

in the following.

Definition 6 (CEntry Set Sum): Given two CEntry set SC1
and SC2. The sum of these two CEntry sets, i.e., SC1

⊎

SC2

is defined as follows:

SC1

⊎

SC2 = SC1

⋃

SC2

⋃

S+ \ S−, (12)

where,

S+ = {EC |∀TCi ∈ SC1,∀TCj ∈ SC2,

if ECi.Cid = ECj.Cid , then

EC .Inum = ECi.Inum + ECj.Inum}, (13)

and,

S− = {ECi, ECj|∀ECi ∈ SC1, ∀ECj ∈ SC2,

ECi.Cid = ECj.Cid }, (14)

and the operator
⋃

is the set union operator, \ is the set minus

operator.

Therefore, for a non-leaf node N , its CEntry set N .SC is

the sum of all the CEntry sets in its child nodes, i.e., N .SC =
⊎L

i=1 ChildNode(N )i.SC , where ChildNode(N )i represents

the i-th child node of N , L is the total number of children.

For example, consider all the geo-images {I1, I2, . . . , I10} in

Example 2, according to visual similarity we cluster them into

4 clusters: C1 = {I1, I2, I5}, C2 = {I3, I4}, C3 = {I6, I7, I8, I9}

and C4 = {I10}. Thus, for the non-leaf node N5, N5.SC1 =

{〈C1, 2〉, 〈C2, 1〉} and N5.SC2 = {〈C1, 1〉, 〈C2, 1〉}; for N6,

N6.SC1 = {〈C3, 2〉} and N6.SC2 = {〈C3, 2〉, 〈C4, 1〉}; and

for N7, N7.SC1 = N5.SC1
⊎

N5.SC2 = {〈C1, 3〉, 〈C2, 2〉} and

N7.SC2 = N6.SC1
⊎

N6.SC2 = {〈C3, 4〉, 〈C4, 1〉}.

Like the AND-vector and OR-vector in the node of VR2-

Tree, we can calculate the CAND-vector and COR-vector

for each cluster. Specifically, the CAND-vector contains the

minimal weights of each visual words included in the cluster,

and the COR-vector contains the maximum weights of each

visual words. For the four clusters C1, C2, C3, C4 mentioned-

above, the CAND-vectors and COR-vectors of them are

shown in Fig. 6.

B. RSVQK ALGORITHM

Based on the CVR2-Tree, we carefully design a novel algo-

rithm to solve the RSVQk problem efficiently. Before intro-

duce the detail of this algorithm in Section IV-B.3, we discuss

how to compute the lower bound and upper bound of similar-

ity IV-B.1.
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FIGURE 6. The visual word weight CAND and COR vectors of clusters C1,
C2, C3 and C4 in Example 2. Similar to the AND and OR operations in
VR2-Tree, the CAND-vector contains the minimal weights of each visual
words included in the cluster, and the COR-vector contains the maximum
weights of each visual words.

1) LOWER BOUND AND UPPER BOUND

To explain the computation of lower bound and upper bound,

firstly, we present the notions of minimal similarity and max-

imal similarity between two tuples in a CVR2-Tree, and then

introduce the lower bound and upper bound contribution list.

Given a CVR2-TreeT, ∀T ∈ T, the lower bound and upper

bound of similarity between the tuple T and its k-th most

similar geo-image are denoted as ⌊T ⌋ and ⌈T ⌉ respectively.

The γ -dimensional visual word weight AND vector and OR

vector of T are denoted as T .A = (a(1), a(2), . . . , a(γ )) and

T .O = (o(1), o(2), . . . , o(γ )) respectively. we define the min-

imal similarity between two tuples in CVR2-Tree as follows.

Definition 7 (Minimal Similarity (MinSim)): Let T1 and

T2 ∈ T be two tuples, the minimal similarity between T1 and

T∈ is denoted as MinSim(T1, T2), which is computed by the

following equation:

MinSim(T1, T2)

= Max(µ× tMaxGeoSim(T1, T2)

+(1− µ)×MinVisSim(T1, T2),

µ×MaxGeoSim(T1, T2)

+(1− µ)× tMinVisSim(T1, T2)), (15)

tMaxGeoSim(T1, T2)

= 1−
MinMaxEucliDst(T1, T2)

MaxDst(I)
, (16)

MinVisSim(T1, T2)

=
MinExJacc(T1, T2)

MaxVisSim(I)
, (17)

MaxGeoSim(T1, T2)

= 1−
MaxEucliDst(T1, T2)

MaxDst(I)
, (18)

tMinVisSim(T1, T2)

=
tMinExJacc(T1, T2)

MaxVisSim(I)
, (19)

where tMaxGeoSim(T1, T2) proposed in [78] is a tighter

Euclidean distance measurement than MaxGeoSim(T1, T2)

that is the maximal Euclidean distance between T1.MBR and

T2.MBR, and

MinExJacc(T1, T2)

=

γ
∑

i=1

T1.W
(i) × T2.W

(i)

γ
∑

i=1

T1.W (i)2 +
γ
∑

i=1

T2.W (i)2 −
γ
∑

i=1

T1.W (i) × T2.W (i)

,

(20)

where, T1.W
(i) denotes the weight of i-th visual word,











T1.W
(i) = T1.o

(i), T2.W
(i) = T2.a

(i), if

T1.a
(i) × T1.o

(i) ≥ T2.a
(i) × T2.o

(i)

T1.W
(i) = T1.a

(i), T2.W
(i) = T2.o

(i), otherwise

(21)

and,

tMinExJacc(T1, T2)

= max
1≤ι≤γ

(

T1.W
(ι)×T2.W

(ι)+6′

T1.W (ι)2+T2.W (ι)2−T1.W (ι)×T2.W (ι) +6

)

,

6 =

γ
∑

i=1,i 6=ι

T1.W
(ι)2+ T2.W

(ι)2 − T1.W
(ι) × T2.W

(ι),

6′ =

γ
∑

i=1,i 6=ι

T1.W
(i) × T2.W

(i) (22)

where,










T1.W
(i) = T1.o

(i), T2.W
(i) = T2.a

(i), if

T1.a
(i) × T1.o

(i) ≥ T2.a
(i) × T2.o

(i)

T1.W
(i) = T1.a

(i), T2.W
(i) = T2.o

(i), otherwise

(23)

T2.W
(ι)

=

{

T2.o
(ι), if T1.a

(ι) × T1.o
(ι) > T2.a

(ι) × T2.o
(ι)

T2.a
(ι), otherwise

(24)

T1.W
(ι)

=

{

T1.a
(ι), if

√

T1.a(ι) × T1.o(ι) < T2.W
(ι)

T1.o
(ι), otherwise

(25)

Property 1: Given a CVR2-Tree T, T1, T2 ∈ T . ∃I2 ∈

T2 s.t. ∀I ∈ T1, Sim(I1, I2) ≥ MinSim(T1, T2).

Definition 8 (Maximal Similarity (MaxSim)): Let T1 and

T2 ∈ T be two tuples, the maximal similarity between T1

and T∈ is denoted asMaxSim(T1, T2), which is computed by

the following equation:

MaxSim(T1, T2) = µ×MinGeoSim(T1, T2)

+(1−µ)×MaxVisSim(T1, T2), (26)

MinGeoSim(T1, T2) = 1−
MinEucli(T1, T2)

MaxDst(I)
, (27)

MaxVisSim(T1, T2) =
MaxExJacc(T1, T2)

MaxVisSim(I)
(28)

where MinGeoSim(T1, T2) is the minimal Euclidean dis-

tance measurement between two MBRs of T1 and T2,
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MaxExJacc(T1, T2) is the maximal visual similarity between

T1 and T2, which is computed by the following equation:

MaxExJacc(T1, T2)

=

γ
∑

i=1

T1.W
(i) × T2.W

(i)

γ
∑

i=1

T1.W (i)2 +
γ
∑

i=1

T2.W (i)2 −
γ
∑

i=1

T1.W (i) × T2.W (i)

,

(29)














































T1.W
(i) = T1.a

(i), T2.W
(i) = T2.o

(i), if

T1.a
(i) > T2.o

(i)

T1.W
(i) = T1.o

(i), T2.W
(i) = T2.a

(i), if

T1.o
(i) < T2.a

(i)

T1.W
(i) = T2.W

(i) = T1.o
i, if

T2.a
(i) ≤ T1.o

(i) ≤ T2.o
(i)

T1.W
(i) = T2.W

(i) = T2.O
(i), otherwise

(30)

Property 2: Given a CVR2-Tree T, T1, T2 ∈ T . ∀I2 ∈

T2,∀I ∈ T1, Sim(I1, I2) ≤ MaxSim(T1, T2).

According to the definition of minimal and maximal simi-

larity between two tuples in VR2-Tree or CVR2-Tree, we pro-

pose other two notions, namely Lower Bound Determinant

Queue and Upper Bound Determinant Queue, which are used

to reduce the candidate set effectively.

Definition 9 (Lower Bound Determinant Queue (9L)):

Given a CVR2-Tree T, ST = {T1, T2, . . . , Tm} is a tuple

set in which each tuple is in T. For a tuple T ∈ ST ,

a lower bound determinant queue of T , denoted as 9L(T ) =

(ψ
(1)
L , ψ

(2)
L , . . . , ψ

(α)
L ), is a queue containing α items in the

form of ψ
(i)
L = 〈ξi, T̂i, ϑi〉 that are sorted in descending order

of ξi, wherein α ∈ N
+, α ∈ [1, k], i ∈ [1, α], T̂i is another

tuple in ST , namely T̂i 6= T , ξi is the value of similarity

between T and T̂i, i.e., ξi = MinSim(T , T̂i), ϑi is an integer

that is assigned by the following condition:

ϑi =

{

|T̂i| − 1, if ξi = MinSim(T , T̂i)

1, otherwise
(31)

that minimizes α s.t.
∑α

i=1 ϑi ≥ k .

Property 3: Given a lower bound determinant queue

9L(T ), ψ
(α)
L = 〈ξα, T̂α, ϑα〉 is the α-th item of the queue.

If ψ
(α)
L .ξα ≥ MaxSim(T ,Q), the subtree of T can be pruned

safely.

According to the Definition 9 and Property 3, the candidate

set can be reduced by pruning the tuples that are not similar

enough to the query. Therefore, the lower bound ⌊T ⌋ can be

assigned by ψ (α).ξα .

Definition 10 (Upper Bound Determinant Queue (9U )):

Given a CVR2-Tree T, ST = {T1, T2, . . . , Tm} is a tuple

set in which each tuple is in T. For a tuple T ∈ ST ,

a upper bound determinant queue of T , denoted as9U (T ) =

(ψ
(1)
U , ψ

(2)
U , . . . , ψ

(β)
U ), is a queue containing β items in the

form of ψ
(i)
U = 〈ξi, T̂i〉 that are sorted in descending order of

ξi, wherein β ∈ N
+, β ∈ [1, k], i ∈ [1, β], T̂i is another tuple

in ST , namely T̂i 6= T , ξi = MaxSim(T , T̂i), β is maximized

to satisfy the condition 1+
∑β−1

i=1 |T̂i| ≤ k .

Similar to lower bound determinant queue, upper bound

determinant queue has an important property that is formu-

lated as follows.

Property 4: Given a upper bound determinant queue

9U (T ), ψ
(β)
U = 〈ξβ , T̂β〉 is the β-th item. If ξβ <

MinSim(T ,Q), thenQ is one of the k most similar geo-images

for all geo-images in T .

It is easy to understand from the Property 4 that the number

of geo-images that are similar to any geo-image in the tuple T

(i.e., similarities of them are larger or equal toMinSim(T ,Q))

is at most k − 1. Therefore, the upper bound ⌈T ⌉ can be

assigned by ψ (β).ξβ .

2) OPTIMIZATION: TIGHTER BOUND VIA CVR2-TREE

To improve the performance of search, we propose a opti-

mization method via CVR2-Tree to obtain a tighter bound.

According to cluster id, this method aims to identify the

outliers from the tuples in CVR2-Tree, which are picked out

from the normal geo-images and severally calculate their

bounds. Thus, the bounds of the normal tuples can be tighter.

The outlies can be identified according to the following two

situations:

Situation-1: For a tuple T , most geo-images in the subtree

of T can be pruned, but there exist a few of geo-images

that cannot be pruned, and we treat them as outliers. Obvi-

ously, these outliers make the tuple T and its subtree can-

not be pruned. Formally, for a query Q and a tuple T ,

if MinSim(T ,Q) < ⌊T ⌋ < MaxSim(T ,Q), and there exist a

subset Sub1({C}) of {C} of T s.t.
∑

Ci∈Sub1({C})
Ci.N ≥ ǫ|T |,

and ∀Ci ∈ Sub1({C})s.t.

µ(1−
MinEucliDst(T1, T2)

MaxDst(I)
)

+(1− µ)MaxVisSim(Ci,Q) < ⌊T ⌋

where ǫ is a parameter. The geo-images that are in T but not

in Sub1({C}) are treated as outliers.

Situation-2: For a tuple T , most geo-images in the sub-

tree of T can be treated as results, but there exist a few

of geo-images that cannot be treated as results. Therefore,

the tuple T cannot be treated as a result tuple. Formally,

for a query Q and a tuple T , if MinSim(T ,Q) < ⌈T ⌉ <

MaxSim(T ,Q), and there exist a subset Sub2({C}) of {C} of

T s.t.
∑

Ci∈Sub2({C})
Ci.N ≥ ǫ|T |, and ∀Ci ∈ Sub2({C})s.t.

µ(1−
MaxEucliDst(T1, T2)

MaxDst(I)
)

+(1− µ)MinVisSim(Ci,Q) < ⌈T ⌉

where ǫ is a parameter. The geo-images that are in T but not

in Sub2({C}) are treated as outliers.

According to the above two situations, we can identify

the tuples whether their subtree can be pruned or treated as

results. The implementation of this optimization method is

shown in the next part.
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Algorithm 2 RSVQk Algorithm

1: INPUT: the tree root of a CVR2-Tree T.Root , a reverse

spatial visual top-k query Q.

2: OUTPUT: All the geo-images I , s.t., I ∈

RSVQk(Q, k, I).

3: Initializing: A max-priority queue P ← null;

4: Initializing: A candidate geo-image list LC ← null;

5: Initializing: A pruned tuples list LP← null;

6: Initializing: A results list LR← null;

7: EnQueue(P,T.Root);

8: while IsNotEmpty(P) do

9: TP← DeQueue(P);

10: for each child tuple T of TP do

11: 9L(T )← 9L(TP);

12: 9U (T )← 9U (TP);

13: if ¬IsResultOrPruned(T ,Q,LR) then

14: for each tuple T̂ ∈ LC ∪ LR ∪ P do

15: Update9(T , T̂ );

16: if IsResultOrPruned(T̂ ,Q,LR) then

17: Remove(T̂ ,LC ∪ LR ∪ P);

18: end if

19: end for

20: if ¬IsResultOrPruned(T ,Q,LR) then

21: if IsIndexNode(T ) then

22: if T is Situation-1 or Situation-2 then

23: for each T ′ ∈ Subtree(T ) do

24: if CT ′ ⊂ Sub1({C}) then

25: Prune(T ′);

26: else if CT ′ ⊂ Sub2({C}) then

27: LR.Add(T
′);

28: else if IsIndexNode(T ′) then

29: EnQueue(P, T ′);

30: else

31: LC .Add(T
′);

32: end if

33: end for

34: end if

35: EnQueue(P, T );

36: else

37: LC .Add(T );

38: end if

39: end if

40: end if

41: end for

42: end while

43: Verify(LC ,LP,LR,Q);

3) TOP-k SEARCH ALGORITHM

Based on the CVR2-Tree and the notion of the lower

bound and upper bound, we carefully develop an efficient

search algorithm for the task of RSVQk , which is shown in

Algorithm 2.

Specifically, the inputs of RSVQk algorithm are a tree

root of a CVR2-Tree and a query Q. This algorithm accesses

Algorithm 3 IsResultOrPruned(T ,Q,LR)

1: if ⌊T ⌋ ≥ MaxSim(T ,Q) then

2: LP.Add(T );

3: return true;

4: else if ⌈T ⌉ < MinSim(T ,Q) and IsRightest(T ) then

5: LR.Add(T .Subtree)

6: return true;

7: else

8: return false;

9: end if

Algorithm 4 Update9(T , T̂ )

1: for each item ψ
(i)
L ∈ 9L(T ) do

2: if ψ
(i)
L .T̂i = T || ψ

(i)
L .T̂i = Parent(T ) then

3: Remove(ψ
(i)
L , 9L(T ));

4: end if

5: end for

6: if ⌈T ⌉ < MaxSim(T , T̂ ) then

7: 9U (T )← {ψU }t ⊂ 9U (T ) by MaxSim(T , T̂ ),

s.t.
∑t

i=19U (T ).ϑi ≥ k;

8: end if

9: if ⌊T ⌋ < tMiNSim(T , T̂ ) then

10: 9L(T )← {ψL}t ⊂ 9L(T ) by tMiNSim(T , T̂ ),

s.t.
∑t

i=19L(T ).ϑi ≥ k;

11: end if

12: if ⌊T ⌋ < MinSim(T , T̂ ) then

13: 9L(T )← {ψL}t ⊂ 9L(T ) by MinSim(T , T̂ )

s.t.
∑t

i=19L(T ).ϑi ≥ k;

14: end if

the CVR2-Tree T from top to bottom and computes the

lower bound ⌊T ⌋ and ⌈T ⌉ step-by-step for each T ∈ T.

Then, according to ⌊T ⌋ and ⌈T ⌉, the algorithm to determine

a tuple T should be pruned or the geo-images in it are

the results. At the beginning of it, a max-priority queue P

and three lists are initialized, i.e, a candidate geo-image list

LC in which the geo-image need to be checked, a pruned

tuples list LP in which the tuples will not be results and

a results list LR. The first step is to put the tree root into

the queue P by invoking the procedure EnQueue(P,T.Root)

(in Line 7). Then If the queue P is not empty, the tuple

with the highest priority, denoted by TP is dequeued from P

(Lines 8-9). After that, for each child T of TP, it inherits the

lower bound determinant list and upper bound determinant

list from TP (Lines 11-12). Based on 9L(T ) and 9U (T ),

the procedure IsResultOrPruned(T ,Q,LR) (Algorithm 3) is

invoked to determine whether T is a result or need to be

pruned (Line 13). As shown in Algorithm 3, if ⌊T ⌋ ≥

MaxSim(T ,Q), that means T can be pruned, we put T into

list LP; if ⌈T ⌉ < MinSim(T ,Q) and T is the rightest

child, that means T can be treated as a result, we put it

into results list LR; if T does not belongs to above sit-

uations, we tighten the lower bound and upper bound by
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Algorithm 5 Verify(LC ,LP,LR,Q)

1: while IsNotEmpty(LC ) do

2: Initialize T ∈ LP with the lowest level;

3: LP = LP − {T };

4: for each geo-image I ∈ LC do

5: Update9(I , T );

6: if IsResultOrPruned(I ,Q) then

7: LC = LC − {I };

8: end if

9: end for

10: for each child tuple T̂ of T do

11: LP = LP ∪ {T̂ };

12: end for

13: end while

invoking procedure Update9(T , T̂ ) using T̂ ∈ LC ∪ LR ∪

P (Lines 14-15). In Line 16 and 17, the algorithm invokes

procedure IsResultOrPruned again to determine whether

T̂ is pruned or treated as a result. If yes, then the algo-

rithm removes T̂ from P or LC . In Lines 20-35, if T is

not a result or pruned, and meanwhile it is an index node

(Lines 20-21), then we identify whether the tuple T belongs

to situation-1 or situation-2. If yes, the algorithm checks

whether the tuples in subtree of T are results or not based

on the relation between CT ′ and the cluster set Sub1({C}) and

Sub2({C}). If not, the algorithm puts T into queue P . Finally,

in Line 43, the procedure Verify is invoked to decide whether

the geo-images in list LC are results.

The pseudo-code of procedure Verify is shown in

Algorithm 5, which aims to check the effect of the tuples in

TP on each tuples in LC . First, in Lines 1-2, this procedure

chooses a tuple from the list LP with the lowest level in the

CVR2-Tree. The reason of this process is that the tuples in

the lower level generally have tighter bounds. That means

they are more likely to identify the tuples that are results

or not. In Lines 4-7, the tuple T is used to update the

determinant queue of each geo-image that is contained in

LC , then the geo-images are checked whether they can be

dropped from theLC . In Line 10-11, this algorithm adds child

tuple of T into list LP , due to the effect on the candidates

in LC .

V. EXPERIMENTS

In this section, the comprehensive experiments on four

datasets are presented, which evaluate the performance of the

proposed approach. Firstly, the datasets and workload of the

experiments are introduced in section V-A, then discuss the

evaluations in section V-B.

A. DATASETS AND WORKLOAD

1) DATASETS

In our experiments, four synthetic geo-image datasets are

used to evaluate the performance of various approaches. Two

common used image datasets, i.e., Flickr and ImageNet, are

used as the source of the synthetic geo-image datasets. The

following four datasets are deployed in the experiments:

• Flickr-RP. The synthetic dataset Flickr-RP is produced

by obtaining geographical locations from correspond-

ing spatial datasets from Rtree-Portal6 and randomly

geo-tagging the images in Flickr,7 the most popular

photo-sharing platform. That means we do not use the

original geo-tags of these images. To evaluate the scala-

bility of the proposed approach, The dataset size varies

from 200K to 1000K.

• Flickr-US. The synthetic dataset Flickr-US is produced

by obtaining geographical locations from the US Board

on Geographic Names.8 Like the dataset Flickr-RP,

we use these geographical location information to gen-

erate new geo-tags for the images in Flickr.

• ImageNet-RP. The synthetic dataset ImageNet-RP is

generated by obtaining geographical locations from

the US Board on Geographic Names9 and randomly

geo-tagging the images obtaining from the largest

image dataset ImageNet.10 ImageNet is widely used in

image processing and computer vision, which includes

14,197,122 images and 1.2 million images with SIFT

features. Like the Flickr dataset, We generate ImageNet

dataset with varying size from 200K to 1000K.

• ImageNet-US. The synthetic dataset ImageNet-US is

generated by obtaining geographical locations from

the US Board on Geographic Names11 and randomly

geo-tagging the images in ImageNet.

Some samples of Flickr and ImageNet dataset are shown

in Fig. 7.

2) WORKLOAD

Aworkload for reverse spatial visual top-k query experiments

includes 100 input queries. The query locations are randomly

selected from the locations of the underlying geo-objects.

By default, the number of final (top-k) results k = 3;

the image dataset size is 600K, which grows from 200K to

1000K; the parameter µ is set to 0.7; The number of query

visual words is set to 100, which changes from 25 to 150.

We report the average response time of 100 queries. The

details of these parameters are presented in Table 2. All the

experiments are run on a workstation with Intel(R) CPU

Xeon 2.60GHz, 16GB memory and NVIDIA GeForce GTX

1080 GPU running Ubuntu 16.04 LTS Operation System. All

query algorithms in the experiments are implemented in Java.

To the best of our knowledge, this work is the first time to

investigate the problem of reverse spatial visual top-k query.

In other words, there exists no method for this challenge.

we compare the performance of the following approaches:

6http://www.rtreeportal.org
7http://www.flickr.com/
8http://geonames.usgs.gov
9http://geonames.usgs.gov
10http://image-net.org/index
11http://geonames.usgs.gov
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FIGURE 7. Some samples of Flickr and ImageNet dataset used in our experiments.

TABLE 2. The parameters evaluated in the experiments. The default
values are shown in bold.

• RSVQk -R. RSVQk -R is the baseline introduced in

Section III-B, which employs R-Tree as the spatial

index.

• RSVQk -VR
2. RSVQk -VR

2 is the proposed method

introduced in Section IV-A.1, which employs VR2-Tree

as the spatial index.

• RSVQk -CVR
2. RSVQk -CVR

2 is the proposed method

introduced in Section IV-A.3, which employs the exten-

sion of VR2-Tree, i.e., CVR2-Tree.

• RSVQk -OptCVR2. RSVQk -OptCVR
2 is the proposed

method which uses CVR2-Tree with the optimization

method introduced in Section IV-B.2.

As discussed above, the techniques of visual word gen-

eration used in the baseline is SIFT+BoVW. We utilize

SIFT technique to extract local visual features of samples

in the geo-image datasets, and then encode them into visual

words vectors with a pre-learned vocabulary tree. The number

of local visual features of each sample is from 1 to 300.

For the proposed approaches, the pre-trained CNN model,

i.e., AlexNet is used to learn the visual features. We fine-

tune the AlexNet on the two geo-image datasets by stochastic

gradient descent (SGD) algorithm. The momentum is set to

0.9 and weight decay is set to 0.0005. To prevent over-fitting,

each layer is followed by a drop-out operation with a drop-out

ratio of 0.5. After fine-tuning, the outputs of the first two

fully-connected layers as the deep visual features, which are

used to generate deep visual words vectors.

B. PERFORMANCE EVALUATIONS

In this section, we evaluate the reverse search performance of

the proposed approaches, i.e., RSVQk -VR
2, RSVQk -CVR

2

and RSVQk -OptCVR
2, and compare them with the baseline

RSVQk -R on different size of geo-image datasets. Some

search results of the proposed approaches are shown in Fig. 8.

The images in green rectangle are the correct results and the

failed cases are in the red rectangle.

1) EVALUATION ON THE SIZE OF DATASETS

Weevaluate the effect of varying the size of geo-image dataset

on Flickr-RP, Flickr-US, ImageNet-RP and ImageNet-US,

shown in Fig. 9 using log-scale. Obviously, the proposed

algorithms outperform the baseline on these four datasets.

Particularly, with the increasing of the dataset size, the effi-

ciency of RSVQk -R declines dramatically because all the

geo-images have to be considered for spatial visual top-k

search. By comparison, the performances of RSVQk -VR
2,

RSVQk -CVR
2 and RSVQk -OptCVR

2 drop relatively slowly

due to the efficiently spatial index and search algorithm.

To clearly demonstrates the trends of these proposed

approaches, we draw the experimental data of RSVQk -VR
2,

RSVQk -CVR
2 and RSVQk -OptCVR

2 via linear scale, shown

in Fig. 10. For these four datasets, the performance of
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FIGURE 8. Some search results of the proposed approaches on Flickr and ImageNet. The images in green rectangle are the correct results and the failed
cases are in the red rectangle.

FIGURE 9. Evaluation on the size of geo-image datasets (log-scale).

FIGURE 10. Evaluation on the size of geo-image datasets (linear-scale).

RSVQk -VR
2 is the lowest. Specifically, its response time

is fluctuating upward in interval [200K, 800K], and after

that it grows rapidly. By using the more efficient index,

i.e., CVR2-Tree, the algorithm RSVQk -CVR
2 can defeat the

former. Similarly, the response time rises markedly when the

dataset size is larger than 800K. Benefit from the optimization
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FIGURE 11. Evaluation on the number of results.

FIGURE 12. Evaluation on the balance parameter µ in the similarity measurement.

technique, RSVQk -OptCVR
2 is the most efficient algorithm,

whose growth rate of response time is the lowest as well.

On Flickr-RP, it increases from 1.8 at 200K to nearly 3.2,

which is similar to the situations on the other three datasets.

2) EVALUATION ON THE NUMBER OF RESULTS k

We evaluate the effect of varying the number of results k

on Flickr-RP, Flickr-US, ImageNet-RP and ImageNet-US,

shown in Fig. 11. As the huge performance gap between

the baseline and the three proposed algorithms, we do not

plot the experimental data of RSVQk -R. Instead, we just

show the differences of RSVQk -VR
2, RSVQk -CVR

2 and

RSVQk -OptCVR
2. Beyond all doubt, the response time of

all these algorithms increase gradually with the rise of k . Due

to the optimization method, RSVQk -OptCVR
2 overcomes

the others on all the four datasets. By comparison, with-

out the optimization, the performance of RSVQk -CVR
2 is

worse than the former, which shows an upward trend with

fluctuation. Apparently, the response time of RSVQk -VR
2

is the highest since the promotion of efficiency by the VR2-

Tree is not larger than CVR2-Tree, especially the applying of

optimization technique.

3) EVALUATION ON THE BALANCE PARAMETER µ

We evaluate the effect of varying the value of balance param-

eter µ in the similarity measurement on the four datasets.

Like above experiments, we do not plot the data of RSVQk -

R due to the enormous efficiency gap. On Flickr-RP dataset

shown in Fig. 11(a), we can see clearly that the efficiency

of RSVQk -VR
2, RSVQk -CVR

2 and RSVQk -OptCVR
2 are

not obviously affected by changing µ in interval [0, 0.9].

Specifically, they move up and down slightly. However, when

µ = 1, the time cost of these algorithms drop down obviously

because the visual similarity is ignored totally. As expected,

RSVQk -OptCVR
2 wins this comparison by applying opti-

mization via CVR2-Tree. On Flickr-US, the runtime of these

algorithms are slightly lower than the values on Flickr-

RP, but the trends of them is very similar. They decline

rapidly atµ = 1. As expected, the situations on ImageNet-RP

(Fig. 11(c)) and ImageNet-US (Fig. 11(d)) are very similar to

the former two.

4) EVALUATION ON THE NUMBER OF

QUERY VISUAL WORDS

In the last set of experiments, we evaluate the effect of varying

the number of query visual words on these four datasets. The

experimental results are illustrated in Fig. 13. By the same

token, we do not consider the results of baseline and just

show the differences between RSVQk -VR
2, RSVQk -CVR

2

and RSVQk -OptCVR
2. It is evident that the runtime of these

algorithms decrease gradually as the number of query visual

words increases. In particularly, the change rates of them in

interval [25, 75] is a bit larger than the value in [100, 150]. The

reason is that more visual words may enhance the pruning by

diminishing the average visual similarity between query and

geo-images. Same as those of the above sets of experiments,

RSVQk -OptCVR
2 has the highest efficiency on all these

datasets.
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FIGURE 13. Evaluation on the number of query visual words.

In summary, these experimental results demonstrate that

the proposed spatial index VR2-Tree, especially CVR2-Tree

with the optimization method can substantially improve the

performance of reverse spatial visual search. The proposed

search algorithm shows obvious superiority with the compar-

ison to the baseline.

VI. CONCLUSION

This paper investigates a novel search problem named

RSVQk query, which aims to retrieve a set of geo-image

objects that have the query image as one of the most relevant

images in both aspects of geographical proximity and visual

similarity. To improve the search efficiency, a new hybrid

index named VR2-Tree and its extension is presented, which

is a combination of visual representation of geo-image and R-

Tree. Besides, the optimization method to tighter the bound

via CVR2-Tree is introduced. In addition, an efficient CVR2-

Tree based algorithm, named RSVQk algorithm is careful

developed, which can speed up the reverse search signifi-

cantly. Comprehensive experiments are conducted on four

geo-image datasets, and the results demonstrate that the pro-

posed approach can address the RSVQk problem effectively

and efficiently.
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