

Open access • Proceedings Article • DOI:10.4271/801196

Reverse thrust performance of the QCSEE variable pitch turbofan engine — Source link ☑

N. E. Samanich, D. C. Reemsnyder, H. E. Bloomer Institutions: Glenn Research Center Published on: 01 Sep 1980 Topics: Thrust reversal, Thrust and Turbofan

Related papers:

- Hamilton Standard Q-fan demonstrator dynamic pitch change test program, volume 1
- Reverse Thrust Performance of a Variable-Pitch Fan Engine at Forward Velocity
- Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow
- Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow
- Reverse Thrust Aerodynamics of Variable Pitch Fans

NASA TIY 81558 N80.31399,

NASA Technical Memorandum 81558

٧.

÷

NASA-TM-81558 19800022893

REVERSE THRUST PERFORMANCE OF THE QCSEE VARIABLE PITCH TURBOFAN ENGINE

N. E. Samanich, D. C. Reemsnyder, and H. E. Bloomer Lewis Research Center Cleveland, Ohio

LIBRARY CSPY

<u>भाग</u> स्थान स्थिति</u>

Prepared for the Aerospace Congress sponsored by the Society of Automotive Engineers, Los Angeles, California, October 13-16, 1980

<u>.</u> -

· -. •` -1

•

.-

SHORT-HAUL AIRCRAFT HAVE BEEN PROPOSED as one solution to airport congestion a number of years ago. In principle, these aircraft would operate out of numerous existing short runway airfields, and would thereby alleviate the increasing traffic problem at major terminals. The theorem $\ensuremath{\mathsf{Tn}}$ 1974, NASA-Lewis awarded a contract to The General Electric Company to design, fabricate and test two Quiet, Clean, Short-Haul, Experimental Engines (QCSEE). One propulsion system was designed for an Under-the-Wing (UTW) externally blown flap application; the other was configured for Over-the-Wing (OTW) upper-surface blowing. Major objectives of the program were to develop the technology needed to meet the stringent noise, exhaust emissions, performance, weight and transient thrust requirements of future short-haul aircraft. The contractor phase of the program was completed in 1978 and results reported in (1, 2)*. Subsequently NASA-Lewis evaluated complete engine systems with representative powered-lift wing segments (3). Testing included acoustic evaluation of bulk absorber material (4), UTW reverse thrust and forwardto-reverse transient tests. Testing at Lewis was completed in 1979.

Noise requirements for short-haul aircraft and the OCSEE program dictated that a low-pressure ratio, high-bypass ratio fan be used, especially for under-the-wing installation. Studies have indicated that for such installations, engines designed with variable-pitch fans for reverse thrust (5, 6) are superior to those with fixed pitch fans and conventional reversers. The potential advantage of using variable-pitch fans is the elimination of the conventional heavy, high-maintenance, target or cascade thrust-reversal hardware plus the added benefit of improved thrust response time (5, 6). One of the potential problems in operation of variable pitch fans is difficulty in establishing reverse thrust at certain reverse blade angles (7, 8). This problem is aggravated when reversing with forward velocity. However, operational techniques during forward-to-reverse transients, such as blade angle overshoot, have been shown to be effective in reducing the time to establish reverse thrust (7, 8).

During UTW engine steady-state reverse thrust testing at General Electric, turbine temperature limit was reached before the reverse thrust goal of 35% of takeoff thrust was achieved (9, 10). Although removing the aft fan duct acoustic splitter improved the thrust 2%, from 25% to 27% of takeoff thrust, further improvement was desirable. Early model tests (11) indicated that the fan nozzles, if flared to about 30° did provide reasonable pressure recovery when used as inlets. Later testing (12) showed that pressure recovery of these flared inlets could be adversely affected by serrations cut into the leading edge of the inlets. In the reverse position, the QCSEE fan nozzle is flared to about 30° , but sizeable openings exist between the four flaps and between the flaps and main nacelle in the hinge plane.

*Numbers in parentheses designate references at end of paper.

N80-313997

In an attempt to evaluate the effect of these openings on reverse performance, a fixed 30° half-angle conical exlet having the same flap length and trailing edge sharpness was fabricated and tested on the QCSEE UTW engine. Steady-state reverse testing reported herein included backto-back tests with the fixed 30° exlet and the movable flaps (QCSEE). The engine was tested over a range of fan speeds and reverse fan blade angles. Measurements included thrust, fan and core speeds, fan blade angle, and pressure and temperature profiles before and behind the fan rotor and at the compressor face.

The NASA test program culminated with an evaluation of the forwardto-reverse thrust transient characteristics of the QCSEE engine. All transients included an automatic change in the QCSEE four-flap fan nozzle from a forward thrust setting (convergent nozzle) to an open, ~ 30° flare position for reverse. Simultaneously, the fan blades were rotated through "stall" from forward thrust fan blade angles ($\beta_F = +5$ to -7°) to reverse thrust blade angles ($\beta_F = -97$ to -112°). Transients were initiated from nominal forward idle, approach and takeoff power to various levels of reverse thrust. Other variations included final reverse blade angle, blade angle overshoot and fuel scheduling during the transients. Typical overall sound pressure levels during the transients were also obtained.

This report discusses the results of steady-state reverse tests of two reverse inlet (exlet) configurations and forward-to-reverse transient tests of the QCSEE UTW engine conducted at the Lewis Research Center.

UTW ENGINE CHARACTERISTICS

The UTW engine is an advanced technology, experimental turbofan built around an existing advanced core. The technical advances emphasize such environmental factors as low noise and exhaust emissions. Performance is improved primarily by reducing engine weight to achieve a high engine thrust-weight ratio.

UTW ENGINE DESIGN CHARACTERISTICS - A summary of the OCSEE UTW engine technical goals are presented in Table 1 for a four-engine commercial transport aircraft. Because of the importance of low noise to any future aircraft and particularly short-haul powered-lift aircraft, very stringent goals were established with the takeoff and approach noise level set at 95 EPNdB. The under-the-wing engine installation results in direct impingement of the exhaust jet on the wing flap and the resulting jet/flap interaction noise is a major contributor to the total noise signature. As shown in Fig. 1, a very low fan pressure ratio (jet velocity) was required and was selected to keep this noise source about 3 dB below the total system noise for a balanced acoustic design.

The UTW experimental propulsion system shown in Fig. 2 was designed (13) to provide 81,400 N (18,300 lb) of uninstalled thrust and 77,400 N (17,400 lb) of installed forward thrust at takeoff on a 305.6 K (90°F) day. Reverse thrust goal was set at 35% of forward takeoff thrust.

Specific UTW engine features include: a composite structure high Mach (accelerating) inlet; a gear-driven, variable-pitch fan with composite fan blades; a composite fan frame; an acoustically treated fan duct with an acoustic splitter ring; a variable-geometry fan exhaust nozzle, an advanced (F101) core engine and low pressure turbine; an acoustically treated core exhaust nozzle; top-mounted engine accessories; and a digital electronic control system combined with a hydromechanical fuel control. Critical aerodynamic design parameters are listed in Table 2. The UTW engine has a high bypass ratio of 11.8 and a low fan pressure ratio at takeoff of 1.27.

The UTW engine requires control of four variables; fuel flow, fan blade angle, fan nozzle area and core compressor stator angle. The control system incorporates two basic control components, a modified hydromechanical fuel control and an engine-mounted digital electronic control designed specifically for the QCSEE engines (14). A primary requirement of the control system was the capability of achieving a thrust response of 1.0 sec for approach-to-takeoff thrust and 1.5 sec for approach-to-reverse thrust. During operation, fuel flow controls engine pressure ratio (compressor discharge pressure/inlet total pressure variables closely related to thrust); fan blade angle controls fan speed, and the fan nozzle area controls inlet Mach number (a key inlet noise parameter). The fan blade variable pitch actuation system was a hydraulically powered ball spline design described in (13).

Acoustic design parameters are listed in Table 3 and acoustic features of the engine are shown in Fig. 3.

UTW ENGINE PERFORMANCE CHARACTERISTICS - A summary of previous GE and NASA test results (1,3) is listed in Table 4. Acoustic tests at NASA (3) of the UTW engine with representative powered-lift wing flap sections indicate peak 152 m (500 ft.) sideline noise of 98.5 and 99.7 EPNdB at approach and takeoff, respectively along with a 2.59 sq km (1.0 sq. mile) 95 EPNdB contour area. Although these values are above the 95 EPNdB and 1.29 sq km (0.5 sq mile) contour area goals, they are substantially lower than any commercial aircraft in service today.

The pollution, forward thrust, specific fuel consumption and thrustto-weight goals were all met or exceeded. Although the UTW engine failed to meet the 610 m (2000 ft) runway reverse thrust goal of 35% of takeoff thrust, it did produce about 27% reverse thrust, and this might be sufficient to decelerate an aircraft on a 915 m (3000 ft.) runway. The approach-to-takeoff forward thrust transient was not attempted due to fan overspeed indications during lower power transients.

APPARATUS AND PROCEDURE

The UTW variable pitch turbofan engine was tested for reverse performance at a NASA Lewis outdoor engine test stand. Detailed instrumentation, data reduction, and test procedures were incorporated to define steady-state reverse thrust performance and forward-to-reverse thrust transient characteristics. TEST FACILITY - The engine test stand (Fig. 4 and 5) was designed specifically for test of the QCSEE engines. Specific attention was given to the proximity of the ground plane and stand structure to the inlet and exit planes. These could cause flow turbulence and flow distortion resulting in high blade stress and/or noise generation. Engine centerline was 4.6 m (15 ft) above grade. The stand had separable lower and upper structure. A compact "A" frame upper structure straddled and held the engine (top mounts) and all its accessories. The stand was designed to enable measurement of forward, reverse and side loads. The engine upper stand structure was hung from flexure plates and steadystate thrust was measured by load cells. The outdoor test stand was located at the NASA Lewis Engine Noise Test Facility immediately adjacent to Cleveland Hopkins Airport.

ENGINE TEST CONFIGURATION - A schematic of the reverse thrust configuration along with engine station designations is shown in Fig. 6 and symbols are defined in Appendix A. In the reverse thrust mode, flow enters the engine at the fan nozzle (exlet), passes through the aft fan duct and fan bypass outlet guide vanes and then separates into two streams; one stream passing through the fan rotor and discharging out the engine inlet, and the other stream turning 180° and entering the gooseneck to the core compressor. A photograph of the 6-foot diameter QCSEE fan rotor is shown in Fig. 7. Although the OCSEE design was capable of fan blade pitch change in either direction (Fig. 8), reverse through stall was found to provide improved performance (7) and therefore was used in these tests. In this direction the blades are "opened" about 100° ($\beta_{\rm F} = -100^{\circ}$) from the forward thrust design blade angle ($\beta_{\rm F} = 0^{\circ}$).

During reverse operation, the QCSEE fan nozzle is in the flared position (Fig. 9 and 10) and sizeable openings exist between the four flaps and between the flaps and main nacelle in the hinge plane. Edges at the openings are relatively sharp. In an attempt to evaluate the effect of these openings on reverse performance, a fixed 30° half-angle conic exlet having the same flap length and trailing edge sharpness was fabricated and tested. A schematic of the fixed 30° exlet is shown in Fig. 11 and a photograph of it "on test" is shown in Fig. 12. Steadystate reverse testing reported herein included back-to-back tests with the fixed 30° exlet and the movable flaps (QCSEE). All forward-toreverse transients were made with the movable flaps.

Since noise measurements were not of primary importance in these tests, the acoustic configuration used was the same as that tested immediately preceding this final test series. The acoustic configuration included the accelerating high Mach composite inlet with single-degreeof-freedom (SDOF) wall treatment, treated (bulk absorber) fan duct, and a multi phased stacked SDOF core suppressor. The acoustic fan duct splitter ring was removed. This configuration is described in detail in (4) and was designated as acoustic configuration 3. INSTRUMENTATION - Because of the unique and rather complex nature of the QCSEE UTW engine, an abnormally large number of steady-state and transient pieces of information were obtained. Details of the instrumentation are presented in (9, 10), and only the pertinent instrumentation is discussed below:

1. Operational Safety Instrumentation - Pressures and/or temperatures in the lubrication and hydraulic system, cooling air supply, oil cooler, fuel system, bearings and seals, reduction gear and in high temperature regions were monitored.

2. Dynamic Instrumentation - Stress and vibration levels were continually monitored on selected fan blades, compressor inlet rakes, the slip ring strut, nozzle flap links, fan frame, fan OGV island, and on various locations on the fan doors. Vibration information was also continually gathered on all critical engine bearings, the accessory gear box, compressor case and the digital control. In an attempt to measure true engine thrust transient response, the two engine thrust links attaching the engine to the facility mounts were removed and replaced with special strain gaged links. Accelerometers located on the links and stand structure were used to compensate the strain signals for stand movement during the forward-to-reverse thrust transients with a resulting "true" thrust response.

3. Dynamic and Control Parameters - During the engine transient tests, four 8-channel brush-type recorders with selected information were used for "on-line" test monitoring and diagnostics. The parameters monitored are listed in Table 5.

4. Performance Instrumentation - Engine performance instrumentation is shown in Table 6. In addition to the basic engine instrumentation, fan blade position, fan nozzle position, LP and HP rotor speeds were provided from engine control system sensors. Fuel flows were provided from the test cell system. Steady-state thrust readout was provided from a load cell with 25,000 lb forward thrust and 25,000 lb reverse thrust capability. The radial traverse probes (Sta 10 and 15) used \pm 10 psi range transducers. To avoid error due to flow angularity, the probe at the highlight (Sta 10) was aligned with the flow direction.

5. Acoustic - Noise measurements were not of primary importance during these tests, however, far-field noise was recorded during some of the reverse transients with a series of ground microphones spaced every 10° from the inlet axis to 150° on a 45.7 m (150 ft.) radius. Details of the noise acquisition and data reduction techniques are discussed in (3).

DATA REDUCTION - Steady-state reverse thrust performance tests included the direct measurement of the following parameters: engine thrust; fan blade angle; fan and core speeds; fan nozzle position (area); aft fan duct, core inlet, and inlet highlight total pressure radial profiles; fan and engine static pressures; ambient, aft fan duct, and core inlet air temperature; core engine total and static pressures and temperatures; and ambient conditions of wind velocity, temperature, pressure and relative humidity.

Steady-state reverse thrust data reduction equations are listed in Appendix B. The following parameters were calculated:

_

1. Corrected engine reverse thrust

2. Corrected fan and core speeds

3. Actual fan blade angle and fan nozzle area

4. Aft fan duct corrected airflow and Mach number

5. Exlet (aft fan duct) and core inlet total pressure recovery

6. Core compressor corrected airflow and pressure ratio, and estimated efficiency

7. Core engine corrected performance parameters

8. Fan airflow, static pressure ratios, and quasi total pressure ratio (at inlet highlight)

9. Exlet, engine, and fan inlet static pressure distributions

Forward-to-reverse thrust transient data reduction consisted of analyzing the data from four recorders (Table 5). Transient data was time synchronized by the power demand signal, and correlated with the steady-state data taken before and after each transient. Calculated values for each successful transient include actual overshoot blade angle, dwell time, actual blade travel time, blade pitch change rate, fan nozzle change rate; thrust response time, flow reattachment time, thrust delay after reattachment, and times to reach final fan speed and final reverse static pressure ratio.

TEST PROCEDURE - Steady-state reverse tests of both the movable flap and the fixed 30° exlets were performed in a similar fashion using the following general procedure:

1. Prior to start-up the desired fan blade angle and fan nozzle area for reverse idle, and other inputs were programmed into the engine digital control.

2. The engine was air motored using dry facility air. At about 3000 RPM core speed, the digital control received sufficient alternator current for regulation and the control signaled the fan blade and fan nozzle to move to the preset reverse values. At about 4000 RPM core speed, the ignitors were activated and ignition was achieved.

6

3. The engine was accelerated to the reverse idle condition, about 55% fan speed.

4. After the engine was warmed up for about 5 min, conditions were adjusted to the desired settings for reverse data acquisition. Fan blade angle was normally set in the closed direction (see Fig. 8).

Forward-to-reverse thrust transient testing was the last part of the test program because of the inherent greater risk to the engine compared to steady state testing. The sequence of the reverse transients was structured to increase in severity beginning with forward idle-to-reverse idle, and progressing to a forward takeoff-to-reverse thrust transient. Each transient consisted of the following steps:

1. Take forward thrust steady-state data

2. Initiate transient to a reverse set point (blade angle, fan speed and fan nozzle area)

3. Take reverse thrust steady-state data

- 4. Decrease speed to reverse idle
- 5. Initiate return transient to forward idle.

All forward-to-reverse thrust transients included an automatic change in fan nozzle area from a forward thrust setting (convergent nozzle) to an open, approximately 30° half-angle flared position to provide an inlet for reverse flow (exlet). Simultaneously, the fan blade pitch was changed on the order of 100° from a forward thrust to reverse thrust setting. The transients were performed from nominal forward idle, approach and takeoff power to various levels of reverse thrust. Other variations included final reverse fan blade angle, blade angle overshoot, and fuel scheduling (fuel interlock setting) during the transient. The maximum attainable fan nozzle and fan blade pitch change rates were used in all the transients.

STEADY-STATE REVERSE THRUST PERFORMANCE

. c

Reverse thrust performance was obtained with the engine at steadystate operating conditions. Covered in this section are reverse starting characteristics; overall, core engine, and fan performance; exlet and core inlet total pressure recovery; engine total pressure and temperature profiles; and the effect of the exlet configuration on steady-state reverse thrust performance. Operational boundary conditions were determined with relatively slow changes in either fan blade angle or fan speed.

REVERSE THRUST STARTING CHARACTERISTICS - Because of the potential reverse "starting" problems (see Introduction), special attention was given to the initial reverse tests of the QCSEE UTW engine. All steadystate reverse startups were attempted with a preset reverse fan blade angle. Visual observations, as well as thrust readings, indicated reverse thrust was established at the onset of fan rotation for fan blade angles of -91°, -96° and -101°. At a fan blade angle of -86°, the fan appeared to be in a stalled, unstarted condition. The range of fan blade angles where reverse thrust maximizes, as will be discussed later, is -93° to -97°. Consequently, there appears to be a margin of about 5° in starting requirements, $\beta_F = -90°$ for starting and $\beta_F = -95°$ for near maximum reverse thrust. Starting characteristics were similar for both the fixed 30° exlet and the movable flap configuration.

OVERALL REVERSE THRUST PERFORMANCE - Variation of corrected reverse thrust with fan speed is shown in Fig. 13 for both the fixed 30° exlet and movable flap configurations. At fan speeds up to 79% of design, thrust peaked at a fan blade angle of -93.6° for the fixed exlet; at higher speeds, and β_F = -93.6° , turbine temperature limits were reached. As fan blade angle was held constant, reverse thrust increased almost linearly with increasing fan speed and began to level off above 80\%. Engine core limits were encountered at the higher reverse thrust levels for both exlet configurations. The 27,088 N (6090 lb) reverse thrust goal was attained with the fixed 30° exlet while slightly exceeding the turbine temperature limit. At similar operating conditions and with the movable flap configuration installed, only about 22,240 N (5000 lb) reverse thrust was obtained.

Performance comparisons at constant fan speeds for the two exlet configurations are presented in Fig. 14. At the higher fan speeds, reverse thrust levels of about 26,700 N (6000 lb) were obtained at fan blade angles between -93 and -97° with the fixed exlet (Fig. 14a). Only small gains in reverse thrust with increases in fan speed above 81% are evident as seen by the collapsing speed lines. Maximum reverse thrust was limited by the boundaries indicated on the figure, namely, blade stress at low fan blade angles, core EGT limits near maximum reverse thrust blade angles. At the higher fan speeds, the sensitivity was about 890 N (200 lb) of reverse thrust per degree of fan blade angle for both configurations.

At 58% fan speed, a fan blade angle hysteresis check was made with the fixed 30° exlet (Fig. 14a). The data indicated less than 1° of hysteresis with blade angle at this speed. At blade angles from -83 to -91° significantly lower but measurable reverse thrust along with high blade stresses indicated the blades were in a partially stalled mode.

During these tests, consistently higher reverse thrust was obtained with the fixed 30° exlet as compared to the movable flaps at all fan speeds and fan blade angles. In addition, lower blade-stresses, lower engine vibrations, and more stable reverse flow were observed. The reverse thrust objective of 27,088 N (6090 lb) could only be achieved with the fixed 30° exlet configuration while slightly exceeding the turbine temperature limit. EXLET AND CORE INLET TOTAL PRESSURE AND TEMPERATURE CHARACTERISTICS -During reverse operation, air enters the engine from the rear and exits through what is normally the engine inlet. The flow entering the core engine makes a 180° turn and is divided into channels (Sta 21 to 25, Fig. 6) by 6 equally spaced support struts. Rake data at the entrance to the core (Sta 25) were recorded during all steady-state readings. Pressure and temperature profiles were measured during selected operating conditions at the entrance to the fan in reverse (Sta 15) at about a 10 o'clock position and at the fan discharge (Sta 10) at a 6 o'clock position. The "V" shaped gaps between the four nozzle flaps (movable flaps) occur at about the 12, 3, 6 and 9 o'clock positions. Fan and core air flows were calculated from in-duct measurements and the procedures described in Appendix B.

As evidenced, exlet total pressure recovery was significantly improved with the fixed 30° exlet over the movable flaps (Fig. 15). At an aft fan duct Mach number of 0.34, the exlet total pressure recovery was .985 and .948 for the aforementioned configurations. Representative measured pressure and temperature profiles for the fixed and movable flap configurations at comparable fan speeds and fan blade angles are compared in Fig. 16. As can be seen, the pressure loss for the fixed exlet occurs near the outside wall compared to rather uniform losses across the entire duct for the movable flaps. A slight amount of exhaust gas reingestion was observed (Fig. 16a) with measured gas temperatures about 8°K (15°R) above ambient near the inner wall. The traverse data at both the fan entrance and discharge was significantly more oscillatory in nature for the movable flaps indicating more flow turbulence. Static pressure distributions on the exlet surface (see Table 6) indicated flow separation on the inner surface from the sharp aft leading edge to over half the length of the exlet for both configurations. The increased pressure losses with the movable flaps are apparently caused by the sharp edge openings between the four flaps and between the flaps and the outer nacelle and pylon. Blockage or distortion also occurs due to the four flap hinges, actuator rods and pylon.

For the low pressure ratio QCSEE fan (~ 1.08 in reverse), the exlet total pressure recovery is extremely important and, in this case, was the most significant factor causing the relatively low reverse thrust performance of the movable flap configuration.

The core inlet total pressure recovery did not reflect the significant differences observed in average exlet total pressure recovery. This is apparently a result of large pressure losses encountered in turning the flow 180° at the gooseneck entrance to the core, and the fact that most of the core flow is scavenged from the lower recovery flow near the inner wall in the aft fan duct. Core inlet total pressure recovery was similar for both exlet configurations and decreased from about 0.94 to 0.80 as aft fan duct Mach number increased from 0.2 to 0.36. Compressor face pressure profiles at various circumferential locations are compared in Fig. 17. Both configurations had higher pressure recoveries near the inner wall in the core inlet, and in

9

general, had similar profile shapes. Compressor face temperature profiles at the same conditions as the pressure profiles are shown in Fig. 18. The small amount of hot core gas reingestion measured at the inlet to the fan (Fig. 16) can also be observed at the compressor face. The variation of the average (area weighted) core inlet flow temperature rise with reverse thrust level for both configurations is shown in Fig. 19. At comparable reverse thrust levels, the amount of core exhaust gas reingestion into the compressor inlet appears to be several degrees more for the fixed exlet compared to the movable flap configuration.

CORE ENGINE PERFORMANCE IN REVERSE - Corrected core speed correlates well with corrected fan speed for a given fan blade angle, β_F , for both the fixed 30° exlet and the movable flaps (Fig. 20). Core speed increases rapidly at constant fan speed as fan blade angle is decreased (increasing reverse thrust). Calculated turbine power has similar characteristics. At high corrected core speeds, the core flow approaches a choking condition and remains relatively constant (Fig. 21). The increased turbine work requirement at higher core speeds results in a rapid rise in exhaust gas temperature as fuel is added (Fig. 22) with a notable change in slope at about 80% core speed. The core engine characteristics were similar for both configurations, although a slightly hotter engine exhaust gas temperature of 33°K (60°R) was required to operate at the same corrected core speed with the movable flap configuration.

Calculated specific fuel consumption minimized at a fan blade angle of about -101° for both configurations and was about 10 to 20% lower for the fixed exlet configuration.

FAN PERFORMANCE - Both the fixed and movable flap configurations had about the same calculated corrected flow-fan speed characteristics, Fig. 23. However, actual flows were significantly lower for the movable flap exlet reflecting the lower measured exlet total pressure recoveries (Fig. 6). Air flow was very sensitive to fan blade angle with flow changes as high as 20% measured for 5° blade angle changes near the fan design corrected speed. Fan performance measurements were limited to a total pressure and temperature radial traverse at the entrance to the fan, Sta 15 (Fig. 6) and at the fan discharge, Sta 10. The latter was taken 10.2 cm (4 in) forward of the inlet highlight. Static pressure measurements were also recorded at various stations in the fan flow passage.

Because the fan outlet traverse probe was located beyond the duct, a true total pressure ratio across the fan could not be measured. Consequently, fan rotor tip static pressure ratio which is indicative of total pressure ratio, is presented as a function of corrected rotor flow in Fig. 24. The limited data indicate similar performance for both configurations. At lower rotor flows (lower fan speeds), the effect of blade angle is minimal with a tendency for the data to collapse on one operating line. At the higher flows, and corresponding higher fan speeds, separate operating lines exist as for a family of different fixed-pitch fans. Data obtained with a 20-inch diameter model (15) of the QCSEE fan show reasonable agreement in the general trends. Typical pressure recovery data obtained with the downstream probe is compared for both configurations in Fig. 25. The fixed exlet configuration had a higher level of total pressure in the exhaust which was concentrated towards the outer wall and neither configuration had outward reverse flow in the center portion. Radial traverse data also indicated significantly more flow instability ahead of and behind the fan with the movable flap configuration; higher blade stresses and engine vibrations were also measured with this configuration. Static wall pressure distributions in the engine inlet (fan discharge) were similar for both exlet configurations.

Although fan performance measurements were limited, it appears that the increased flow distortion and flow turbulence associated with the movable flap configuration, did not significantly affect the fan operating characteristics. These data strongly suggest that the higher thrust level of the fixed 30° exlet is caused primarily by improved exlet total pressure recovery (see earlier discussion) and not by changes in fan performance.

A complete listing of all steady-state performance data acquired for both the fixed 30° exlet and the movable flap configurations is presented in Appendices C and D, respectively.

FORWARD-TO-REVERSE THRUST TRANSIENT PERFORMANCE

٠.

A primary requirement of the UTW engine system was the capability of a transient thrust reversal in less than 1.5 sec from approach-to-reverse thrust. To accomplish this, the digital control, on command, synchronized fuel flow changes, fan blade pitch change and the flaring of the fan nozzle movable flaps. Transients were initiated from nominal forward idle, approach and takeoff power to various levels of reverse thrust. Other variations included final reverse blade angle, blade angle overshoot, and fuel scheduling during the transient. A total of nineteen transients were made, all with the movable flaps.

DEFINITIONS OF TRANSIENT TERMS - Definitions and pictorial representation of the terms used in the forward-to-reverse transients are presented in Table 7 and Fig. 26, respectively. For these tests, the primary parameter of interest is the time from the demand for reverse until 80% of the final reverse thrust is achieved. This thrust response time is designated "RESP". The digital control system was designed such that fuel flow was cut back to an idle setting at the beginning of each transient and held there until the fan blades were well into the transient. Blade position during the transient (fuel interlock setting) was used as the control switch to increase fuel flow. Since the blades reversed such that the angle increased in absolute magnitude (e.g., 0°, -1° , -2° ... -99° , -100°) during each transient, lower fuel interlock settings (-50°) caused fuel to be increased sooner than higher settings (-90°). Besides the direct measurement of engine thrust, two other measured parameters, fan blade stress and fan static pressure ratio, were indicative of establishing reverse thrust and are presented. As observed in previous tests (7), fan blade stresses increased substantially during a transient and then suddenly dropped when reverse thrust was established. Also, fan static pressure ratio became zero as the blades stalled, and changed sign as the flow reversed through the engine.

TRANSIENT PERFORMANCE - Summarized in Table 8 is the transient test program. Each transient began at a forward thrust set point F_x , automatically, on command, transitioned to a reverse set point R_x , then a decrease in speed to reverse idle R_1 , and finally a transient to forward idle F_1 . The nineteen transients are identified as to set point sequence planned $(F_{X}-R_{X}-R_{1}-F_{1})$, programmed blade angle overshoot, and the fuel interlock setting angle. Blade angle overshoot was designed for a constant ten degrees beyond final set point for a nominal 0.3 sec time duration. Approximate values of fan blade angle $(\beta_{\rm F})$, fan nozzle area (Al8), and fan speed (N_F), are tabulated for the three forward set points, F_1 , F_2 and F_3 , corresponding to nominal idle, approach and takeoff power settings, respectively. Similar values are listed for the nine reverse set points. Measured β_{F} , N_F and A18 steady-state reverse values agreed with the scheduled digital control values. Final reverse thrust levels also compared well with previous steady-state thrust data. Transient 13A was performed with an inadvertent control input for final blade angle of -86° rather than -96°, and the engine did not establish reverse thrust because of fan blade stall. This transient is included to help define operational limitations.

After a few transients were performed, it became apparent that fan overspeed would not be a problem. The pre-test concerns of fan overspeed soon gave way to concerns of excessive fan speed decay or undershoot and subsequent long fan spool up times. Attempts to minimize or eliminate this problem were unsuccessful and are discussed later. As a result of this fan speed undershoot, some of the tests planned to investigate ways to minimize thrust response and flow reattachment times by systematic variations in blade pitch change rate and feedback sensitivity were eliminated.

Variation of selected measured parameters during an approach-toreverse thrust transient without and with fan blade overshoot are presented in Fig. 27 and 28, respectively. A takeoff-to-reverse transient is shown in Fig. 29. During all transients, the fan nozzle movable flaps and the fan blades were moved at their maximum rates. The nozzle flaps (Al8 trace) began movement without any measurable lag and moved smoothly and rapidly to the reverse position in 0.7 to 0.8 sec during all the transients. Fan blade movement typically began about 0.1 sec after transient initiation and also moved smoothly and rapidly to the reverse position. However, the blades momentarily overshot the final reverse blade angle by about 3° but damped out to the programmed angle in several cycles. Similarly, 3° of momentary excess overshoot and cyclic damping occurred when overshoot was programmed (Fig. 28). For the approach and takeoff-to-reverse thrust transients, fan blade pitch change rates ranged from 107 to 120 deg/sec.

The most unexpected transient characteristic observed was the excessive fan speed, N_F , decay or undershoot (Fig. 27 for example) which occurred during the initial portion of each transient. Fan speed dropped approximately 1200 RPM in about 0.7 sec before beginning to recover. The long fan spool-up times resulted in longer than expected times to establish full reverse thrust. Consequently, thrust response time was defined as the time to achieve 80% of final reverse thrust. As can be seen in a typical transient (Fig. 27), all the significant reverse elements (e.g., fan flow was reattached to the fan blades and the fan was not stalled) had been achieved by this time (RESP).

Engine thrust (FG) time histories indicated a brief forward thrust surge of about 14680 N (3300 lb) for 0.25 sec and 2220 N (500 lb) for 0.1 sec as fan blades initially moved open toward stall during the approach and takeoff-to-reverse transients, respectively (Fig. 28 and 29). Subsequently, thrust decayed to zero in about 0.5 sec as the blades rotated through stall. Reverse thrust was established in about 1.5 sec and 1.6 sec for the approach-to-reverse thrust transients with and without overshoot, respectively (Fig. 28 and 27). The shortest thrust response time RESP of 1.1 sec was measured during the takeoff-to-reverse thrust transient (Fig. 29).

For the approach-to-reverse thrust transients, fan blade stress usually peaked after the blade reached the final reverse blade angle (Fig. 27). For the takeoff-to-reverse transient, fan blade stress peaked earlier at about a β_F of -50° at which time the fan was stalled (Fig. 29). In some transients, e.g., Fig. 27, blade stress decrease was a good indicator of the establishment of reverse thrust, as was the case with the Hamilton-Standard Q-Fan demonstrator (7, 8). In other cases, e.g., Fig. 28, blade stress decrease did not correlate well with the establishment of reverse thrust.

Fan tip static pressure ratio, PS2/PS16, decreased slowly throughout the transient as the fan blade moved from forward to reverse blade angles, but lagged, to some degree, measured load cell thrust response times. Tip static pressure ratio could be used in a variable pitch fan engine flight configuration to determine initiation of reverse thrust.

Core speed, $N_{\rm C}$, characteristics were similar for all transients, decreasing initially, reaching a minimum in about 0.7 sec and then increasing smoothly to a steady-state value.

The overall sound pressure level, OASPL, at 70° from the inlet (maximum noise location during reverse) at a 46 m (150 ft) radius is shown in the lower curve of these figures. Peak noise levels occur after reverse thrust is established and appear to maximize when final fan speed is reached. Maximum OASPL in reverse is only about 1-2 dB higher than

the maximum OASPL during forward takeoff thrust. However, the perceived noise during reverse is significantly more disturbing because of much higher noise levels in the 1500 to 6000 Hz high annoyance frequency range.

A typical return transient from reverse idle to forward idle is shown in Fig. 30. Blade stresses reached maximum levels at about 0.5 sec into the return at about a $\beta_F = -70^\circ$. The relatively slow blade travel time of about 1.7 sec in the return direction, compared to about 1.0 sec normally, probably contributed to the relatively high stresses measured.

A summary of all measured and calculated transient performance parameters is tabulated in Appendix E. In Fig. 31 through 36, an attempt was made to isolate the effects of: 1) initial and final fan speed, 2) final blade angle, 3) blade angle overshoot, and 4) fuel scheduling, on thrust response characteristics. As discussed earlier, the fact that large unexpected fan speed decays and subsequent long fan spool up times were encountered during all transients made it difficult to interpret the effect of other parameters. The effect of initial fan speed on RESP and TNF is shown in Fig. 31. As might be expected, thrust response time is shortened when the transient is initiated at higher fan speeds during initial forward thrust operation. As previously discussed, the time to bring fan speed up to 98% of final value, TNF, is greater than RESP and decreases as the initial fan speed is increased.

The effect of final reverse fan speed is shown in Fig. 32 for transients beginning at low forward fan speeds ($N_{FK} = 57\%$). Even though the fan blade pitch change rate was somewhat more rapid during transients to higher reverse fan speeds, the thrust response time was significantly longer due to longer fan spool up times. Final reverse fan speed level had a negligible effect on TNF, BT and RESP if the transient was initiated at high fan speeds, $N_{FK} = 88\%$ (Transient 12 vs 11). To minimize thrust response time, transients should be initiated from relatively high fan speeds in forward thrust and fan speed should be maintained during the transient.

The effect of final reverse fan blade angle on thrust response for transients beginning from approach power is shown in Fig. 33. Data from transient 13A where the blades were in stall is shown for reference. At the same final fan speed, reverse thrust increases as blade angle decreases. Final blade angle had a negligible effect on thrust response time RESP. Longer fan spool up times, TNF, are associated with the higher thrust, more loaded blades (β_F = -100°). The time until flow reattaches to the fan blades as determined by the decrease in blade stress (BT + RAT) also increases significantly as the fan blade angle is decreased (increasing reverse thrust).

A fixed 10° blade angle overshoot of 0.3 sec duration was designed into the control system as a possible solution to anticipated reverse flow starting problems. As discussed earlier, no reverse starting problems were encountered. As shown in Fig. 34, the fixed blade angle overshoot was measured at 13° and had a negligible effect on thrust response time. However, the magnitude and duration of high alternating blade stress during the transients was significantly shortened when blade angle overshoot was used (Fig. 35).

The time at which fuel flow was increased after the initial cutback during each transient was controlled by the digital control fuel interlock setting (see Definitions of Transient Terms section). The effects of this parameter are shown in Fig. 36. Variations between -50 and -90° interlock settings did not enhance the unexpected fan speed decay (undershoot) problem as seen at the top of the figure. Neither were thrust response and blade travel times significantly affected. However, time to reach final fan speed, TNF, did appear to minimize at an angle of -60°. Fan speed was near its minimum when the fan blades had rotated to about -50° during the reversals (see Fig. 27, 28 and 29). Increasing fuel flow sooner, (interlock settings less than -50°) might have been beneficial but were not tested because of concerns about possible control system dynamic problems.

Initial design studies of the digital control system indicated possible problems of fan speed overshoot as the fan blades unloaded while changing pitch to the reverse position. To minimize fan overspeed, fuel cutback to flight idle at the onset of all forward-to-reverse transients was incorporated into the digital control logic. No fan overspeed problem was observed in these tests. Apparently the initial fuel cutback was either too abrupt or too severe as unexpected large fan speed decays occurred during the initial portion of the transients and resulted in subsequent long fan spool up times. Within the range tested, rescheduling the time to introduce fuel flow earlier after the initial fuel cutback was unsuccessful in reducing the amount of fan speed decay or length of time to reach final fan speed. No attempt was made to modify the control system logic for these tests. To reduce the time to reach final fan speed in future tests the digital control logic could be modified by controlling fan speed during the transient, delaying slightly the initial fuel cutback, cutting back fuel at a slower rate, or cutting back to a higher fuel flow level above flight idle.

SUMMARY

Steady-state reverse and forward-to-reverse thrust transient performance were obtained with the QCSEE UTW geared variable pitch turbofan engine at the NASA Lewis Research Center. The UTW engine fell short of its reverse thrust goal during its initial testing at the Contractor's facility. It was retested in reverse in its original configuration and with a modified exlet which significantly improved performance. The engine met the steady-state reverse thrust and transient thrust reversal goals. The digital electronic control, variable pitch actuation system, variable pitch composite fan blades and variable fan nozzle operated satisfactorily throughout the tests.

STEADY-STATE REVERSE RESULTS - Reverse thrust performance was obtained with two fan nozzle (exlet) configurations: (a) the QCSEE

4-segment variable area fan nozzle with openings in the flap hinge area and between the flaps when in the reverse position (movable flaps); and (b) a boilerplate continuous, non-gap, 30° half-angle conical exlet (fixed 30° exlet). The steady-state results are summarized below:

1. The reverse thrust goal of 35% of forward static takeoff thrust was attained with the fixed 30° exlet. Reverse thrust with the movable flaps was about 20% less. In order to retain the variable area capability in a flight design and utilize the improved performance concept of the fixed 30° exlet, a new improved movable flap design is required.

2. Lower engine vibrations, lower fan blade stress and more stable flow occurred with the fixed 30° exlet as compared to the movable flaps.

3. No reverse starting problems existed for either configuration.

4. The reverse thrust goal was obtained in a fan blade angle range of about 4° . The operating envelope was bounded by fan blade stress, core exhaust gas temperature, and fan speed limits.

5. Fan performance characteristics did not appear affected by exlet geometry; improved reverse thrust with the fixed 30° exlet appeared to be a direct result of improved exlet total pressure recovery.

6. The core engine characteristics were similar for both configurations, although a slightly hotter engine exhaust gas temperature of about 33° K (60° R), was required to operate at the same corrected core speed with the movable flap configuration. Core engine limits were encountered at the high thrust levels with both configurations.

7. Specific fuel consumption was about 10 to 20% lower for the fixed 30° exlet and optimized at a fan blade angle of about -101° for both configurations.

TRANSIENT RESULTS - Forward-to-reverse thrust transient performance was obtained with the movable flaps only. Automatic thrust reversals were coordinated by the digital control, which on command, synchronized fuel flow changes, fan blade pitch change and the flaring of the fan nozzle movable flaps. Results from the 19 forward-to-reverse thrust transients are summarized below:

1. The transient thrust reversal goal of 1.5 sec from approach-toreverse thrust was achieved. The takeoff-to-reverse thrust transient was performed in 1.1 sec.

2. Unexpected large fan speed decays and subsequent long fan spool up times were encountered during all transients, apparently due to the early fuel cutback to flight idle as the transient was initiated. To alleviate this problem, the digital control logic could be modified by controlling fan speed during the transient, delaying the initial fuel cutback, cutting back fuel at a slower rate, or cutting back fuel to a higher level above flight idle.

3. Fan blade pitch change typically began about 0.1 sec after transient initiation, moved smoothly, and momentarily overshot the final reverse blade angle by about 3° , but damped out to the programmed angle in several cycles. Fan blade travel times were on the order of 1.0 sec with measured average pitch change rates from 107 to 120° /sec.

4. Programmed fan blade angle overshoot (10° for 0.3 sec) did not affect thrust response times significantly, but did reduce the magnitude and duration of high blade stress.

5. Fan exhaust nozzle (movable flaps) opened rapidly and smoothly to the reverse setting in about 0.7 to 0.8 sec.

6. A very brief forward thrust surge of 14680 N (3300 lb) and 2220 N (500 lb) occurred as the fan blades initially moved open toward stall during the approach and takeoff-to-reverse transients, respectively.

7. No problems were encountered in establishing reverse thrust, although it took longer times at the higher thrust, more loaded blade angles.

8. Maximum overall sound pressure level was about 1-2 db higher in reverse than at takeoff. However, no anomolies were encountered during the transients.

REFERENCES

1. W. S. Willis "Quiet Clean Short-Haul Experimental Engine (QCSEE)," General Electric Co., Cincinnati, OH, Report No. R79AEG478, August, 1979. (NASA CR 159473, 1979)

2. "Quiet, Powered-Lift Propulsion Conference," NASA 2077, 1978.

3. I. J. Loeffler, N. E. Samanich, and H.E. Bloomer "QCSEE UTW Engine Powered-Lift Acoustic Performance," AIAA-80-1065, June, 1980.

4. H. E. Bloomer, and N. E. Samanich "QCSEE Fan Exhaust Bulk Absorber Treatment Evaluation," AIAA-80-0987, June, 1980.

5. R. E. Neitzel, R. Lee, and A. J. Chamay "QCSEE Task 2: Engine Installation Preliminary Design," General Electric Co., Cincinnati, OH, June, 1973. (NASA CR-134738, 1973)

6. H. E. Helms "Quiet Clean STOL Experimental Engine Study Program. Task I: Parametric Propulsion Systems Studies," Detroit Diesel Allison, Indianapolis, IN, Report No. EDR-7543, September, 1972. (NASA CR-135015, 1972)

7. J. W. Schaefer, D. A. Sagerser and E. G. Stakolich "Dynamics of High-Bypass-Engine Thrust Reversal Using a Variable-Pitch Fan," NASA TM X-3524, 1977.

8. D. C. Reemsnyder and D. A. Sagerser "Effect of Forward Velocity and Crosswind on the Reverse-Thrust Performance of a Variable-Pitch Fan Engine," AIAA Paper No. 79-0105, January, 1979.

9. "Quiet Clean Short-Haul Experimental Engine (QCSEE) - Under the Wing (UTW) Engine Boilerplate Nacelle Test Report, Volume 1: Summary Report," General Electric Co., Cincinnati, OH, Report No. R77AEG2121 -VOL 1, December, 1977. (NASA CR-135249, 1977)

10. "Quiet Clean Short-Haul Experimental Engine (QCSEE) - Under the Wing (UTW) Engine Composite Nacelle Test Report, Volume 1: Summary, Aerodynamic and Mechanical Performance," General Electric Co., Cincinnati, OH, Report No. R78AEG573 - VOL 1, April, 1979. (NASA CR-159471, 1979)

11. W. F. Vier "Quiet Clean Short-Haul Experimental Engine (QCSEE) Test Results from a 14 cm Inlet for a Variable Pitch Fan Thrust Reverser," General Electric Co., Cincinnati, OH, Report No. R75AEG387, December, 1975. (NASA CR-134867, 1975)

12. D. A. Dietrich, T. G. Keith and G. G. Kelm "Aerodynamic Performance of Flared Fan Nozzles Used as Inlets," NASA TM X-3367, 1976. 13. "Quiet Clean Short-Haul Experimental Engine (QCSEE) - Under the Wing (UTW)," General Electric Co., Cincinnati, OH, Final Design Report, June, 1977. (NASA CR-134847, 1977)

14. "Quiet Clean Short-Haul Experimental Engine (QCSEE) - Under the Wing Engine Digital Control System Design Report," General Electric Co., Cincinnati, OH, Report No. R75AEG483, January, 1978. (NASA CR-134920, 1978)

--

15. R. G. Giffen, R. A. McFalls and B. F. Beacher "QCSEE Aerodynamic and Aeromechanical Performance of a 50.8 cm (20 in) Diameter, 1.34 PR Variable Pitch Fan with Core Flow," General Electric Co., Cincinnati, OH, Report No. R75AEG445, August, 1977. (NASA CR 135017, 1977)

19

TABLE 1.- QCSEE UTW TECHNICAL GOALS (FOUR-ENGINE,

400,320-N (90,000-11) THRUST AIRCRAFT)

Goals

Noise - 152 m (500 ft) sideline

Approach, EPNdB Takeoff, EPNdB Reverse, PNdB 95 EPNdB Contour Area, sq km (sq mile)	95 95 100 1.29 (0.5)
Pollution	EPA 1979 Emission Levels
Installed Thrust	
Forward, N (1b) Reverse (% of takeoff thrust)	77395 (17400) 35
Specific Fuel Consumption, g/sec-kN (1b/hr-1b)	9.6 (0.34)
Installed Thrust/weight	4.3

Thrust Response

Approach to	Takeoff,	sec	1.0
Approach to			1.5

TABLE 2 - AERODYNAMIC DESIGN PARAMETERS

Total airflow, kg/s (1b/s)
Fan tip diameter, cm (in.)
Fan tip speed, m/s (ft/s)
Bypass ratio
Fan pressure ratio
Overall pressure ratio
Jet velocity (core), m/s (ft/s)
Jet velocity (bypass), m/s (ft/s)
Gear ratio

TABLE 3 - ACOUSTIC DESIGN PARAMETERS

Number of fan blades	18
Fan diameter, cm (in.)	180.4 (71)
Fan pressure ratio	1.27
Fan rpm	3089 (3244 at 100%)
Fan tip speed, m/sec (ft/sec)	289.6 (950)
Number of OGV's	33 (32 + pylon)
Fan weight flow (corrected), kg/sec (lbm/sec)	405.5 (894)
Inlet Mach number (throat)	0.79
Rotor OGV spacing	1.5 rotor tip merodynamic chords
Fan exhaust area, m^2 (in ²)	1.615 (2504)
Core exhaust area, m ² (in ²)	0.348 (540)
Gross thrust (SLS uninstalled), kN (1bf)	81.39 (18 300)
Blade passing frequency, Hz	927
Core exhaust flow, kg/sec (lbm/sec)	31.3 (69.1)
Fan exhaust velocity, m/sec (ft/sec)	197.8 (649)
Core exhaust velocity, m/sec (ft/sec)	238.9 (784)
Bypass ratio	12.1
Inlet treatment length/fan diameter	0.74
Van/blade ratio	1.83

[41.2 m/sec (80 knots) aircraft speed; 61 m (200 ft) altitude; takeoff conditions.]

TABLE 4 - QCSEE UTW PERFORMANCE

(PREVIOUSLY REPORTED)

Noise - 152 m (500 ft) sideline

Approach - 98.5 EPNdB Takeoff - 99.7 EPNdB Reverse - 106.4 PNdB @ 27% of takeoff thrust 95 EPNdB Contour Area - 2.59 sq km (1.0 sq mile)

Pollution

Met EPA 1979 Emission Levels

Installed thrust

Forward - 77, 395 N (17,400 1b) Reverse - 27% of takeoff thrust

Specific Fuel Consumption

9.6 g/sec-kN (0.34 lb/hr-lb) - sea level static

Installed Thrust-to-Weight 4.15

Thrust Response Approach-to-takeoff - not attempted

TABLE 5 - SANBORN REQUIREMENTS FOR

TRANSIENT TESTING

Ch. No.

Parameter

٠

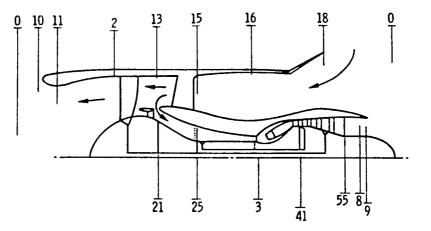
SANBORN A

*]	Power Demand (PD) or Mode
2	A18 TMC
3	Nozzle Area, Al8
4	Core Speed N2
5	Fan Speed NIF
6	Thrust, FG (load cell)
7	Calc T41, T41C
8	Pressure Ratio, PS3/pto

SANBORN B

*1	Power Demand or Mode
2	WF TMC (fuel flow - torque motor current)
3	WF (fuel flow)
4	FMP (fuel manifold press)
5	XM11 (throat Mach No.)
6	PLA (power lever angle)
7	VSV (variable stator vane)
8	Selectable Channel

SANBORN C


*]	Power Demand or Mode
2	Bf TMC
3	Fan Pitch Angle, βf
4	ßf open pressure
5	ßf close pressure
6	Blade Strain
7	Blade Strain
8	Blade Strain

SANBORN D

.

1	Thrust FG (load cell)
2	Link 1 Strain
3	Link 2 Strain
4	Link Accelerometer
5	Load Cell Accelerometer
6	Link AVG Compensated
7	Load Cell Compensated
8	True Thrust Transient

*Power Demand (PD) for Forward Transients and (Mode) for Reverse Transients

Inlet Highlight (Sta 10)

Pt and Tt radial traverse @ 180⁰

QCSEE Inlet (Highlight to compressor face)

2 axial rows of 16 wall statics @ 180⁰ and 270⁰ l circumferential row of 8 wall statics at throat (Sta 11)

Fan Frame (~ Sta 13)

19 statics on outer wall

Bypass Duct Fan Inlet (Sta 15)

Pt and Tt radial traverse @ 283⁰

Fan Duct Measuring Station (Sta 16)

4 outer wall and 4 inner wall statics

Fan Duct Entrance

2 statics on outer wall

30⁰ Exlet

1 axial row of 9 wall statics

Movable Flaps

4 axial rows of 7 wall statics each of flap #3

Core Entrance Island (~ Sta 21)

5 island wall statics 5 core OGV vane statics 2 hub wall statics 2 3-element Pt rakes @ 170° and 350°

Core Entrance Splitter Lip (~ Sta 21)

4 wall statics

Core Entrance Gooseneck (Sta 21 to 25)

6 inner wall statics

Compressor Face (Sta 25)

4 outer and 4 inner wall statics 6 5-element Pt rakes @ 16, 82, 105, 145, 225, 282° 6 5-element Tt rakes @ 16, 82, 105, 145, 225, 282°

Core Compressor Discharge (Sta 3)

1 T3 probe 1 PS3 probe

LP Turbine Frame Discharge (Sta 55)

1 5-element Tt rake

TABLE 7 - FORWARD-TO-REVERSE THRUST TRANSIENT TERMS

- BT Blade travel time, s; time from request to reverse engine thrust until fan blade initially reaches within 1° of overshoot blade angle
- DELAY Thrust delay after reattachment, s; time from flow reattachment to fan blade (blade stresses drop below reference value) until 80% of final reverse thrust is achieved.
- DOV Number of degrees of overshoot beyond the final reverse blade angle, deg.
- DWELL Time that fan blade is held at the overshoot blade angle, s.
- NFOS Max fan speed above reverse set point, RPM
- NFUS Min fan speed blow forward set point, RPM
- OBA Overshoot blade angle, deg.
- PCR Pitch change rate; average blade travel rate, $\frac{OBA \beta}{Fi}$, deg/s
- PD Power demand, %
- RAT Flow reattachment time, s; time when fan blade intially reaches within 1° of overshoot blade angle until fan comes out of stall (blade stresses drop below reference value)
- RESP Thrust response time, s; time from request to reverse engine thrust until 80% of final reverse thrust is achieved (RESP = BT + RAT + DELAY)
- TA18 Time from request to reverse engine thrust until A18 opens to 98% reverse setting
- TNF Time from request to reverse engine thrust 98% of final fan speed is achieved, s.
- TSP Time from request to reverse engine thrust until 98% of final reverse static pressure ratio PS2/PS16 is obtained, s.

E.

		Blade	Fuel Interlock
Number	Transient	<u>Overshoot</u>	_Setting_
1	F1-R1-F1	No	-90 ⁰
2	F1-R1-F1	No	- 900
3	F1-R2-R1-F1	No	-90 ⁰
2 3 4 5 6	F1-R3-R1-F1	No	-90 ⁰
5	F1-R4-R1-F1	No	-900
	F2-R4-R1-F1	No	-90 ⁰
7	F2-R4-R1-F1	No	-70 ⁰
8	F2-R4-R1-F1	No	-60 ⁰
9	F2-R4-R1-F1	Yes 115/105	-70 ⁰
10	F2-R5-R1-F1	No	-70 ⁰
11	F2-R6-R1-F1	No	-70 ⁰
12	F2-R7-R1-F1	No	-70 ⁰
13	F3-R4-R1-F1	No	-70 ⁰
14	F2-R8-R1-F1	Yes 110/100	-70 ⁰
15	F2-R8-R1-F1	No	-70 ⁰
16	F2-R4-R1-F1	No	-50 ⁰
17	F2-R4-R1-F1	Yes 115/105	-50 ⁰
*18	F2-R4-R1-F1	Yes 115/105	-50 ⁰
**1 3A	F2-R9-R1-F1	Yes 100/90	-70 ⁰

•

	Forwa	ard Set Poin	ts
	β	A18	~ Fan Speed
	(Panel)	(Panel)	rpm (%)
F1	+ 2.4	2480	1800 (56)
F2	0	2900	2850 (88)
F3	- 10.0 ⁰	2350	3073 (95)
	Rever	se Set Poin	<u>ts</u>
	β	A18	~ Fan Speed
	(Panel)	(Panel)	rpm (%)
R1 R2 R3 R4 R5 R6 R7 R8 R9	-105 -105 -105 -105 -115 -110 -110 -100 - 90	3900 3900 3900 3900 3900 3900 3900 3900	1806 (56) 2083 (64) 2637 (81) 2894 (89) 2890 (89) 1800 (56) 2886 (89) 2624 (81) 2624 (81)

*Blades stopped at -57⁰. Lost hydraulic pressure. First fully automatic transient.

**Blades stalled.

; , •

APPENDIX A

Symbols

--

<u>-</u>.

A18	bypass nozzle lip area
Ate/A _D	exlet trailing edge to fan duct area ratio
D _F	inlet diameter at fan face
D_{HL}	inlet highlight diameter
D _t	inlet throat diameter
EGT	exhaust gas temperature, °R; (LPT Discharge Sta. 55)
FGK	ave. corrected engine reverse thrust, 1b
FG8	est. core thrust, 1b
HUM	grains of water per 1b of dry air
L	inlet length from highlight to diffuser exit (fan face)
M _D	aft fan duct Mach number
N _C	core speed, rpm
N _{CK}	corrected core speed ($N_{C}/\sqrt{\theta}_{25}$), %
NF	fan speed, rpm
N _{FK}	corrected fan speed ($N_F/\sqrt{\theta_0}$), %
OL	operating line
PS	local static pressure
P_{S2}/P_{S13}	fan tip static-pressure ratio (reverse)
P_{T3}/P_{T25}	HP core compressor total pressure ratio
Ρ _T	local total pressure
P _{TO}	ambient pressure
P_{T2}/P_{T0}	fan outlet total pressure (at fan face)
P_{T2}/P_{T15}	fan pressure ratio (reverse)
P_{T15}/P_{T0}	exlet total-pressure recovery
P _{T25} /P _{T0}	core compressor inlet total-pressure recovery (including exlet)
R _F	fan radius at leading edge
SFCK	corrected specific fuel consumption (lb/hr)/lb
SLS	sea-level static
SS	steady state

T 0	takeoff
т ₀	ambient temperature, °R
T25	core compressor inlet total temp., °R
T41K	corrected HPT rotor inlet total temperature, °R (T3, PS3, W _F digital control)
T55K	corrected exhaust gas temperature, °R
W11K	corrected fan rotor flow, lb/s
W15K	corrected aft fan duct flow, lb/s; (total fan plus core inlet flow)
W25K	corrected core compressor inlet flow, lb/s
x	axial distance from inlet highlight
β _F	fan blade angle, angle from design forward blade angle, deg
3	ratio of total pressure to standard sea-level pressure
θ	ratio of total temperature to standard sea-level temperature

•__

--

.

_ •

. .

•

•••

.

APPENDIX B

Steady-State Reverse Thrust Calculations

1. Corrected thrust, FGK

$$FGK = \frac{F_G}{\delta 0}$$

2. Weight flow

$$W = 2.0519 \times C_{D} \times A \times P_{T} \sqrt{\frac{P_{S}}{P_{T}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}} \sqrt{\frac{P_{S}}{P_{T}}}} \sqrt{\frac{P_{S}}{P_{T}}$$

For Aft Fan Duct Flow, W_{15} $C_D = 0.98$ $A_{16} = 3262.8 \text{ in}^2$ $P_T = P_{T15}, \text{ psia}$ $T_T = T_0 \, {}^{O}R$ $Ps = P_{S16}, \text{ psia}$ For Core Flow, W_{25} $C_D = 0.70$ $A_{25} = 328.68 \text{ in}^2$ $P_T = P_{T25}, \text{ psia}$ $T_T = T_{25}, \, {}^{O}R$ $P_{S25} = \text{ psia}$ For Rotor Flow, $W_{11} = W_{15} - W_{25}$

3. Corrected weight flow

$$W \times \times K = \frac{W \times \times \times \sqrt{\theta \times \times}}{\delta \times \times} \times \left(1 + .34 \frac{HUM}{7000}\right)$$

4. Aft fan duct Mach number, MD

$$M_{D} = 2.2319 \times \left[\frac{Ps}{P_{T}} - .2865 - 1.0\right]^{\frac{1}{2}}$$

5. Core compressor pressure ratio, P_{T3}/P_{T25}

$$\frac{P_{T3}}{P_{T25}} = \frac{1.0193 P_{S3} - 2.05}{P_{T25}}$$

6. Corrected fan speed, N_{FK}

$$N_{FK} = \frac{N_{F} \left(1 - .26 \frac{Hum}{7000}\right) \times 100}{3244.1 \times \sqrt{\theta_{15}}}$$

7. Corrected core speed, N_{CK}

$$N_{CK} = \frac{N_C \left(1 - .26 \frac{Hum}{7000}\right) \times 100}{N_{CDES} \times \sqrt{\theta_{25}}}$$

	1 1						1.	1 o o e					н т	F A N		h
			ENO	JINE				CORE			E E	X L E T		FANIN	Ret	OR
	β _F deg.	NFK	NFK	NCK	FGK	T41K	T55K	PT3 PT25	PT25 PT0	W25K % des,	MD	PT15 PT0	W15K 1bs/s	W11K 1bs/s	PS2 PS13	PS2
<u>Rdg.</u> 1011	deg. -106.3	<u></u> 61.2	1982	76.2	1bs -2264	% des. 66.3	% des 75,3	5,50	.934	51_1	,198	.994	367.6	336.4	1,043	.9
1013	-106.2	82.7	2681	82.4	-3687	75.4	_81.2	8,22	.897	72.9	.258	.992	470.3	427.5	1.075	.9
1014	-106.2	95.3	3088	84.9	-4065	82.1	86.6	9.70	.877	81.1	.274	.990	497.5	450.8	1.085	9
1018	-101.2	59.3	1921	78.9	-3038	68,1	75.5	6,41	.912	60.0	.228	.992	419.0	383,2	1,056	.9
1020	-101.2	82.2	2664	85.9	-5213	84.1	88.6	10.28	.843	86.8	.313	.989	560.0	512.4	1.125	<u> </u>
1021	-101.2	88.3	2863	87,4	-5400	88.6	93.1	11.10	.833	90.5	.320	.988	571.2	521.6	1.139	
1030	-101.2	56.8	1845	78.4	-2796	67.8	75.1	6.17	.914			l		ļ	1.058	. 9
1031	-101.2	64.1	2079	80.8	-3440	71.4	78.1	7.25	.895				l	 	1.074	.9
1032	-101.2	82.2	2667	86.0	-5150	84.8	89.4	10.28	.841	86.9				<u> </u>	1.125	.9
1033	-101.2	88.1	2856	87.4	-5375	89.1	93.4	11.10	.832	_ 91,4	·		<u> </u>		1.142	.9
1034	-101.3	95.1	3085	88.5	-5420	91.7	95.6	11.71	830	92,9				 	1.147	9
1035	- 99.0	95.1	3084	89.6	-5650	95.2	99.1	12.12	.822	95.8		- <u></u>			1.159	.9
1036	- 95.9	56.6	1837	81.2	- 3341	71.3	77.8	7.43	.882	68.2	.264	.991	480.9	441.6	1.070	و. ا
1037	- 95.9	64.4	2090	_84.1	-4520	79.8	83.5	9.05	.847					<u> </u>	1.094	9
1038	- 95.8	81.9	2657	91.0	-5897	99.0	103.1	12.56	.790	98.5				<u> </u>	1,168	<u>.9</u> .9
1039	- 95.8	88.2	2861	94.2	-6000	104.5	109.3	13.22	.783	99.2			<u> </u>		1,169	.9
1040	- 94.7	81.7	2651	92.2	-6075	100.5	104.3	12.72	<u>.784</u>	<u>98.8</u>			<u> </u>		1.171	.9
1041	- 93.6	81.7	2628	93.6	-5973	103,5	107.1	13.08	.774	98.9				<u> </u>	1.141	9
1042 1043	<u>- 98,5</u> - 96.4	<u>81.7</u> 81.8	2652	87.8 89.8	-5573	<u>88.0</u> 94.4	93.1 98.4	12.17	<u>817</u> .797	92.2 96.2			<u> </u>		1.164	.9
1043	- 91.3	57.2	1851	83.1	-3548	74.6	80.4	8.47	.857	77.1	.282	.989	512.6	467.3	1.071	.9
1045	- 91.2	64.5	2090	85.8	-4472	81.6	85.9	0.4/	.837		,			100.00	1.092	. j
1046	- 93.6	57.4	1858	82.8	-3788	74.0	79.1	1	.862						1.076	.9
1047	- 93.6	64.3	2084	85.5	-4497	81.3	85.3		.830				1		1.100	
1048	- 93.6	79.1	2566	94.1	-6194	103.4	107.4	13.11	.772	99.1					1.165	.9
1049	-106.4	57.3	1860	75.1	-2031	64.5	74.6		.943				l		1.940	.9
1050	-106.4	64.4	2087	77.6	-2635	66.6	75.2		.929						1.047	.97
1051	-106,4	81.8	2658	82,1	- 3703	74,5	80,5		.896			1	L		1.075	.96
1052	-106,4	87,9	2848	83.5	- 3930	78.3	83.2		889					ļ	1.081	. 96
1053	-106.4	95.4	3095	85,1	- 3932	81,6	86,2		,877		<u> </u>		<u> </u>		1.086	.95
1054	-106,5	88,0	2854	83.0	-3720	77.0	82.7	7.59	.894				ļ	. <u> </u>	1,076	.96
1055	-106.5	79,2	2569	80,9	- 3444	72.7	80,1	6,67	,908						1.063	.97
1056	- 93.6	56.4	1829	82.3	- 3696	73.4	79.5	7.94	.870	72.5	273	.989	494.6	453.4	1.071	- 97
1057	- 94.2	56.4	1828	82.0	-3420	72.8	79.2	6_74_	.874					┼──	1.072	97
1058	- 94.2	64.4	2088	84.9	-4663	80.2	85.0	7.96	.835				-		1.096	96
1059	- 94.2	82.8	2688	94.2	-6160	104.1	107.6	13.14	.779	99_8	<u> </u>	+			1_179_	.95
			<u> </u>									+		1		+
	<u> </u>			<u>↓</u>	 	+						+	1	+	1	+
	1			<u> </u>	+	+		1				1	1	1	1	1
	<u> </u>		1		1		1					1	1	1	1	1
					1	+		1		1	1					Ι
			1	<u> </u>	1			1								
	1		1	·	1											
	1		1	1	1											
				1										1	<u> </u>	
												ļ			l	
								1			<u> </u>	<u> </u>	<u> </u>	<u> </u>		4—
											ļ					–
				1		1		<u> </u>		l	<u> </u>					+
																1

APPENDIX C - STEADY-STATE REVERSE PERFORMANCE 30⁰ HALF-ANGLE CONICAL EXLET

.....

HASA- C-801D (10-24-51)

· - ·

_`

									_							+
		- E N G	INE-		├ ~			CORE-		_	F A M	X L E T	¢ т →	FANI	NREŦ	C
	β _F deg.	NFK	NFK	NCK	FGK	T41K	T55K	PT3 PT25	PT25 PT0	W25K		PT15 PT0	1	พาห		
<u>_Rdg.</u> 916	deg. -106.1	% 52.2	1692	73,2	_1bs -1684	% des 66,5	% des 74.8	4.64	.947	% des			1bs/s_	lbs/s_		┼
917	-106.2	55,1	1783	74.0	-1714	66,8	74.8	4.65	.947	-					<u>1.039</u> 1.041	┢
918	-106,2	54.9	1782	73.7	-1657	65.6	69.9	4.87	.939	47.2	.195	.985	361.0	332.9	1.042	t
<u>919</u>	-106,2	54.8	1779	74,0	-1650	64.2	74.2	4.88	.940	48.2	.200	.987	370.0	341.5	1.038	1
920	<u>-1</u> 06,4	62,1	2014	76.4	-2062	66.4	75,2	5.67	,928	55.4	213	.982	393.3	_360.0	1.048	
921	<u>-106.5</u>	78.9	2560	81,1	-3150	76,9	81,2	7.66	.891	70,0	.265	.972	473.4	431.7	1.078	
922	-106,4	94.2	3055	84,3	-3572	82.2	_88.0	9,69	.860	80,6	.275	.963	499.6	453.6	1.103_	-
923	<u>-106,4</u>	82.2	2667	81.4	-3150	77.7	82.2	8.04	.880	68.0	,262	.971	476.6	437.0	1.080	╞
924	-106.5	54.5	1762	73.5	-1522	64.6	74.9	4.48_			<u> </u>				1.036	╋
925	-101.3	_55,2	1790	77.4	-2029	68.2	74.2	5.47	.909						1.055	┝
926 927	-101.3 -101.3	62,5	2027	79.9	-2672	73.1	77.8	7.14	.886	63.7	.247		460.5	423.0	1.072	+
928	-101.3	<u>80.6</u> 85.5	2615 2774	85.2 86,7	-4308 -4636	83.8 87,5	<u>90.9</u> 93,7	10,20	.831 .814	87.5 89.1	311	.952	557.4	508_8_	1.128_	+
929	-101.3	93.4	3029	88.6	-4731	93.6	98.9	11.95	.802	92,6	.335	.950	592.9	543.0	1.165	+
930	-101,3	85.4	2769	85,9	-4547	86.3	92.2	10.72	.817	85.8					1.140	1
931	-101.3	54,6	1772	76.9	-2215	66.7	_74,8	5,25	.898				-		1.055	T
_932	- 96.1	_54.7	1773	79.9_	-2617	69.3	76.5	7.14	.878	61.7	.260	.971	473.2	438.0	1.065	
933	- 96,1_	62.2	2016	82.6	-3268	78,1_	81.8	8.60	.848	74.2	.284	.959	512.8	471.0	1.085	
934	96.1	79.8_	2587	_ 90.0	-4939	97.7	99.0	12.14	_,779	96.3					1.155	+
935	-111.3_	_60,2	<u>1</u> 951	72.9	-1400	63,9	73.7	4.34							1.029	+-
936	-111.2 -106.5	79.0	2562	78.2	-2068	_68.5	76.5	5.97							1.048	╇
<u>937</u> 938	-106.5	79.1	2565 2570	80.9 84.4	<u>-2741</u> -3970	75.7 83.5	80.0 88.0	<u>6.77</u> 7.97							<u>1.070</u> 1.113	╀
939	-104.0	78.9	2559	82.7	-3615	80.2	82.8	7.35							1.095	╀
940	-106.5	79.0	2564	_ 81,0	-2962	76.3	80.7	6.85							1.076	┢
941	-111,4	79.1	2565	78.2	-1920	69.1	77.3	5.86	-						1.045	T
942	-115.1	79.2	2568	76.2	-1250	68.3	75.9	5.30							1.025	Ĺ
943	-111.2	79.0	2562		-1898	70.6	76.7	5.81	_				L		1.042	
944	- 91,4	54,9	1780	81.2	-2097	71,2	77.2	6.52							1.061	
945	91.4	62.3	2020	83.5_	-2762	79,8	81.7	7,46							1.078	┢
												-				F
													_			-
								-						_		-
																╞
																F
								<u> .</u>						-		+-
																+
_																t
																╞
						<u></u>			-							╀
															ļ	t
	1 1			l									1	1 -	1	1

APPENDIX D - STEADY-STATE REVERSE PERFORMANCE MOVABLE FLAPS

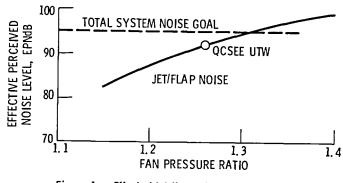
NASA- C+801D (10+24-51)

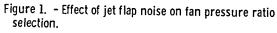
- *

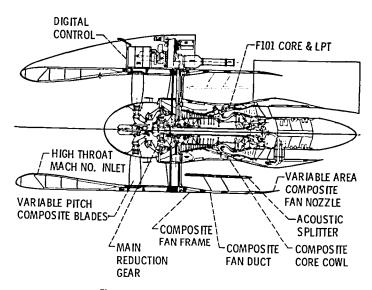
٠.

÷

APPENDIX E - TRANSIENT PERFORMANCE


-


...


.

- .

			Г		1	-	Т-	<u>г —</u>	1	<u> </u>	1			<u> </u>	T	1	1	r			1	1	1	r—	
<u> </u>	1			-		1	1		1				<u> </u>		+ ·	1	†			1					
				+— Ε	NG	INE			1	├ ≺─	·	ĮНR	US	[→	1	<-		LA NAI	DE		->-	-	ן_₹3_ו	RES	E →
			1	1	1											Í	1.01	ואאן	110	3	1		131	A E .	`
								NFUS		PS2/															1
	PD		A18	TA18	NCK	NFK	TNF	NFOS		PS16	TSP	FGK	RESP	DELAY	ļ	β _F	DOV	OBA	DWELL	BT	PCR		BT +	RAT	MAX
No	x		1n ²	s	x	RPM	s	RPM			s	1bs	s	5	[Deg	Deg	Deg	s	s	Deg/s	1	s		± KPSI
1	45.2		2480	.7	75.4	57.0	1.7	1020	1	.937	1.90	4579	1.8	• .1		+ 5.2		102.6	.07	t	82.9	-	1.90	.60	10.0
	45.0		3906		77.6	56.6	I —			1.035		-2173			1	101.6		1.42.14		1	02.2	<u> </u>			10-0-1
	1							[
2_	45.2		2480	.7	75.8	57.0	1.6	1020		.938	1.90	4644	1.8	- 1		+ 5.0	1.0	102.4	,12	1,20	89.5		1.90	.70	10.5
	45.0		3906		78.1	56.7				1,037		-2359				101.4									
1	<u> </u>			<u> </u>	-		-							L											
3	45.2		2478	.7	75.6	56.9	2.8	1120		.940	1.80	4650	2,0	+ ,25		+ 5.1	2.0	403.3	.15	1.20	91.2		1.75	.60	10.0
	54.1	<u> </u>	3906	L	81.3	65.4				1.049		-3074				101.4									
	L	\vdash		<u> </u>																					
4	45.2	+	2479	1.7	75.4	56.8	4.1	1100		,941	3.5	4517	3.0	1.55		+ 5,1	3.0	104,7	,15	,95	116,6		1,45	,50	8.0
	72.7		3904	<u> </u>	85.9	82,2				1.069		-4444				101.7									
-				<u> </u>		-			<u> </u>		<u> </u>	<u> </u>								_				L.	
5	45.2	-	2479	.7	75.4	56.5	5.0	1100	I	.940	3.8	4546	3.5	2.1		+ 5.3	3.0	104.6	.15	,90	123.2		1,40	.50	11.0
	81.1	+	3904		88.4	90.5	 	<u> </u>		1.075		-4626	<u> </u>	L	L	101.6		<u> </u>	L			<u> </u>		L	
<u> </u>		+	<u> </u>	+	+	+	├	<u> </u>			<u> </u>		<u> </u>		I	<u> </u>	<u> </u>					<u> </u>		ļ	
6	79.8	+	2904	.7	82,7	88.5	3.9	1600		.865	2.9	10077	1.4	-2.0		+ 2.6	3.0	104.4	2	.90	120		3.4	2.5	7.5
-	81.2		3902	+	88,4	89.9	⊢			1.072		-4474			<u> </u>	101,4		L	L			-	L		
17	79.8	+	0004	+ -	0	00.0	1.						-		<u> </u>	+					<u> </u>		<u> </u>		_}
_	79.8 81.2	<u> </u>	2904 3903	.7	82.8	88.2	3.2	1600	-	.858	2.5	10662	1.2	-1.5		+ 2.3	3.0	104.4	.2	.90	119.7	ł	2,7	1.8	9.0
-	01.2	1-	2303		88.4	89.8	+		<u> -</u>	1.074		-4506				101.4	<u> </u>					<u> </u>			├
8	79.8	1	2904	.7	02 0	00 -	1.	1600	 			1.000												<u> </u>	<u> </u>
r -				·./	83.0	88.3	3.1	1600		.855	2.3	10683	1.2	-1.5	 —	+ 2.5	3.0	104.7	.15	.90	119.1		2.7	1.8	9,0
	81.3	<u> </u>	3899		88.1	89.7				1.072		-4695				101.7				-		-	<u> </u>		⊢
—	t —	†—-	1-	-	1-	+	1-	<u> </u>				ł				<u> </u>									┝──┦
9	79.8	1	2903	.8	82,8	88.1	2,6	1650	<u> </u>	.858	1 2 2	10660	1.			1						<u> </u>		<u> </u>	<u> </u>
	81.3	+	3902	<u> '''</u>	87.2	89.7	, u	1000		.858 1.065	12.2	10660	1,5	- ,6	<u> </u>		13.0	-114.9	,5_	1,0	121,4	۴	2.1	1.1	7.0
		1	5.502	t	57.6	03.7	1.			1,005		-4256				9.104			<u> </u>	-					├ ─-
10	79.7	1	2904	.8	82.9	88.1	1,9	1600	-			10750	1.5	1		+ 2.4	4.0	-176 -	10	1	110 -	-	1.		
	81.3	1	3906	<u> </u>	80.9	89.7	<u>, , , , , , , , , , , , , , , , , , , </u>	3000				-2350	··?-	[* •	<u> </u>	+ 2.4	4.0	-115,7	.15	1.0	119.1		1.6	6_	8.0
					<u> </u>	1	-									<u> </u>		· · · ·		-		1			├{
11	79.8		2904	.7	72.9	88,1	2.3	1650	_			10700	1,1	05	1	+ 2.5	3.0	-109.7	.05	1,0	112.2	, · ·	1,15	15	8,0
	44.8		3905		74.5	55,4	<u> </u>					-1530	-· <i>·</i> ·			106.7			.03			1	1.13	.13	0.0
					<u> </u>		[-		-				<u> </u>		1.00,7						1			\vdash
12	79.7	—	2904	.7	83.0	88.2	2.3	1640		.855	1.6	10768	1.2	7		+ 2.5	3.0	-109,7	.05	1.05	106.9		1.90	.85	8.0
	81.3		3903		83.7	89.8		2960		1.043		-3400				106.7									
	<u> </u>																								
	87 <u>.</u> 6	I	2350	.7	89.4	95.5	2.1	1950		.736	1.5	17136	1.1	+ .1		- 7.2	3.0	-104.5	.05	. 92	106.8		1.0	.08	11.0
	81.2	L	3903	<u> </u>	87.6	89.5	L			1.074		-4607				401.5									
\vdash		<u> </u>				<u> </u>	<u> </u>																		
_	80.4		2903	.7_	82.9	88.9	<u>3.</u> 5	1650		.861	2.1	10630	1.5	+ .4			13.0	-109.8	0.35	1.00	117.9		1.10	.1	5.6
	72.7		3902		89.9	81.2	┣─			1 <u>.</u> 074		-4940		L	L	-96.8									
	00 4					0.7						<u> </u>				<u> </u>								-	
	80.4		2904	.75	83.0	88.5	3.5	1650		.860	1.7	10632	1.6	05		+ 3.1	3.0	- 99.8		0.95	108.3	- ·	1.65	.70	9.0
\vdash	72.7	<u> </u>	3902		90.6	81.2				1 <u>.</u> 075		4945				-96.8							<u> </u>	<u> </u>	
16		<u> </u>	2000	-		00.5		1.00											-				-		\vdash
16			2902_ 3902	.7	82 <u>.6</u> 87.0	88.9	3,2	1680	— -	.861	1.8	10083	1.3	-1.2		+ 3.1	3.0	-104.8	.1	1.0	108,9	 	2,5	1,5	7.0
17			2902	.8	87.0	90.4 88.7	2 .	1700	_	1.073	1.0	-4331				101.8							<u> </u>		\vdash
<u> </u>			3903	.0	86.4	90.3	2,2	1700		,863	1,8_	10375	1,5	+ .35		+ 3.4	13.0	-114,8	.47	1,1	шл		1.15	.05	7.0
						20.3	<u> </u>			1.069		-4292	-			8.101									
18	_		2904	.93	82.8	88 a	4.1	1750		864	1.8	104.27				+ 3.1		- 53 4	_		01.0		stall		
			3900					11.30	-	1004		+ 607				-53.4	- V	- 53.4	<u>u</u>	62	,0	<u>۱</u>	_~-	æ	10.0
			2900		77.2	42.6			-	. 997		+ 607				-53.4				-					
									_																
13A			2902	.8	82.7	88.0	3.5	1650		.861	1.9	10765	stall		-	+ 3.0	13.0	-100	.4	.93			stall	8	11.0
			3900		82.3			2750		1,040	-	0		_		-87.0							<u> </u>	-	
\square																			-	_					1
DURIN	G TRAN	S <u>IE</u> NT,	FAN E	LADES	STOPPE	DAT -	53.4 ⁰	AND RE	MAINED	IN ST	ALL DU	ETOL	055 07	HYDRA	ULIC P	RESSUR	E	_							
\vdash			-	L	⊢																				
<u>⊢</u> –∔			<u> </u>		<u> </u>																				
\vdash			ļ	-																					
\vdash																									
\vdash			<u> </u>					_										_							
\vdash	-				—_	└──┤]]											
\vdash			<u> </u>			<u> </u>																			
\vdash			-			├—-						_							[
┝╌┤				-		⊢			_											$ \rightarrow $			_		
\vdash					<u> </u>	⊢	-											.			_				
\vdash						⊢	_		-																
┝─┤						├	- 1					_							\rightarrow						
\vdash							_						_												
NASA	C-801C	(10 . 24.	81)						1																

•.

. •

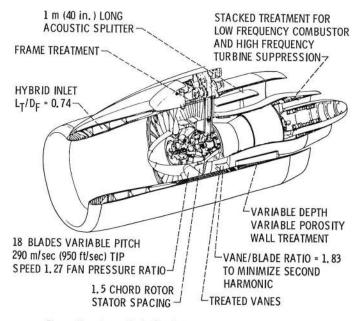


Figure 3. - Acoustic design features of QCSEE UTW engine.

Figure 4. - Engine test stand - front view.

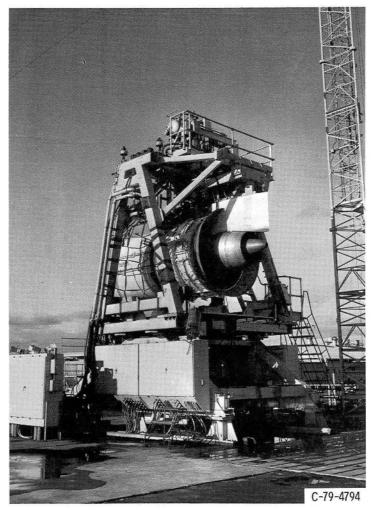
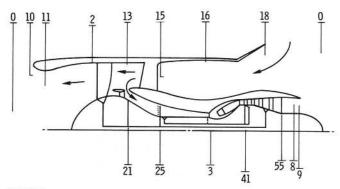



Figure 5. - Engine test stand-aft view.

STATION

- 0
- FREE STREAM AIR CONDITIONS RADIAL TRAVERSE (FAN DISCHARGE P_T, 4" FORWARD OF 10 INLET HIGHLIGHT)
- 11
- 2
- INLET THROAT (FAN DISCHARGE, P_S) FAN FRONT FACE (FAN DISCHARGE, P_S) FAN HUB DISCHARGE (INLET TO GOOSENECK) 21
- 25 HP COMPRESSOR INLET (RADIAL TOTAL PRESS & TEMP RAKES)
- 3 HP COMPRESSOR DISCHARGE (STATOR EXIT)
- 41 HP TURBINE ROTOR INLET
- 55
- LP TURBINE FRAME DISCHARGE, EGT PRIMARY EXHAUST NOZZLE THROAT 8
- 9
- 13
- PRIMARY EXHAUST NOZZLE TIRKAT PRIMARY EXHAUST NOZZLE DISCHARGE ROTOR INLET FAN ROTOR TIP INLET P_S BYPASS DUCT (FAN INLET RADIAL TRAVERSE AT BYPASS OGV TRAILING EDGE, P_T , T_T) BYPASS DUCT (STATION 225 FAN INLET FLOW MEASUREMENT P_S) BYPASS EXHAUST NOZZLE DISCHARGE (EXLET TRAILING EDGE) 15
- 16
- 18

Figure 6. - Station designations - reverse thrust configuration.

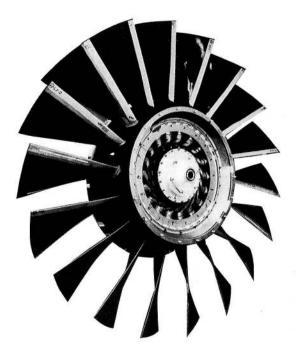
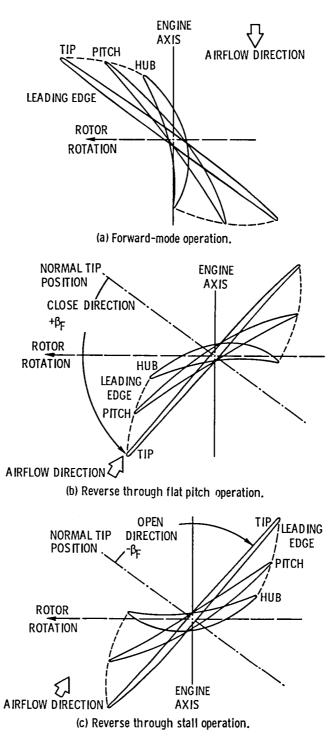



Figure 7. - UTW fan rotor.

-

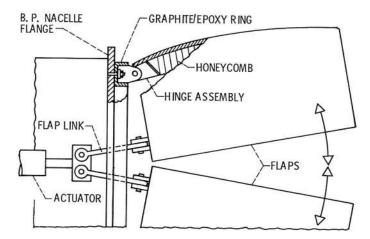


Figure 9. - Schematic-movable flaps.

1 (1 1

1

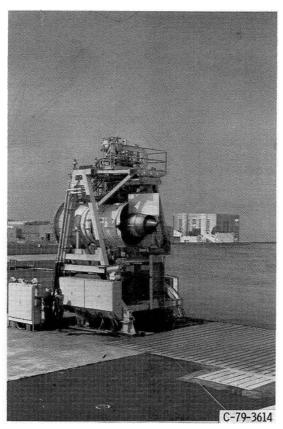


Figure 10. - 3/4 Aft view of movable flap configuration "on-test, "

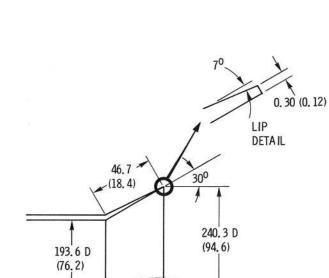


Figure 11. - Schematic-fixed 30⁰ exlet.

291.5 312.4 ALL DIMENSIONS cm(in)

261.9

246

STATION

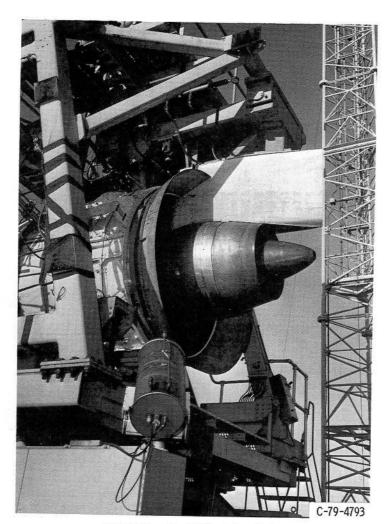


Figure 12. - Fixed 30⁰ exlet on-test.

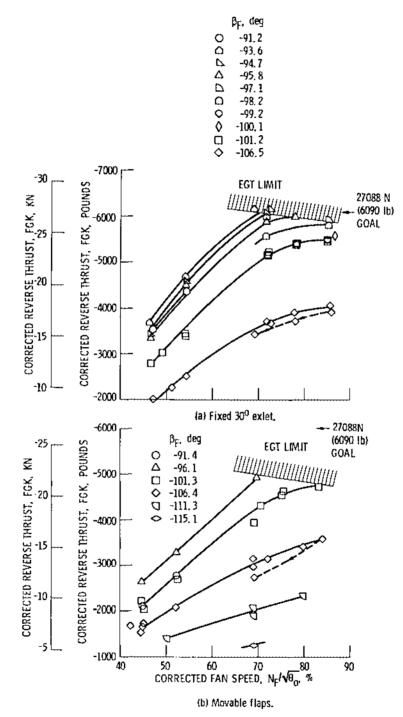


Figure 13. - Reverse thrust-fan speed characteristics.

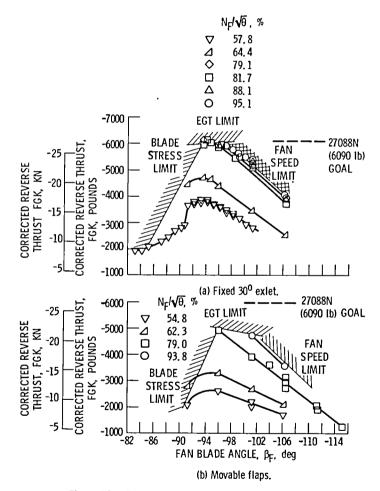
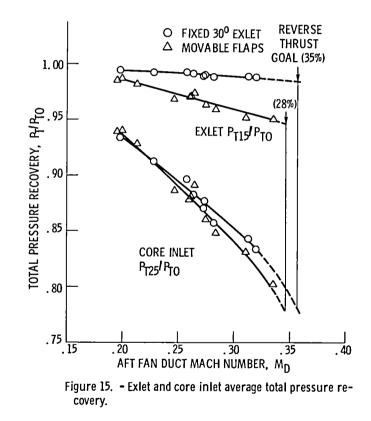
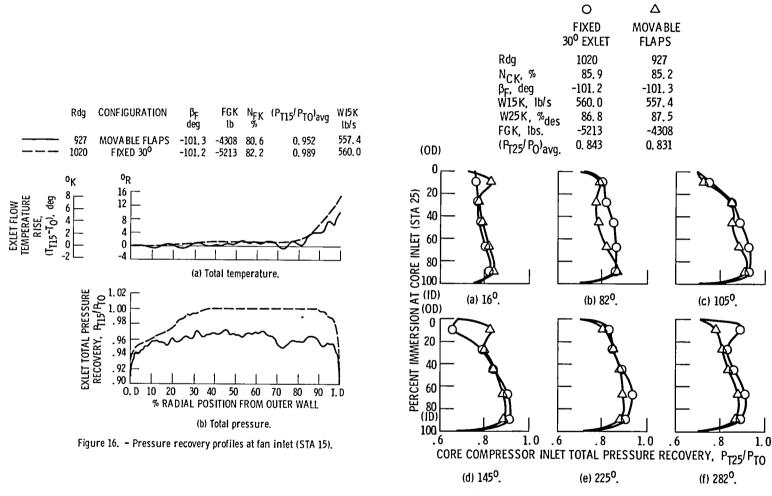




Figure 14. - Reverse thrust-fan blade angle characteristics.

8

,**'**

Figure 17. - Pressure recovery profiles at core inlet.

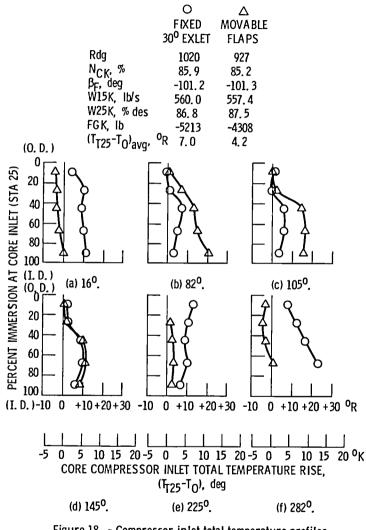
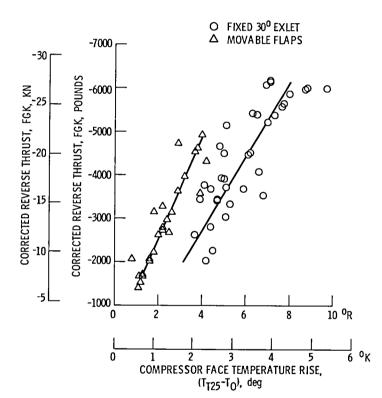
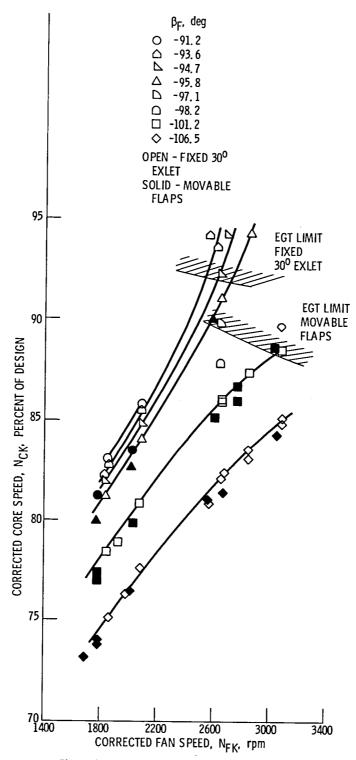
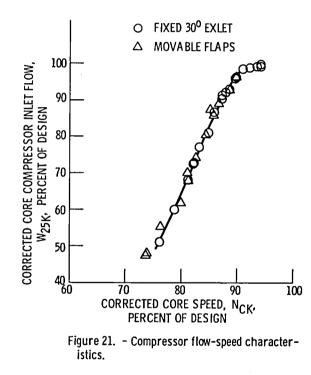
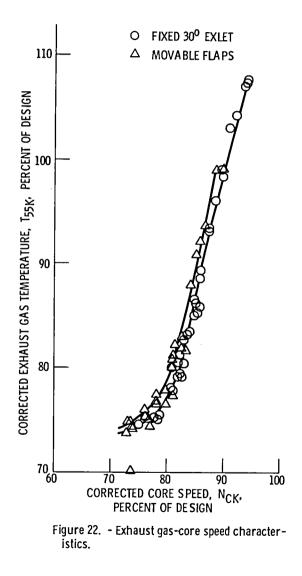
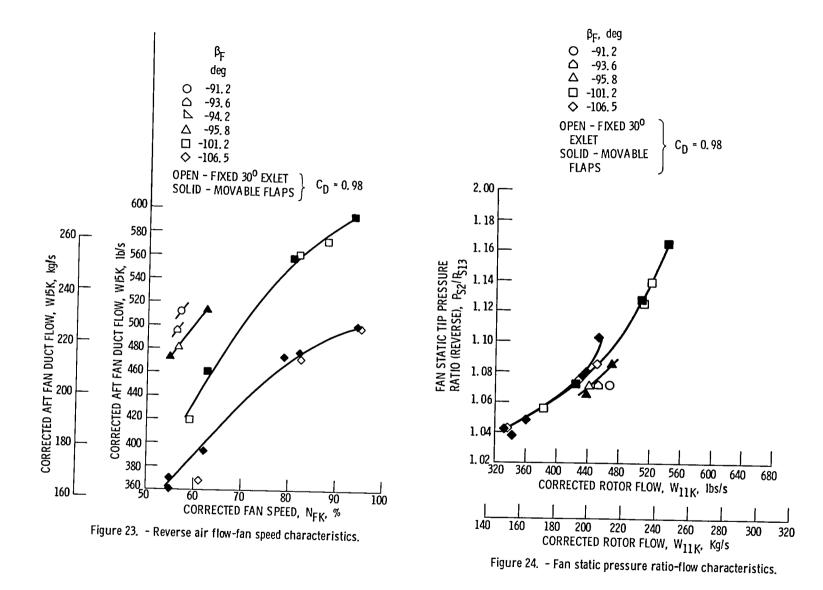
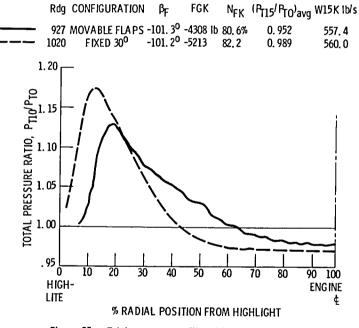
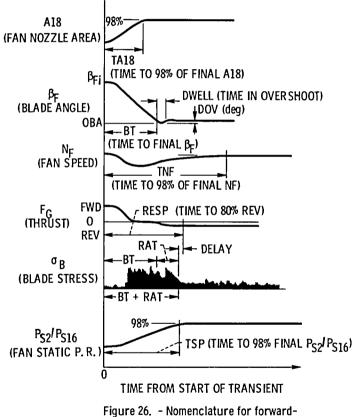


Figure 18. - Compressor inlet total temperature profiles.


Figure 19. - Average total temperature rise at compressor inlet.





1 4 3 1 ¹

Figure 25. - Total pressure profiles at fan nozzle discharge (inlet highlight).

to-reverse thrust transients.

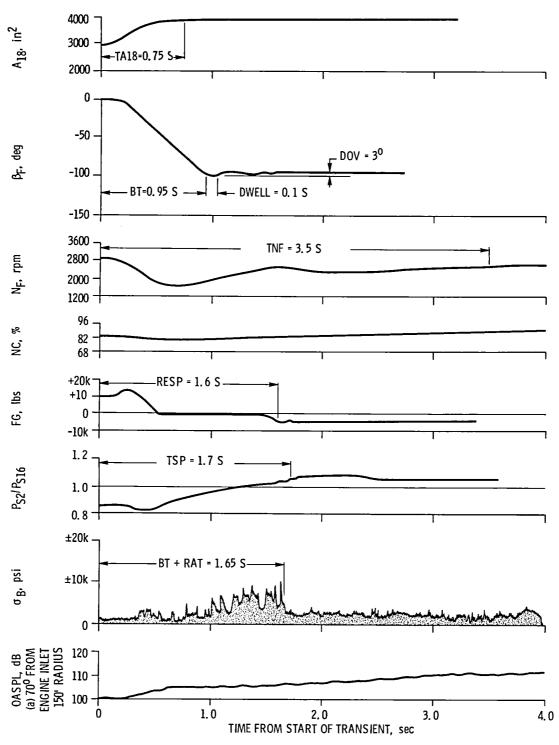


Figure 27. - Approach-to-reverse transient (#15) with no blade overshoot.

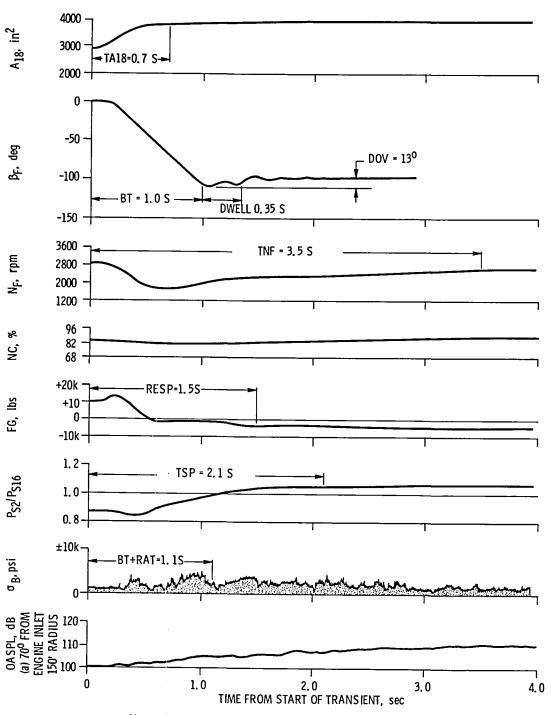


Figure 2/8. - Approach-to- reverse transient (#14) with 10⁰ blade overshoot.

, , . .

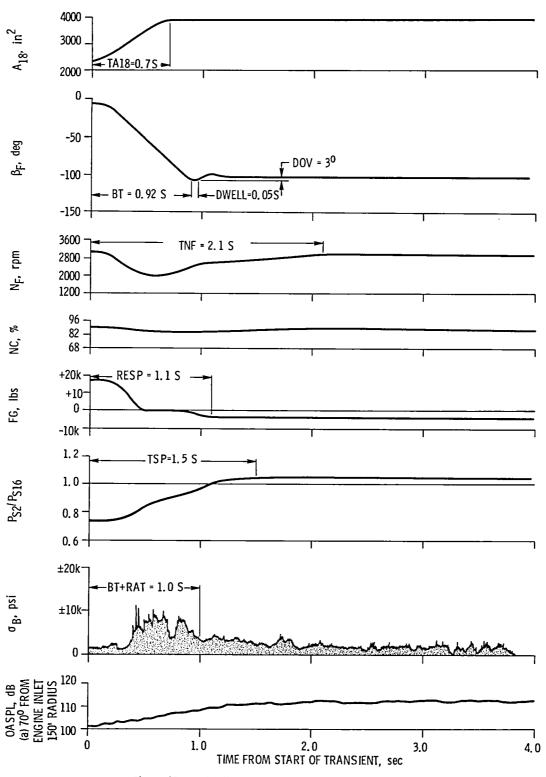


Figure 29. - Takeoff-to-reverse transient (#13) with no blade overshoot.

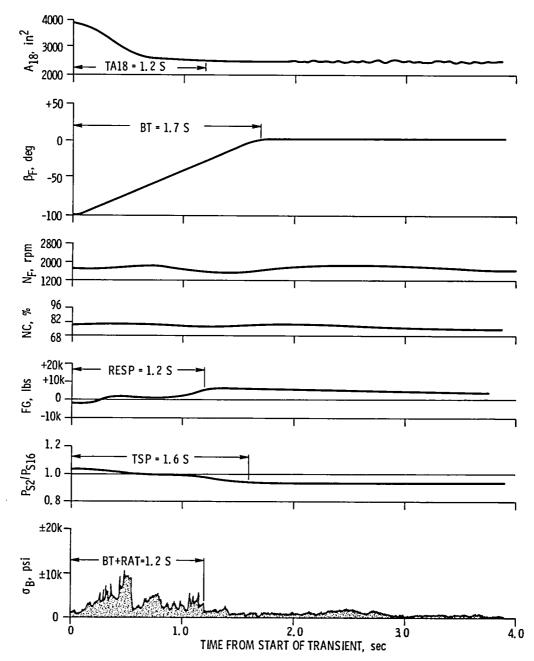


Figure 30. - Typical reverse idle-to-forward idle transient.

•

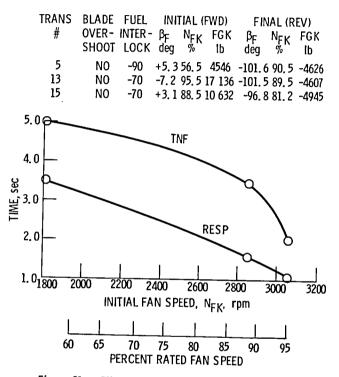


Figure 31. - Effect of initial fan speed on response characteristics during forward-to-reverse transient.

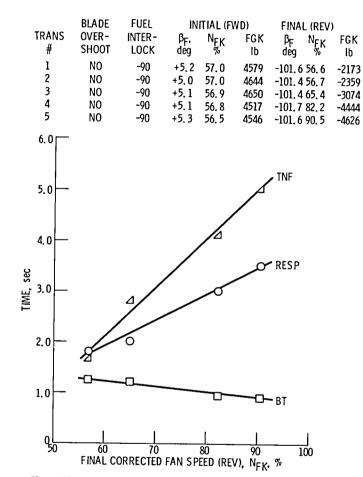


Figure 32. - Effect of final final fan speed on response characteristics.

TRANS BLADE INITIAL (FWD) FINAL (REV) FUEL β_F deg β_F deg N_FK % N_₽ĸ OVER-INTER-# FGK FGK SHOOT LOCK lb lb 7 NO -70 +2.3 10 662 -101.4 89.8 -4506 88.2 10 NO -70 +2.4 88.1 10 750 -111.7 89.7 -2350 12 NO -70 10 768 -106.7 89.8 -3400 +2.5 88.2 10 765 -87.0 80.9 13A -70 YES +3.0 88.0 0

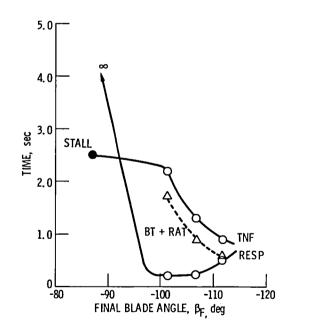


Figure 33. - Effect of final blade angle on response characteristics during approach-to-reverse transients.

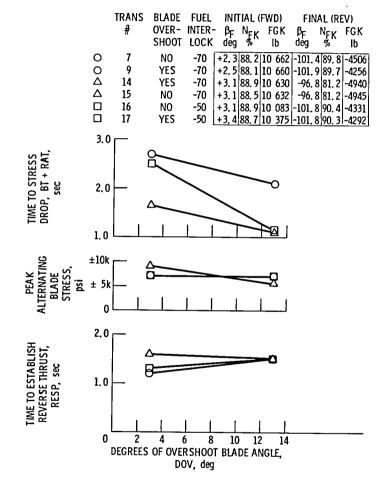


Figure 34. - Effect of fan blade overshoot on thrust response and blade stress characteristics during forward-to-reverse transient.

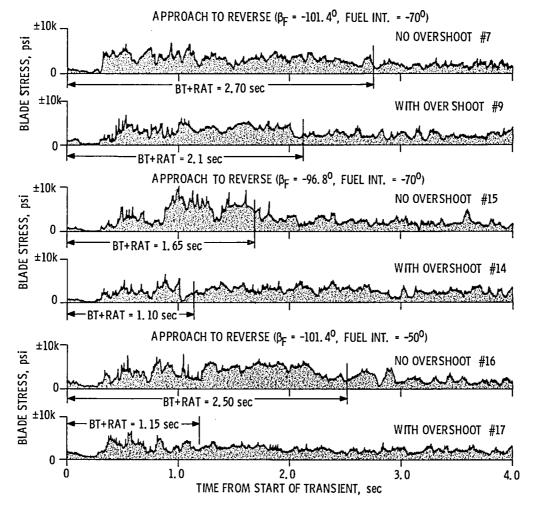
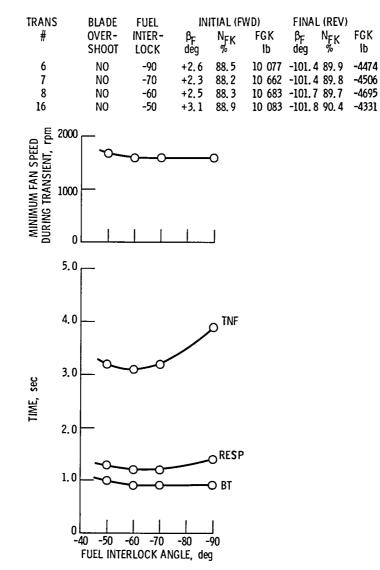
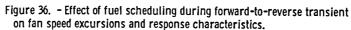




Figure 35. - Fan blade stress during forward-to-reverse transient with and without blade overshoot.

. . .

•

ĸ

1. Report No. NASA TM-81558	2. Government Acces	ssion No.	3. Recipient's Ca	talon No
4. Title and Subtitle				10.0g (10.
REVERSE THRUST PERFORMANCE OF THE QCSEE			5. Report Date	
VARIABLE PITCH TURBOFAN ENGINE		AC2FF		
			6. Performing Or	ganization Code
7. Author(s)			8. Performing Org	enization Report No.
N. E. Samanich, D. C. Reemsnyder, and H.		. Bloomer	E-519	
9. Performing Organization Name and Addre	~		10. Work Unit No.	
National Aeronautics and Space Administration				
Lewis Research Center			11. Contract or Gr.	ant No.
Cleveland, Ohio 44135				
2. Sponsoring Agency Name and Address		· · · · · · · · · · · · · · · · · · ·	13. Type of Report	t and Period Covered
National Aeronautics and Space Administration			Technical	Memorandum
Washington, D.C. 20546			14. Sponsoring Age	ncy Code
5. Supplementary Notes	·			
Prepared for the Aerospace	Congress sponsored	d by the Society o	f Automotive En	gineers
Los Angeles, California, Oc	tober 13-16, 1980.			Barreer 29,
6. Abstract				
Results of steady-state rever				
state rever	se and forward-to-	reverse thrust tr	ansient perform	ance tests are
nresented The entrine!				
Problemed Inc Unginal Ch.	NP. P. 4-Commont work	able for a line l		
pared with a continuous, 30°	half-angle conical	able fan nozzle w	as retested in r	everse and com
pared with a continuous, 30°	half-angle conical	able fan nozzle w	as retested in r	everse and com
pared with a continuous, 30 ⁰ stable, higher pressure reco	half-angle conical e very flow with the f	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet no	as retested in r ated that the sig	everse and com nificantly more
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress	half-angle conical e very flow with the f and approximately	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in reacted that the sig sulted in lower e	everse and com nificantly more engine vibra-
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and com nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and com nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and com nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and com nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and com nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and com nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and com nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3 than 1.5 sec was achieved for	half-angle conical e very flow with the f and approximately 5 percent of takeoff	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp	as retested in re ated that the sig sulted in lower e rovement in rev	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3 than 1.5 sec was achieved for	half-angle conical e very flow with the f and approximately 5 percent of takeoff the approach and t	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp thrust was reach he takeoff-to-rev 8. Distribution Statemen	as retested in r ated that the sig sulted in lower e rovement in rev ed. Thrust res erse thrust tran	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3 than 1.5 sec was achieved for Key Words (Suggested by Author(s)) Aircraft propulsion	half-angle conical e very flow with the f and approximately 5 percent of takeoff the approach and t	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp thrust was reach he takeoff-to-rev	as retested in r ated that the sig sulted in lower e rovement in rev ed. Thrust res erse thrust tran	everse and con nificantly more engine vibra- erse thrust.
pared with a continuous, 30 ^o stable, higher pressure reco tions, lower fan blade stress Objective reverse thrust of 3 than 1.5 sec was achieved for than 1.5 sec was achieved for Key Words (Suggested by Author(s)) Aircraft propulsion Powered lift systems	half-angle conical e very flow with the f and approximately 5 percent of takeoff the approach and t	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp thrust was reach he takeoff-to-rev 8. Distribution Statemen	as retested in r ated that the sig sulted in lower e rovement in rev ed. Thrust res erse thrust tran	everse and con nificantly more engine vibra- erse thrust.
Key Words (Suggested by Author(s)) Aircraft propulsion Powered lift systems Engine reverse thrust tests	half-angle conical e very flow with the f and approximately 5 percent of takeoff the approach and t	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp thrust was reach he takeoff-to-rev ^{8. Distribution Statemen} Unclassified - 1	as retested in r ated that the sig sulted in lower e rovement in rev ed. Thrust res erse thrust tran	everse and con nificantly more engine vibra- erse thrust.
Key Words (Suggested by Author(s))Aircraft propulsionPowered lift systemsEngine reverse thrust tests	half-angle conical e very flow with the f and approximately 5 percent of takeoff the approach and t	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp thrust was reach he takeoff-to-rev ^{8. Distribution Statemen} Unclassified - 1	as retested in r ated that the sig sulted in lower e rovement in rev ed. Thrust res erse thrust tran	everse and com nificantly more engine vibra- erse thrust.
Key Words (Suggested by Author(s)) Aircraft propulsion Powered lift systems Engine reverse thrust tests	half-angle conical e very flow with the f and approximately 5 percent of takeoff the approach and t	able fan nozzle w exlet. Data indic ixed 30 ⁰ exlet reg a 20 percent imp thrust was reach he takeoff-to-rev 8. Distribution Statemen Unclassified - u STAR Category	as retested in r ated that the sig sulted in lower e rovement in rev ed. Thrust res erse thrust tran	everse and com nificantly more engine vibra- erse thrust.

* For sale by the National Technical Information Service, Springfield, Virginia 22161

- .

.

÷

Ξ • - '

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 SPECIAL FOURTH CLASS MAIL BOOK Postage and Fees Paid National Aeronautics and Space Administration NASA-451

ł

NVSV

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return