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Abstract— Rank-aware query processing has become essential
for many applications that return to the user only the top-k
objects based on the individual user’s preferences. Top-k queries
have been mainly studied from the perspective of the user,
focusing primarily on efficient query processing. In this work,
for the first time, we study top-k queries from the perspective
of the product manufacturer. Given a potential product, which
are the user preferences for which this product is in the top-
k query result set? We identify a novel query type, namely
reverse top-k query, that is essential for manufacturers to assess
the potential market and impact of their products based on
the competition. We formally define reverse top-k queries and
introduce two versions of the query, namely monochromatic and
bichromatic. We first provide a geometric interpretation of the
monochromatic reverse top-k query in the solution space that
helps to understand the reverse top-k query conceptually. Then,
we study in more details the case of bichromatic reverse top-
k query, which is more interesting for practical applications.
Such a query, if computed in a straightforward manner, requires
evaluating a top-k query for each user preference in the database,
which is prohibitively expensive even for moderate datasets. In
this paper, we present an efficient threshold-based algorithm that
eliminates candidate user preferences, without processing the
respective top-k queries. Furthermore, we introduce an indexing
structure based on materialized reverse top-k views in order to
speed up the computation of reverse top-k queries. Materialized
reverse top-k views trade preprocessing cost for query speed up in
a controllable manner. Our experimental evaluation demonstrates
the efficiency of our techniques, which reduce the required
number of top-k computations by 1 to 3 orders of magnitude.

I. INTRODUCTION

Recently, the support of rank-aware query processing, has

attracted much attention in the database research community.

Top-k queries [1]–[10] retrieve only the k objects that best

match the user preferences, thus avoiding huge and over-

whelming result sets. Therefore it is very important for a

manufacturer that its products are returned in the highest

ranked positions for as many different user preferences as

possible. However, existing work studies only top-k queries

from the perspective of customers that seek products matching

their preferences. In this paper, we study top-k queries for

business analysis, i.e., from the perspective of manufacturers

who are interested in the impact of their products to customers,

compared to their competitorsŠ existing products. The ques-

tion that arises is "given a potential product, which are the

user preferences for which this product is in the top-k query

result set?". To this end, we propose reverse top-k queries and

study two different versions: monochromatic and bichromatic

reverse top-k queries. In the former, there is no knowledge
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Fig. 1. Example of reverse top-k query.

of user preferences and a manufacturer aims to estimate the

impact a potential product would have on the market. In the

latter, a dataset with user preferences is given and a reverse

top-k query returns those preferences that rank a potential

product highly. To the best of our knowledge, this is the first

work that addresses this problem.

A linear top-k query is defined by assigning a weight w[i]
to each of the attributes, expressing the importance of each

attribute to the user. Without loss of generality, we assume that

weights are normalized in [0,1] and
∑

wi = 1. This model is

in agreement with the notion of preference [6] and [8], and

is widely adopted in related work. In the example of Fig. 1

(left), a database containing information about different cars is

depicted. For each car, the price and the age are recorded and

minimum values on each dimension are preferable. Different

users have different preferences about a potential car and Fig. 1

depicts also such a database of user preferences. For example,

Bob prefers a cheap car, and does not care much about the

age of the car. Therefore, the best choice (top-1) for Bob is

the car p1 which has the minimum score for the particular

weights (namely 2.5). On the other hand, Tom prefers a newer

car rather than a cheap car. Nevertheless, for both Tom and

Max the best choice would be car p2.

A reverse top-k query is defined by a given product p and

returns the weighting vectors w for which p is in the top-k
set. For example in Fig. 1, the reverse top-1 result set of p1

contains the weights (0.9, 0.1) defined by Bob. Notice that

for the car p2, two weighting vectors belong to the reverse

top-1 result set, namely the preferences of Tom and Max. In

fact, all weighting vectors with w[price] in the range of [ 17 , 5
6 ]

belong to the reverse top-1 result set of p2. This segment of

line w[price] + w[age] = 1 corresponds to the result set of



the monochromatic reverse top-1 query (for p=p2), whereas

the set {(0.5, 0.5), (0.2, 0.8)} is the result of the bichromatic

reverse top-1 query for the given dataset of user preferences.
Conceptually, the solution space of reverse top-k queries

is the space defined by the weights w[price] and w[age].
Monochromatic reverse top-k queries return partitions of the

solution space and are useful for business analysis and more

particularly to estimate the impact of a product when no user

preferences are given, but the distribution of them is known.

In our example, under assumption of uniform distribution of

user preferences, the impact of the potential product p2 in

the market can be estimated as (5
6 − 1

7 ) × 100% = 69%. On

the other hand, bichromatic reverse top-k queries have even

wider applicability, as they identify users that are interested

in a particular product, given a known set of user preferences.

For instance, the best strategy for a profile-based marketing

service would be to advertise car p1 to Bob and car p2 to

Tom and Max. Notice that an empty result set for a product

(i.e., car p3) indicates that it is not interesting for customers

based on their preferences. In practice, the bichromatic reverse

top-k query can be used in practical applications and is easier

to incorporate into a database management system, whereas

the monochromatic mainly provides a geometric interpretation

and helps to intuitively understand the problem.

Reverse top-k queries differ from reverse nearest neighbor

(RNN) queries [11]. An RNN query retrieves the set of points

having the query point as their nearest neighbor and there

exists a monochromatic and a bichromatic version. In contrast

to RNN queries, the reverse top-k query q finds the distance

functions (in terms of weights) for which q would qualify

as a k-nearest neighbor of the point positioned at the origin

of the data space. Therefore, existing reverse nearest neighbor

algorithms cannot be applied for reverse top-k queries. Reverse

skyline queries [12] aim at identifying customers that are

interested in a product, based on the dominance relationship.

Nevertheless, user preferences are expressed as points with the

same attributes as the products. In our case, user preferences

are modeled in a more generic way (only in terms of weights)

and they do not need to be uniquely mapped to a point in the

data space.
To summarize, the main contributions of this paper are:

• We introduce a novel query type called reverse top-k
query and present two versions, namely monochromatic

and bichromatic. To the best of our knowledge, this is

the first time that such queries are proposed.

• We analyze the geometrical properties for the 2-

dimensional case of the monochromatic reverse top-k
query and provide an algorithmic solution.

• We present an efficient and progressive threshold-

based algorithm for computing bichromatic reverse top-

k queries, which eagerly discards candidate user prefer-

ences, without the need to evaluate the associated top-k
queries. Our algorithm consistently outperforms the brute

force algorithm by 1 to 3 orders of magnitude.

• We present an indexing structure based on space parti-

tioning, which materializes reverse top-k views, in order

to further improve reverse top-k query processing. The

use of our index bounds the average cost of processing

a bichromatic reverse top-k query in a straightforward

manner.

• We conduct a thorough experimental evaluation that

demonstrates the efficiency of our algorithms.

The rest of this paper is organized as follows: in Section II

we formally define reverse top-k queries after providing the

necessary preliminaries. In Section III, we study the geometri-

cal properties of the 2-dimensional result set and propose an al-

gorithm for monochromatic reverse top-k queries. Thereafter,

in Section IV we present an efficient threshold-based algorithm

for processing bichromatic reverse top-k queries for arbitrary

data dimensionality. We introduce an indexing approach, based

on materialized reverse top-k views in Section V, and discuss

construction, usage and maintenance. The experimental eval-

uation is presented in Section VI. Then, Section VII reviews

the related work and finally, in Section VIII, we conclude and

discuss future research directions.

II. PROBLEM STATEMENT

In this section, we present the basics regarding top-k queries

and then we proceed to define our problem statement.

A. Preliminaries

Given a data space D defined by a set of d dimensions

{d1, ..., dd} and a dataset S on D with cardinality |S|, a

point p ∈ S can be represented as p = {p[1], . . . , p[d]}
where p[i] is a value on dimension di. We assume that

each dimension represents a numerical scoring attribute and

therefore, the values p[i] in any dimension di are numerical

non-negative values that evaluate certain features of database

objects. Furthermore, without loss of generality, we assume

that smaller score values are preferable.

Top-k queries are defined based on a scoring function f
that aggregates the individual scores into an overall scoring

value, that in turn enables the ranking (ordering) of the

data points. The most important and commonly used case of

scoring functions is the weighted sum function, also called

linear. Each dimension di has an associated query-dependent

weight w[i] indicating di’s relative importance for the query.

The aggregated score fw(p) for data point p is defined as a

weighted sum of the individual scores: fw(p) =
∑d

i=1 w[i]×
p[i], where w[i] ≥ 0 (1 ≤ i ≤ d), ∃j such that w[j] > 0 and∑d

i=1 w[i] = 1. The linear weighting function is increasingly

monotone and it conveys the meaning that whenever the score

of all dimensions of the point p is at least as good as another

point p′, then we expect that the overall score of p is at least

as good as p′. Notice that assigning a zero weight to some

dimensions leads to a top-k query referring only to a subset

of the available features.

The result of a top-k query is a ranked list of the k objects

with the best scoring values fw. The weights indicate the user

preferences and influence the ordering of the data objects and

therefore the top-k result set. Consider for example the dataset

depicted in Fig. 2. By assigning a high weight to dimension x,
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Fig. 2. Top-k query.

point p1 is the top-1 object, whereas if a low weight is used,

point p3 becomes the top-1 object. A linear top-k query takes

two parameters and can be expressed as TOPk(w), where w
is a d-dimensional vector w = {w[1], ...w[d]} that represents

preference values.

Definition (Top-k query): Given a positive integer k and a

user-defined weighting vector w, the result set TOPk(w) of

the top-k query is a set of points such that TOPk(w) ⊆ S,

|TOPk(w)| = k and ∀p1, p2 : p1 ∈ TOPk(w), p2 ∈ S −
TOPk(w) it holds that fw(p1) ≤ fw(p2).

In the Euclidean space a linear top-k query can be repre-

sented by a vector w. As discussed in [13] the magnitude of

the query vector does not influence the query result, as long as

the direction remains the same, i.e., representing the relative

importance between different dimensions. Therefore, we make

the assumption that
∑d

i=1 w[i] = 1.
There is a one-to-one correspondence between any weight-

ing vector w and a hyperplane � that crosses a point p. In a d-
dimensional space, we call the (d-1)-dimensional hyperplane,

which is perpendicular to vector w and contains a point p as

the query plane of w crossing p, and denote it as �w(p). All

points lying on the query plane �w(p), have the same scoring

value equal to the score fw(p) of point p. Fig. 2 depicts an

example, where the query plane (equivalent to a query line in

2d) is perpendicular to the weighting vector w = [0.5, 0.5].
All points pi lying on the query line have a score value

fw(pi) = fw(p2) = 4.5. Furthermore, point p2 is the top-2
object for the query 0.5× x + 0.5× y. The rank of a point p
based on a weighting vector w is equal to the number of the

points enclosed in the half-space defined by the query line (or

(d-1)-dimensional query plane) that contains the origin of the

data space. In the rest of the paper, we refer to this half-space

as query space of w defined by p and denote it as Hw(p).

B. Definition of Reverse Top-k Queries

In this section, we formally define the monochromatic and

the bichromatic reverse top-k query.

Definition (Monochromatic Reverse top-k): Given a point q
and a positive number k, as well as a dataset S, the result set

of the monochromatic reverse top-k (mRTOPk(q)) query of

point q is the locus1, i.e., a collection of d-dimensional vectors

{wi}, for which ∃p ∈ TOPk(wi) such that fwi(q) ≤ fwi(p).

1In mathematics, locus is the set of points satisfying a particular condition,
often forming a curve of some sort.
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Definition (Bichromatic Reverse top-k): Given a point q and a

positive number k, as well as two datasets S and W , where S
represents data points and W is a data set containing different

weighting vectors, a weighting vector wi ∈W belongs to the

bichromatic reverse top-k (bRTOPk(q)) result set of q, if and
only if ∃p ∈ TOPk(wi) such that fwi(q) ≤ fwi(p).

For the sake of brevity, in the rest of this paper we denote

a query point q ∈ TOPk(wi), instead of ∃p ∈ TOPk(wi)
such that fwi(q) ≤ fwi(p). Consider for example the dataset

depicted in Fig. 2. For a query point q=p2, the weighting vector

w belongs to the reverse top-k, if the query space Hw(p2)
of w defined by p2 (depicted as shadowed triangle) contains

less than k points. The challenge is to find all the weighting

vectors wi that define query spaces Hwi(q) containing less

than k points. For the bichromatic version of the reverse top-

k query, the result set contains a finite number of weighting

vectors, while the monochromatic version aims to describe the

parts of the solution space that satisfy the query.

III. MONOCHROMATIC REVERSE TOP-K QUERIES

Given a dataset S, a monochromatic reverse top-k query

returns all weighting vectors w, for which query point q ∈
TOPk(w). Let us assume that W denotes the set of all valid

assignments of w. Fig. 3 shows the data and solution space

of a 2-dimensional monochromatic reverse top-k query. Since∑d
i=1 w[i] = 1 and w[i] ∈ [0, 1], all valid weighting vectors of

the reverse top-k query form the line w[1]+w[2] = 1 in the 2-
dimensional solution space that is defined by the axis w[1] and
w[2]. Notice that it is not possible to enumerate all possible

assignments of w ∈ W , since the number of possible vectors

w is infinite. On the other hand, the solution space W can be

split into a finite set of partitions Wi (
⋃

Wi = W ,
⋂

Wi = ∅),
such that query point q has the same ranking position for all

the weighting vectors w ∈ Wi. Then, the result set of the

monochromatic reverse top-k is a set of partitions Wi of the

solution space W :

mRTOPk(q) = {Wi : ∃wj ∈Wi ∧ q ∈ TOPk(wj)}
The main topic of this section is finding the partitions

that form the result set of a monochromatic reverse top-k
query. In the following, we focus on the 2-dimensional case.

First, an example is given in order to provide an intuition

about the problem. Then, we provide an algorithm for the

monochromatic reverse top-k query for the 2-dimensional

case.
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A. Interpretation of Solution Space

Consider for example the dataset depicted in Fig. 3(a). Only

three points p, q and r belong to the top-1 result set for any

weighting vector, since these are the only points that belong

to the convex hull [2]. There exists at least one weighting

vector wi for which q ∈ TOP1(wi), and therefore at least

one partition Wi ∈ mRTOP1(q). In order to determine the

boundaries of the partition Wi, the line segments pq and qr
have to be examined.

Let w1 be the weighting vector that is perpendicular to pq,
then it holds that fw1(p)=fw1(q) and therefore p and q have

exactly the same score for the TOP1(w1). Recall that the

line �w(p) that is perpendicular to the weighting vector w and

crosses p, defines the value of the scoring function and also

the rank of point p according to w. For weighting vectors with

smaller and larger angles than w1, the relative order of p and q
changes. If p had a lower rank than q for vectors with smaller

angle than w1, then for vectors with larger angle than w1,

point p has a higher rank. Since the relative order between

p and q changes only once, there exists exactly one partition

Wi, such that for all the weighting vectors w ∈ Wi it holds

that q ∈ TOP1(w).
The boundaries of the partition Wi are defined by the

weighting vectors w1, w2 that are perpendicular to the line

segments pq and qr respectively. All weighting vectors w for

which the following inequality holds are in the reverse top-1
result set of q:

λqr

λqr−1 ≤ w[1] ≤ λpq

λpq−1

where λpq = q[2]−p[2]
q[1]−p[1] and λqr = r[2]−q[2]

r[1]−q[1] are the slopes of

lines pq and qr respectively. The above inequalities are derived

by using the properties that w1 ⊥ pq and w2 ⊥ qr. The result

set of the monochromatic reverse top-1 query mRTOP1(q)
is a segment (partition) of the line w[1] + w[2] = 1 in the

2-dimensional solution space defined by w1 and w2, as shown

in Fig. 3(b).

In our previous example, the result set mRTOP1(q) con-

tains at most one partition Wi of W . However, for a reverse

top-k query with k > 1, the result set may contain more

than one non-adjacent partitions Wi. Consider for example

the three data points in Fig. 4(a) and assume we are interested

to compute the mRTOPk(q) for k=2. Query point q is in

the top-2 result set for both weighting vectors w1 and w3.

Algorithm 1 Monochromatic Reverse top-k Algorithm.

1: Input: S, q
2: Output: mRTOPk(q)
3: W ′ ← {∅}, R← {∅}, RES ← {∅}
4: for (∀pi ∈ S) do
5: if (q �≺ pi and pi �≺ q) then
6: wi[1]← λpiq

λpiq−1
, wi[2]← 1− wi[1]

7: W ′ ←W ′ ∪ {wi}
8: end if
9: end for

10: sort W ′ based on increasing value of wi[1]
11: w0 ← [0, 1], w|W ′|+1 ← [1, 0]
12: R← {p : p lies in Hw0(q)}
13: kw ← |R| //number of points in R
14: for (∀wi ∈W ′) do
15: if (kw ≤ k) then
16: RES ← RES ∪ {(wi, wi+1)}
17: end if
18: if (pi+1 ∈ R) then
19: kw ← kw − 1
20: else
21: kw ← kw + 1
22: end if
23: end for
24: return RES

However, when weighting vector w2 is considered, with angle

between w1 and w3, it is obvious that q no longer belongs

to the top-2. Thus, in this small example, the monochromatic

top-k query would return two non-adjacent partitions Wi.

B. Monochromatic Reverse Top-k Algorithm

Algorithm 1 describes the monochromatic reverse top-k
algorithm for the 2-dimensional case. Data points that are

dominated2 by q are always ranked after q for any weighting

vector w, while points that dominate q are ranked before q
for any weighting vector w. For example in Fig. 4(b), p5

is worse (ranked lower) than q, whereas p6 is better (ranked

higher) than q for any w. Points of the dataset that are neither

dominated by nor dominate q are ranked higher than q for

some weighting vectors and lower than q for other weighting

vectors. Thus, our algorithm examines only such incomparable

points {pi} to q (line 5), because they alter the rank of q. The
weighting vector wi for which the rank between q and a data

point pi changes, can be easily determined as the vector that is

perpendicular to the line qpi (lwi(q)). Consequently, we have

to examine all lines3 that pass through q and any other point pi,

which is incomparable to q. These lines define the boundaries

of the partitions Wi, therefore the corresponding weighting

vectors are kept in a list W ′ (line 7). Then, we identify the

partitions for which q belongs to the top-k, by processing W ′.
In Fig. 4(b), after the sorting by increasing value of wi[1]

(line 10) the set W ′ is {w1, w2, w3, w4} corresponding to the

lines qp1, qp2, qp3, qp4 respectively. Then, vectors w0 and

2A point p dominates q, if ∀di ∈ D, p[i] ≤ q[i]; and on at least one
dimension dj ∈ D, p[j] < q[j].

3This is similar to the approach in [8], which is used to compute a robust
layered index.



w5 are added to W ′. For the first weighting vector w0 all data

points that lie in Hw0(q) are retrieved (line 12). Recall that the

rank kw of q with respect to w0 is determined by the number

of points contained in Hw0(q) (line 13). In our example, the

set R is {p4, p6, p1} and therefore the rank of q is 4. The rank

of q cannot change before w1. If we assume that k=3, then
for the first partition W0=[w0, w1] the rank of q is higher than

k and the partition W0 can be safely discarded. Therefore, the

next partition is W1 = [w1, w2]. Since p1 ∈ R (line 18), this

means that the relative order of the points p1 and q changes

in W1, and now the rank of q is 3. Therefore, W1 is added to

mRTOP3(q) (line 16). Similarly, we can compute the rank

of q for all Wi. In our example, W1 is the only partition that

qualifies for the mRTOP3(q) result set. Thus, Algorithm 1

returns the monochromatic reverse top-k result set for any 2-
dimensional dataset.

IV. BICHROMATIC REVERSE TOP-K QUERIES

For a bichromatic reverse top-k query, two datasets S and

W are given, where S contains the data points and W the

different weighting vectors that represent user preferences.

Then, the aim is to find all weighting vectors wi ∈ W such

that the query point q ∈ TOPk(wi).
A brute force (naive) approach is to process a top-k

query for each wi ∈ W and examine whether q belongs to

TOPk(wi). Obviously, this approach induces high processing

cost, as it requires one top-k query evaluation for each weight-

ing vector wi. As the number of potential weighting vectors

wi in the dataset W may be high (comparable to the size |S|
of the dataset S), this approach is prohibitively expensive and

does not scale. In the sequel, we present a threshold-based al-

gorithm (called RTA, Reverse top-k Threshold Algorithm) for

bichromatic reverse top-k, which discards weighting vectors

that cannot contribute to the result set bRTOPk(q), without

evaluating the corresponding top-k queries.

A. Threshold-based Algorithm (RTA)

Our algorithm exploits already computed top-k results to

avoid evaluating weighting vectors that cannot be in the reverse

top-k result set. The goal is to reduce the number of top-k
query evaluations, based on the observation that top-k queries

defined by similar weighting vectors return similar result

sets [6]. Therefore, in each repetition a threshold is set based

on previously computed top-k result sets, in order to discard

the next weighting vectors without top-k query evaluation.

As the aim is to examine similar weighting vectors in

consecutive steps, the weighting vectors W are ordered based

on their pairwise similarity. We measure the similarity between

two vectors using the cosine similarity and the goal is to

maximize the cosine similarity of all consecutive weighting

vector pairs. To achieve an acceptable solution without over-

whelming computational overhead, the weighting vectors are

ordered based on a simple strategy. The first weighting vector

w1 is the most similar vector to the diagonal vector of the

space. Thereafter, the most similar weighting vector wi+1 to

the previous vector wi is examined. Notice that the sorting of

Algorithm 2 RTA: Reverse top-k Threshold Algorithm.

1: Input: S, W , q, k
2: Output: bRTOPk(q)
3: W ′ ← {∅}, buffer ← {∅}
4: threshold←∞
5: for (each wi ∈ W ) do
6: if (fwi(q) ≤ threshold) then
7: buffer ← TOPk(wi)
8: if (fwi(q) ≤ max{fwi(buffer)}) then
9: W ′ ←W ′ ∪ {wi}

10: end if
11: end if
12: threshold← max{fwi+1(buffer)}
13: end for
14: return W ′

the weighting vectors takes place before the execution of the

algorithm, because it is independent of the query point. Thus,

W is stored sorted and it is given as input to the algorithm.

Algorithm 2 formally describes the RTA algorithm for

processing a bichromatic reverse top-k query. Initially, RTA

computes the top-k result TOPk(wi) for the first weighting

vector (line 7). Notice that in the first iteration we cannot

avoid evaluating a top-k query, as the threshold cannot be set

yet. The k data points that belong to the result set TOPk(wi)
are kept in a main memory buffer. Given a set of points P ,

we denote as max{fwi(P )} the maximum value of all score

values fwi(pj), pj ∈ P , which means that max{fwi(P )} ≥
fwi(pj), ∀pj ∈ P . The score fwi(q) of query point q based on

vector wi is computed and compared against the maximum fwi

value of all points in the buffer, denoted as max{fwi(buffer)}
(line 8). This maximum score defines the threshold value. If

the score fwi(q) is smaller than or equal to max{fwi(buffer)},
then wi is added to the result set (line 9). Before the next

iteration of the algorithm, we take the next weighting vector

(wi+1) and we set as threshold value the maximum score of

any point in the buffer based on this new vector wi+1 (line

12). Then the condition of line 6 is tested, so if the score

fwi(q) is larger than the threshold, then we can safely discard

wi. Otherwise, we have to evaluate the top-k query for the

vector wi, in order to determine whether wi belongs to the

reverse top-k result. Therefore, we pose again a top-k query

on dataset S and we update the main memory buffer with the

new result set TOPk(wi). In each iteration, the k points of the

previously processed top-k query are kept in the buffer. Notice

that the size of the buffer (k) is limited, since queries with

small k values are commonly used in practice. The algorithm

terminates when all weighting vectors have been evaluated or

discarded.

Correctness of the algorithm: Let w ∈ bRTOPk(q) be a

weighting vector that is falsely discarded without a top-k
evaluation. Then, based on the definition of the reverse top-

k query, ∃p ∈ TOPk(w) such that fw(q) ≤ fw(p). Let pi,

1 ≤ i ≤ k be the points in the buffer, then based on the

threshold ∀pi: fw(pi) < fw(q). Therefore, fw(pi) < fw(q) ≤
fw(p), ∀pi. This means that p /∈ TOPk(w), which leads to a

contradiction. �
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Fig. 5. Example of bichromatic algorithm (RTA).

In the worst case, the algorithm has to process |W | top-
k queries, hence the algorithm degenerates to the brute force

algorithm. However, in the average case the algorithm returns

the correct result by evaluating much less than |W | top-k
queries, which is verified also in the experimental evaluation.

On the other hand, RTA has to evaluate at least |bRTOPk(q)|
top-k queries, since no weighting vector wi can be added in

the result set without evaluating the respective top-k query.

B. RTA Example

In order to provide an intuitive example of RTA, con-

sider the dataset consisting of points pi, a dataset W =
{w1, w2, w3}, as well as the query point q, depicted in Fig. 5.

Let us assume that k=2 and the first examined weighting

vector is w1. As depicted in Fig. 5(a), RTA computes the top-

2 query (TOP2(w1)) and finds that the top-2 data point for

w1 is p1. Points p1 and p2 are enclosed in the query space

Hw1(p1) (depicted as gray triangle) and those points are kept

in the buffer {p2, p1}. If the query point was enclosed in

Hw1(p1) then w1 would belong to the result of the query.

In our example, the query point q is not enclosed in Hw1(p1),
therefore w1 does not belong to the bRTOPk(q). In the next

step (Fig. 5(b)), the most similar weighting vector to w1,

namely w2, is examined and the threshold is set based on

the query line lw2(p1) of w2 crossing p1, depicted as the gray

triangle (Hw2(p1)). Since q is not enclosed in Hw2(p1), the
weighting vector w2 is discarded, without further processing.

Notice that Hw2(p1) contains at least 2 data points (in this

example 3: {p1,p2,p3}), and this explains why w2 can be

safely discarded. When the next vector w3 is considered, q is

enclosed in Hw3(p1), therefore the result set TOP2(w3) has

to be retrieved, and the buffer now contains {p2, p3}. Notice

that the score value of q is not better than the score value

of p3 that is the top-2 data point of this query, so w3 is not

added to the reverse top-2 result set of q. Thus, none of the 3

weighting vectors belongs to the result of bRTOP2(q).

V. MATERIALIZED REVERSE TOP-K VIEWS

In this section, we present an indexing structure (RTOP -

Grid) based on space partitioning, which materializes reverse

top-k views for efficient processing of bichromatic reverse

top-k queries. First, we present an example that explains

how RTOP-Grid improves the performance of reverse top-

k queries, by further reducing the required number of top-
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Fig. 6. Example of grid-based algorithm.

k query evaluations. Then, we describe in detail the reverse

top-k algorithm based on RTOP-Grid. Afterwards, we clarify

the details on how the construction of the RTOP-Grid can be

accomplished in an efficient manner. Finally, we generalize

our approach for arbitrary k values and discuss updates.

A. Motivating Example

Let us assume a grid-based space partitioning of the data

space. The grid consists of disjoint data space partitions, also

called cells. Each cell Ci is defined by its lower left corner CL
i

and upper right corner CU
i . For each cell Ci and a given value

k, a reverse top-k query for each corner CL
i and CU

i is evalu-

ated and the result set is stored. More particularly, the resulting

weighting vectors wz are maintained in a list associated with

the corresponding corner, for example for the lower left corner

CL
i we define as LL

i = {wz ∈ bRTOPk(CL
i )}. Analogously,

LU
i is defined. During the reverse top-k evaluation, each

grid corner is considered as a query point and the query is

evaluated (using Algorithm 2) against the dataset S, ignoring

the remaining grid corners. The list LL
i (LU

i ) associated with a

corner CL
i (CU

i ) of Ci is considered as a materialized reverse

top-k view, as it contains all weighting vectors that would

be the result of a query bRTOPk(CL
i ) (bRTOPk(CU

i )).
Henceforth, we refer to the lists of weighting vectors of a

cell as materialized views.

For example, consider the grid depicted in Fig. 6(a). During

query processing we can exploit the materialized views of the

cells, in order to restrict the number of weighting vectors that

need to be examined by our reverse top-k algorithm. Given

a query point q, the cell Ci which encloses query point q is

determined. It is obvious that for any wz that does not exist

in materialized view LL
i , wz cannot be in the reverse top-k

of q. This is because CL
i dominates q, thus for any wz , query

point q has a higher score than the corner CL
i . Therefore, if the

corner CL
i does not qualify for the top-k result set, neither can

point q. For example, consider Fig. 6(b). If wz /∈ LL
i , then the

query space Hwz (CL
i ) defined by the query plane �wz(CL

i ),
contains more than k data points. Consequently, also the query

space Hwz(q) contains more than k points, and therefore q /∈
TOPk(wz).

On the other hand, if a weighting vector wz belongs to

materialized view LU
i , then wz is definitely in the reverse top-

k result of q. To explain this better, consider Fig. 6(b) and

that wz belongs to the reverse top-k result set of CU
i , i.e.,



Algorithm 3 GRTA: Grid-based Reverse top-k Algorithm.

1: Input: S, q, k
2: Output: bRTOPk(q)
3: W ′ ← {∅}, W ′′ ← {∅}, Wcand ← {∅}
4: Find cell Ci that encloses q
5: for (∀wz ∈ LL

i ) do
6: if (wz ∈ LU

i ) then
7: W ′ ←W ′ ∪ {wz}
8: else
9: Wcand ←Wcand ∪ {wz}

10: end if
11: end for
12: W ′′ ← RTA(S,Wcand,q,k)
13: return {W ′ ∪W ′′}

wz ∈ LU
i . This means that less than k data points exist in the

query space Hwz (CU
i ). Therefore, since q is enclosed in Ci,

then it is also in the top-k result, independently of q’s exact

position in the cell. Notice that a weighting vector wz that

belongs to LU
i , also belongs to LL

i .

Only for weighting vectors that are in LL
i but not in LU

i we

have to examine the exact rank of q based on its position.

Essentially, this restricts the input of Algorithm 2, which

is used to compute the bRTOPk(q), to consider weighting

vectors only from the set LL
i − LU

i , rather than W .

B. Grid-based Reverse Top-k Algorithm (GRTA)

Algorithm 3 formally describes how a bichromatic reverse

top-k query is processed using the grid-based materialized

views. Initially, the cell Ci that encloses q is determined (line

4). Then, each weighting vector wz ∈ LL
i is further examined

(line 5). If wz belongs also to LU
i (line 6), then we are certain

that wz belongs to the reverse top-k result of query point q,
so we add wz to list W ′ (line 7) that contains the results.

If wz does not belong to LU
i , then wz is added (line 9) to

the set of candidate weighting vectors Wcand that need to

be evaluated. Finally, we invoke Algorithm 2 on the set of

candidate weighting vectors Wcand (line 12) and some of them

are returned as results denoted as W ′′. The weighting vectors

that belong to the union of W ′ and W ′′ constitute the results

of the GRTA algorithm (line 13).

As already discussed, the cost of RTA (Algorithm 2) de-

pends mainly on the number of top-k evaluations. This number

is related to the cardinality of the dataset W , which is given

as input to the algorithm. Therefore, by using the grid-based

materialization, the number of weighting vectors that need

to be examined in order to retrieve the reverse top-k result

is restricted, since Algorithm 2 takes as input a limited set

of weighting vectors Wcand, instead of the entire set W . In

particular, the upper bound of top-k evaluations for different

weighting vectors is |LL
i | − |LU

i |, which is the number of

evaluations required by the brute force algorithm. Of course,

RTA reduces even more this number, by discarding weighting

vectors based on already computed results. The exact savings

in terms of discarded weighting vectors also depend on the

construction algorithm and the quality of the resulting grid, as

will be shown presently.

C. RTOP-Grid Construction

In this section, we discuss the construction algorithm of

RTOP-Grid. In our approach, the grid-based space partitioning

occurs recursively, starting by a single cell that covers the

entire universe. We take into consideration three different

subproblems. First, we develop a cost-based heuristic for de-

ciding which cell Ci to split. Secondly, we accomplish efficient

computation of the views LL
i and LU

i , by using a results

sharing approach. Finally, we propose different strategies for

establishing the stopping condition of the cell division process.

Given a cell Ci and a query point q enclosed in Ci, the

performance of reverse top-k query depends mainly on the

number of evaluated top-k queries, which in turn depends on

the number of weighting vectors in the views LL
i and LU

i .

Therefore, it is very important that the splitting strategy of the

construction algorithm splits first the most costly cells, i.e.,

the cells that may lead to many top-k evaluations. We define

the cost for a cell Ci as the probability that a query point is

enclosed in a cell multiplied by the number of top-k query

evaluations necessary for processing the query in Ci. Assume

that f(q[1], q[2], ..., q[d]) ≡ f(q) denotes the density function

describing the distribution of the d variables corresponding to

the dimensions of the query points. Then, the expected cost

of a cell Ci can be estimated as:

COSTCi = (|LL
i | − |LU

i |)
∫

Ci

f(q) (1)

In the case of uniform query distribution, the integral of

Equation 1 can be replaced by the fraction of the volume of

the space D covered by the cell (normalized volume
V (Ci)

VD
).

Given a RTOP-Grid index, we define the average number

of top-k query evaluations that are necessary for processing a

reverse top-k query as a quality measure of RTOP-Grid, which

can be expressed as the sum of the costs of all cells:

COSTRTOP−Grid =
∑
∀i

COSTCi (2)

The cost function insinuates that the cost of a particular cell

adds up to the total cost of the grid, only if a query point is

actually enclosed in the cell. Equation 2 is the average cost of

processing a reverse top-k query, in terms of top-k evaluations

for a given RTOP-Grid, because it contains the probability that

a query is enclosed in a cell. Furthermore, the estimated cost is

an upper bound of the actual cost, since RTA needs even fewer

top-k evaluations than |LL
i |− |LU

i |. The splitting employed in

the RTOP-Grid construction algorithm aims at minimizing the

aforementioned cost function. Thus, the construction algorithm

splits the cell with the maximum COSTCi value.

Algorithm 4 describes the construction of RTOP-Grid. As-

suming initially a single cell C0 covering the entire universe

(line 3), the algorithm starts by computing the materialized

views of the lower and upper corner of the universe (lines

4,5). In order to process the reverse top-k query for each cell’s

corners efficiently, the RTA algorithm is employed. In each

iteration, the algorithm picks a cell Ci to be split, which is



Algorithm 4 Construction of RTOP-Grid.

1: Input: S, W , k , Limit
2: Output: RTOP-Grid
3: Create cell C0 that covers the universe
4: LL

0 ← RTA(S,W ,CL
0 ,k)

5: LU
0 ← RTA(S,W ,CU

0 ,k)
6: RES ← {C0}
7: cntCells← 1
8: while (cntCells < Limit) do
9: Find cell Ci with maximum COSTCi

10: Split Ci into C1 and C2 based on dj

11: LL
1 ← LL

i

12: LU
1 ← GRTA(S,CU

1 ,k)
13: LL

2 ← GRTA(S,CL
2 ,k)

14: LU
2 ← LU

i

15: RES ← RES − {Ci}
16: RES ← RES ∪ {C1, C2}
17: cntCells← cntCells + 1
18: end while
19: return RES

the cell Ci with the maximum COSTCi , according to our

splitting strategy (line 9). Then, two new cells C1 and C2

are created (line 10) by selecting a dimension in a round

robin fashion, which is used to divide the cell in two parts.

Consequently, the materialized views of the new cells C1 and

C2 are computed. Our algorithm employs result sharing in two

ways. First, it is obvious that LL
1 and LU

2 equals to LL
i and

LU
i respectively (lines 11,14), and these materialized views

do not have to be recomputed. Whenever a reverse top-k
query for each cell’s corners needs to be computed, GRTA

is employed (lines 12,13) on the currently constructed RTOP-

Grid. Therefore, the algorithm takes into account the views of

the existing cells to restrict the weighting vectors that need to

be examined and the top-k queries that have to be evaluated.

This is the second way result sharing is used, namely to

efficiently compute the necessary materialized views. Finally,

cell Ci is removed from the RTOP-Grid, whereas cells C1 and

C2 that cover the removed cell are added (lines 15,16). The

algorithm continues to iterate, until the stopping condition that

ceases splitting of cells is satisfied (line 8).

As regards the stopping condition, two different strategies

are used, each controlling the cost of a different parameter,

namely storage requirements and query processing perfor-

mance. Hence, two different strategies are employed:

• Space-bounded: In order to restrict the construction and

storage cost, the algorithm stops when a specific number

of grid cells (given as input) are created. Algorithm 4

describes this strategy (line 8).

• Guaranteed cost: This strategy focuses on query pro-

cessing cost, rather than construction cost, and aims at

setting a bound on the average number of required top-k
evaluations. Cells are split as long as the quality of the

RTOP-Grid, has not reached the bound (given as input).

The quality is measured by means of Equation 2. There-

fore, the condition of Algorithm 4 (line 8) is modified as

follows: COSTRTOP−Grid ≤ Limit.

In our experimental evaluation, we also examine a straight-

forward approach, namely UNIFORM, where the algorithm

decides to split the cell that has the largest volume, without

using the cost function. The stopping condition follows the

space-bounded strategy, i.e., splitting stops when a specified

number of cells are created.

D. Supporting Arbitrary k Values

In this section, we generalize our approach to support

reverse top-k queries for arbitrary values of k, using a common

RTOP-Grid. Given an upper limit Kmax, the RTOP-Grid is

constructed for Kmax and additional information is stored that

enables processing queries for any k value (k ≤ Kmax). For

each weighting vector wz , the rank of the cell corner, i.e., the

minimum k for which the corner is in the top-k result set of

wz , is additionally maintained. Thus, the materialized view

can be described as LL
i = {(wz, k

L
z )} and LU

i = {(wz, k
U
z )}.

Algorithm 3 can be adjusted to process reverse top-k
queries over a grid constructed for arbitrary k ≤ Kmax.

First, the cell Ci that encloses q is determined. Then, the

weighting vectors that are contained in LL
i are examined,

while weighting vectors that are not in LL
i cannot contribute

to the reverse top-k result set of q. For any wz ∈ LL
i , the

following cases are distinguished (the following code replaces

lines 6-10 of Algorithm 3):

IF (kL
z ≤ k) THEN

IF (wz ∈ LU
i and kU

z ≤ k)

THEN

W ′ ←W ′ ∪ {wz}
ELSE

Wcand ←Wcand ∪ {wz}

E. Updates

Updates that occur either in W or S affect the materialized

reverse top-k views, therefore they should be supported effi-

ciently. In case of insertion of a new weighting vector wins, we

need to progressively examine the corners of the grid, starting

from the origin of the data space. If a corner CL
i (CU

i ) does not

qualify as top-k object for wins, then we can safely discard

all corners dominated by CL
i (CU

i ). Deletion of an existing

weighting vector wdel is simple, as it requires removal of wdel

from the lists of any corner of the grid. Notice that again

the corners of the grid can be examined progressively, thus

avoiding processing of dominated corners.

Insertion of a data point pins is more costly, since only grid

corners that dominate pins are discarded. For the remaining

corners, we cannot avoid computing the reverse top-k query.

However, GRTA can be used and only weighting vectors that

belong to the materialized views of the cell corner have to be

evaluated, since no weighting vectors can be added, but only

some of them may be removed from the materialized view.

Similarly a data point pdel that is removed from the dataset

probably influences all non-dominating cell corners, therefore

we need to recompute the materialized views for them, since

new weighting vectors may have to be added.
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Fig. 7. Performance of RTA for varying d [naive (outer bar) vs. RTA (inner bar)].
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Fig. 8. Performance of RTA for varying d for k-skyband queries [naive (outer bar) vs. RTA (inner bar)].

VI. EXPERIMENTAL EVALUATION

In this section, we present an extensive experimental evalu-

ation of reverse top-k queries. All algorithms are implemented

in Java and the experiments run on a 3GHz Dual Core AMD

processor equipped with 2GB RAM. The block size is 8KB.

We focus on the evaluation of the bichromatic reverse top-k
query, as it is most useful for practical applications.

As far as the dataset S is concerned, both real and synthetic

data collections, namely uniform (UN), correlated (CO) and

anticorrelated (AC), are used. For the uniform dataset, all

attribute values are generated independently using a uniform

distribution. The correlated and anticorrelated datasets are gen-

erated as described in [14]. We also use two real datasets. NBA

consists of 17265 5-dimensional tuples, representing a player’s

performance per year. The attributes are average values of:

number of points scored, rebounds, assists, steals and blocks.

HOUSE (Household) consists of 127930 6-dimensional tuples,

representing the percentage of an American family’s annual

income spent on 6 types of expenditure: gas, electricity, water,

heating, insurance, and property tax.

For the dataset W of the weighting vectors, two different

data distributions are examined, namely uniform (UN) and

clustered (CL). For the clustered dataset W , first CW cluster

centroids that belong to the (d-1)-dimensional hyperplane

defined by
∑

wi = 1 are selected randomly. Then, each

coordinate is generated on the (d-1)-dimensional hyperplane

by following a normal distribution on each axis with variance

σ2
W , and a mean equal to the corresponding coordinate of the

centroid. We conduct experiments varying the dimensionality

(2-5), the cardinality (10k-100k) of the dataset S and cardi-

nality (5k-15k) of the dataset W .

We evaluate the performance of RTA against an alternative

technique that evaluates a top-k query for each weight in

the dataset W . In particular, the dataset S is indexed by an

RTree and top-k processing is performed using a state-of-the-

art branch-and-bound algorithm. We refer to this algorithm

as naive. Our metrics include: a) the time (wall-clock time)

required by each algorithm, b) the I/Os used, and c) the number

of top-k evaluations conducted. We also investigate the perfor-

mance benefits that RTOP-Grid attains over RTA. We present

average values over the 1000 queries in all cases. Notice that

we do not measure the I/Os that occur by reading W , since

this is the same for every method, assuming sequential scan

on the dataset W .

A. Performance Evaluation of RTA

In Fig. 7, we study the behavior of RTA for increasing

dimensionality d, for various distributions (UN, AC, CO) of

dataset S and uniform weights W . We use |S|=10k, |W |=10k,
top-k=10 and 1000 random queries that follow the data distri-

bution. Notice that the y-axis is in logarithmic scale. In the bar

charts, each of the three bars (for a specific dimensionality)

represents a dataset: UN, AC, and CO respectively. The total

length of the bar represents the performance of naive, while

the inner bar depicts the performance of RTA. Regarding

average time, RTA is 2 orders of magnitude better than naive,

in all examined data distributions. In terms of I/Os, again

RTA outperforms naive by 1 to 3 orders of magnitude, while

larger savings are obtained for datasets UN and CO. The

reason behind RTA’s superiority is clearly demonstrated in

Fig. 7(c), where the average number of top-k evaluations

necessary for computing a bichromatic reverse top-k query is

shown. The threshold employed by RTA reduces significantly

the number of top-k evaluations, saving around 1.5 to 3 orders

of magnitude compared to naive. Notice that naive requires

|W | (=10k) top-k query evaluations to compute the result,

regardless of data distribution.
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Fig. 9. Scalability study of RTA.
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Fig. 10. Performance of RTA for clustered weights W and for real data (NBA and HOUSE).

An interesting observation is that only a small percentage

(around 2%) of the queries actually return non-empty result

sets. This is due to the fact that queries are generated following

the data distribution, therefore many queries are not in the top-

k result for any weighting vector. An important feature of our

algorithm is the fact that RTA processes reverse top-k queries

that have a small or empty result set efficiently, because the

threshold employed eliminates candidate weighting vectors,

often requiring only one top-k evaluation. In contrast, naive

does not have this ability and always computes |W | top-k
queries. Notice that reverse top-k queries with empty result

sets are also very informative for a product manufacturer, since

they indicate that the particular product is not popular for any

customer, compared to their competitors’ products.

Additionally, we employ a different method to generate

queries and present the corresponding results. In order to

increase the probability that a query point belongs to a

top-k result, we pick random query points from the k-
skyband4 of the dataset. Obviously, these query points are

more likely to produce non-empty reverse top-k results. This

query workload corresponds to queries about products that

seem popular to costumers, and manufacturers are expected

to pose such queries with high probability. Fig. 8 depicts

the results obtained by using k-skyband queries for the same

experimental setup depicted in Fig. 7. Although we witness

a small deterioration in the results of RTA, our algorithm

consistently outperforms naive by 1 to 2 orders of magni-

tude. Some interesting observations can be made by studying

Fig. 8(c). First, we notice that the correlated dataset requires

more top-k evaluations caused by the fact that the cardinality

of bRTOPk(q) is high. The reason is that the k-skyband
of a correlated dataset contains few points that are close to

4A k-skyband query returns the set of points which are dominated by at
most k-1 other points.

the origin of the data space, and therefore such points are in

the top-k for many weighting vectors. Second, we observe a

decreasing tendency as dimensionality increases, which seems

counterintuitive at first. However, this is because again the

cardinality of bRTOPk(q) decreases as the dimensionality

increases. For the rest of our experiments, we use k-skyband
queries and we do not show the results of naive, as it performs

consistently worse than RTA by few orders of magnitude.
Thereafter, we perform a scalability study of RTA by

varying several parameters in Fig. 9. We use as metric the

number of top-k evaluations, as it is the dominant factor for

the performance of RTA. First, we increase the cardinality

of W and study the performance of RTA for different data

distributions of S (Fig. 9(a)). We fix the remaining parameters

to |S|=10k, d=5 and top-k=10. In general, datasets W of

higher cardinality demand more top-k evaluations. However,

we observe that RTA is highly efficient, especially for the

costly CO dataset. For instance, for |W |=5k, RTA needs on

average 544 top-k evaluations, while the average mandatory

cost is 459 (this is the number of queries that cannot be

avoided, also equal to the average size of the result set). This

shows that out of 5000 query evaluations (100%), RTA needs

only 544 (10.88%), which is only marginally more than the

mandatory 459 (9.18%), thus RTA saves 89.12% of the cost.

In Fig. 9(b), we set |W |=10k and gradually increase the

cardinality of S to 100k. For the CO dataset, we observe

that fewer top-k evaluations are necessary with increasing

|S|. This is because the data space has more data points,

thus becomes denser, and k-skyband queries lead to result

sets with fewer weighting vectors, hence smaller processing

cost. In Fig. 9(c), we use S=10k and W=10k, and study how

the value of k affects the performance of RTA. It is clear

that RTA is highly efficient for UN and AC datasets, and

its performance is affected only for CO. The increase of k
increases the probability that a query point belongs to top-k for
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Fig. 11. Performance evaluation of the strategies of RTOP-Grid.
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Fig. 12. Scalability study of RTOP-Grid for the space-bounded strategy.

some weighting vector, and therefore the average cardinality

of bRTOPk(q) increases, leading to more top-k evaluations.

We also study the performance of RTA for a clustered

dataset W , using CW=5 clusters of weighting vectors. A clus-

tered dataset W simulates the case where user preferences are

not independent, but there exist some groups of common user

preferences. This chart, depicted in Fig. 10(a), is analogous

(thus also comparable) to the setup of Fig. 8(c), which was

for a uniform dataset W . The results show that in the case

of clustered dataset W , RTA performs better than for uniform

W for all data distributions, nevertheless the general trends

remain the same as dimensionality increases.

In Fig. 10(b), we assess RTA using the NBA dataset. The

performance of RTA is in accordance with the case of synthetic

data. We try both a uniform and clustered dataset W and the

results show again that fewer top-k evaluations are required

for the clustered dataset W . In Fig. 10(c), a similar experiment

is conducted using the HOUSE dataset.

B. Performance Evaluation of RTOP-Grid

In the sequel, we evaluate the performance of RTOP-Grid

in Fig. 11. Unless mentioned explicitly, we use |S|=10k,
|W |=10k, d=5 and top-k=10. First, we provide a comparison

of the RTOP-Grid space-bounded strategy to the UNIFORM

approach and to RTA (Fig. 11(a)), for increasing number

of cells. RTOP-Grid performs consistently better than UNI-

FORM, demonstrating the advantages of using the cost-based

splitting strategy, instead of splitting the cell with the max-

imum volume. RTOP-Grid also provides an improvement to

RTA, in terms of the required number of top-k evaluations

as expected, and in this setup it achieves a reduction of top-k
evaluations between 18.5% (100 cells) and 26.3% (1000 cells).

In Fig. 11(b), we test the RTOP-Grid guaranteed cost

strategy versus the RTA algorithm, with increasing cost bound,

for top-k={10, 20}. The chart shows that RTOP-Grid reduces

the number of top-k evaluations compared to RTA by 30%,

when the cost bound is set to 100. As expected, when the

bound imposed on cost is smaller, RTOP-Grid improves RTA

more. Notice that in most cases the actual number of top-

k evaluations is smaller than the bound set on average cost.

This is because the average cost is estimated based on the

number of weighting vectors in the views, and it does not take

into account the additional savings in top-k query evaluations

caused by the threshold mechanism of RTA, employed also

by RTOP-Grid. In Fig. 11(c), we show the number of cells

created by RTOP-Grid for the same experiment. Clearly, the

number of cells increases rapidly when the cost bound is set

too low. However, similar improvements can be obtained by

relaxing the cost bound, i.e., notice that setting the bound to

200 achieves similar performance to the bound of 100, using

much fewer cells. Furthermore, we study the scalability of

RTOP-Grid for varying values of |W |, |S| and top-k. Fig. 12(a)
shows the results obtained by increasing |W |. RTOP-Grid

consistently outperforms UNIFORM and improves RTA. Then,

in Fig. 12(b), we set |W |=10k and increase |S|. Once again,

the gains of RTOP-Grid over RTA are sustained in all setups.

Finally, in Fig. 12(c), the chart shows how the cost is affected

by increasing k. RTOP-Grid performs better than RTA and

UNIFORM for all k values and the benefit increases with k.

VII. RELATED WORK

As reverse top-k queries are inherently related to top-k
query processing, we summarize some representative work

here. One family of algorithms are those based on pre-

processing techniques. Onion [2] pre-computes and stores the

convex hulls of data points in layers. Then, the evaluation

of a linear top-k query is accomplished by processing the

layers inwards, starting from the outmost hull. Prefer [6] uses

materialized views of top-k result sets, according to arbitrary

scoring functions. During query processing, Prefer selects



the materialized view corresponding to the function that is

most similar to the query scoring function, and examines a

subset of the data elements in this view. Onion and Prefer

are mostly appropriate for static data, due to the high cost of

pre-processing. Efficient maintenance of materialized views

for top-k queries is discussed in [9]. The authors propose

algorithms that reduce the storage and maintenance cost of

materialized top-k views in the presence of deletions and

updates. The robust index [8] is a sequential indexing approach

that improves the performance of Onion [2] and Prefer [6]. The

main idea is that a tuple should be placed at the deepest layer

possible, in order to reduce the probability of accessing it at

query processing time, without compromising the correctness

of the result. Later, in [10], the dominant graph is proposed

as a structure that captures dominance relationships between

points. Then, the top-k computation is mapped to a graph

traversal problem. Another family of algorithms focuses on

computing the top-k queries over multiple sources, where each

source provides a ranking of a subset of attributes only. Fagin

et al. [4] introduce TA and NRA algorithms. Variations of

them have been proposed that try to improve some of their

limitations and have been studied in other application areas,

leading to various threshold-based algorithms [1], [3], [5], [7].

Reverse nearest neighbor (RNN) queries were originally

proposed in [11] and have wide applicability in decision

support systems. An RNN query finds the set of points that

have the query point as their nearest neighbor. Reverse top-k
queries are different from RNN queries, since the aim is to

find the linear distance functions (in terms of weights) that

would make the query point belong to the k-nearest neighbor

set of a query positioned at the origin of the data space.

Recently, reverse furthest neighbor queries [15] are introduced,

that are similar to RNN queries. The reverse skyline query [12]

identifies customers that would be interested in a product based

on the dominance of the competitors products. Monochromatic

and bichromatic reverse skyline queries have been also studied

in the context of uncertain databases [16]. DADA [17] aims

to help manufactures position their products in the market,

based on three types of dominance relationship analysis

queries. Creating competitive products has been recently stud-

ied in [18]. Nevertheless in these approaches, user preferences

are expressed as data points that represent preferable products,

whereas reverse top-k queries examine user preferences in

terms of weighting vectors. Miah et al. [19] study a different

problem, again from the perspective of manufacturers. They

propose an algorithm that selects the subset of attributes that

increases the visibility of a new product.

VIII. CONCLUSIONS

To the best of our knowledge, this is the first paper that in-

troduces reverse top-k queries. We present two versions of re-

verse top-k queries, namely monochromatic and bichromatic.

Then, an algorithm for evaluating monochromatic reverse top-

k queries is presented, based on the geometrical properties

of the result set. Thereafter, we present an efficient threshold-

based algorithm (RTA) for computing bichromatic reverse top-

k queries, which eagerly discards candidate user preferences,

without the need to evaluate the associated top-k query.

Furthermore, we present an indexing structure based on space

partitioning, which materializes reverse top-k views, in order

to improve reverse top-k query processing even further. We

conduct a thorough experimental evaluation that demonstrates

the efficiency of our algorithms. RTA consistently improves 1

to 3 orders of magnitude the naive approach.

There are several interesting issues for future work. It is

important to study in more detail the monochromatic reverse

top-k query, especially for higher dimensionality, since the ge-

ometrical properties of the result set are essential for process-

ing the bichromatic reverse top-k query efficiently. Moreover,

we plan to study approximate reverse top-k algorithms that

compute quickly a good approximation of the result set.
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