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REVERSE YOUNG-TYPE INEQUALITIES FOR
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ABSTRACT. We present some reverse Young-type in-
equalities for the Hilbert-Schmidt norm as well as any uni-
tarily invariant norm. Furthermore, we give some inequali-
ties dealing with operator means. More precisely, we show
that if A,B ∈ B(H) are positive operators and r ≥ 0,
A∇−rB + 2r(A∇B − A♯B) ≤ A♯−rB. We also prove that
equality holds if and only if A = B. In addition, we estab-
lish several reverse Young-type inequalities involving trace,
determinant and singular values. In particular, we show that
if A and B are positive definite matrices and r ≥ 0, then

tr ((1 + r)A− rB) ≤ tr|A1+rB−r| − r(
√
trA−

√
trB)2.

1. Introduction and preliminaries. Let H be a Hilbert space,
and let B(H) be the C∗-algebra of all bounded linear operators on H
with the operator norm ∥ · ∥ and the identity IH. If dimH = n, then
we identify B(H) with the space Mn of all n × n complex matrices
and denote the identity matrix by In. For an operator A ∈ B(H), we
write A ≥ 0 if A is positive (positive semi-definite for matrices), and
A > 0 if A is positive and invertible (positive definite for matrices). For
A,B ∈ B(H), we sayA ≥ B if A−B ≥ 0. LetB+(H) (respectively, Pn)
denote the set of all positive invertible operators (respectively, positive
definite matrices). A norm ||| · ||| on Mn is called unitarily invariant if
|||UAV ||| = |||A||| for all A ∈ Mn and all unitary matrices U, V ∈ Mn.
The Hilbert-Schmidt norm is defined by

∥A∥2 =

( n∑
j=1

s2j (A)

)1/2

,

where s(A) = (s1(A), . . . , sn(A))

2010 AMS Mathematics subject classification. Primary 15A60, 47A30, 47A60.
Keywords and phrases. Young inequality, positive operator, operator mean,

unitarily invariant norm, determinant, trace.
Received by the editors on June 27, 2014, and in revised form on September 29,

2014.
DOI:10.1216/RMJ-2016-46-4-1089 Copyright c⃝2016 Rocky Mountain Mathematics Consortium

1089



1090 M. BAKHERAD, M. KRNIĆ AND M.S. MOSLEHIAN

denotes the singular values of A, that is, the eigenvalues of the positive
semi-definite matrix |A| = (A∗A)1/2, arranged in decreasing order with
their multiplicities counted. This norm is unitarily invariant. It is
known that, if A = [aij ] ∈ Mn, then

∥A∥2 =

( n∑
i,j=1

|aij |2
)1/2

.

The weighted operator arithmetic ∇ν , geometric ♯ν and harmonic !ν
means, for ν ∈ [0, 1] and A,B ∈ B+(H) are defined as follows:

A∇ν B = (1− ν)A+ νB,

A ♯ν B = A1/2
(
A−1/2BA−1/2

)ν
A1/2,

A!νB = ((1− ν)A−1 + νB−1)−1.

If ν = 1/2, we denote the arithmetic, geometric and harmonic means,
respectively, by ∇, ♯ and !, for brevity.

The classical Young inequality states that

aνb1−ν ≤ νa+ (1− ν)b,

when a, b ≥ 0 and ν ∈ [0, 1]. If ν = 1/2, we obtain the arithmetic-

geometric mean inequality
√
ab ≤ (a+ b)/2. The operator Young

inequality reads as follows:

(1.1) A!νB ≤ A♯ν B ≤ A∇ν B, ν ∈ [0, 1],

where A,B ∈ B+(H) and ν ∈ [0, 1], cf., [6]. For other generalizations
of the Young inequality see [15, 16]. A Young inequality matrix due
to Ando [1] asserts that

sj(A
νB1−ν) ≤ sj (νA+ (1− ν)B) ,

in which A,B ∈ Mn are positive semidefinite, j = 1, 2, . . . , n, and
ν ∈ [0, 1]. The above singular value inequality entails the following
unitarily invariant norm inequality,

|||AνB1−ν ||| ≤ |||νA+ (1− ν)B|||,
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where A,B ∈ Mn are positive semidefinite and 0 ≤ ν ≤ 1. Kosaki [13]
proved that the inequality,

∥AνXB1−ν∥2 ≤ ∥νAX + (1− ν)XB∥2,(1.2)

holds for matrices A,B,X ∈ Mn such that A and B are positive
semidefinite, and for 0 ≤ ν ≤ 1. It should be mentioned here that,
for ν ̸= 1/2, inequality (1.2) may not hold for other unitarily invariant
norms. Hirzallah and Kittaneh [7] gave a refinement of (1.2) by showing
that

(1.3) ∥AνXB1−ν∥22 + r20∥AX −XB∥22 ≤ ∥νAX + (1− ν)XB∥22,

in which A,B,X ∈ Mn such that A and B are positive semi-definite,
0 ≤ ν ≤ 1 and r0 = min{ν, 1− ν}. A determinant version of the Young
inequality is also known (see [9, page 467]):

det(AνB1−ν) ≤ det(νA+ (1− ν)B),

where A,B,X ∈ Mn such that A and B are positive semi-definite and
0 ≤ ν ≤ 1. This determinant inequality was recently improved in [12].
Further, Kittaneh [10] proved that

|||A1−νXBν ||| ≤ |||AX|||1−ν |||XB|||ν ,(1.4)

in which ||| · ||| is any unitarily invariant norm, A,B,X ∈ Mn such that
A and B are positive semidefinite and 0 ≤ ν ≤ 1. Conde [2] showed
that

2|||A1−νXBν |||+
(
|||AX|||1−ν−|||XB|||ν

)2≤|||AX|||2(1−ν)+|||XB|||2ν ,

where ||| · ||| is a unitarily invariant norm, A,B,X ∈ Mn such that A
and B are positive semidefinite and 0 ≤ ν ≤ 1. Tominaga [21, 22]
employed Specht’s ratio for the Young inequality. In addition, some
reverses of the Young inequality are established in [4].

For a, b ∈ R, the number x = νa + (1 − ν)b belongs to the interval
[a, b] for all ν ∈ [0, 1], and is outside the interval for all ν > 1 or ν < 0.
Exploiting this obvious fact, Fujii [3] showed that if f is an operator
concave function on an interval J , then the inequality,

f(C∗XC −D∗Y D) ≤ |C|f(V ∗XV )|C| −D∗f(Y )D,
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holds for all self-adjoint operators X and Y and operators C and D
in B(H) with spectra in J , such that C∗C − D∗D = IH, σ(C∗XC −
D∗Y D) ⊆ J , and C = V |C| is the polar decomposition of C.

In this direction, by using some numerical inequalities, we obtain
reverses of (1.1)–(1.4) under some mild conditions. We also aim to give
some reverses of the Young inequality dealing with positive operator
means. Finally, we present some singular value inequalities of Young-
type involving trace and determinant.

2. Reverses of the Young inequality for the Hilbert-Schmidt
norm. In this section, we deal with reverses of the Young inequality for
the Hilbert-Schmidt norm. To this end, we need the following lemma.

Lemma 2.1. Let a, b > 0. If r ≥ 0 or r ≤ −1, then

(2.1) (1 + r)a− rb ≤ a1+rb−r.

Proof. Let a, b > 0. If a = b, then (2.1) is trivial. Let a ̸= b.
Bernoulli’s inequality [17] states that 1 + νx ≤ (1 + x)ν , where
0 ̸= x > −1 and ν /∈ (0, 1). If we replace ν by 1 + r and x by t − 1,
respectively, then (1 + r)t− r ≤ t1+r, where 1 ̸= t > 0 and r /∈ (−1, 0).
Letting t = a/b, we obtain the desired inequality. �

Remark 2.2. By virtue of Lemma 2.1, it follows that the inequality

(2.2) ((1 + r)a− rb)
2 ≤

(
a1+rb−r

)2
holds if a ≥ b > 0 and r ≥ 0, or b ≥ a > 0 and r ≤ −1.

Our first result reads as follows.

Theorem 2.3. Let A,B,X ∈ Mn and let m and m′ be positive scalars.
If A ≥ mIn ≥ B > 0 and r ≥ 0, or B ≥ m′In ≥ A > 0 and r ≤ −1,
then the following inequality holds:

∥(1 + r)AX − rXB∥2 ≤ ∥A1+rXB−r∥2.

Proof. It follows from the spectral decomposition [23] that there are
unitary matrices U, V ∈ Mn such that A = UΛU∗ and B = V ΓV ∗,
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where Λ = diag (λ1, λ2, . . . , λn), Γ = diag (γ1, γ2, . . . , γn), and λj , γj ,
j = 1, 2 . . . , n, are positive. If Z = U∗XV = [zij ], then
(2.3)
(1+ r)AX−rXB=U((1 + r)ΛZ − rZΓ)V ∗=U [((1 + r)λi−rγj) zij ]V

∗

and
(2.4)
A1+rXB−r=UΛ1+rU∗XV Γ−rV ∗=UΛ1+rZΓ−rV ∗=U

[(
λ1+r
i γ−r

j

)
zij

]
V ∗.

Suppose first that A ≥ mIn ≥ B > 0 and r ≥ 0. Then, it follows that

λi ≥ γj , 1 ≤ i, j ≤ n,(2.5)

so, utilizing (2.3) and (2.4), we have

∥(1 + r)AX−rXB∥22=
n∑

i,j=1

((1 + r)λi−rγj)
2|zij |2≤

n∑
i,j=1

(λ1+r
i γ−r

j )2|zij |2

(by inequalities (2.2) and (2.5))

= ∥A1+rXB−r∥22.

The same conclusion can be drawn for the cases of B ≥ m′In ≥ A > 0
and r ≤ −1. �

Generally speaking, Theorem 2.3 does not hold for arbitrary positive
definite matrices A and B. The reason for this lies in the fact that
inequality (2.2) is not true for arbitrary positive numbers a and b. To
see this, let a = 1, b = 4 and r = 2.

Our next intention is to derive a result related to Theorem 2.3, which
holds for all positive definite matrices. Observe that the inequality:

((1 + r)a− rb)
2 − r2(a− b)2 = (1 + 2r)a2 − 2rab ≤ (a2)

1+2r
(ab)−2r

=
(
a1+rb−r

)2
yields an appropriate relation instead of (2.2), for arbitrary positive
numbers a and b and r ≥ 0 or r ≤ −1/2, as follows:

((1 + r)a− rb)
2 ≤

(
a1+rb−r

)2
+ r2(a− b)2 a, b > 0.

Note also that, if a = b, then the equality holds.
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Now, utilizing this inequality and the same argument as in the proof
of Theorem 2.3, i.e., the spectral theorem for positive definite matrices,
we obtain the corresponding result.

Theorem 2.4. Suppose that A,B ∈ Pn and X ∈ Mn. Then the
inequality :

∥(1 + r)AX − rXB∥22 ≤
∥∥A1+rXB−r

∥∥2
2
+ r2 ∥AX −XB∥22(2.6)

holds for r ≥ 0 or r ≤ −1/2.

3. Reverse Young-type inequalities involving unitarily in-
variant norms. It has been shown in [8] that the inequality,

∥A1+rXB1+r∥ ≥ ∥X∥−r∥AXB∥1+r,(3.1)

holds for A,B ∈ Pn, 0 ̸= X ∈ Mn and r ≥ 0. Replacing B by B−1

and X by XB in (3.1), respectively, yields the relation

(3.2) ∥A1+rXB−r∥ ≥ ∥AX∥1+r∥XB∥−r,

where r ≥ 0, A,B ∈ Pn and X ∈ Mn with X ̸= 0.

Next we show that inequality (3.2) holds for every unitarily invariant
norm. This can be done by virtue of inequality (1.4). In fact, the
following result is, in some way, complementary to inequality (1.4).

Lemma 3.1. Suppose that A,B ∈ Pn, X ∈ Mn such that X ̸= 0. If
r ≥ 0 or r ≤ −1, then the inequality,

|||AX|||1+r |||XB|||−r ≤ |||A1+rXB−r|||,

holds for any unitarily invariant norm ||| · |||.

Proof. First, let r ≥ 0. Set α = r + 1. Utilizing inequality (1.4), it
follows that

|||AX||| = |||(Aα)1/α(XB1−α)(Bα)(α−1)/α|||

≤ |||AαXB1−α|||1/α |||XB1−αBα|||(α−1)/α

= |||AαXB1−α|||1/α |||XB|||(α−1)/α,

that is,
|||AX||| |||XB|||(1−α)/α ≤ |||AαXB1−α|||1/α.
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Hence,
|||AX|||α |||XB|||1−α ≤ |||AαXB1−α|||,

whence

|||AX|||1+r |||XB|||−r ≤ |||A1+rXB−r|||.

On the other hand, if r ≤ −1, set α = −r. By a similar argument, we
obtain the desired result. �

An application of Lemmas 2.1 and 3.1 yields the Young-type in-
equality,

(3.3) (1 + r)|||AX||| − r|||XB||| ≤ |||A1+rXB−r|||,

which holds for matrices A,B ∈ Pn, X ∈ Mn such that X ̸= 0 and
r ≥ 0 or r ≤ −1. It is interesting that inequality (3.3) can be improved.
But first we have to improve the scalar inequality (2.1).

Lemma 3.2. Let a, b > 0 and r ≥ 0 or r ≤ −1/2. Then,

(3.4) (1 + r)a− rb+ r(
√
a−

√
b)2 ≤ a1+rb−r.

Proof. Due to Lemma 2.1, it follows that

(1+r)a−rb+r(
√
a−

√
b)2=−2r

√
ab+(1+2r)a≤(

√
ab)−2ra1+2r

= a1+rb−r. �

Obviously, if r ≥ 0, inequality (3.4) represents an improvement of
inequality (2.1). Finally, we give an improvement of matrix inequality
(3.3).

Theorem 3.3. Let A,B ∈ Pn, X ∈ Mn be such that X ̸= 0 and let
r ≥ 0. Then the inequality

(1+r)|||AX|||−r|||XB|||+r(
√
|||AX|||−

√
|||XB|||)2≤|||A1+rXB−r|||

holds for any unitarily invariant norm ||| · |||.
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Proof.

(1 + r)|||AX||| − r|||XB|||+ r(
√
|||AX||| −

√
|||XB|||)2

≤ |||AX|||1+r |||XB|||−r (by Lemma 3.2)

≤ |||A1+rXB−r||| (by Lemma 3.1). �

Remark 3.4. It should be noted here that Theorem 3.3 is also true
in the case of r ≤ −1/2. However, in this case, the corresponding
inequality is less precise than relation (3.3) and does not represent its
refinement.

4. Reverse Young-type inequalities related to operator
means. The matrix Young inequality can be considered in a more
general setting. Namely, this inequality also holds for self-adjoint oper-
ators on a Hilbert space. The main objective of this section is to derive
inequalities which are complementary to the mean inequalities in (1.1),
presented in the introduction.

The main tool in obtaining inequalities for self-adjoint operators
on Hilbert spaces is the following monotonicity property for operator
functions. If X is a self-adjoint operator with the spectrum sp (X),
then

(4.1) f(t) ≥ g(t), t ∈ sp (X) =⇒ f(X) ≥ g(X).

For more details about this property the reader is referred to [19].

Since A,B ∈ B+(H), the expressions A∇νB and A♯νB are also well
defined when ν ∈ R \ [0, 1]. In this case, we obtain the reverse of the
second inequality in (1.1).

Theorem 4.1. If A,B ∈ B+(H) and r ≥ 0 or r ≤ −1, then

(4.2) A∇−rB ≤ A♯−rB.

Proof. By virtue of Lemma 2.1, it follows that f(x) = x−r + rx −
(1 + r) ≥ 0, x > 0. Moreover, since B ∈ B+(H), it follows that
A−1/2BA−1/2 ∈ B+(H), that is, sp (A−1/2BA−1/2) ⊆ (0,∞).



REVERSE YOUNG-TYPE INEQUALITIES 1097

Thus, applying monotonicity property (4.1) to the above function f ,
we have that(

A−1/2BA−1/2
)−r

+ rA−1/2BA−1/2 − (1 + r)IH ≥ 0.

Finally, multiplying both sides of this relation by A1/2, we have

A1/2
(
A−1/2BA−1/2

)−r

A1/2 + rB − (1 + r)A ≥ 0,

and the proof is complete. �

If A,B ∈ B+(H) such that A ≤ B, the expression A!−rB is well
defined for r ≥ 0. Namely, due to operator monotonicity of the function
h(x) = −1/x on (0,∞) (for more details, see [19]), A ≤ B implies that
B−1 ≤ A−1, so that (r + 1)A−1 − rB−1 ∈ B+(H). Therefore, the
operator A!−rB = ((r + 1)A−1 − rB−1)−1 is well defined for r ≥ 0.

Now, we give the reverse of the first inequality in (1.1).

Corollary 4.2. Let A,B ∈ B+(H) be such that A ≤ B. If r ≥ 0, then
A♯−rB ≤ A!−rB.

Proof. From Theorem 4.1 with operators A and B replaced by A−1

and B−1, respectively, it follows that

(4.3) A−1∇−rB
−1 ≤ A−1♯−rB

−1.

Now, applying the monotonicity operator of the function h(x) =
−1/x, x ∈ (0,∞), to relation (4.3), we have that

(A−1♯−rB
−1)−1 ≤ (A−1∇−rB

−1)−1.

Finally, the result follows by virtue of (A−1♯−rB
−1)−1 = A♯−rB. �

Kittaneh et al. [11] obtained the following relation (see also [14]):

2max{ν, 1− ν}(A∇B −A♯B) ≥ A∇νB −A♯νB

≥ 2min{ν, 1− ν}(A∇B −A♯B).
(4.4)

Clearly, the left inequality in (4.4) represents the converse, while the
right inequality represents a refinement of the arithmetic-geometric
mean operator inequality in (1.1).
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Our next goal is to derive a refinement of inequality (4.2) which is,
in some way, complementary to the above relations in (4.4). Clearly,
this will be carried out by virtue of Lemma 3.2.

Theorem 4.3. If A,B ∈ B+(H) and r ≥ 0, then the following
inequality holds:

(4.5) A∇−rB + 2r(A∇B −A♯B) ≤ A♯−rB.

Proof. By virtue of Lemma 3.2, it follows that

(4.6) (1 + r)− rx+ r(x− 2
√
x+ 1) ≤ x−r

holds for all x > 0. Now, applying functional calculus, i.e., prop-
erty (4.1), to this scalar inequality, we have

(1+r)IH−rA−1/2BA−1/2+r(A−1/2BA−1/2−2(A−1/2BA−1/2)1/2+IH)

≤ (A−1/2BA−1/2)−r.

Finally, multiplying both sides of this operator inequality by A1/2, we
obtain (4.5). �

Corollary 4.4. Let A,B ∈ B+(H) and r > 0. Then, A∇−rB =
A♯−rB if and only if A = B.

Proof. It follows from Theorem 4.3 and the fact that A∇B = A♯B
if and only if A = B. �

Remark 4.5. Keeping in mind that scalar inequality (4.6) also holds
for r ≤ −1/2 (see Lemma 3.2), it follows that inequality (4.5) also holds
for r ≤ −1/2. However, if r < −1, relation (4.5) is less precise than the
original inequality (4.2) and does not represent its refinement. On the
other hand, it is interesting to consider the case when −1 ≤ r ≤ −1/2.
Namely, denoting ν = −r, where 1/2 ≤ ν ≤ 1 and (4.5) reduces to

A∇νB − 2ν(A∇B −A♯B) ≤ A♯νB,

this relation coincides with the converse of the arithmetic-geometric
mean inequality, that is, with the left inequality in (4.4).



REVERSE YOUNG-TYPE INEQUALITIES 1099

Remark 4.6. In [11], the authors considered the operator version of
the classical Heinz mean, i.e., the operator,

(4.7) Hν(A,B) =
A♯ν B +A♯1−ν B

2
,

where A,B ∈ B+(H) and ν ∈ [0, 1]. As in the real case, this mean
interpolates between the arithmetic and geometric means, that is,

(4.8) A♯B ≤ Hν(A,B) ≤ A∇B.

On the other hand, since A,B ∈ B+(H), expression (4.7) is also well
defined for ν ∈ R \ [0, 1]. Moreover, due to Theorem 4.1, we obtain the
inequality,

H−r(A,B) =
A♯−rB +A♯1+rB

2
≥ A∇−rB +A∇1+rB

2
= A∇B, r ≥ 0 or r ≤ −1,

complementary to (4.8).

In order to conclude this section, we mention yet another inequality
closely connected to the Young inequality, namely, in [5], the equiv-
alence between the Young and the Hölder-McCarthy inequalities was
shown. This asserts that

(4.9) ⟨Ax, x⟩−r ≤ ⟨A−rx, x⟩, x ∈ H, ∥x∥ = 1,

holds for all A ∈ B+(H) and r > 0 or r < −1. If −1 < r < 0, then the
sign of the inequality in (4.9) is reversed.

Now, we give a refinement of the Hölder-McCarthy inequality, once
again by exploiting Lemma 3.2.

Theorem 4.7. Let A ∈ B+(H) and r > 0. Then the inequality

(4.10) 0 ≤ 2r
(
1− ⟨A1/2x, x⟩⟨Ax, x⟩−1/2

)
≤ ⟨A−rx, x⟩⟨Ax, x⟩r − 1

holds for any unit vector x ∈ H.

Proof. By virtue of equation (4.6), it follows that the inequality
2r(1 −

√
x) ≤ x−r − 1 holds for all x > 0. Now, applying functional

calculus to this inequality and the positive operator λ1/rA, λ > 0, we



1100 M. BAKHERAD, M. KRNIĆ AND M.S. MOSLEHIAN

obtain
2r

(
IH − λ1/(2r)A1/2

)
≤ λ−1A−r − IH.

Further, fix a unit vector x ∈ H. Then we have

2r
(
1− λ1/(2r)⟨A1/2x, x⟩

)
≤ λ−1⟨A−rx, x⟩ − 1.

Finally, putting λ = ⟨Ax, x⟩−r in the last inequality, we obtain the
second inequality in (4.10). Clearly, the first inequality in (4.10) holds
due to (4.9) since ⟨A1/2x, x⟩ ≤ ⟨Ax, x⟩1/2. �

Remark 4.8. Since relation (4.6) holds for r ≤ −1/2, it follows that
the second inequality in (4.10) also holds for r ≤ −1/2. Clearly, the
case of r < −1 is not interesting since, in this case, we obtain a less
precise relation than the original Hölder-McCarthy inequality (4.9). On
the other hand, the case of −1 < r < −1/2 yields the converse of (4.9).

5. Reverse Young-type inequalities for the trace and the
determinant. In this section, we derive some Young-type inequalities
for the trace and the determinant of a matrix. The starting point for
this direction was used in Lemma 3.2.

In [12], Kittaneh and Manasrah obtained the inequality

(5.1) tr
∣∣AνB1−ν

∣∣+ r0(
√
trA−

√
trB)2 ≤ tr(νA+ (1− ν)B),

which holds for positive semi-definite matrices A,B ∈ Mn, 0 ≤ ν ≤ 1,
and r0 = min{ν, 1− ν}.

By virtue of Lemma 3.2, we can accomplish the inequality comple-
mentary to (5.1). To do this, we also need the following inequality
regarding singular values of complex matrices:

(5.2)

n∑
j=1

sj(A)sn−j+1(B) ≤
n∑

j=1

sj(AB) ≤
n∑

j=1

sj(A)sj(B).

Now, we have the following result.

Theorem 5.1. If A,B ∈ Pn and r ≥ 0, then the following inequality
holds:

(5.3) tr ((1 + r)A− rB) ≤ tr
∣∣A1+rB−r

∣∣− r(
√
trA−

√
trB)2.
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Proof. Applying Theorem 3.3 with X = In and with the trace norm
∥ · ∥1, that is, ∥A∥1 =

∑n
i=1 sj(A) = tr|A|, it follows that

(1 + r)∥A∥1 − r∥B∥1 + r(
√
∥A∥1 −

√
∥B∥1)2 ≤ ∥A1+rB−r∥1.

Now, since A,B ∈ Pn, it follows that ∥A∥1 = trA and ∥B∥1 = trB,
that is, (1 + r)∥A∥1 − r∥B∥1 = tr ((1 + r)A − rB), so we have
inequality (5.3). �

Our next intention is to obtain an analogous reverse relation for the
determinant of a matrix. In [12], the authors obtained the inequality,

det(AνB1−ν) + rn0 det(2A∇B − 2A♯B) ≤ det(νA+ (1− ν)B),

where 0 ≤ ν ≤ 1, r0 = min{ν, 1−ν}, and A,B are positive definite ma-
trices. The corresponding complementary result can also be established
by virtue of Lemma 3.2.

Theorem 5.2. Let r ≥ 0, and let A,B ∈ Pn be such that A ≥
r/(r + 1)B. Then the following inequality holds:
(5.4)

det ((1 + r)A− rB) ≤ det
(
Ar+1B−r

)
− rn det (2A∇B − 2A♯B) .

Proof. The starting point is Lemma 3.2 with a = sj(B
−1/2AB−1/2)

and b = 1, i.e., the inequality

sr+1
j (B−1/2AB−1/2) ≥ (1 + r)sj(B

−1/2AB−1/2)− r

+ r(s
1/2
j (B−1/2AB−1/2)− 1)2.

Furthermore, since A ≥ r/(r + 1)B, it follows that B−1/2AB−1/2 ≥
r/(r + 1)In, which means that sj(B

−1/2AB−1/2) ≥ r/(r + 1). Conse-
quently, we have that

(1 + r)sj

(
B−1/2AB−1/2

)
− r ≥ 0.

Hence, by virtue of the above two relations and the well-known prop-
erties of the determinant, we have
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det
(
B−1/2AB−1/2

)r+1

=
n∏

j=1

sr+1
j

(
B−1/2AB−1/2

)

≥
n∏

j=1

[
(1 + r)sj

(
B−1/2AB−1/2

)
− r

+ r
(
s
1/2
j

(
B−1/2AB−1/2

)
− 1

)2
]

≥
n∏

j=1

[
(1 + r)sj

(
B−1/2AB−1/2

)
− r

]
+ rn

n∏
j=1

[(
s
1/2
j

(
B−1/2AB−1/2

)
− 1

)2
]

= det
(
(1 + r)B−1/2AB−1/2 − rIn

)
+ rn det

(
(B−1/2AB−1/2)1/2 − In

)2

.

Finally, multiplying both sides of the inequality obtained by det(B1/2)
and utilizing the well known Binet-Cauchy theorem, we obtain (5.4),
as claimed. �

6. Reverses of the Young inequality dealing with singular
values. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn be such that
0 ≤ x1 ≤ · · · ≤ xn and 0 ≤ y1 ≤ · · · ≤ yn. Then x is said to be log
majorized by y, denoted by x ≺log y, if

k∏
j=1

xj ≤
k∏

j=1

yj , 1 ≤ k < n and
n∏

j=1

xj =
n∏

j=1

yj .

For X ∈ Mn and k = 1, . . . , n, the kth compound of X is de-
fined as the

(
n
k

)
×
(
n
k

)
complex matrix Ck(X), whose entries are de-

fined by Ck(X)r,s = detX[(r1, r2, . . . , rk) | (s1, s2, . . . , sk)], where
(r1, r2, . . . , rk), (s1, s2, . . . , sk) ∈ Pk,n = {(x1, . . . , xk) | 1 ≤ x1 < · · · <
xk ≤ n} are arranged in lexicographical order and (r1, r2, . . . , rk) and
(s1, s2, . . . , sk) are the rth and sth elements in Pk,n, respectively. X[r, s]
is the k×k matrix that contains the elements in the intersection of rows
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(r1, r2, . . . , rk) ∈ Pk,n and columns (s1, s2, . . . , sk) ∈ Pk,n (for more de-
tails, see [18]). For example, if n = 3 and k = 2, then (1, 2), (1, 3) and
(2, 3) are the first, second and third elements of Pk,n, respectively. So,

C2(X) =

detX[1, 2 | 1, 2] detX[1, 2 | 1, 3] detX[1, 2 | 2, 3]
detX[1, 3 | 1, 2] detX[1, 3 | 1, 3] detX[1, 3 | 2, 3]
detX[2, 3 | 1, 2] detX[2, 3 | 1, 3] detX[2, 3 | 2, 3]

 .

In the general case, for A,B ∈ Mn, we have

Ck(AB) = Ck(A)Ck(B)(6.1)

and

s1(Ck(A)) =

k∏
j=1

sj(A), 1 ≤ k ≤ n.

Finally, we use the corresponding ideas from [20] to present our last
result.

Theorem 6.1. Suppose that A,B ∈ Pn and X ∈ Mn. If r ≥ 0, then

(i) s(A1+rXB1+r) ≻log s1+r(AXB)s−r(X),
(ii) s(A1+rXB−r) ≻log s1+r(AX)s−r(XB).

Proof. (i) Let Ck(X) ∈ C(nk)×(nk) denote the kth component of X,

1 ≤ k ≤ n. Then, we have

k∏
i=1

si(A
1+rXB1+r) = s1(Ck(A

1+rXB1+r)) by (6.1)

= s1(Ck(A)
1+rCk(X)Ck(B)1+r) by (6.1)

≥ s−r
1 (Ck(X))s1+r

1 (Ck(AXB))

(by inequality (3.1))

=

k∏
i=1

s−r
i (X)

k∏
i=1

s1+r
i (AXB).
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Moreover, if k = n, we have

n∏
i=1

si(A
1+rXB1+r) = |det(A1+rXB1+r)|

= (detA)1+r|detX|(detB)1+r

and
n∏

i=1

si(X)−r
n∏

i=1

si(AXB)1+r = |detX−r| |det(AXB)1+r|

= (detA)1+r|detX|(detB)1+r.

(ii) The second conclusion can be accomplished by a similar argu-
ment as in (i) and by utilizing inequality (3.2). �
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