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REVERSED HARDY-LITTEWOOD-SOBOLEV INEQUALITY

JINGBO DOU AND MEIJUN ZHU

Abstract In this paper, we obtain a reversed Hardy-Littlewood-Sobolev in-
equality: for 0 < p, t < 1 and λ = n − α < 0 with 1/p+ 1/t+ λ/n = 2, there is a
best constant N(n, λ, p) > 0, such that

|

∫

Rn

∫

Rn

f(x)|x − y|−λg(y)dxdy| ≥ N(n, λ, p)||f ||Lp(Rn)||g||Lt(Rn)

holds for all nonnegative functions f ∈ Lp(Rn), g ∈ Lt(Rn). For p = t, we prove
the existence of extremal functions, classify all extremal functions via the method
of moving sphere, and compute the best constant.

1. Introduction

The classic sharp Hardy-Littlewood-Sobolev (HLS) inequality ([9, 10, 18, 15])
states that

|

∫

Rn

∫

Rn

f(x)|x− y|−(n−α)g(y)dxdy| ≤ N(n, λ, p)||f ||Lp(Rn)||g||Lt(Rn) (1.1)

holds for all f ∈ Lp(Rn), g ∈ Lt(Rn), 1 < p, t < ∞, 0 < λ := n − α < n and
1/p+1/t+λ/n = 2. Lieb [15] proved the existence of the extremal functions to the
inequality with sharp constant and computed the best constant in the case of p = t
(or one of these two parameters is two). The sharp HLS inequality implies sharp
Sobolev inequality, Moser-Trudinger-Onofri and Beckner inequalities [1], as well as
Gross’s logarithmic Sobolev inequality [6]. All these inequalities play significant role
in solving global geometric problems, such as Yamabe problem, Ricci flow problem,
etc. Besides recent extension of the sharp HLS on the Heisenberg group by Frank
and Lieb [5], there are at least two other directions concerning the extension of
the above sharp HLS inequality: (1) Extending the sharp inequality on general
manifolds, see, for example, Dou and Zhu [3] for such an extension on the upper
half space and related research; (2) Extending it for the negative exponent λ (that
is for the case of α > n). In this paper, we extend the sharp HLS inequality for the
negative exponent λ.

More specifically, in this paper, we prove that the reversed Hardy-Littlewood-
Sobolev inequality for 0 < p, t < 1, λ < 0 holds for all nonnegative f ∈ Lp(Rn), g ∈
Lt(Rn). For p = t, the existence of extremal functions is proved, all extremal
functions are classified via the method of moving sphere, and the best constant is
computed.

Prior to our research, it seems that the only result concerning λ < 0 was discussed
by Stein andWeiss [20] in 1960, where they showed that a HLS inequality (not in the
sharp form) for p ∈ ((n−1)/n, n/α) holds (Theorem G in [20]). However, the range

Mathematics Subject Classification(2010). 35A23, 42B37

Key words and phrases. Hardy-Littlewood-Sobolev inequality; Extremal function; Sharp

constant; Moving sphere method

1

http://arxiv.org/abs/1309.1974v3


for p does not include the important conformal invariant case p = t = 2n/(n+ α),
thus it seems hard to find the sharp constant. On the other hand, recent results on
sharp Sobolev type inequalities with negative exponents on Sn, (see, e.g. Yang and
Zhu [21], Hang and Yang [8] for the Paneitz operator on S3, and Ni and Zhu [17]
for the Laplacian operator on S

1), strongly indicate that certain HLS inequalities
for λ < 0 shall hold.

The main purpose of this paper is to establish the following reversed HLS in-
equality and its sharp form.

Theorem 1.1. For n ≥ 1, 0 < p, t < 1 and λ = n− α < 0 satisfying

1

p
+

1

t
+

λ

n
= 2, (1.2)

there is a best constant N∗(n, α, p) > 0, such that, for all nonnegative f ∈ Lp(Rn), g ∈
Lt(Rn),

∫

Rn

∫

Rn

f(x)|x − y|−λg(y)dxdy ≥ N∗(n, α, p)||f ||Lp(Rn)||g||Lt(Rn). (1.3)

For p < 1, the convention notation for f(x) ∈ Lp(Rn) means
∫

Rn |f(x)|pdx < ∞.
For p = t = 2n/(n+α), we are able to compute the sharp constant. In this case,

inequality (1.3) is equivalent to the following reversed HLS on sphere Sn: for all
nonnegative F ∈ Lp(Sn), G ∈ Lp(Sn),

∫

Sn

∫

Sn

F (ξ)|ξ − η|α−nG(η)dSξdSη ≥ N∗(n, α)||F ||Lp(Sn)||G||Lp(Sn), (1.4)

where and throughout the paper |ξ − η| is denoted as the chordal distance from ξ
to η in Rn+1, and N∗(n, α) is the same as N∗(n, α, 2n/(n+ α)).

For α ∈ (0,∞), define the classic singular integral operator on S
n by

ĨαF (ξ) =

∫

Sn

F (η)

|ξ − η|n−α
dSη, ∀ξ ∈ S

n. (1.5)

We have

Theorem 1.2. Let 1 ≤ n < α. For all nonnegative F ∈ L2n/(n+α)(Sn),

||ĨαF ||
L

2n
n−α (Sn)

≥ N∗(n, α)||F ||
L

2n
n+α (Sn)

, (1.6)

where the best constant

N∗(n, α) = π(n−α)/2 Γ(α/2)

Γ(n/2 + α/2)
{
Γ(n/2)

Γ(n)
}−α/n; (1.7)

And equality holds if and only if

F (ξ) = a(1− ξ · η)−
n+α

2

for some a > 0 and η ∈ Rn+1 with |η| < 1.

For α ∈ (0,∞), define the classic singular integral operator on R
n by

Iαf(x) =

∫

Rn

f(y)

|x− y|n−α
dy, ∀x ∈ R

n. (1.8)

From Theorem 1.2 and a stereographic projection, we have the sharp reversed HLS
inequality on R

n for p = t = 2n/(n+ α).
2



Corollary 1.3. Let 1 ≤ n < α. For all nonnegative function f ∈ L2n/(n+α)(Rn),

||Iαf ||
L

2n
n−α (Rn)

≥ N∗(n, α)||f ||
L

2n
n+α (Rn)

, (1.9)

where N∗(n, α) is given by (1.7); And the equality holds if and only if

f(x) = c
( 1

|x− x0|2 + d2
)

n+α
2

for some c, d > 0, and x0 ∈ Rn.

We outline the strategy in proving above theorems. The proof of Theorem
1.1 is along the line of the proof for the classic HLS inequality (see, e.g. Stein
[19]). The main difference is that our inequality is reversed. The reversed Hölder
inequality, converse Young’s inequality, as well as a new established Marcinkiewicz
interpolation involving exponents less than 1 (could be negative) are used. Our
proof for the existence of extremal functions is quite different to that for the sharp
HLS inequality (due to Lieb [15]), and we can only obtain the result for p = t =
2n/(n + α). We first prove Theorem 1.2 for F (ξ) ∈ L1(Sn). A density lemma
(Lemma 3.1) will be established, which allows us to reduce the proof for all L1

functions to continuous functions on Sn. The extra condition for functions (i.e.
F (ξ) ∈ L1(Sn)) will be removed while considering its dual form (inequality (1.4))∗.
In proving the existence of extremal functions, symmetrization argument is used.
We point out here that for α > n, there is a new phenomenon in proving the
convergence of the minimizing sequence {Fi}

∞
i=1: even Fi has a concentration mass,

the mass of ĨαFi may not. In other words, the classic concentration compactness
argument does not work. In fact, we show in Remark 3.3 that even a minimizing
sequence {Fi}

∞
i=1 pointwise converges to F , ĨαFj(ξ) may not converge to ĨαF (ξ)

pointwise. It is one of the main difficulties to show that there is a subsequence
of ĨαFj(ξ) that is a Cauchy sequence under certain metric. Another difficulty is
to classify all extremal functions in order to compute the sharp constant. This
is settled via the method of moving sphere, introduced in Li and Zhu [14]. Our
research certainly answers one of Y.Y. Li’s open questions in [12], where he asks
for the background for the study of the integral equation with negative exponents.

Quite natural question after we establish the reversed Hardy-Littlewood-Sobolev
inequality is: Can we derive certain Sobolev type inequalities (such as those Sobolev
inequalities with negative powers on S1 and on S3), and use these Sobolev inequal-
ities to investigate curvature equations (for example, the prescribing Q− curvature
on S3)? It is not obvious that one can derive Sobolev inequalities from the reversed
HLS inequality as in the case for HLS inequality. However, we are able to use
the reversed HLS inequality directly to derive the existence of solutions to certain
curvature equations, see Zhu [22]. From the view point given in Zhu [22], it seems
more natural to extend Lieb’s sharp HLS inequality on Sn to the ones on general
compact Riemannian manifolds, and use them to investigate curvature equations
(including a generalized Yamabe problem formulated in [22]. More details will be
given in a forthcoming paper [7].

The paper is organized as follows. Theorem 1.1 is proved in Section 2, where
a new Marcinkiewicz interpolation theorem is also stated and proved; Theorem
1.2 is proved in Section 3, where a Liouville theorem (Theorem 3.6) concerning an
integral system is also proved.

∗We thank C. Li, whose comment leads to the removal of the extra condition.
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2. reversed Hardy-Littlewood-Sobolev inequality

In this section, we prove Theorem 1.1: the reversed HLS inequality (with a rough
constant) in Rn for λ = n− α < 0.

2.1. Some basic inequalities. For p < 1 and p 6= 0, if f(x) satisfies
∫

Rn |f |pdx <

∞, we say f(x) ∈ Lp(Rn), and call (
∫

Rn |f |p)1/pdx (denoted as ||f ||Lp later) the Lp

norm of f(x). The Lp norm for p < 1 is not a norm for a vector space. Nevertheless,
certain integral inequalities still hold.

Lemma 2.1 (Reversed Hölder inequality). For p ∈ (0, 1), p′ = p/(p− 1), and

nonnegative functions f ∈ Lp(Rn) and g ∈ Lp′

(Rn),
∫

Rn

f(x)g(x)dx ≥ ‖f‖Lp‖g‖Lp′ .

The reversed Hölder inequality can be derived easily from the standard Hölder
inequality.

Lemma 2.2 (Converse Young’s inequality). Suppose that 0 < p < 1, and
q, r < 0 are three parameters satisfying 1

p + 1
q = 1 + 1

r . For any nonnegative

measurable functions h, g, define

g ∗ h(x) =

∫

Rn

g(x− y)h(y)dy.

Then

‖g ∗ h‖Lr ≥ ‖g‖Lq‖h‖Lp.

The proof of the above converse Young’s inequality can be found, e.g. in Bras-
camp and Lieb [2], where they also identified the best constant for the classic
Young’s inequality.

Lemma 2.3 (Reversed Minkowski inequality). If q < 0, then for any nonneg-
ative measurable functions F (x, y),

[

∫

Y

(

∫

X

F (x, y)dµ(x)
)q
dν(y)

]
1
q ≥

∫

X

(

∫

Y

[F (x, y)]qdν(y)
)

1
q dµ(x)

The proof for the reversed Minkowski inequality can be found in [11] (on P148).

To establish the reversed HLS inequality, we also need to extend the classic
Marcinkiewicz interpolation theorem for Lp function with p < 1.

Recall: for a given measurable function f(x) on Rn and 0 < p < ∞, the weak
Lp norm of f(x) is defined by

‖f‖Lp
W

= inf{A > 0 : meas{|f(x)| > t} · tp ≤ Ap},

For p < 0, we define the weak Lp norm for f(x) in a similar way:

||f ||Lp
W

:= sup{A > 0 : m{|f(x)| < t} · tp ≤ Ap}.

Thus, for p < 0,

||f ||p
Lp

W

:= inf{B > 0 : m{|f(x)| < t} · tp ≤ B}.

Let T : Lp(Rn) → Lq(Rn) be a linear operator. We recall that for 0 < p, q < ∞,
operator T is called the weak type (p, q) if there exists a constant C(p, q) > 0 such

4



that for all f ∈ Lp(Rn)

meas{x : |Tf(x)| > τ} ≤
(

C(p, q)
‖f‖Lp

τ

)q
, ∀ τ > 0.

Similarly, we can extend the definition of the weak type (p, q) to the case q < 0 <
p < 1.

Definition 2.1. For q < 0 < p < 1, we say operator T is of the weak type (p, q),
if there exists a constant C(p, q) > 0, such that for all f ∈ Lp(Rn),

meas{x : |Tf(x)| < τ} ≤
(

C(p, q)
‖f‖Lp

τ

)q
, ∀ τ > 0.

We now can state the extension to the classic Marcinkiewicz interpolation theo-
rem.

Proposition 2.2. Let T be a linear operator which maps any nonnegative function
to a nonnegative function. For a pair of numbers (p1, q1), (p2, q2) satisfying qi <
0 < pi < 1, i = 1, 2, p1 < p2 and q1 < q2, if T is weak type (p1, q1) and (p2, q2) for
all nonnegative functions, then for any θ ∈ (0, 1), and

1

p
=

1− θ

p1
+

θ

p2
,

1

q
=

1− θ

q1
+

θ

q 2

, (2.1)

then T is reversed strong type (p, q) for all nonnegative functions, that is,

‖Tf‖Lq ≥ C‖f‖Lp, ∀f ∈ Lp(Rn) and f ≥ 0, (2.2)

for some constant C = C(p1, p2, q1, q2, θ) > 0.

Proof. For any measurable function f(x), denote m̃g(τ) = meas{x : |g(x)| < τ}.
Easy to check that for r < 0, if g ∈ Lr(Rn), then

m̃g(τ) ≤
‖g‖rLr

τr
, ∀ τ > 0,

and

‖g‖rLr(X) = |r|

∫ ∞

0

tr−1m̃g(t)dt. (2.3)

For a nonnegative f(x) ∈ Lp1(Rn)∩Lp2(Rn) and γ > 0, write f = f1+f2, where

f1(x) =

{

f(x), if f(x) ≤ γ,

0, if f(x) > γ,

and

f2(x) =

{

0, if f(x) ≤ γ,

f(x), if f(x) > γ.

Thus

{x : Tf < τ} ⊂ {x : Tf1 <
τ

2
} ∪ {x : Tf2 <

τ

2
}.

Since T is weak type (p1, q1) and (p2, q2), we have

m̃Tf1(τ) ≤ c1(
‖f1‖Lp1

τ
)q1 , and m̃Tf2(τ) ≤ c2(

‖f2‖Lp2

τ
)q2 .
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It then follows from (2.3) that

‖Tf‖qLq = |q|

∫ ∞

0

tq−1m̃Tf (t)dt

≤ |q|

∫ ∞

0

tq−1[m̃Tf1{t/2}+ m̃Tf2{t/2}]dt

≤ C|q|

∫ ∞

0

tq−q1−1‖f1‖
q1
Lp1dt+ C|q|

∫ ∞

0

tq−q2−1‖f2‖
q2
Lp2dt

= C|q|V1 + C|q|V2, (2.4)

where

V1 =

∫ ∞

0

tq−q1−1‖f1‖
q1
Lp1dt, V2 =

∫ ∞

0

tq−q2−1‖f2‖
q2
Lp2dt.

From (2.1), we know

p1
q1

·
q − q1
p− p1

=
p2
q2

·
q − q2
p− p2

< 0.

Choose σ = p1

q1
· q−q1
p−p1

= p2

q2
· q−q2
p−p2

, and let k1 = q1
p1

< 0 and k2 = q2
p2

< 0. We have

p1 +
q − q1
σk1

= p2 +
q − q2
σk2

= p.

Let γ = ( t
A )σ with A being a constant to be specified later. From the reversed

Minkowski inequality, we have

V
1
k1
1 =

[

∫ ∞

0

(

∫

Rn

t
q−q1−1

k1 |f1(x)|
p1dx

)k1
dt
]

1
k1

≥

∫

Rn

(

∫ A|f(x)|
1
σ

0

tq−q1−1|f1(x)|
p1k1dt

)
1
k1 dx

=
(Aq−q1

q − q1

)
1
k1

∫

Rn

|f(x)|p1+
q−q1
σk1 dx.

That is

V1 ≤
Aq−q1

q − q1
·
(

∫

Rn

|f(x)|pdx
)k1

. (2.5)

For V2, we have

V
1
k2

2 =
[

∫ ∞

0

(

∫

Rn

t
q−q2−1

k2 |f2(x)|
p2dx

)k2
dt
]

1
k2

≥

∫

Rn

(

∫ ∞

A|f(x)|
1
σ

tq−q2−1|f2(x)|
p2k2dt

)
1
k2 dx

=
(Aq−q2

q2 − q

)
1
k2

∫

Rn

|f(x)|p2+
q−q2
σk2 dx.

Thus,

V2 ≤
Aq−q2

q2 − q
·
(

∫

Rn

|f(x)|pdx
)k2

. (2.6)

Substituting (2.5) and (2.6) into (2.4), we have

‖Tf‖qLq ≤ C(V1 + V2) ≤ C(Aq−q1‖f‖pk1

Lp +Aq−q2‖f‖pk2

Lp ).

Choosing suitable A > 0 such that

Aq−q1‖f‖pk1

Lp = Aq−q2‖f‖pk2

Lp .
6



We obtain

‖Tf‖qLq ≤ C‖f‖qLp .

�

2.2. The rough reversed HLS inequality. We are now ready to prove the re-
versed HLS inequality with a rough constant (Theorem 1.1).

The reversed HLS inequality with a rough constant can be derived from the
following proposition.

Proposition 2.3. For any 1 ≤ n < α, n
α < p < 1 and q given by

1

q
=

1

p
−

α

n
, (2.7)

there exists a constant C = C(n, α, p) > 0, such that for all nonnegative f ∈
Lp(Rn),

||Iαf ||Lq ≥ C||f ||Lp . (2.8)

It follows from (2.8) and the reversed Hölder inequality that for nonnegative
functions f ∈ Lp and g ∈ Lt,

< Iαf, g >≥ C||f ||Lp · ||g||Lt ,

where t = q′ = q
q−1 (thus t ∈ (0, 1)); Which yields: for α > n,

|

∫

Rn

∫

Rn

f(x)|x − y|α−ng(y)dxdy| ≥ C||f ||Lp ||g||Lt ,

where t, p satisfy

1−
1

t
=

1

p
−

α

n
⇔

1

p
+

1

t
+

n− α

n
= 2.

Proof of Proposition 2.3. For 1 ≤ n < α, p ∈ (nα , 1) and q given by (2.7), we
first prove

‖Iαf‖Lq

W
≥ C(n, α, p)‖f‖Lp (2.9)

for some constant C(n, α, p). That is, we need to show that there is a constant
C(n, α, p) > 0, such that

meas{x : |Iαf(x)| < τ} ≤
(

C(n, α, p)
‖f‖Lp

τ

)q
, ∀f ∈ Lp(Rn) and f(x) ≥ 0, ∀ τ > 0.

(2.10)
Inequality (2.9) then implies (2.8) via the new Marcinkiewicz interpolation (Propo-
sition 2.2).

For any ρ > 0, define

I1α,ρf(x) =

∫

|y−x|≤ρ

f(y)

|x− y|n−α
dy,

and

I2α,ρf(x) =

∫

|y−x|>ρ

f(y)

|x− y|n−α
dy.

Note both I1α,ρ and I2α,ρ map nonnegative functions to nonnegative functions. Thus,
for any τ > 0,

meas{x : Iαf(x) < 2τ} ≤ meas{x : I1α,ρf(x) < τ}+meas{x : I2α,ρf(x) < τ}.
(2.11)

7



We note that it suffices to prove inequality (2.10) with 2τ in place of τ in the left
side of the inequality, and we can further assume ‖f‖Lp = 1.

Using the converse Young’s inequality, we have

‖I1α,ρf‖Lr1 ≥
(

∫

Rn

(χρ(|x − y|)

|x− y|n−α

)t1
dy

)
1
t1 ‖f‖Lp

=: D1.

where 1
p + 1

t1
= 1 + 1

r1
with t1 ∈ ( n

n−α , 0), r1 < 0, χρ(x) = 1 for |x| ≤ ρ and

χρ(x) = 0 for |x| > ρ, and

D1 =
(

∫

Bρ(x)

1

|x− y|(n−α)t1
dy

)
1
t1 = C1(n, α)ρ

n−(n−α)t1
t1 .

It follows that

meas{x : |I1α,ρf | < τ} ≤
‖I1α,ρf‖

r1
Lr1

τr1
≤

C2(n, α)ρ
r1[n−(n−α)t1]

t1

τr1
. (2.12)

On the other hand, by the converse Young’s inequality, we have

‖I2α,ρf‖Lr2 ≥
(

∫

Rn

(1− χρ(|x− y|)

|x− y|n−α

)t2
dy

)
1
t2 ‖f‖Lp

=: D2,

where 1
p + 1

t2
= 1 + 1

r2
with t2 < n

n−α , r2 < 0. Easy to see: r2 < np
n−αp < r1. Also,

D2 =
(

∫

Rn\Bρ(x)

( 1

|x− y|n−α

)t2
dy

)
1
t2 = C3(n, α)ρ

n−(n−α)t2
t2 .

It follows that

meas{x : |I2α,ρf | < τ} ≤
‖I2α,ρf‖

r2
Lr2

τr2
≤

C4(n, α)ρ
r2[n−(n−α)t2]

t2

τr2
. (2.13)

Bringing (2.12) and (2.13) into (2.11), we have

meas{x : |Iαf | < 2τ} ≤
C2(n, α)ρ

r1[n−(n−α)t1]

t1

τr1
+

C4(n, α)ρ
r2[n−(n−α)t2]

t2

τr2
.

Now, choosing ρ = τ
p

pα−n , we have

p r1
pα− n

· [
n

t1
− (n− α)]− r1 =

pr1
pα− n

[

n
(

1 +
1

r1
−

1

p

)

− n+ α
]

− r1

=
pr1

pα− n

[np− r1n+ pr1α

r1p

]

− r1

= −
np

n− pα
= −q.

Similarly, p r2
pα−n · [ nt2 − (n− α)]− r2 = − np

n−pα = −q. we then obtain (2.10). �

3. Existence and classifications of extremal functions for sharp
inequalities

We shall discuss the sharp form of the reversed HLS and prove Theorem 1.2 in
this section.
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3.1. Existence of extremal functions. In the case of p = t, we are able to show
the existence of extremal functions. In this regard, it is relatively easier to state
the sharp form of the inequality on the standard sphere Sn.

Let S : x ∈ Rn → ξ ∈ Sn\(0, 0, · · · ,−1) be the inverse of a stereographic
projection, defined by

ξj :=
2xj

1 + |x|2
, for j = 1, 2, · · · , n; ξn+1 :=

1− |x|2

1 + |x|2
.

Easy to check (or, see e.g. [15, 16]): for x, y ∈ Rn, ξ ∈ Sn,

|S(x) − S(y)| =
[ 4|x− y|2

(1 + |x|2)(1 + |y|2)

]
1
2 , dξ =

( 2

1 + |x|2
)n
dx.

The area of the unit sphere in Rn+1 is given by

|Sn| :=

∫

Sn

dξ = 2π
n+1
2

[

Γ
(n+ 1

2

)]−1
= 2nπ

n
2
Γ(n/2)

Γ(n)
.

For 1 ≤ n < α, let p = 2n
n+α , q = 2n

n−α throughout whole subsection 3.1. For any

F (ξ) ∈ Lp(Sn), let x = S−1(ξ) ∈ Rn, and define f(x) :=
(

2
1+|x|2

)
n+α

2 F (ξ). Also

recall

ĨαF (ξ) =

∫

Sn

F (η)

|ξ − η|n−α
dη.

Direct computation yields
∫

Sn

|F (ξ)|pdξ =

∫

Rn

( 2

1 + |x|2
)−n

|f(S−1(ξ))|p
( 2

1 + |x|2
)n
dx =

∫

Rn

|f(x)|pdx;

And

‖ĨαF‖qLq(Sn) =

∫

Sn

(

∫

Sn

F (η)

|ξ − η|n−α
dη

)q
dξ

=

∫

Rn

(

∫

Rn

( 2

1 + |y|2
)−n+α

2 f(S−1(η))
[ 4|x− y|2

(1 + |x|2)(1 + |y|2)

]−n−α
2

×
( 2

1 + |y|2
)n
dy

)q( 2

1 + |x|2
)n
dx

=

∫

Rn

(

∫

Rn

f(y)

|x− y|n−α
dy

)q
dx.

Thus

‖F‖Lp(Sn) = ‖f‖Lp(Rn), and ‖ĨαF‖Lq(Sn) = ‖Iαf‖Lq(Rn). (3.1)

We hereby have an equivalent sharp reversed HLS inequality (1.4) for all non-
negative F (ξ), G(ξ) ∈ Lp(Sn). The sharp constant to inequality (1.6) is classified
by

N∗(n, α) = inf{‖ĨαF‖Lq(Sn) : F ≥ 0, ‖F‖Lp(Sn) = 1}

= inf{‖Iαf‖Lq(Rn) : f ≥ 0, ‖f‖Lp(Rn) = 1}. (3.2)

We remark that we only need to show that sharp inequality (1.6) holds for all
nonnegative F ∈ L1(Sn). In fact, if for all nonnegative F,G ∈ L1(Sn),

∫

Sn

∫

Sn

F (ξ)|ξ − η|α−nG(η)dSξdSη ≥ N∗(n, α)||F ||Lp(Sn)||G||Lp(Sn),

9



then for any nonnegative u, v ∈ Lp(Sn), we consider uA = min(u,A) ∈ L1(Sn) and
vA = min(v,A) ∈ L1(Sn), thus

∫

Sn

∫

Sn

uA(ξ)|ξ − η|α−nvA(η)dSξdSη ≥ N∗(n, α)||uA||Lp(Sn)||vA||Lp(Sn).

Sending A → ∞, we obtain via the monotone convergence theorem the desired
sharp inequality for u, v ∈ Lp(Sn).

Since we are dealing with a reserved inequality, the usual density argument
does not work here. More specifically, even one can prove inequality (1.3) for all
f, g ∈ C∞

0 (Rn), it is not obvious that the inequality also holds for general function
f ∈ Lp(Rn) and g ∈ Lt(Rn). So we need to establish the following density lemma
on Sn.

Lemma 3.1. (Density Lemma) Let F (ξ) ∈ L1(Sn) be a nonnegative function
with ‖F‖Lp(Sn) = 1. For any ǫ > 0, there is a nonnegative G(ξ) ∈ C0(Sn), such
that

||F −G||Lp(Sn) +
∣

∣||ĨαF ||Lq(Sn) − ||ĨαG||Lq(Sn)

∣

∣ < ǫ.

Proof. Let {Gi}
∞
i=1 be a sequence of nonnegative, continuous functions such that

||Gi − F ||L1(Sn) → 0 as i → ∞. Then, for any ξ ∈ Sn, as i → ∞,

|ĨαGi(ξ) − ĨαF (ξ)| ≤

∫

Sn

|Gi(η)− F (η)| · |ξ − η|α−ndη

≤ C

∫

Sn

|Gi(η)− F (η)|dη → 0.

Since ||F ||Lp(Sn) = 1, we know that ||F ||L1(Sn) ≥ C > 0. This implies that ĨαF (ξ)

is a continuous and positive function. Thus ĨαGi(ξ) ≥ C > 0 for large i. From the
dominant convergent theorem, we have

lim inf
i→∞

∫

Sn

|ĨαGi|
q =

∫

Sn

|ĨαF |q.

Lemma 3.1 then follows from the above. �

Next, we prove that the infimum in (3.2) is attained. Due to Lemma 3.1 and the
remark before it, we can choose {Fj}

∞
j=1 ∈ C0(Sn) to be a nonnegative minimizing

sequence with ‖Fj‖Lp = 1. Let fj(x) :=
(

2
1+|x|2

)

n+α
2 Fj(S(x)), then {fj}

∞
j=1 ∈

C0(Rn) is the nonnegative corresponding minimizing sequence with ‖fj‖Lp = 1 on
Rn.

For a given nonnegative measurable function u(x) on Rn decaying at infinity, we
can define its radially symmetric, non-increasing rearrangement function u∗. u∗(x)
is a nonnegative lower-semicontinuous function and has the same distribution as
u. Define v∗ = ((v−1)∗)−1, then v∗ is radially symmetric, increasing rearrangement
function. It is known (see, e.g. the proof of Proposition 9 in Brascamp and Lieb
[2]) that

∫

Rn

∫

Rn

u(x)w(x − y)v(y)dydx ≥
∫

Rn

∫

Rn u∗(x)w∗(x− y)v∗(y)dydx

=
∫

Rn

∫

Rn u∗(x)v∗(x − y)w∗(y)dydx.
10



Suppose that ‖w‖Lq′ (Rn) = ‖w∗‖Lq′(Rn) = 1 for 0 < q′ < 1. Then for q < 0 and

q′ = q/(q − 1), we have

‖u ∗ v‖Lq = inf
‖w‖

Lq′=1

∫

Rn

∫

Rn

u(x)v(x − y)w(y)dydx

≥ inf
‖w∗‖

Lq′=1

∫

Rn

∫

Rn

u∗(x)v∗(x− y)w∗(y)dydx

≥ inf
‖w∗‖

Lq′=1

∫

Rn

(

∫

Rn

(u∗(x)v∗(x − y))qdy
)

1
q
(

∫

Rn

(w∗(y))q
′

dy
)

1
q′ dx

= ‖u∗ ∗ v∗‖Lq . (3.3)

Let f∗
j be the non-increasing radial symmetric rearrangement of fj . Since

‖f∗
j ‖Lp = ‖fj‖Lp = 1,

and

‖Iα(fj)‖
q
Lq =

∫

Rn

∫

Rn

(

∫

Rn

fj(y)

|x− y|n−α
dy

)q
dx

≤

∫

Rn

(

∫

Rn

f∗
j (y)

|x− y|n−α
dy

)q
dx (by (3.3))

= ‖Iα(f
∗
j )‖

q
Lq ,

we know that {f∗
j }

∞
j=1 is also a minimizing sequence. Without loss of generality, we

can assume that {fj}
∞
j=1 is a nonnegative radially symmetric and non-increasing

minimizing sequence.
For α ∈ (0, n), to avoid that fj converges to a trivial function, Lieb modified his

maximizing sequence via a technical lemma (Lemma 2.4 in Lieb [15]). In our case,
we need to modify the minimizing sequence in a similar way so that both Iαfj and
fj will stay away from the trivial function via the following lemma.

Lemma 3.2. Let p1 ∈ (0, 2n/(n+α)), and s ∈ ( n
n−α , 0) be two parameters satisfy-

ing 1
p1
+ 1

s−1 = n−α
2n . Suppose that f ∈ Lp(Rn) is a nonnegative, radially symmetric

function satisfying f(|x|) ≤ ε|x|−
n
p for all |x| > 0. Then, there exists a constant

Cn independent of f and ε such that

‖Iαf‖Lq(Rn) ≥ Cnε
1− p

p1 ‖f‖
p
p1

Lp(Rn). (3.4)

Proof. Our proof is similar to that of Lemma 2.4 in Lieb [15].
Define F : R → R by

F (u) = e
un
p f(eu).

We can easily see that

(nωn)
1
p ‖F‖Lp(R) = ‖f‖Lp(Rn), and ‖F‖L∞(R) ≤ ε,

where ωn = 2π
n
2

n Γ(n2 ) denotes the volume of the n-dimensional unit ball. Define
h = Iαf . Easy to see that h is radially symmetric. Define H : R → R by

H(u) = e
un
q h(eu).

Then

(nωn)
1
q ‖H‖Lq(R) = ‖h‖Lq(Rn).

11



By integrating dx over angles in Rn, an explicit form for H can be obtained as
follows.

H(u) =

∫ +∞

−∞

Ln(u− v)F (v)dv,

where

Ln(u) =
(1

2

)
n−α

2 eu(
n
q
−n−α

2 )Zn(u),

Zn(u) =

{

(n− 1)ωn−1

∫ π

0
(coshu− cos θ)

α−n
2 (sin θ)n−2dθ, n ≥ 2,

(coshu+ 1)
α−n

2 + (coshu− 1)
α−n

2 , n = 1.

We have Ln ∈ Ls(R) for any given s < 0.
Now, by the converse Young inequality (Lemma 2.2), for given p1 ∈ (0, 2n/(n+

α)), and s ∈ ( n
n−α , 0) satisfying

1
p1

+ 1
s − 1 = n−α

2n = 1
q , we have

‖H‖Lq(R) ≥ ‖Ln‖Ls(R)‖F‖Lp1(R). (3.5)

On the other hand, since p1 < p < 1, we have

‖F‖Lp1(R) =
(

∫ +∞

−∞

|F (v)|p|F (v)|p1−pdv
)

1
p1

≥ ‖F‖
1− p

p1

L∞(R)‖F‖
p
p1

Lp(R)

≥ ε1−
p
p1 ‖F‖

p
p1

Lp(R).

Combining the above with (3.5), we obtain (3.4). �

For convenience, denote e1 = (1, 0, · · · , 0, 0) ∈ R
n, and define

aj := sup
λ>0

λ−n
p fj(

e1
λ
).

Note that for y ∈ Rn,

fj(y) = fj(|y|e1) = |y|−
n
p |y|

n
p fj(|y|e1) ≤ aj |y|

−n
p ,

and ‖Iαfj‖Lq → N∗(n, α) < ∞. We know from Lemma 3.2 that aj ≥ 2c0 > 0.

For any given nonnegative function g(x) and λ > 0, define gλ(x) = λ−n
p g(xλ).

Easy to check that

Iαg
λ(x) = λα−n

p (Iαg)(
x

λ
);

and

‖gλ‖Lp = ‖g‖Lp, ‖Iα(g
λ)‖Lq = ‖Iαg‖Lq . (3.6)

For each j, choose λj so that f
λj

j (e1) ≥ c0. Due to (3.6), we know that {f
λj

j }∞j=1

is also a minimizing sequence. Therefore, we can further assume that there is a
nonnegative, radially symmetric and non-increasing minimizing sequence {fj}

∞
j=1

with ‖fj‖Lp = 1 and fj(e1) ≥ c0. Similar to Lieb’s argument, we know, up to a
subsequence, that fj → f◦ a.e. in Rn.

Consider the corresponding minimizing sequence Fj(ξ) =
( 1+|S−1(ξ)|2

2

)

n+α
2 fj(S

−1(ξ)),

and F◦(ξ) =
( 1+|S−1(ξ)|2

2

)

n+α
2 f◦(S

−1(ξ)). We know Fj(ξ) = Fj(ξ
n+1). Denote

N = (0, ..., 0, 1) as the north pole of the sphere, and ξ1 = S(e1). So Fj(ξ1) ≥ c0,
12



and Fj(ξ) ≥ 2−(n+α)/2c0 for all ξ in the geodesic ball Br0(N) where r0 = dis(ξ1,N)
on Sn. Thus, there is a positive universal constant C > 0, such that

ĨαFj(ξ) ≥ C, ∀ ξ ∈ S
n. (3.7)

If ĨαFj(ξ) → +∞ almost everywhere, then the dominant convergent theorem

(using (3.7)) yields that limj→∞

∫

Sn
|ĨαFj(ξ)|

q = 0. But limj→∞

∫

Sn
|ĨαFj(ξ)|

q =

(N∗(n, α))q > 0. Contradiction. Thus for η = (0, ..., 0, ηn+1) and ηn+1 ∈ (a, b) ⊂

(−1, 1), ĨαFj(η) < C(a, b) for certain constant −1 ≤ a < b ≤ 1 and a constant
C(a, b) depending only on a, b. This yields

∫

Sn

Fj ≤ Ca,b (3.8)

for some constant Ca,b only depending on a, b. From (3.8) we know that sequence

{ĨαFj} is uniformly bounded and equicontinuous on Sn. Up to a subsequence,

ĨαFj(ξ) → L(ξ) ∈ C0(Sn). Using Fatou Lemma and the reversed HLS, we have, up
to a further subsequence, for m ∈ N, that

0 ≥
(

lim
j→∞

∫

Sn

|ĨαFj(ξ) − ĨαFj+m(ξ)|q
)1/q

≥ C( lim
j→∞

||Fj − Fj+m||qLp)
1/q.

Thus ||Fj−Fj+m||Lp → 0. Since Fj → F◦ pointwise, we know that ||Fj−F◦||Lp → 0,
thus ||F◦||Lp = 1.

On the other hand, the dominant convergent theorem (using (3.7)) yields limj→∞

∫

Sn
|ĨαFj(ξ)|

q =
∫

Sn
|L(ξ)|q, and we know from Fatou Lemma that

L(ξ) = lim
j→∞

ĨαFj(ξ) ≥ ĨαF◦(ξ).

It follows that
(

∫

Sn

|L(ξ)|q
)1/q

≥
(

∫

Sn

|ĨαF◦(ξ)|
q
)1/q

.

Thus the inf{‖ĨαF‖Lq(Sn) : F ≥ 0, ‖F‖Lp(Sn) = 1} is achieved by F◦(ξ).

Remark 3.3. It is not clear whether the pointwise convergence

ĨαFj(ξ) → ĨαF◦(ξ) a.e.on S
n (3.9)

is true or not. Even though we tend to believe this is the case, we do not know
how to prove it. On the other hand, we point out here that a new phenomenon
does arise while dealing with a concentrating minimizing sequence for q < 0. We
will show that without assuming that fj(e1) ≥ c0 for the corresponding minimizing
sequence {fj(x)} defined on R

n, the pointwise convergence (3.9) may not be true.
This is opposite to the case for q > 0, where the pointwise convergence (3.9) usually
holds for extremal sequences.

In fact, for

fj(x) = (
ǫj

ǫ2j + |x|2
)

n+α
2

where ǫj → 0 as j → ∞, we know fj → f◦ = 0 a.e. in Rn. One may check directly
that Iαfj does not converge to 0 a.e. in Rn (in fact, Iαfj → ∞ a.e. in Rn). This
can also be observed from the reversed HLS inequality:

‖Iα|fj − f◦|‖Lq ≥ C(n, α, p)‖fj − f◦‖Lp . (3.10)
13



if Iαfj → 0 pointwise, from Fatou Lemma, we know that the left side in (3.10) will
go to 0, but the right side ||fj||Lp = constant > 0. Impossible.

Let F◦ ∈ Lp(Sn) be a nonnegative minimizer. After normalization, we can

assume ||F◦||Lp = 1. Easy to see ĨαF◦(ξ) ≥ C > 0. Thus, for any positive smooth
test function φ ∈ C∞(Sn), we have

∫

Sn

F p−1
◦ (ξ)φ(ξ)dξ ≤ C

∫

Sn

∫

Sn

(ĨαF◦(η))
q−1

|η − ξ|n−α
φ(ξ)dηdξ ≤ C1 < ∞. (3.11)

Since p < 1, we conclude that there is a positive constant c0 > 0 such that F◦(ξ) >
c0 everywhere on Sn. Thus F◦(ξ) is a weak positive solution to

F p−1
◦ (ξ) =

∫

Sn

(ĨαF◦(η))
q−1

|ξ − η|n−α
dη, ∀ ξ ∈ S

n. (3.12)

To complete the proof of Theorem 1.2, we need to classify all positive solutions
to (3.12), and to computer the best constant next.

Let f(x) :=
(

2
1+|x|2

)
n+α

2 F◦(S(x)), then f(x) is a measurable positive function,

satisfying:

fp−1(x) =

∫

Rn

(Iαf(y))
q−1

|x− y|n−α
dy, ∀x ∈ R

n. (3.13)

3.2. Extremal functions and best constant. We will classify all positive, mea-
surable solutions to equation (3.13) via the method of moving sphere for p =
2n/(n+ α) and q = 2n/(n− α), and compute the best constant N∗(n, α).

For R > 0, x ∈ Rn, denote

BR(x) = {y ∈ R
n : |y − x| < R}, and Σx,R = R

n\BR(x).

For x = 0, we write BR = BR(0),ΣR = Σ0,R.

3.2.1. Regularity. First, we show that positive solutions to (3.13) are smooth except
the case that the function f(x) (thus Iαf(x)) is infinity everywhere. Throughout
this subsection, we always assume that f is a positive measurable function satisfying
(3.13) such that both f and Iαf 6≡ ∞.

Define u(y) = fp−1(y), v(x) = Iαf(x), θ = 1
p−1 < 0 and κ = q − 1 < 0. Then

u, v are also positive measurable functions and the single equation (3.13) can be
rewritten as an integral system

{

u(y) =
∫

Rn |x− y|α−nvκ(x)dx, y ∈ Rn,

v(x) =
∫

Rn |x− y|α−nuθ(y)dy, x ∈ Rn.
(3.14)
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Lemma 3.4. For 1 ≤ n < α and θ, κ < 0, if (u, v) is a pair of positive Lebesgue
measurable solutions to (3.14), then

(i)

∫

Rn

(1 + |y|α−n)uθ(y)dy < ∞, and

∫

Rn

(1 + |x|α−n)vκ(x)dx < ∞;

(ii) a := lim
|y|→∞

|y|n−αu(y) =

∫

Rn

vκ(x)dx < ∞,

b := lim
|x|→∞

|x|n−αv(x) =

∫

Rn

uθ(y)dy < ∞;

(iii) for some constants C1, C2 > 0,

1 + |y|α−n

C1
≤ u(y) ≤ C1(1 + |y|α−n), ∀ y ∈ R

n,

1 + |x|α−n

C2
≤ v(x) ≤ C2(1 + |x|α−n), ∀x ∈ R

n.

Proof. The proof is the same as that of Lemma 5.1 in Li [12]. We include details
for the completion of the paper.

Since u, v 6≡ ∞, we know that

meas{y ∈ R
n : u(y) < ∞} > 0, and meas{x ∈ R

n : v(x) < ∞} > 0.

Thus, there exist R > 1 and some measurable set E such that

E ⊂ {x ∈ R
n : v(x) < R} ∩BR

with |E| > 1
R . It follows, for any y ∈ Rn, that

u(y) =

∫

Rn

|x− y|α−nvκ(x)dx

≥

∫

E

|x− y|α−nvκ(x)dx

≥ Rκ

∫

E

|x− y|α−ndy.

And then,

lim
|y|→∞

u(y)

(1 + |y|α−n)
≥ lim

|y|→∞

Rκ

(1 + |y|α−n)

∫

E

|x− y|α−ndx = CRκ−1.

This shows

u(y) ≥
(1 + |y|α−n)

C1
.

Similarly, for any x ∈ Rn, we have

v(x) ≥
(1 + |x|α−n)

C2
.

This implies that the left hand side inequalities in (iii) hold.
On the other hand, for some y0 ∈ Rn with 1 ≤ |y0| ≤ 2,

∫

Rn

|x− y0|
α−nvκ(x)dx = u(y0) < ∞;

And, for some x0 ∈ Rn with 1 ≤ |x0| ≤ 2,
∫

Rn

|x0 − y|α−nuθ(y)dy = v(x0) < ∞.

15



From the left hand side inequalities in (iii) and the above, we obtain (i).
For |x| ≥ 1,

|x− y|α−n

|x|α−n
uθ(y) ≤ (1 + |y|α−n)uθ(y),

and for |y| ≥ 1,

|x− y|α−n

|y|α−n
vκ(x) ≤ (1 + |x|α−n)vκ(x).

Combining these with (i) and using the dominated convergence theorem we have
(ii) :

a = lim
|y|→∞

|y|n−αu(y) = lim
|y|→∞

∫

Rn

|x− y|α−n

|y|α−n
vκ(x)dx =

∫

Rn

vκ(x)dx < ∞,

and

b = lim
|x|→∞

|x|n−αv(x) = lim
|x|→∞

∫

Rn

|x− y|α−n

|x|α−n
uθ(y)dy =

∫

Rn

uθ(y)dy < ∞.

Combining (i) and (ii) with (3.14), we have the right side inequality in (iii). �

Lemma 3.5. For 1 ≤ n < α and θ, κ < 0, if (u, v) is a pair of positive Lebesgue
measurable solutions to (3.14), then u, v ∈ C∞(Rn).

Proof. Again, we adopt the proof given in Li [12]. For R > 0, we can split u into
following two parts

u(y) =

∫

|y|≤2R

|x− y|α−nvκ(x)dx +

∫

|y|>2R

|x− y|α−nvκ(x)dx

= J1(x) + J2(x).

From Lemma 3.4 (i) we know that J2(x) can be differentiated under the integral
for |y| < R, so J2 ∈ C∞(BR). On the other hand, by Lemma 3.4 (iii), we have
vκ ∈ L∞(B2R), it is obvious that J1 is at least Hölder continuous in BR. Since
R > 0 is arbitrary, u is Hölder continuous in Rn. Thus, uθ is Hölder continuous
in B2R. Similarly, we have v, vκ are Hölder continuous in B2R. By bootstrap, we
conclude that u, v ∈ C∞(Rn). �

3.2.2. Classification of solutions to (3.14). In this part, we classify all nonnegative,
non-infinity solutions to integral system (3.14) for θ = κ = (n + α)/(n − α) (that
is: for 1 ≤ n < α, p = 2n/(n+ α), q = 2n/(n− α) in (3.13)).

From the above discussion, we know that if (u, v) is a pair of positive measurable
solutions to system (3.14) which is not identical infinity, then u, v ∈ C∞(Rn).

Theorem 3.6. For 1 ≤ n < α and θ = κ = (n + α)/(n − α), if (u, v) is a pair
of positive finite smooth solutions to system (3.14), then u, v must be the following
forms on Rn:

u(ξ) = c1
( 1

|ξ − ξ0|2 + d2
)

n−α
2 ,

v(ξ) = c2
( 1

|ξ − ξ0|2 + d2
)

n−α
2 ,

where c1, c2 > 0, d > 0, ξ0 ∈ Rn.
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Remark 3.7. If one can prove that u is proportional to v first, then system (3.14)
can be reduced to a single equation, and the classification result for the single
equation was early obtained by Li [12]. However, it is not obvious to us that u is
proportional to v, even though one can show that it is the case for the classic HLS
inequality. In the meantime, our current work certainly gives an answer to Li’s
open question 1 in [12].

The above theorem will be proved via the method of moving sphere, following
the proof for a single equation given in Li [12].

For x ∈ Rn and λ > 0, we define the following transform:

ωx,λ(ξ) =
( λ

|ξ − x|

)n−α
ω(ξx,λ), ∀ξ ∈ R

n \{x},

where

ξx,λ = x+
λ2(ξ − x)

|ξ − x|2

is the Kelvin transformation of ξ with respect to Bλ(x). Also we write ωk
x,λ(ξ) :=

(ωx,λ(ξ))
k for any give power k.

Lemma 3.8. Let 1 ≤ n < α and θ, κ < 0. If (u, v) is a pair of positive solutions
to system (3.14), then, for any x ∈ Rn,

ux,λ(ξ) =

∫

Rn

vκx,λ(η)

|ξ − η|n−α

( λ

|η − x|

)τ1
dη, ∀ ξ ∈ R

n, (3.15)

vx,λ(η) =

∫

Rn

uθ
x,λ(ξ)

|ξ − η|n−α

( λ

|ξ − x|

)τ2
dξ, ∀ η ∈ R

n, (3.16)

where τ1 = n+ α− κ(n− α), τ2 = n+ α− θ(n− α). Moreover,

ux,λ(ξ) − u(ξ) =

∫

Σx,λ

K(x, λ; ξ, η)
[

vκ(η)−
( λ

|η − x|

)τ1
vκx,λ(η)

]

dη, (3.17)

vx,λ(η)− v(η) =

∫

Σx,λ

K(x, λ; η, ξ)
[

uθ(ξ)−
( λ

|ξ − x|

)τ2
uθ
x,λ(ξ)

]

dξ, (3.18)

where

K(x, λ; ξ, η) =
( λ

|ξ − x|

)n−α 1

|ξx,λ − η|n−α
−

1

|ξ − η|n−α
,

and

K(x, λ; ξ, η) > 0, for ∀ ξ, η ∈ Σx,λ, λ > 0.

Proof. The proof is similar to that of Lemma 5.3 in [12]. See also our early work
[3]. We skip details here.

�

It is clear in Lemma 3.8 that τ1 = τ2 = 0 if and only if θ = κ = n+α
n−α . From now

on in this subsection, we assume that θ = κ = n+α
n−α .

The next lemma indicates that the procedure of moving sphere can be started.

Lemma 3.9. Assume the same conditions on n, α, θ and κ as those in Theorem
3.6. Then for any x ∈ Rn, there exists λ0(x) > 0 such that: ∀ 0 < λ < λ0(x),

ux,λ(ξ) ≥ u(ξ), ∀ξ ∈ Σx,λ,

vx,λ(η) ≥ v(η), ∀η ∈ Σx,λ.
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Proof. The proof is similar to that of Lemma 5.4 in [12]. For simplicity, we assume
x = 0, and write uλ = u0,λ.

Since n < α and u ∈ C1(Rn) is a positive function, there exists r0 ∈ (0, 1), such
that

∇ξ

(

|ξ|
n−α

2 u(ξ)
)

· ξ < 0, ∀ 0 < |ξ| < r0.

Thus,

uλ(ξ) > u(ξ), ∀ 0 < λ < |ξ| < r0. (3.19)

Using Lemma 3.4 (iii), we have

u(ξ) ≤ C(r0)|ξ|
α−n, ∀ |ξ| ≥ r0.

For small λ0 ∈ (0, r0) and any 0 < λ < λ0, by (iii) of Lemma 3.4 and (3.19)

uλ(ξ) =
( λ

|ξ|

)n−α
u(

λ2ξ

|ξ|2
) ≥

( |ξ|

λ0

)α−n
inf
Br0

u ≥ u(ξ), |ξ| ≥ r0.

Combining the above with (3.19), we conclude

ux,λ(ξ) ≥ u(ξ), ∀ξ ∈ Σx,λ

with x = 0 and λ0(x) = λ0. In the same way, we can prove the inequality for v(η).
�

For a given x ∈ Rn, define

λ̄(x) = sup{µ > 0 |ux,λ(ξ) ≥ u(ξ), and vx,λ(η) ≥ v(η), ∀λ ∈ (0, µ), ∀ ξ, η ∈ Σx,λ}.

The next lemma shows: if the sphere stops, then we have conformal invariant
properties for solutions.

Lemma 3.10. For some x0 ∈ Rn, if λ̄(x0) < ∞, then

ux0,λ̄(x0)(ξ) = u(ξ), ∀ξ ∈ R
n,

vx0,λ̄(x0)(η) = v(η), ∀η ∈ R
n.

Proof. Again, the proof is similar to that of Lemma 5.5 in [12].
Without loss of generality, we assume that x0 = 0, and write λ̄ = λ̄(0), uλ =

u0,λ, vλ = v0,λ, ξ
λ = ξ0,λ, ηλ = η0,λ. By the definition of λ̄,

uλ̄(ξ) ≥ u(ξ), vλ̄(η) ≥ v(η), ∀ |ξ|, |η| ≥ λ̄.

Noting that τ1 = τ2 = 0 for θ = κ = n+α
n−α . Thus, using (3.17) and (3.18) with

x = 0, λ = λ̄, and the positivity of the kernel, we know that there are following two
cases:

(a) uλ̄(ξ) = u(ξ) and vλ̄(η) = v(η) for all |ξ|, |η| ≥ λ̄; or (b) uλ̄(ξ) > u(ξ) and
vλ̄(η) > v(η) for all |ξ|, |η| ≥ λ̄.

We show that case (b) can not happen. More precisely, supposing that uλ̄(ξ) >
u(ξ) and vλ̄(η) > v(η) for all |ξ|, |η| ≥ λ̄, we will show that there is a ε∗ > 0, such
that, for any λ ∈ (λ̄, λ̄ + ε∗), uλ(ξ) ≥ u(ξ) and vλ(η) ≥ v(η) for any |ξ|, |η| > λ.
This contradicts to the definition of λ̄. We will show this via two steps.

Step 1. There is a ε1 ∈ (0, 1), such that for any ε < ε1, λ̄ ≤ λ ≤ λ̄ + ε, if
|ξ|, |η| ≥ λ̄+ 1, then

uλ(ξ)− u(ξ) ≥
ε1
2
|ξ|α−n and vλ(η)− v(η) ≥

ε1
2
|η|α−n.

18



From Lemma 3.8, we know that K(x, λ, ξ, z) > 0 ∀ ξ, η ∈ Σx,λ. By (3.17) with
x = 0, λ = λ̄, and Fatou Lemma, we know, for all |ξ| ≥ λ̄, that

lim inf
|ξ|→∞

|ξ|n−α(uλ̄(ξ)− u(ξ))

≥

∫

Σλ

lim inf
|ξ|→∞

|ξ|n−αK(0, λ̄, ξ, η)[vκ(η)− vκλ̄(η)]dη

=

∫

Σλ

(( λ̄

|η|

)n−α
− 1

)

[vκ(η)− vκλ̄(η)]dη.

Thus, using the positivity of vλ̄−v, we know that there exists ε2 ∈ (0, 1), such that

uλ̄(ξ)− u(ξ) ≥ ε2|ξ|
α−n, ∀ |ξ| ≥ λ̄+ 1.

Due to the continuity of u, there exists a ε3 ∈ (0, ε2) such that for |ξ| ≥ λ̄ + 1
and λ̄ ≤ λ ≤ λ̄+ ε3,

|uλ(ξ)− uλ̄(ξ)| = |
( λ

|ξ|

)n−α
u(

λ2ξ

|ξ|2
)−

( λ̄

|ξ|

)n−α
u(

λ̄2ξ

|ξ|2
)|

≤
ε3
2
|ξ|α−n.

Thus

uλ(ξ)− u(ξ) = uλ̄(ξ)− u(ξ) + uλ(ξ)− uλ̄(ξ) ≥
ε2
2
|ξ|α−n,

for all |ξ| ≥ λ̄+ 1, λ̄ ≤ λ ≤ λ̄+ ε2.
Similarly, there exists ε4 ∈ (0, ε3) such that

vλ(η)− v(η) ≥
ε4
2
|η|α−n,

for all |η| ≥ λ̄ + 1, λ̄ ≤ λ ≤ λ̄ + ε4. Choosing ε1 = ε4, we complete the proof for
Step 1.

Step 2. There is a ε∗ < ε1, such that for any ε < ε∗, λ̄ ≤ λ ≤ λ̄+ ε, if ξ, η ∈ Rn

satisfy λ ≤ |ξ|, |η| ≤ λ̄+ 1, then uλ(ξ) − u(ξ) ≥ 0 and vλ(η)− v(η) ≥ 0.
Let ε∗ ∈ (0, ε1).We have, for λ̄ ≤ λ ≤ λ̄+ ε∗ and λ ≤ |ξ| ≤ λ̄+ 1,

uλ(ξ) − u(ξ) =

∫

Σλ

K(0, λ; ξ, η)
(

vκ(η)− vκλ(η)
)

dη

≥

∫

Σλ\Σλ̄+1

K(0, λ; ξ, η)
(

vκ(η)− vκλ(η)
)

dη

+

∫

Σλ̄+2\Σλ̄+3

K(0, λ; ξ, η)
(

vκ(η)− vκλ(η)
)

dη

≥

∫

Σλ\Σλ̄+1

K(0, λ; ξ, η)
(

vκλ̄(η)− vκλ(η)
)

dη

+

∫

Σλ̄+2\Σλ̄+3

K(0, λ; ξ, η)
(

vκ(η)− vκλ(η)
)

dη. (3.20)

By Step 1, there exists δ1 > 0 such that

vκ(η)− vκλ(η) ≥ δ1, ∀η ∈ Σλ̄+2\Σλ̄+3.

Since
K(0, λ; ξ, η) = 0, ∀ |ξ| = λ,

∇ξK(0, λ; ξ, η)||ξ|=λ = (α− n)|ξ − η|α−n−2
(

|η|2 − |ξ|2
)

> 0, ∀ η ∈ Σλ̄+2\Σλ̄+3,
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and the function is smooth in the relevant region, it follows, also based on the
positivity of kernel, that

K(0, λ; ξ, η) ≥ δ2(|ξ| − λ), ∀λ ≤ |ξ| ≤ λ̄+ 1, ∀η ∈ Σλ̄+2\Σλ̄+3.

where δ2 > 0 is some constant independent of ε∗. It is easy to see that for some
constant C > 0 (independent of ε∗), and λ̄ ≤ λ ≤ λ̄+ ε∗,

|vκλ̄(η)− vκλ(η)| ≤ Cε, ∀ η ∈ Σλ̄+2\Σλ̄+3, λ ≤ |ξ| ≤ λ̄+ 1.

Using the mean value theorem, we have, for λ ≤ |ξ| ≤ λ̄+ 1, that
∫

Σλ\Σλ̄+1

K(0, λ; ξ, η)dη =

∫

Σλ\Σλ̄+1

(( |ξ|

λ

)α−n
|ξλ − η|α−n − |ξ − η|α−n

)

dη

=

∫

Σλ\Σλ̄+1

[

(
( |ξ|

λ

)α−n
− 1)|ξλ − η|α−n +

(

|ξλ − η|α−n − |ξ − η|α−n
)]

dη

≤ C(|ξ| − λ) +

∫

Σλ\Σλ̄+1

(

|ξλ − η|α−n − |ξ − η|α−n
)

dη

≤ C(|ξ| − λ) + C|ξλ − ξ|

≤ C(|ξ| − λ).

Thus, for ε ∈ (0, ε∗), λ̄ ≤ λ ≤ λ̄+ ε, λ ≤ |ξ| ≤ λ̄+ 1, from (3.20) it follows

uλ(ξ)− u(ξ) ≥ −Cε

∫

Σλ\Σλ̄+1

K(0, λ; ξ, η)dη + δ1δ2(|ξ| − λ)

∫

Σλ̄+2\Σλ̄+3

dη

≥
(

δ1δ2

∫

Σλ̄+2\Σλ̄+3

dη − Cε
)

(|ξ| − λ) ≥ 0.

Along the same line, we can show

vλ(η)− v(η) ≥ 0

for λ ≤ |ξ|, |η| ≤ λ̄ + 1. Step 2 is established. Hence we complete the proof for
Lemma 3.10. �

The following two key calculus lemmas are needed for carrying out moving sphere
procedure. Under a stronger assumption (f ∈ C1(Rn)), these lemmas were early
proved by Li and Zhu [14] (see, also, Li and Zhang [13]). The current forms, due
to Li and Nirenberg, are adopted from Li [12]. See Frank and Lieb [4] for further
extension to nonnegative measures.

Lemma 3.11. (Lemma 5.7 in [12]) For n ≥ 1, µ ∈ R, let f be a function defined
on Rn and valued in (−∞,+∞) satisfying

( λ

|y − x|

)µ
f
(

x+
λ2(y − x)

|y − x|2
)

≥ f(y), ∀ |y − x| ≥ λ > 0, x, y ∈ R
n,

then f(x) = constant.

Lemma 3.12. (Lemma 5.8 in [12]) For n ≥ 1, µ ∈ R, let f ∈ C0(Rn), and µ ∈ R.
Suppose that for every x ∈ Rn, there exists λ ∈ R such that

( λ

|y − x|

)µ
f
(

x+
λ2(y − x)

|y − x|2
)

= f(y), ∀y ∈ R
n \ {x}.
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Then there are a ≥ 0, d > 0 and x̄ ∈ Rn, such that

f(x) ≡ ±a
( 1

d+ |x− x̄|2
)

µ
2 .

We are now ready to give a proof to Theorem 3.6.
Proof of Theorem 3.6.

We first show that λ̄(x) is finite for some x ∈ Rn. Otherwise, λ̄(x) = ∞ for all
x ∈ Rn, then for ξ, η ∈ Rn,

ux,λ(ξ) ≥ u(ξ), and vx,λ(η) ≥ v(η) ∀ |ξ − x|, |η − x| > λ,

By Lemma 3.11, we know that u = v = constant, which can not satisfy (3.14).
Now, for a fixed x ∈ Rn, we know from the definition of λ̄(x), that,

ux,λ(ξ) ≥ u(ξ), ∀ 0 < λ < λ̄(x), ∀ |ξ − x| ≥ λ.

From Lemma 3.4 (ii), we have, for any λ ∈ (0, λ̄(x)), that

0 < a = lim
|ξ|→∞

|ξ|n−αu(ξ) ≤ lim
|ξ|→∞

|ξ|n−αux,λ(ξ) = λn−αu(x).

This shows λ̄(x) < ∞ for all x ∈ Rn. Applying Lemma 3.10, we know

ux,λ̄(ξ) = u(ξ), and vx,λ̄(η) = v(η), ∀x, ξ, η ∈ R
n.

It then follows from Lemma 3.12, that

u(ξ) = c1
( 1

|ξ − ξ0|2 + d2
)

n−α
2

and

v(ξ) = c2
( 1

|ξ − ξ0|2 + d2
)

n−α
2 .

for some c1, c2 > 0, d > 0 and ξ0 ∈ Rn. �

3.2.3. The Best constant N∗(n, α). It follows from Theorem 3.6 and direct compu-
tation that all extremal functions to inequality (1.6) can be represented by

F (ξ) = a(1− ξ · η)−
n+α

2

for some a > 0 and η ∈ Rn+1 with |η| < 1. In particular, F (ξ) = 1 is an extremal
function.

Note that
∫

Sn

|ξ − η|α−ndη = 2α−1|Sn−1|
Γ(n/2)Γ(α/2)

Γ((n+ α)/2)
.

We have

N∗(n, α) = |Sn|
1
q
− 1

p

∫

Sn

|ξ − η|α−ndη

= |Sn|−
α
n 2α−1|Sn−1|

Γ(n/2)Γ(α/2)

Γ((n+ α)/2)

= π
n−α

2
Γ(α/2)

Γ((n+ α)/2)

(Γ(n/2)

Γ(n)

)−α
n .

We hereby complete the proof of Theorem 1.2.
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