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ABSTRACT

Time-dependent shortest path problems arise in a variety of applications; e.g., dynamic traffic

assignment (DTA), network control, automobile driver guidance, ship routing and airplane

dispatching.  In the majority of cases one seeks the cheapest (least generalized cost) or quickest (least

time) route between an origin and a destination for a given time of departure. This is the “forward”

shortest path problem. In some applications, however, e.g., when dispatching airplanes from airports

and in DTA versions of the “morning commute problem”, one seeks the cheapest or quickest routes

for a given arrival time.  This is the “backward” shortest path problem.  It is shown that an algorithm

that solves the forward quickest path problem on a network with first-in-first-out (FIFO) links also

solves the backward quickest path problem on the same network.  More generally, any algorithm that

solves forward (or backward) problems of a particular type is shown also to solve backward

(forward) problems of a conjugate type.
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The problem of finding the shortest path from an origin to a destination over a network in

which the link travel times are time-dependent is of central importance in dynamic traffic assignment

(DTA) and many other applications.  In some DTA problems (e.g., as originally formulated in

Merchant and Nemhauser, 1978) one looks for the earliest arrival time at a destination (or set of

destinations) from a given origin for a given departure time. This (forward) shortest path problem also

arises in other applications.   In DTA versions of the “morning commute problem” (first formulated

in Hendrickson et. al., 1983) one looks for the quickest routes for a given arrival time.  This is the

“backward” shortest path problem, which also arises in vehicle dispatching problems.  The connexion

between these two problems is examined below.  It is assumed initially that the link travel times

satisfy a first-in-first-out (FIFO) rule, which prevents anyone to depart a link earlier by arriving later.

A compact formulation of the forward time-dependent shortest path problem with FIFO is

given by  (1) below.  These equations pertain to a generic origin “o” that is left at time   t0  (t0 = 0,

without loss of generality) and a generic destination, “d”. We wish to find a sequence of nodes {d,

in, in-1, ..., i2, i1, o} for which the following telescoping series is minimized:

min{Ed,in(Ein,in-1(... Ei2,i1(Ei1,o(0)) ...))}, (1a)

where Eij(t) is the “exit function” that gives the arrival time at downstream node i when upstream

node node j is left at time t.  The exit function is defined only for node pairs for which there is a link

from j (the second subscript) to i.  Thus, (1a) must be complemented by a feasible region of possible

sequences:  

for all sequences {d, in, in-1, ..., i2, i1, o} such that  *ij,ij-1 = 1 (1b)

where *ij is the “upstream” link indicator function which is “1" if and only if  j (its first subscript) is

an exit node of i.  Equation (1b) is understood to include pairs (i1, o) and (d, in) for j = 1 and j = n+1;

the lablel “n” is a variable .  The FIFO condition is simply:
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Eij(t) > t ,      and    Eij(t) increases. (1c)

Likewise, a compact formulation of the backward time-dependent shortest path problem,

where we look for the latest time(s) at which one can depart a (set of ) origin(s)  “o”  so as to arrive

at a single destination “d” at a given time (td = 0, without loss of generality), is in terms of link input

functions Iij(t) that give the time of departure from upstream node i (first subscript) that is required

to arrive at j at time t.  Now we have:

max{Io,i1(Ii1,i2( ... (Iin,d(0))...))}  (2a)

for all sequences {o, i1, i2, ... in-1, in, d}  such that )ij-1,ij = 1, (2b)

and assuming that:

Iij(t) < t ,      and      Iij(t)  increases. (2c)

Here, )ij is the “downstream” link indicator function that is “1" if and only if its first subscript is an

entry node for the second subscript.

The symmetry arises because equations (1) transform into equations (2), and viceversa, if we

reverse the direction of every arc in the network (changing * to *’ and ) to )’ by transposing

subscripts in both cases) and also reverse the direction of time (changing  t  to -t’).  We expect this

to be true because the time-dependent shortest path problem arises in nature, and we know that the

basic equations of physics are invariant to inversions of the space-time coordinates.  To verify this

statement, define a set of  E’ functions for the new network as follows:

E’ij(t)  =  - Iij(-t). (3)

If we now replace t by -t’ in (2c)  and then use (3) to express the relation in terms of the E’, we find:
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E’ij(t’) >  t’ ,       and      E’ij(t’) is increasing. (4c)

Thus, the E’ are proper exit functions, as in (1c).  If we now change t to -t’ in (2a) by changing the

sign of the output of every function, the equation becomes 

max {-Io,i1(- Ii1,i2( ... (-Iin,d(-0)) ...))} 

and we find, using Eq.(3), that this becomes:

max {-E’o,i1(- [-E’i1,i2( ... (-[-E’in,d(0)]) ...)])}, 

which in turn reduces to:

min {E’o,i1(E’i1,i2( ... (E’in,d(0)) ...))} (4a)

 which is analogous to (1a).  This must happen for all sequences:

{o, i1, i2, ... , in-1, in, d} such that  *’ij-1,ij = 1, (4b)

 which is analogous to (1b).   [The order of the subscripts in the last equality is justified because the

subscripts have to be transposed twice in going from (2b) to (4b)--once when changing

“downstream” to “upstream” notation () to *) and once again when changing the network by

reversing the direction of all the arcs (* to *’).]

Note that Eqs.(4) are identical to (1).  They define a “forward” shortest path problem with

FIFO for departures from a single origin “d” at time zero, to the (set of possible) destination(s) “o”.

Thus, an algorithm that would solve (1) would solve (4)-(2), and viceversa.  Note too that there is

nothing inherently more difficult in extracting the Iij(t) than the Eij(t)  from normally available

information.  For example, simulations of the form suggested in Daganzo (1994) readily give the Eij(t)

and Iij(t) curves in parametric form, indexed by vehicle number.

More general problems.   The above reversibility results are a manifestation of a more

general principle.  Let F denote a network and the data that define a forward problem, i.e., the
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connectivity matrix and the associated exit functions (whether FIFO or not), and let f denote a

generalized cost mapping that returns a cost  f(p,F)  for every path, p, and network F, if  p 0 F .   (In

the main body of this note, the role of  f  was played by (1a) and path feasibility was enforced by

(1b).)  Likewise, let B denote a network and the data for a backward problem, i.e., a connectivity

matrix and the associated input functions, and assume that the goal in this case is to find a feasible

path p 0 B that minimizes a generalized cost mapping b(p, B), such as the negative of (2a).   

Construct now a conjugate network of B,  BR , by reversing all the arcs and paths in B (so

that p 0 BR if and only if  pR 0 B ) and by converting the input functions of B into forward exit

functions as per (3), reversing time.  A conjugate generalized cost mapping bR is also defined for this

forward network by means of the relation:  bR(p, BR) =  b(pR, B) ,  œ p 0 BR.  (Note that this is

possible since p 0 BR if and only if  pR 0 B. ) Obviously then, a forward algorithm  F can be used to

solve the conjugate problem (solving the backward problem in the process) if  BR and  bR satisfy the

properties required by F.  (Similarly, a backward algorithm  B  can be used to solve the conjugate of

a forward problem if the latter satisfies the requirements of  B .)   It was shown in the main body of

this note that conjugation (in either direction) preserved the properties required by FIFO quickest

route algorithms.
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