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ABSTRACT

Time-dependent shortest path problemsarisein avariety of applications; e.g., dynamictraffic
assgnment (DTA), network control, automobile driver guidance, ship routing and airplane
dispatching. Inthe majority of cases one seeksthe cheapest (Ieast generalized cost) or quickest (least
time) route between an origin and a destination for a given time of departure. Thisisthe “forward”
shortest path problem. In some applications, however, e.g., when dispatching airplanesfrom airports
and in DTA versions of the “morning commute problem”, one seeks the cheapest or quickest routes
for agiven arriva time. Thisisthe“backward” shortest path problem. It isshown that an algorithm
that solves the forward quickest path problem on a network with first-in-first-out (FIFO) links also
solvesthe backward quickest path problem on the same network. Moregenerally, any algorithm that
solves forward (or backward) problems of a particular type is shown aso to solve backward

(forward) problems of a conjugate type.



The problem of finding the shortest path from an origin to a destination over a network in
which thelink travel timesare time-dependent is of central importance in dynamic traffic assignment
(DTA) and many other applications. In some DTA problems (e.g., as originaly formulated in
Merchant and Nemhauser, 1978) one looks for the earliest arrival time at a destination (or set of
destinations) fromagiven originfor agiven departuretime. This(forward) shortest path problem also
arisesin other applications. In DTA versions of the “morning commute problem” (first formulated
in Hendrickson et. al., 1983) one looks for the quickest routes for agiven arrival time. Thisisthe
“backward” shortest path problem, which also arisesin vehicledispatching problems. Theconnexion
between these two problems is examined below. It is assumed initially that the link travel times
satisfy afirst-in-first-out (FIFO) rule, which prevents anyoneto depart alink earlier by arriving later.

A compact formulation of the forward time-dependent shortest path problem with FIFO is
given by (1) below. These equations pertain to ageneric origin “0” that isleft at time t, (t,=0,
without loss of generality) and a generic destination, “d”. We wish to find a sequence of nodes { d,

in,in-1, ..., 12,11, o} for which the following telescoping series is minimized:

Min{ By (Einina(-- Eizia(Eiro(0) --))}, (1a)

where E;(t) is the “exit function” that gives the arrival time at downstream node i when upstream
node node  isleft at timet. The exit function is defined only for node pairs for which thereisalink
from | (the second subscript) toi. Thus, (1a) must be complemented by afeasible region of possible

sequences.
for al sequences{d, in, in-1, ..., i2, i1, o} suchthat &;;,=1 (1b)
where §; isthe “upstream” link indicator function whichis* 1" if and only if j (itsfirst subscript) is

an exit node of i. Equation (1b) isunderstood to include pairs (i1, 0) and (d, in) forj =1andj = n+1;

thelablel “n” isavariable. The FIFO condition issmply:



-2-

E;(t)>t, and Et) increases. (1c)

Likewise, a compact formulation of the backward time-dependent shortest path problem,
where we ook for the latest time(s) at which one can depart a (set of ) origin(s) “0” soasto arrive
at asingledestination “d” at agiventime (t, = O, without loss of generality), isin terms of link input
functions ;;(t) that give the time of departure from upstream node i (first subscript) that is required

toariveat j at timet. Now we have:

max{loy(ligiz( -+ (1ina(0))---))} (22)
for all sequences{o, i1, i2, ...in-1,in, d} suchthat A, ,; = 1, (2b)

and assuming that:
lh<t, and It) increases. (2c)

Here, A; isthe “downstream” link indicator function that is“1" if and only if itsfirst subscript isan
entry node for the second subscript.

The symmetry arises because equations (1) transform into equations (2), and viceversa, if we
reverse the direction of every arc in the network (changing 6 to 6’ and A to A’ by transposing
subscripts in both cases) and also reverse the direction of time (changing t to-t'). We expect this
to be true because the time-dependent shortest path problem arisesin nature, and we know that the
basic equations of physics are invariant to inversions of the space-time coordinates. To verify this

statement, define aset of E’ functions for the new network as follows;

E,ij(t) = - Iij('t)' (3

If we now replacet by -t in (2c) and then use (3) to expresstherelation intermsof the E’, we find:
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Et)>t, and FEt)isincreasing. (4c)

Thus, the E’ are proper exit functions, asin (1c). If we now changetto-t’ in (2a) by changing the

sign of the output of every function, the equation becomes

max {-lo1(- Ligjo( - (-1ina(-0)) -.))}

and we find, using Eq.(3), that this becomes:

maX {-E'51(- [-E'igjo( -+ (-[-E'ing(0)]) --)D},
which in turn reduces to:

min{E ;1(E' i1 - (E'104(0) -.))} (4a)

which isanaogousto (1a). This must happen for al sequences:

{o,iL,i2,...,in-1,in, d} suchthat &;,; =1, (4b)

which isanalogousto (1b). [The order of the subscriptsin the last equality isjustified because the
subscripts have to be transposed twice in going from (2b) to (4b)--once when changing
“downstream” to “upstream” notation (A to 8) and once again when changing the network by
reversing the direction of all thearcs (6 to 6’).]

Note that Egs.(4) areidentical to (1). They define a“forward” shortest path problem with
FIFO for departuresfrom asingle origin “d” at time zero, to the (set of possible) destination(s) “0”.
Thus, an algorithm that would solve (1) would solve (4)-(2), and viceversa. Note too that thereis
nothing inherently more difficult in extracting the I;(t) than the Ey(t) from normally available
information. For example, simulationsof theform suggestedin Daganzo (1994) readily givethe E;(t)
and I(t) curvesin parametric form, indexed by vehicle number.

More general problems. The above reversibility results are a manifestation of a more

generd principle. Let F denote a network and the data that define a forward problem, i.e., the
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connectivity matrix and the associated exit functions (whether FIFO or not), and let f denote a
generaized cost mapping that returnsacost f(p,F) for every path, p, and network F, if pe F. (In
the main body of this note, the role of f was played by (1a) and path feasibility was enforced by
(1b).) Likewise, let B denote a network and the data for a backward problem, i.e., a connectivity
matrix and the associated input functions, and assume that the goal in this caseisto find afeasible
path p € B that minimizes a generalized cost mapping b(p, B), such as the negative of (2a).
Construct now a conjugate network of B, B, by reversing all the arcs and pathsin B (so
that p € BR if and only if p® € B ) and by converting the input functions of B into forward exit
functions as per (3), reversing time. A conjugate generalized cost mapping bR is also defined for this
forward network by means of the relation: bR(p, BF) = b(p?, B) , V p € BX. (Note that thisis
possible since p € BRif and only if p? € B. ) Obviously then, aforward algorithm F can be used to
solve the conjugate problem (solving the backward problem in the process) if BR and b® satisfy the
propertiesrequired by F. (Smilarly, abackward algorithm B can be used to solve the conjugate of
aforward problem if the latter satisfiesthe requirementsof B.) It was shown in the main body of
this note that conjugation (in either direction) preserved the properties required by FIFO quickest

route algorithms.
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