
HAL Id: hal-00784051
https://hal.archives-ouvertes.fr/hal-00784051

Submitted on 3 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reversible Communicating Systems
Vincent Danos, Jean Krivine

To cite this version:
Vincent Danos, Jean Krivine. Reversible Communicating Systems. CONCUR, 2004, Londres, United
Kingdom. pp.292-307. �hal-00784051�

https://hal.archives-ouvertes.fr/hal-00784051
https://hal.archives-ouvertes.fr

Reversible Communicating Systems

Vincent Danos1? and Jean Krivine2

1 Université Paris 7 & CNRS
2 INRIA Rocquencourt

Abstract. One obtains in this paper a process algebra RCCS, in the
style of CCS, where processes can backtrack. Backtrack, just as plain
forward computation, is seen as a synchronization and incurs no addi-
tional cost on the communication structure. It is shown that, given a
past, a computation step can be taken back if and only if it leads to a
causally equivalent past.

1 Introduction

Backtracking means rewinding one’s computation trace. In a distributed setting,
actions are taken by different threads of computation, and no currently running
thread will retain a complete description of the others past. Therefore, there is
no guarantee that when a given thread goes back in its own local computation
history, this will correspond to going back a step in the global computation trace.
Of course, one could ask a thread willing to go back a step, to first verify that it
was the last to take an action. But then all concurrent behaviour would be lost,
not speaking about the additional communication machinery this choice would
incur. On the other hand, letting any thread freely backtrack would result in
losing the initial computation structure and reaching computation states which
were formerly inaccessible. So, one has to strike a compromise here.

This is what we propose in this paper. A notion of distributed backtracking
built on top of Milner’s CCS [1] is provided. At any time, a thread may either
fork or synchronize with another thread, and in both cases, the action taken is
recorded in a memory. When the thread wants to rewind a computation step, it
has to synchronize with either its sibling, in the case the last action was a fork, or
with its synchronization partner in the case the last action was a synchronization.
Thus backtrack is considered also as a synchronization mechanism.

This mechanism can be construed as a distributed monitoring system and
it meshes well with the specifics of the host calculus CCS. Backtrack doesn’t
involve any additional communication structure and we could obtain a syntax,
termed RCCS, for reversible CCS, that stays really close to ordinary CCS.

There is another aspect in which the syntax seems to do well. The compromise
it corresponds to, has a clear-cut theoretical characterization. Given a process
and a past, one can show that the calculus allows backtrack along any causally

? Corresponding author : Équipe PPS, Université Paris 7 Denis Diderot, Case 7014, 2
Place Jussieu 75251 PARIS Cedex 05, Vincent.Danos@pps.jussieu.fr

equivalent past. Computation traces originating from a process are said to be
causally equivalent when one can transform one in the other by commuting
successive concurrent actions, or cancelling successive inverse actions.

A similar notion of computation trace equivalence exists in λ-calculus which
Lévy could characterize by a suitable labelling system [2, 3]. Thus, a pretty good
summary of the theoretical status of this backtracking mechanism, is to say that
RCCS is a Lévy labelling for CCS. Two reduction paths will be equivalent if
and only if they lead to the same process in RCCS. This is what we prove and
it seems to be the best one can expect on the theoretical side.3

To summarize the contribution, the present study proposes a syntax for re-
versible communicating systems, together with a characterization, in terms of
causally equivalent traces, of the exact amount of flexibility one allows in back-
tracking. One also explains how irreversible, or unbacktrackable actions, can be
included in the picture and a procedure of memory cleansing is introduced and
proved to be sound.

Following Regev [4, 5], process algebras have been investigated recently for
modeling biological systems. Since reversibility is the rule in biological interac-
tion, the second author was naturally prompted to look for a theoretical setup
for distributed and reversible computations. Biological modeling in a former ver-
sion of RCCS was explored [6]. By that time soundness (here, corollary 1) was
proved directly, and the key connection to causal equivalence went unnoticed.
Future work, and in particular, applications to the synthesis of sound transac-
tional mechanisms is discussed in the conclusions.

1.1 Related Work

Process algebras with backtracking were seen early to be valuable computational
objects and independently studied by Prasad [7] and later by Bergstra et al. [8].
However, both had an exception model in mind, which while providing interest-
ing programming constructs would not have any specific theoretical structure.
Another well developed line of research, partly inspired by Lévy’s work on causal
equivalence in λ-calculus, and partly by the need for refined non-interleaving se-
mantics, is that of the causal analysis of distributed systems [9–16]. However,
the only concern here is forward computation. Causal analysis is thought of as a
static analysis method, or a theoretical measure of how concurrent a system is,
and not as inducing some policy that threads should obey in order to backtrack
soundly. In some sense, we present here a synthesis of these two lines of research
which, to the best of our knowledge, were never brought together to interact.

1.2 Acknowledgements

The authors wish to thank the referees for their suggestions and specifically for
correcting a wrong formulation of corollary 1.
3 This crucial property can be recast in topological terms, by saying that RCCS is the

universal cover of CCS.

2 RCCS

The plan to implement backtrack is to assign to each currently running thread
an individual memory stack keeping track of past communications. This memory
will also serve as a naming scheme and yield a unique identifier for the thread.
Upon doing a forward transition, the information needed for a potential roll-back
will be pushed on the memory stack.

As said briefly in the introduction, two constraints are shaping the actual
syntactic solution explained below. First the notion of past built in the memories
has to have some degree of flexibility. Even if one could somehow record the
complete succession of events during a distributed computation and only allow
backward moves in whatever precise order was taken, this would induce fake
causal dependencies on backward sequences of actions. Actions which could have
been taken in any order would have to be undone in the precise incidental order
in which they happened. So one should not be too rigid on the exact order in
which things done have to be undone.

On the other hand the notion of past should not be too flexible. Because if it
is, then one might be in danger of losing soundness, in that some backtracking
computations could give access to formerly unreachable states. Clearly, if actions
are undone before whatever action they caused is, the result is not going to be
consistent.

It turns out that the solution proposed here is at the same time consistent
and maximally flexible. The final take on this will be a theorem proving that
any two computation traces starting in a same state and reaching a same end
state are causally equivalent, or in other words that one can be rearranged so as
to obtain the other by commuting concurrent actions. Consistency will follow.

But, first of all we need a syntax to describe our processes and this is the
matter to which we turn in the next subsection.

2.1 A Syntax for Backtrack

Simple processes. Simple processes are taken from CCS [1]:

Actions: α ::= a | ā | . . . Action on a channel
| τ Silent action

Processes: P ::= 0 End of process
|
∑

αi.Pi Guarded Choice
| (P | P) Fork
| (a)P Restriction

Let us briefly remind that interaction consists only of binary synchronized com-
munication. In a CCS system something happens when two processes are per-
forming complementary actions at the same time, very much as a handshake.
Recursive definitions can be dealt with, but they are not central to the point
being made in this paper and we will do without them.

As the notation for choice suggests, the order in which choices add up is irrele-
vant. Simple processes will therefore be considered only up to additive structural
congruence, that is to say the equivalence relation generated by the following
usual identities:

P + 0 ≡ P
P1 + P2 ≡ P2 + P1

(P1 + P2) + P3 ≡ P1 + (P2 + P3),

where P1, P2, and P3 represent processes of the guarded choice type.4

Monitored processes. In RCCS, simple processes are not runnable as such, only
monitored processes are. This second kind of process is defined as follows:

Memories: m ::= 〈〉 Empty memory
| 〈1〉 ·m Left-Fork
| 〈2〉 ·m Right-Fork
| 〈∗, α, P 〉 ·m Semi-Synch
| 〈m, α, P 〉 ·m Synch

Monitored Processes: R ::= m . P Threads
| (R | R) Product
| (a)R Restriction

To sort visually our two kinds of processes, the simple ones will be ranged over
by P , Q, . . . while the monitored ones will be ranged over by R, S, . . .

Sometimes, when it is clear from the context which kind of process is being
talked about, we will say simply process in place of monitored process.

As one may readily see from the syntax definition, a monitored process can be
uniquely constructed from a set of terms of the form m.P , which we will call its
threads. In a thread m.P , m represents a memory carrying the information that
this process will need in case it wants to backtrack. That memory is organized
as a stack with the last action taken by the thread sitting on the top together
with additional information that we will comment on later. There is an evident
prefix ordering between memories which will be written ≤.

As an example we can consider the following monitored process:

R = 〈1〉〈∗, a, 0〉 . b.c̄.0 | 〈2〉〈∗, a, 0〉 . c.0

It consists of two threads, namely S1 = 〈1〉〈∗, a, 0〉 . b.c̄.0 and S2 = 〈2〉〈∗, a, 0〉 . c.0.
Taking a closer look at S1, we see a fork action 〈1〉 sitting on top of its memory
stack, indicating that the last interaction the thread took part in was a fork.
Below one finds 〈∗, a, 0〉 indicating that the penultimate action was an a action
exchanged with an unidentified partner ∗. That part of the past of S1 is shared by
S2 as well. Actually, they both can be obtained from a same process 〈〉.a.(b.c̄.0 |
c.0) as will become evident when we have a precise notion of computation.
4 General sums are not allowed in the syntax; here as in the following, all sums will

be supposed guarded.

Coherent processes. Not all monitored processes are going to be of interest. Since
memories are also serving as a naming scheme for threads, they should better
be unique. Actually we can ask for a little more than memory uniqueness and
this is what we call coherence and proceed now to define.

Definition 1 Coherence, written _, is the smallest symmetric relation such
that:

– ∀i, j : i 6= j ⇒ 〈i〉 ·m _ 〈j〉 ·m;
– ∀m1, m2 : m _ m′ ⇒ m1 ·m _ m2 ·m′.

Memories are coherent if they branch on a fork.

Definition 2 A monitored process is said to be coherent if its memories are
pairwise coherent.

Coherence implies in particular that memories are unique in a coherent term,
since coherence is irreflexive. But, as said, it is a bit stronger than that. For
instance 〈∗, b, 0〉〈1〉 . P | 〈∗, a, 0〉〈1〉 . Q is not coherent, even if its two memories are
distinct.

Define inductively the fork structure λ(m) of a memory m:

λ(〈〉) = 〈〉

λ(〈∗, a, Q〉 ·m) = λ(〈m′, a, Q〉 ·m) = λ(m)
λ(〈i〉 ·m) = 〈i〉 λ(m)

An additional coherence requirement could be that for any memory m occurring
in a process R, λ(m) is exactly the forking address of m in R, where by the
forking address of m in R we mean the binary string over {1, 2} locating the
thread with memory m in R. For an example of a process violating this extra
condition, consider: 〈∗, a, 0〉〈1〉〈1〉 . 0 | 〈2〉 . 0.

2.2 From RCCS to CCS and back

Our calculus is clearly only a “decoration” of CCS, a decoration which can be
erased by way of the forgetful map ϕ : RCCS → CCS:

ϕ(m . P) = P
ϕ(R | S) = ϕ(R) | ϕ(S)
ϕ((a)R) = (a)ϕ(R)

Conversely one can lift any CCS process to RCCS with the map `(P) = 〈〉 . P .
One has that ϕ ◦ ` is the identity but not the converse ! If we go back to our

first example, we see that `(ϕ(R)) = 〈〉 . (b.c̄.0 | c.0). The transformation ` ◦ϕ is
blanking all memories in a monitored process.

2.3 RCCS structural congruence

We now want to extend the additive structural congruence defined earlier on
simple processes, to monitored processes. The most important additional rule is
the following:

m . (P | Q) ≡ (〈1〉 ·m . P | 〈2〉 ·m . Q) (1)

It explains how memory is distributed when a process divides in two sub-threads.
We see that each sub-thread inherits the father memory together with a fork
number indicating which of the two sons the thread is.

Another rule we need is:

m . (a)P ≡ (a)m . P (2)

Both rules have a natural left to right orientation corresponding to forward com-
putation. Take note also that both these memory rearrangements are invisible
in CCS, e.g., ϕ(m . (P | Q)) is actually equal to ϕ(〈1〉 ·m . P | 〈2〉 ·m . Q).

Structural congruence on monitored processes is then obtained by combining
these two identities together with additive congruence. In other words, two pro-
cesses are structurally equivalent if related by the smallest equivalence relation
generated by the identities (1), (2) above, by additive congruence identities, and
closed under all syntactical constructs.

Lemma 3 Coherence is preserved by structural congruence.

The only case where memories are modified is in using identity (1) where a given
m is split in 〈1〉 ·m and 〈2〉 ·m. By definition 〈1〉 ·m _ 〈2〉 ·m and an m′ is coherent
with m iff it is coherent with both 〈1〉 ·m and 〈2〉 ·m. 2

Usual identities associated with the product, such as P | Q ≡ Q | P are not
considered here because memories are using the actual product structure of the
term to memorize the fork actions. A quotient would force the manipulation of
terms up to tree isomorphisms on memories. That is possible and perhaps even
interesting if one wants a more mathematical view on the calculus, but certainly
results in a less convenient syntax.

2.4 Transition Rules

It remains to define a proper notion of computation. To this effect, we use a la-
belled transition system, LTS for short, that is to say a family of binary relations
over monitored processes. Specifically, transitions are of the form:

R
µ:ζ−→ S,

where R, S are monitored processes, ζ is a directed action, that is either a forward
action or a backward action, while µ is an identifier, that is either a memory or
a pair of memories:

ζ ::= α | α∗ Directed Actions
µ ::= m | m,m Identifiers

Basic Rules. First we have the basic transitions concerning threads:

act

m . α.P + Q
m:α−→ 〈∗, α, Q〉 ·m . P

act∗

〈∗, α, Q〉 ·m . P
m:α∗−→ m . a.P + Q

The first transition is a forward transition whereby the thread does an action α.
A memory triplet 〈∗, α,Q〉 containing this action, as well as the leftover part Q
is pushed on top of the memory, and the thread proceeds further down its code.
The first element in the memory triplet ‘∗’ stands for an unidentified partner.
The transition itself is indexed by the action α so that it can be synchronized
with a transition bearing a complementary action, and the memory m, which
will be used to identify oneself in the synchronization.

The second transition goes backward. The process is now undoing an action
which is on the top of its memory and is therefore the last action it took. As
we discussed already, many actions may have happened in the meantime in the
global computation, but none originated from that particular thread, or they
were undone before. Backward actions are treated on a par with forward actions
and in particular, backtracking also involves communicating.

Contextual Rules. We have seen what transitions a thread may trigger. These
transitions can also be done in a context:

R
µ:ζ−→ R′

par-l

R | S µ:ζ−→ R′ | S
R

µ:ζ−→ R′
par-r

S | R µ:ζ−→ S | R′

R
µ:ζ−→ R′ ζ 63 a

res

(a)R
µ:ζ−→ (a)R′

R1 ≡ R
µ:ζ−→ R′ ≡ R′

1
≡

R1
µ:ζ−→ R′

1

where in the (res) rule, ζ 63 a means that ζ is none of a, ā, a∗ or ā∗. The last
rule says that one can freely choose a representative in the structural congruence
class before triggering a transition. It is used to push memories down threads
using identities (1), (2) with their natural orientation.

Synchronization Rules. We end the description of transitions with the forward
and backward synchronization rules.

Both kinds of synchronizations use a notion of address instanciation in mon-
itored processes. Given a monitored process R and memories m1, m2, a new pro-
cess Rm2@m1 is obtained by replacing in R all memories of the form 〈∗, α, Q〉 ·m1

with 〈m2, α, Q〉 · m1. This is used in forward synchronization to let the thread
know the name of the other thread it synchronized with.

The complete definition is as follows:

((a)R)m2@m1 := (a)(Rm2@m1)
(R | S)m2@m1 := (Rm2@m1 | Sm2@m1)
(〈〉 . P)m2@m1 := 〈〉 . P
(〈i〉 ·m . P)m2@m1 := 〈i〉 ·m . P
(〈m′, α, Q〉 ·m . P)m2@m1 := 〈m′, α, Q〉 ·m . P
(〈∗, α, Q〉 ·m . P)m2@m1 := 〈∗, α, Q〉 ·m . P if m 6= m1

(〈∗, α, Q〉 ·m . P)m2@m1 := 〈m2, α, Q〉 ·m1 . P if m = m1

When R is a coherent process, there can be at most one memory of the appropri-
ate form, and therefore Rm2@m1 and R differ at most at that particular location.
With this definition in place, we can formulate neatly the synchronization rules:

R
m1:α−→ R′ S

m2:ᾱ−→ S′
syn

R | S m1,m2:τ−→ R′
m2@m1 | S′

m1@m2

R
m1:α∗−→ R′ S

m2:ᾱ∗−→ S′
syn∗

Rm2@m1 | Sm1@m2

m1,m2:τ∗−→ R′ | S′

Backward synchronization discussed. As one can see in the definition, backward
synchronization is also a communication. Once a thread T in R has used (syn),
its memory is instanciated, and the resulting Tm1@m2 cannot backtrack if not
with rule (syn∗). One doesn’t roll back a synchronization all alone.

This “locking effect” can be illustrated with the following example:

〈〉 . (a.0 | ā.0) ≡ 〈1〉 . a.0 | 〈2〉 . ā.0
〈1〉,〈2〉:τ−→ 〈〈2〉, a, 0〉 · 〈1〉 . 0 | 〈〈1〉, ā, 0〉 · 〈2〉 . 0

Both threads are locked together, and the only way backward for them is to
synchronize again:

act∗

〈∗, a, 0〉 · 〈1〉 . 0 〈1〉:a∗−→ 〈1〉 . a.0
act∗

〈∗, ā, 0〉 · 〈2〉 . 0 〈2〉:ā∗−→ 〈1〉 . a.0
syn∗

〈〈2〉, a, 0〉 · 〈1〉 . 0 | 〈〈1〉, ā, 0〉 · 〈2〉 . 0
〈1〉,〈2〉:τ∗−→ 〈1〉 . a.0 | 〈2〉 . ā.0

Relation to CCS. Write R →? S if there exists a computation leading from R
to S in RCCS, and likewise P →? Q if there exists a computation from P to Q
in CCS.

Lemma 4 If P →? Q and ϕ(R) = P , then R →? S for some S such that
Q = ϕ(S).

To see this, it is enough to forget about backward actions in the LTS above. Then
it becomes the ordinary LTS for CCS with memories being useless additional
notations. 2

Thus any RCCS term R, such that ϕ(R) = P , can simulate P ’s behaviour in
a purely forward manner. Of course, what one would like some form of converse
guaranteeing the consistency of the backtracking mechanism. We will provide
such a converse later in the paper (corollary 1).

Coherence. The transition system which we presented gives means of defining
computation traces. Especially convenient is the fact that one doesn’t have to
work up to associativity and commutativity of the product and therefore gets a
simple naming scheme for threads, where a thread can be uniquely identified by
its memory. We have to verify that transitions don’t disturb this naming scheme
and preserve coherence.

Lemma 5 If R
µ:ζ−→ S and R is coherent, then so is S.

Basic transitions are only adding to, or chopping off the stack, a triplet of the
form 〈m,α,Q〉, and therefore clearly preserve coherence. Among the other rules,
with the exception only the structural congruence rule (≡) and the synchroniza-
tion rules (syn) and (syn∗) modify memories. The case of structural congruence
was already dealt with in a previous lemma. Synchronizations only instantiate
or de-instantiate one memory top at a time (because the process undergoing the
transition is itself coherent), and this is again a transformation clearly preserving
coherence. 2

As a consequence, any process obtained from some `(P), where P is a CCS
process, is coherent. Thereafter, we will assume all processes to be coherent.

3 Interlude

Let us have a short example before going to the causality section. Three conve-
nient bits of notation will ease the reading. First, and although only the canonical
notation gives a robust naming scheme, we use fork structures λ(m) instead of
full memories m as identifiers. Second, we use n-ary forks though this is not
official notation. Last, when the choice left over in a choice action is 0, we just
don’t write it. That said we can run our example:

〈〉 . (x.a.P | ȳ.x̄ | y.Q) ≡ 〈1〉 . x.a.P | 〈2〉 . ȳ.x̄ | 〈3〉 . y.Q
〈2〉,〈3〉:τ−→ 〈1〉 . x.a.P | 〈〈3〉, ȳ〉〈2〉 . x̄ | 〈〈2〉, y〉〈3〉 . Q
〈1〉,〈2〉:τ−→ 〈〈2〉, x〉〈1〉 . a.P | 〈〈1〉, x̄〉〈〈3〉, ȳ〉〈2〉 . 0 | 〈〈2〉, y〉〈3〉 . Q

〈1〉:ā−→ 〈∗, a〉〈〈2〉, x〉〈1〉 . P | 〈〈1〉, x̄〉〈〈3〉, ȳ〉〈2〉 . 0 | 〈〈2〉, y〉〈3〉 . Q

One sees how the repeated synchronizations create a causal bottleneck: the synch
on y caused the synch on x, which in turn caused the a action. Therefore,
this sequence of three events is completely sequential and cannot be rearranged
in any other order. Nothing is concurrent in this computation. That much is
obvious. Less obvious is the fact that one doesn’t need to go through the whole
computation to realize this. It can be read off the stacks directly in the final
process. The rightmost thread wants to backtrack on y with 〈2〉 (identifying the
middle thread), the middle thread wants to backtrack on x̄ with 〈1〉 (identifying
the leftmost thread), while the leftmost thread wants to backtrack on a all alone.

The point of the next section is to prove that this property holds in general.
Backtracking an event is possible when and only when a causally equivalent trace

would have brought this event as the last one. In our example there is no other
equivalent trace, and indeed no other action than a can be backtracked.

This example illustrates another point made later. Suppose a is declared to
be unbacktrackable, or irreversible, then the process now behaves as P | Q. The
last section will extend RCCS and integrate such irreversible actions.

4 Causality

4.1 Transitions and Traces

We need first to go through a few standard definitions.
Recall that a transition t is given by a triplet R

µ:ζ−→ S with R, S monitored
processes, µ an identifier (that is either a memory or a pair of memories) and ζ
a directed action. One says then that R is the source and S the target of t and
that S and R are its ends. Transitions will be ranged over in this section with t,
t′, . . . and similar symbols. Two transitions are said to be coinitial if they have
the same source, cofinal if they have the same target, composable if the source
of the second is the target of the first. A transition is said to be forward or
backward depending on whether its associated action µ is forward or backward.

Sequences of pairwise composable transitions will be called computation traces
or simply traces, and will be ranged over by r, s, etc. All notions just defined for
transitions extend readily to traces. In particular a trace will be said forward if
all transitions it is composed of are forward. The empty trace with source R is
denoted by εR and when r and s are composable, their composition is written
r; s. A derivable transition is one that can be derived using the LTS of the second
section. We have had examples of these already. From now on we will assume
all transitions and traces to be derivable and with coherent ends (equivalently
coherent sources) since these are the ones of interest.

If t is such a transition with identifier µ = m1,m2, then it must have been
obtained by a synchronization, and hence m1 and m2 have to be distinct, since
one is assuming all processes to be coherent. So identifiers can be considered
as sets (with either one or two elements) and be handled with set-theoretic
operations. Transitions involving a one element memory will be termed unary,
others will be termed binary.

Another noteworthy point is that a derivable transition is essentially derivable
in a unique way. The only freedom is in the application of the ≡ rule and apart
from the additive congruence, it only involves pushing memories past restrictions
and products.

4.2 Causal equivalence

Lemma 6 (Loop) For any forward transition t : R
µ:α−→ S, there exists a back-

ward transition t∗ : S
µ:α∗−→ R and conversely.

Given s a forward trace, one can then obtain s∗ a backward trace, by applying
repeatedly the lemma and reversing all transitions in s.

Definition 7 Let t1 = R
µ1:ζ1−→ S1 and t2 = R

µ2:ζ2−→ S2 be two coinitial transi-
tions, t1 and t2 are said to be concurrent if µ1 ∩ µ2 = ∅.

Lemma 8 (Square) Let t1 = R
µ1:ζ1−→ S1 and t2 = R

µ2:ζ2−→ S2 be concurrent

transitions, there exists two cofinal transitions t2/t1 = S1
µ2:ζ2−→ T and t1/t2 =

S2
µ1:ζ1−→ T .

Definition 9 Keeping with the notation of the square and loop lemmas above,
one defines the causal equivalence, written ∼, as the least equivalence relation
between traces closed under composition and such that:

t1; t2/t1 ∼ t2; t1/t2 (3)
t; t∗ ∼ εR (4)
t∗; t ∼ εR (5)

As said earlier, this is the analogue in CCS of the Berry-Lévy notion of equiv-
alence of computation traces “by permutation” [2]. The “square” part of the
definition was already considered by Boudol and Castellani [9] and they were
well aware of the connection to Lévy’s theory.

4.3 RCCS as a Lévy labelling

Theorem 1 Let s1 and s2 be coinitial, then s1 ∼ s2 iff s1 and s2 are cofinal.

By construction if s1 ∼ s2, then s1 and s2 must be coinitial and cofinal, so the
only if part is trivial. The if part is not. We first need a lemma.

Lemma 10 Let s be a trace, there exists r, r′ both forward such that s ∼ r∗; r′.

We prove this by lexicographic induction on the length of s, and the distance
to the beginning of s of the earliest pair of transitions in s contradicting the
property. If there is no such contradicting pair, then we are done. If there is one,
say t′; t∗, and µ(t′) ∩ µ(t∗) = ∅, then t′ and t∗ can be swapped by virtue of the
square lemma, resulting in a later earliest contradicting pair, and by induction
the result follows since swapping keeps the length constant.

Suppose now µ(t′)∩µ(t∗) 6= ∅, and suppose further that t′ is unary and write
m for µ(t′). By definition of a unary transition t′ is pushing some triplet 〈∗, α, Q〉

on top of the stack at m, a triplet which t∗ is then popping. This forces t∗ to be
unary as well, since there is no partner it may synch backwards with. But then
t = t′ and one can apply the loop lemma, hence the total length decreases and
again by induction the result follows.

Suppose finally t′ is binary, then t∗ has to be as well, because of the locking
effect discussed above, and again t = t′ and the loop lemma applies and so does
the inductive hypothesis.2

Intuitively, the lemma says that, up to causal equivalence, one can always
reach for the maximum freedom of choice, going backward, and only then go

forward. Even more intuitively, one could picture such traces as parabolas, the
process first draws potential energy from its memories and only then moves
onward. So let us call such traces parabolic.5

Our lemma already has an interesting corollary, namely that backtracking is
consistent with respect to CCS, in the weaker sense that RCCS will not generate
traces reaching processes the projections of which are unreachable in CCS.

Corollary 1. P →? Q if and only if for some R, `(P) →? R and ϕ(R) = Q.

The only if part is easy, basically saying that forward CCS computations can be
simulated by RCCS ones, a fact that was recorded as an earlier lemma. The if
part follows from the lemma above. Indeed, suppose s is an RCCS trace with
source `(P) and target R, then the lemma says s ∼ r∗; r′ for some well chosen
forward traces r and r′, but then surely r must be empty since its source is `(P)
a process that has an empty memory and therefore is incapable of backtrack.
So that there is forward trace r′ equivalent to s. Since forward computations
coincide in both systems, P reduces to ϕ(R). 26

Lemma 11 Let s1, s2 be coinitial and cofinal traces and s2 be forward, then
there exists a forward trace s′1, shorter than s1 and such that s′1 ∼ s1.

We prove this last lemma by induction on the length of s1. If s1 is forward we are
done. Else by lemma 10 we may suppose s1 is parabolic. Let t∗; t′ be the only two
successive transitions in s1 with opposite directions and call µ the identifiers of t∗.
Whatever t∗ takes off the memories in µ has to be put back later down s1 by some
forward transition. Else, because s2 is forward the difference will stay visible. Call
t the earliest such transition in s1. For the same reason, that transition t has to
be the exact inverse of t∗. One can then bubble up t to meet with t∗. Indeed,
if a transition is conflicting with t on its way to t∗, by construction it must
be some forward transition t′′ the application of which results in a memory in
µ, which is impossible since no backward transitions happened since t∗. So by
applying repeatedly the square lemma, and then applying (5), one obtains a
shorter equivalent s′1 and conclude by induction. 2

Proof of theorem. With our lemmas 10 and 11 in place, we can handle the
theorem.

Let then s1, s2 be two traces with same source and target. We prove these
are causally equivalent, using a lexicographic induction on a pair consisting of
the sum of the lengths of s1 and s2, and the depth of the earliest disagreement
between them. By lemma 10, we may suppose these are parabolic. Call t1 and
5 The converse decomposition as r; r′∗ would not work. Indeed, a backward transition

can create some new forward possibility. Consider for instance 〈∗, a, b.P 〉 . 0 that can
go to 〈∗, b, a.0〉 . P in a backward step followed by a forward one. There is no way
these two steps can be swapped or be cancelling each other as in the argument above.

6 The fact that `(P) has an empty memory is essential in the statement. We may
consider again the same example 〈∗, a, P 〉 . 0 which can move, while its projection
ϕ(〈∗, a, P 〉 . 0) = 0 can’t.

t2 the earliest transitions were they disagree. There are three main cases in the
argument depending on whether these are forward or backward.

1. If t1 is forward and t2 is backward, one has s2 = r∗; t2;u and s1 = r∗; t1; v
for some r, u, v. Lemma 11 applies to t1; v which is forward, and t2;u which
is parabolic, so t2;u has a shorter forward equivalent, and so s2 has a shorter
equivalent and the result follows by induction.

2. If t1, t2 are both forward, they can’t possibly be conflicting.
Suppose they take different additive choices in a same thread, say m.α.P +

α′.P ′ + Q, respectively pushing on the memory 〈∗, α, α′.P ′ + Q〉 and 〈∗, α′, α.P + Q〉.
Since by assumption t1 and t2 are not the same transition, P and Q have to be
different (not even additively congruent that is), and this difference would stay
visible onward contradicting s1 and s2 being cofinal.

So whenever they work on a same thread they have to make the same additive
choices. In particular, this rules out the case where they are both unary, and also
the case where they are both binary and working on the same two threads. Let us
check the other cases. If one of the transitions is unary and the other is binary,
their actions can’t coincide on their common memory, since one will push a
triplet of the form 〈∗, a, Q〉 and the other will push one of the form 〈m, a, Q′〉 for
some m 6= ∗. If both are binary and only intersect on one memory, then again
the triplets are distinct since the other partner identifiers, say m1 and m2 are
different, because these identifiers come from different threads and all processes
are assumed coherent. In any case, there would be a visible and permanent
difference.

So we know they are indeed concurrent. Call µ2 the identifier of t2. Since t2
is forward and s2 is parabolic, whatever t2 pushes to µ2 is staying there onward
in s2. Hence, there must be a transition at µ2 in s1 as well, call it t′2, so that
s1 = s; t1;u; t′2; v. That transition has to be of the same arity as t2, and with
µ(t′2) = µ2, else again the difference stays visible onward. Since s1 is parabolic as
well, all transitions in u, standing in between t1 and t′2 are forward and one can
apply repeatedly the square lemma and bubble up t′2, to get s′1 a trace equivalent
to s1 and of the form s′1 = s; t1; t′2;u; v. A last application of the same square
lemma yields an equivalent s′′1 with a later earliest divergence with s2 and same
length so that one can call on the induction hypothesis.

3. Suppose finally both t1 and t2 are backward. They can’t possibly be con-
flicting either, because of the locking effect, so they must be concurrent. Either
actions undone by t2 are redone later in s2, in which case one argues as in lemma
11 and shortens s2 into an equivalent s′2, or they are not redone and therefore
these same actions must be undone also in s1, else there would be a visible
difference between their visible targets, and one argues as in 2 above. 2

5 Irreversible Actions

Having finally reached for the theoretical property we wanted, we now turn to a
more practical issue, namely that of integrating unbacktrackable or irreversible
actions in RCCS.

These will be written a, ā, etc. The transition system is adapted by adding
rules for the new actions:

commit

m . κ.P + Q
m:κ−→ 〈◦〉 ·m . P

R
m1:κ−→ R′ S

m2:κ̄−→ S′
syn◦

R | S m1,m2:τ◦−→ R′ | S′

with κ ranging over irreversible actions. Since an irreversible action will never be
backtracked, there is no need to remember anything, and we use instead of the
usual triplet, a placeholder 〈◦〉. For the same reason, there is no rule inverse to
(commit), and no longer a need to instanciate R′ and S′ in the synchronization
rule. One sees that the syntax hardly changes, and that when all actions are
taken to be irreversible, it essentially becomes CCS. What was proved in the
last section remains valid.

We have seen in Section 3 that all actions that caused the action a became de
facto unbacktrackable, even if they were themselves reversible. It seems there-
fore interesting to understand how irreversible actions can “domino-effect” in a
process and this is what we do now.

5.1 Propagating irreversible actions

Let MR stand for the set of occurrences of memories in R. Say a memory is
locked in R if no trace starting from R can modify it, that is to say, whenever
R →? S, there is an m′ ∈MS such that m ≤ m′ for the prefix ordering. Let LR

be the subset of MR formed of these locked memories.

Lemma 12 LR satisfies:

1. 〈◦〉 ·m ∈MR ⇒ 〈◦〉 ·m ∈ LR

2. m ∈ LR, m′ ≤ m ⇒ m′ ∈ LR

3. 〈m, α, P 〉 ·m′ ∈ LR ⇒ 〈m′, ᾱ, Q〉 ·m ∈ LR

4. 〈i〉 ·m ∈ LR ⇒ 〈j〉 ·m ∈ LR

Points 1 and 2 are obvious, point 3 is saying that in order to backtrack a synch,
one needs to do a synch, a fact which we called the locking effect, and point 4 is
saying that to undo some action in 〈i〉 ·m, one has first to fuse back with one’s
former sibling in the fork. 2

Coherence alone is not strong enough for these closure properties to capture
all locked memories. For instance, m is locked in 〈1〉 ·m . P simply because the
fork sibling is missing. However it does for CCS reachable processes.

5.2 An example

To illustrate how the lemma works in practice to simplify processes, let us con-
sider the usual encoding of internal sum in CCS:

R = 〈〉 . (x)(x̄.0|x.a.P |x.b.Q),

with x chosen reversible and a, b irreversible. With the usual notational simpli-
fications, and representing locked memories with heavy angles 〈| |〉:

R →? (x)(〈〈2〉, x̄〉〈1〉 . 0 | 〈| ◦ |〉〈〈1〉, x〉〈2〉 . P | 〈3〉 . x.b.Q) =: Ra

R →? (x)(〈〈3〉, x̄〉〈1〉 . 0 | 〈2〉 . x.a.P | 〈| ◦ |〉〈〈1〉, x〉〈3〉 . Q) =: Rb

Using clauses 2, 3, 4, one can tag further memories as locked:

Ra = (x)(〈|〈2〉, x̄|〉〈|1|〉 . 0 | 〈| ◦ |〉〈|〈1〉, x|〉〈|2|〉 . P | 〈|3|〉 . x.b.Q)
Rb = (x)(〈|〈3〉, x̄|〉〈|1|〉 . 0 | 〈|2|〉 . x.a.P | 〈| ◦ |〉〈|〈1〉, x|〉〈3〉 . Q)

so that in the end all memories are locked in Ra and Rb, and R has been turned
into a weak external sum !7

6 Conclusion

We have proposed an enrichment of CCS with memories which processes can
use to backtrack. Memories are themselves distributed and the syntax stays
close to the original concept of CCS. On the theoretical side, we have proved
that backtracking is done in exact accordance with the true concurrency concept
of causal equivalence. We also have shown how to integrate irreversible actions,
and have given a procedure collecting obsolete memories.

There are many directions in which this study can be extended. First, one
should rephrase this construction in terms of Winskel’s event structures for
CCS [17]. RCCS seems to provide an internal language for reversible event struc-
ture and this should be made a precise statement. Second, one should seriously
study the notion of bisimulation that is generated by the LTS and study pro-
cess composition in RCCS, perhaps using notions of history-preserving bisim-
ulations [18]. Third, preliminary investigations show that the whole strategy
developed here can be imported in π-calculus. There are more things to be re-
membered and the amount of symbol-pushing needed for a comparable theory
gets daunting. So, beginning within the simpler framework of CCS might have
been good start. But π is a lot more expressive and this is a strong incentive to
develop a notion of reversible π-calculus. Besides, one could think of bootstrap-
ping the system and encode reversible π into π.

Finally, the example of the internal sum given in the last section is strongly
suggesting that transactional mechanisms can be understood in terms of RCCS.
One starts with a rough encoding of the external sum, which is the simplest
possible transaction in some sense. And since RCCS provides a foolproof dead-
lock escape mechanism on reversible actions, carefully choosing them results in
a correct encoding. We feel that one contribution of the current paper is to lay
down the foundations to explore this matter further.

7 By weak external sum, we mean that R has infinite traces where it constantly hesi-
tates between its irreversible actions a and b.

References

1. Robin Milner. Communication and Concurrency. International Series on Computer
Science. Prentice Hall, 1989.

2. Jean-Jacques Lévy. Réductions optimales en λ-calcul. PhD, 1978.
3. Gérard Berry and Jean-Jacques Lévy. Minimal and optimal computation of recur-

sive programs. JACM, 26:148–175, 1979.
4. Aviv Regev, William Silverman, and Ehud Shapiro. Representation and simulation

of biochemical processes using the π-calculus process algebra. In R. B. Altman,
A. K. Dunker, L. Hunter, and T. E. Klein, editors, Pacific Symposium on Biocom-
puting, volume 6, pages 459–470, Singapore, 2001. World Scientific Press.

5. Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Application
of a stochastic name-passing calculus to representation and simulation of molecular
processes. Information Processing Letters, 2001.

6. Vincent Danos and Jean Krivine. Formal molecular biology done in CCS. In
Proceedings of BIO-CONCUR’03, Marseille, France, volume ? of Electronic Notes
in Theoretical Computer Science. Elsevier, 2003. To appear.

7. K.V.S. Prasad. Combinators and bisimulation proofs for restartable systems. PhD,
1987.

8. Jan A. Bergstra, Alban Ponse, and Jos van Wamel. Process algebra with back-
tracking. In REX School Symposium, pages 46–91, 1993.

9. Gérard Boudol and Ilaria Castellani. Permutation of transitions: An event structure
semantics for CCS and SCCS. Lecture Notes in Computer Science: Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, 354:411–
427, 1989.

10. Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. A partial ordering se-
mantics for CCS. Theoretical Computer Science, 75:223–262, 1990.

11. Gérard Boudol, Ilaria Castellani, Matthew Hennesy, and Astrid Kiehn. Observing
localities. In Proceedings MFCS’91, volume 114, pages 31–61, 1991.

12. Pierpaolo Degano and Corrado Priami. Proved trees. In Automata, Languages and
Programming, volume 623 of LNCS, pages 629–640. Springer Verlag, 1992.

13. Gérard Boudol, Ilaria Castellani, Matthew Hennesy, and Astrid Kiehn. A theory
of processes with localities. Formal Aspect of Computing, 1992.

14. Ilaria Castellani. Observing distribution in processes: Static and dynamic localities.
International Journal of Foundations of Computer Science, 6(4):353–393, 1995.

15. Pierpaolo Degano and Corrado Priami. Non interleaving semantics for mobile
processes. In Automata, Languages and Programming, volume 944 of LNCS, pages
660–667. Springer Verlag, 1995.

16. Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in
the π-calculus. Acta Informatica, 35, 1998.

17. Glynn Winskel. Event structure semantics for CCS and related languages. In
Proceedings of 9th ICALP, volume 140 of LNCS, pages 561–576. Springer, 1982.

18. Marek A. Bednarczyk. Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. ICS PAS Report, April 1991.

