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ABSTRACT.  We generalize the classical notion of reversibility of a me-
chanical system.   The generic qualitative properties of symmetric orbits of such
systems are studied using transversality theory.   In particular, we prove analogues
of the closed orbit, Liapounov, and homoclinic orbit theorems for Ä-reversible
systems.

0.  Introduction.  In classical terminology, a reversible mechanical system is
one whose Hamiltonian assumes the particularly simple form K + V.   Hexe K is
the kinetic energy of the system, and V is the potential energy.  One of the aims
of this paper is to generalize this notion of reversibility. We then study the quali-
tative properties of such generalized systems from a more geometric point of view.

The first three sections of this paper give motivation for our definition of
/?-reversible vector fields and diffeomorphisms. In § 1 we discuss the classical re-
versible systems in some detail. We show here that the classical definition of re-
versibility is equivalent to the existence of a C°° involution R of phase space
having two special properties. First, the fixed point set of R is an «-dimensional
submanifold of the 2«-dimensional phase space, and second, R "reverses" the
Hamiltonian vector field, i. e., TR(XH) = - XH.

The next two sections deal with two classical Hamiltonian systems, the
Stornier and the restricted three body problems. We prove here the existence of
another C°° involution R, of phase space having the same properties as above.
Thus, in our terminology, these systems are examples of/?,-reversible systems.

An important reason for the choice of the Stornier and the restricted three
body problems as examples is the fact that, for certain values of the energy, both
systems admit cross-sections. These are codimension one submanifolds of the en-
ergy surface having the property that each orbit of the vector field intersects the
submanifold at least once in every sufficiently large time interval. Hence the
study of the qualitative properties of the vector field reduces to the study of the
qualitative properties of the induced "first return" diffeomorphism of the section.
Because of the /?-reversibility of the Stormer and the restricted three body prob-
lems, these induced diffeomorphisms have special properties.  Both can be written
as a composition of two involutions U ° R.   Moreover, the fixed point sets of
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90 R. L. DEVANEY

both U and R ate submanifolds of the section having dimension equal to exactly
one-half the dimension of the section. We call such diffeomorphisms A-reversible.

One interesting feature of these cross-sections is the fact that they are both
submanifolds-with-boundary of the energy surfaces. The flow is everywhere tan-
gent to the boundary and transverse to the interior of the section. Thus we have
a somewhat different situation than what is usually meant by a cross-section for
a flow. And so, in an appendix, we define and discuss the basic properties of
these sections with boundary.

In the main part of this paper, we study the qualitative properties of R-te-
versible systems.  More precisely, we consider a 2«-dimensional manifold M togeth-
er with a diffeomorphism R of M satisfying

(i) R2 = identity,
(ii) dim Fix(R) = n = HdimAi.

R is called a reversing involution.  Note that we do not require M to be a sym-
plectic manifold.

A smooth vector field X on M is then called R-reversible if TR(X) = -X° R.
Of primary importance in the study of such systems are the symmetric peri-

odic orbits.   These are closed orbits of X which intersect Fix (R) in exactly two
points. The problem of finding such orbits is thus equivalent to the more geo-
metric problem of finding self-intersections of the fixed point set of R under the
flow map. We remark that Birkhoff and De Vogelaere have used this technique
to classify the symmetric periodic orbits in the restricted three body and the
Stornier problems [3], [4], [8].

In §§6 and 7, we discuss the generic qualitative properties of R-reversible
systems. In particular, Theorems 6.5 and 7.6 give Kupka-Smale theorems for R-
reversible diffeomorphisms and vector fields.

Of interest here is the fact that reversible systems, near symmetric periodic
orbits, behave qualitatively just like Hamiltonian systems. For example, Proposi-
tion 7.3 shows that, generically, symmetric periodic orbits lie on one-parameter
families of closed orbits. Also, in §8, we discuss a Liapounov theorem for R-te-
versible systems. Theorem 8.1 shows that, near an elementary symmetric critical
point with a purely imaginary characteristic exponent, there exists a one-parameter
family of symmetric closed orbits converging to the critical point.

Both of these results are well known in the Hamiltonian case. The proofs
here, however, are more geometric in the sense that they involve finding transver-
sal intersections of two codimension n submanifolds of M.

Similar methods yield a homoclinic orbit theorem in §9. We show that
hyperbolic critical points of /^-reversible vector fields may admit a stable homo-
clinic orbit, i.e. an orbit which is doubly asymptotic to the equilibrium and
which, moreover, cannot be perturbed away. Under mild transversality assumptions,
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REVERSIBLE DIFFEOMORPHISMS AND FLOWS 91

we also show that such a homoclinic orbit is a limit of a one-parameter family of
symmetric closed orbits whose periods tend to infinity.

We remark that a similar theorem is known in the Hamiltonian case only for
systems with two degrees of freedom [21].

The author would like to acknowledge the advice and encouragement of C.
Simon, A. Weinstein, and especially his advisor, S. Smale, during the time this paper
was being written.

I. Reversible mechanical systems. In classical mechanics, a reversible mechani-
cal system is a triple (M, K, V) where Af is a smooth «-dimensional Riemannian mani-
fold and K, V are smooth real-valued functions on the cotangent bundle T M of M.
K, the kinetic energy, is given by Vt \ap \2 where ap G T*M and | • I is given by the
Riemannian metric on M. The potential energy V is constant on the fibers ofTM
and hence may be considered as a real-valued function on the configuration space M.

Let H = K + V. His called a Hamiltonian for the system. Let Í2 be the canon-
ical symplectic form on T*M. Then H defines a vector field on T*M via the equation

iXHn = -dH.

XH is called the Hamiltonian vector field associated with the system. Writing the
coordinate expression for XH in local coordinates on the cotangent bundle gives the
classical formulation of Hamilton's equations.

Such systems are called reversible for the following reason.  Let (q(t), p(t))
he an integral curve of XH, where q is a coordinate on configuration space and p
represents the conjugate momenta.  Then the local coordinate expression of Ham-
ilton's equations give immediately that (q(- t), -/?(- t)) is also a solution curve
for the system.  In other words, following configuration space trajectories of the
system in the reverse direction also gives solutions of the system.

Now let R : T*M —► T*M he given by R(ap) = - ap. We call R a reversing
involution of phase space. Note that R*Sl = - fi so that R is antisymplectic.
The fixed point set of R is the zero section of T*M, and thus is a submanifold of
T M having dimension equal to one-half the dimension of T *M.

The following proposition follows from the local coordinate expression of
Hamilton's equations.

Proposition 1.1. Let {M, K, V) be a reversible mechanical system and
let R be the reversing involution defined above.   Then

(i) H°R =H,
(ii)  TR(XH) = -XH°R,
(iii) <pjR = R4>_t where <f>t is the flow of XH on T*M.

Note that (iii) above says that (<f>tR)2 = identity on T*M; hence <f>tR = Ut
is an involution.  Let F(R) and F(Ut) he the fixed point sets of R and Ut respec-
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92 R. L. DEVANEY

tively.  Since F(R) is the zero section of T*M, it follows that F(Uj) is also an
n-dimensional submanifold of T M.

The intersections of F(R) and F(Uj) have special significance.  If p E F(R)
n F(Uj), the orbit through p is mapped onto itself by R with a change of direc-
tion. Such an orbit is called symmetric.   If an orbit is both symmetric and
periodic, it is easy to see that the orbit intersects F(R) exactly twice in any prime
period. These intersections belong to F(Ur) n F(R) and F(UT/2) n F(R) where
T is the prime period of the orbit. They are points of symmetric conjunction.
Such points have often played an important role in the discovery of periodic or-
bits.  See, for instance, [3] and [6].

More generally, one can consider Hamiltonians of the form ff = K + PY + V.
Here K and V ate the usual kinetic and potential energies, and Y is a smooth vector
field on configuration space. Then PY is defined by Py(ap) = ap(Y)- Py *s caHed
a momentum function. Thus XH is reversible in the classical sense iff Y is identically
zero.

Now the Riemannian metric on M converts vector fields to one-forms and vice
versa. Let Y be the one-form dual to Y under this correspondence. Define R:T M
—* T*M by R (a.) = -2Y - a.. 7? is a* C°° involution of T*M whose fixed point
set is an «-dimensional submanifold of phase space.  Furthermore, ff °R = ff.
Now if the one-form Y is closed, then an easy computation shows that R SI =
-Í2.  It follows immediately that TR(XH) = - XH ° R. Thus XH is reversed by
an involution very similar to the reversing involution of K 4- V systems. We thus
call such systems R-reversible.

II. The Stornier problem. In this section, we discuss an example of a clas-
sically reversible Hamiltonian system which also admits another involution which
reverses the vector field.

Suppose a magnetic dipole is fixed at the origin in R3 with magnetic mo-
ment pointing in the direction of the negative z-axis. The problem is to find the
trajectories of a charged particle in this magnetic field.  Interpreting the field as
the earth's magnetic field, we get the setting of the classical Stornier problem.
For more details, see [5], [6], [18], [20].

After several standard reductions [5], the problem reduces to a simple Ham-
iltonian system with two degrees of freedom. The configuration space is M =
R2 - 0 and the phase space is the cotangent bundle T*M.   Let (q, p) he coordi-
nates on T*M.   Then the Hamiltonian is

2H(q, p) = \p\2 + V(q)
where

V{qi,q2) = {Uqx-qll\q\3)2.
Thus 77 is of the form K + F as in § 1, and so XH is a classically reversible system.
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REVERSIBLE DIFFEOMORPHISMS AND FLOWS 93

We wish to show, however, that XH may be considered Rx -reversible for a
different reversing involution R,. To see this, define

*i(?i, q2> Pi' P2)= (?p ~ i2> - Pv Pi)-
Then Rx is antisymplectic and preserves the Hamiltonian. Moreover the plane
t72 = 0, p, = 0 is the fixed point set of/?,. We may thus consider Rx as a re-
versing involution on T*M.  An easy computation then shows that XH is Rx -re-
versible.

Let Ve = T*(H~1(e)), where t*:T*M -* T*M is the usual projection. For
e < 1/32, it is known that Ve has two components, one bounded and one un-
bounded. See Figure 1. Let Ae denote the intersection of the bounded compo-
nent of Ve and the x-axis.  2e = {r*)~x{Ae) is a two sphere which is /?,-invari-
ant.  Furthermore, it is easy to see that the equator (qx, 0, p,, 0) of this sphere
is a periodic orbit 7 of XH. Now 2e - 7 is a disjoint union of two two-dimen-
sional disks. Let 2e denote one of them together with 7. Then 2e is/?,-invariant.

FIGURE 1. The shaded portion of the figure is the
region Vg for e < 1/32 in the Stormer problem.

Concerning 2e the following results are known.  For proofs, see [8] and [7].

Proposition 2.1. (i) 2e is a section with boundary for the vector field
XH restricted to the energy surface H~l(e).

(ii)  The first return map $ : 2e —»■ 2e is a composition of two involutions,
$=U°RV

(iii)  77te fixed point sets of both U and Rx are one-dimensional submani-
folds of Xe.

The definitions and basic properties of sections with boundary can be found
in Appendix I.

III.  The planar restricted three body problem.  In this section we discuss
an example of a classically irreversible Hamiltonian system, the restricted three
body problem.  We show here that there exists another involution of phase space
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94 R. L. DEVANEY

that reverses the vector field, and thus that this system may also be considered
7?, -reversible.

Using a rotating coordinate system, the configuration space is M = R2 -
{{- p, 0), (1 - p, 0)} and the phase space is T*M with the usual symplectic form Í2.

The Hamiltonian is

ff =\\P\2 +Q2px -qxP2 -^-^-^ "*>

where {q, p) E T*M and

Piq) « k - O - A«, 0)1,      o{q) =\q-{- p, 0) |.
C = - 2ff is the well-known constant of Jacobi.  For C large, the region of

motion is sketched in Figure 2.  For a fixed value of C, let Nc denote the com-
ponent of the energy surface corresponding to motion near the larger mass.  The
vector field XH is everywhere tangent to Nc.

FIGURE 2. The region inside of the two smaller circles
and outside of the largest circle is the region of motion for large
values of the Jacobi constant in the restricted three body problem.

The Hamiltonian is of the form K + L + V, with L ¥= 0. Hence the system
is not classically reversible.  However, there does exist an involution that reverses
XH.

Define Rx : T*M -* T*M by

RxiQv <l2< Pv P2) - Öi- " ?2' ~Pv P2)
as in the Stornier problem.  As before, one checks easily that TRX{XH)--XH°R.

We can now summarize the results of Poincaré and Birkhoff:

Proposition 3.1. For C sufficiently large and p sufficiently small:
(i) there exists an Rx-invariant section with boundary 2C for XH on Nc.

2C is diffeomorphic to an annulus.
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REVERSIBLE DIFFEOMORPHISMS AND FLOWS 95

(ii)  The first return map L is a composition of two involutions L = URX.
(iii)  The fixed point sets of both U and Rx are one-dimensional submani-

folds of 2C.

For a proof, see Birkhoff [3].
The almost identical statements of Propositions 2.1 and 3.1 suggest a gener-

alization of the notion of a reversible system.  Below we define /?-reversible dif-
feomorphisms and flows.  The Stormer problem and the restricted three body
problem then become specific examples of /^-reversible vector fields.  And their
first return maps on the associated sections with boundary are examples of R-xe-
versible diffeomorphisms.

IV. /?-reversible diffeomorphisms and flows.  Motivated by the previous
examples, we now proceed to generalize the notion of reversibility.

Throughout, let M he a compact, C°°, 2«-dimensional manifold.  Let
Inv'iTW) be the set of all Cs involutions of M, i.e. all Cs diffeomorphisms /satis-
fying f2 = identity.  Since Inv'iAf) is the inverse image of the identity under the
squaring map of Diff*(.M), it follows that Inv^iAf) has the Baire property.  Let
IS(M) be the subset of Inv^A/) consisting of involutions whose fixed point set is
an «-dimensional submanifold of M, i.e. £/ G IS(M) iff dim F(U) = n — H dim M
where F(U) = fixed point set of U.

Fix a C°° involution R with dim F(R) = n.  L G DifFfjW) is called R-rever-
sible ifL = UR, where U G IS(M). Also, X G FS(M) is R-reversible if TR(X) = -X.

Let DiffJjfM) and r^(Af) be the sets of all Cs /?-reversible diffeomorphisms
and flows respectively.

DiffsR(M) is the image of P(M) under precomposition by R and thus is a
Baire space.  rR(M) is a closed subspace of a Banach space. [XG rs(M)\TR(X) = X)
is easily seen to be a closed complement of VR(M).

Let L = UR G DiffR(M). Set Uk = LkR.   Uk is easily a Cs involution of
AÍ.   Let F(Uk) = fixed point set of Uk. The following is easily proved:

Proposition 4.1. (i) F(Uk) = L(F(Uk_2)),
(ii) RF(Uk) = F(U_k).

Hence F(U2k) = LkF(R) and F(U2k+,) = LkF(U). Thus F(Uk) is an
«-dimensional submanifold of M for each k, and it follows that Lk - UkR G
mf°R(M).

We call F(Uk) the kth symmetry submanifold of L.  The importance of
these submanifolds stems from the following easy proposition.

Proposition 4.2. (i) /// ^ k, F(U¡) n F(Uk) C pexL'~k.
(ii) Conversely, if p G F(Uj) is a periodic point of L, then p G F(Uk) for

some k ¥=f.
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96 R. L. DEVANEY

Thus, certain periodic points of L arise as intersections of the symmetry
submanifolds. We call such points symmetric periodic points.  Note that if one
point on the orbit through p is symmetric periodic, then all such points are.

A classification of symmetric periodic points is given by the following propo-
sition. The proof is contained in De Vogelaere [6].

Proposition 4.3. Let x be a symmetric periodic point of L.   Then one of
the iterates ofx belongs to

(i) F{U2k) n F{R),
00 F{U2k+x)nF{R),
(iii) F{U2k+x)nF{U).

In particular, the subsets of these sets consisting of points with prime period
2k (cases (i) and (iii)) or 2k 4- 1 (case (ii)) are mutually exclusive and completely
determine the set of symmetric periodic points.

Let X E TSR{M) have flow <pr Then 0,/? = R<t>_t for all t.   Hence Ut = <pfR
is an involution of M whose fixed point set is flow-isotopic to F(R). Thus, <pt =
UjR is an 7?-reversible diffeomorphism for each t.

A critical element y (singular point or closed orbit) of X is called symmetric
if R(y) = y. Note that all symmetric critical points must lie in F{R), while all
symmetric periodic orbits have exactly two intersections with F{R) in any prime
period.

The remaining critical elements are called nonsymmetric.   They always occur
in pairs y and R{y).

V. Linear reversible maps.  Throughout this section, let V denote a 2n-
dimensional real vector space.  Let I{V) be the set of linear involutions of V
whose characteristic polynomial is {x 4- l)"(;c - 1)".  Fix/? 6 7(17).  A linear map
L is called R-reversible if U = LREI(V). A linear map A is called infinitesimally
R-reversible if AR = -RA. The terminology is motivated by the Hamiltonian
case.

Let DR{V) he the set of /?-reversible linear maps and dR{V) the set of in-
finitesimally Tî-reversible linear maps.

Proposition 5.1. (i) DR{V) is a C°° submanifold of GL(V) of dimension
2n2.

(ii)  TjDR{V) = dR{V).

Proof.  Define 4> : GL(F) -* GL(F) by $(S) = 5_I. The fixed point set
of i> is just the set of linear involutions of V, and thus is a C°° submanifold of
GL(K) by the Montgomery-Bochner theorem [10].

I(V) is a connected component of the set of involutions; hence, DR(V) is
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is also a submanifold. The dimension of DR{V) follows by computing the 4-1
eigenspace of T$.

For the second part of the proposition, if yt is a smooth curve in DR(V)
with y0 = I, then yt = otR with ot E 7(F) and o0 = R.  Since a2 = I, we have
r/0 = - RoQR. Hence y0 = ¿0R = -Ro0RR so that y0R = -RyQ. Since
dimdR(V) = 2n2,it follows that T¡DR(V) = dR(V). D

Proposition 5.2. (i) Let L E DR(V). 7/X is an eigenvalue of L of multi-
plicity k, then X~l is an eigenvalue of L of multiplicity k.  Furthermore, the
eigenvalues 4-1 and -I, if they occur, have even multiplicity.

(ii) Let A E dR(V). 7/X is an eigenvalue of A of multiplicity k, then -X
is an eigenvalue of A of multiplicity k.  Furthermore, the eigenvalue 0 has even
multiplicity if it occurs.

Proof. Let L = UR E DR(V). Then det (UR -xl) = det (U(UR -xI)U) ■
det (RU - xl) so the eigenvalues of I and L~l ate the same, det L = 1, so the
eigenvalues -1 occur in pairs. Finally, dim V = 2n, so the eigenvalues 4-1 also
occur in pairs.

Part (ii) is similar.    D
The previous propositions suggest that DR(V) is contained in SP(2n).  How-

ever, if n > 1, this is not the case, as the following example shows. Let

U =

1 0
-1

1
¡0 -1

and L = UR.  Then 7,T77, = - J where

J =

, R =

0    7

-7    0

1

-1
-1

so that L is not symplectic.
Later, we will need the notion of a generic /?-reversible linear map. Note

that hyperbolicity is not a dense condition in DR(V) since an eigenvalue a + iß
with \a + iß\ = I and of multiplicity one is trapped on the unit circle and cannot
be perturbed away. As in the symplectic case, we introduce the notion of an N-
elementary /^-reversible linear map.

Define the principal eigenvalues of L E DR(V) to be the set of eigenvalues
of modulus greater than one or of modulus one and imaginary part greater than
zero. Take exactly half of the eigenvalues 4-1 and -1. L E DR(V) is N-elemen-
tary if the principal eigenvalues are multiplicatively independent over the integers
between -N and N, i.e. if n"_, pe¡' = 1 then e¡ = 0 for all i where p¡ is a principal
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98 R. L. DEVANEY

eigenvalue and e¡ is an integer, \e-\ <N.  L is elementary if L is A/-elementary
for all N.

Note that L elementary implies
(i) all of the principal eigenvalues are distinct,

(ii) none is a root of unity.
In a similar fashion, the principal eigenvalues of A G dR(V) are those with

real part greater than zero or real part zero and imaginary part greater than zero.
Again, take exactly half of the eigenvalues 0. Then A is AZ-elementary if the prin-
cipal eigenvalues (mod 2m) axe additively independent over the integers between
-NandN.

Let Lr^(V) (d^(V)) he the set of A/-elementary linear maps in DR(V)
idR{V))-

Proposition 5.3. DR(V) and dR(V) are open and dense in DR(V) and
dR(V) respectively.

Proof.  We show this for d%(V); D^(V) is similar.
Fix A G dR(V). We construct a recursive procedure for perturbing the

principal eigenvalues.
Case 1. A has an eigenvalue a + iß with a =£ 0.
There exists vx, v2 G V with Avx = au, - ßv2 and Av2 = j3u, + cvu2.  Let

W = [uj, v2, Rvx, Rv2]. dim W = 4 since a ¥= 0. Define 0 by

<¡>(v¡) = cVf,   <¡>(RVi) = -cR v¡,

where c is real. <f> G dR(V) and the eigenvalues of <j> + A on [vx, v2]   axe
±((ot + c) + iß).

Case 2. A has an eigenvalue iß with ß = 0.
Pick vx, v2 as above.  Note Rvx G [u,, v2] iff Rv2 G [vx, v2]. If Rvx

does not belong to [u,, v2], Case 1 applies. If Rvx G [vx, v2], we may assume
that vx, v2 axe eigenvectors of R.   So suppose Rvx = vx and Rv2 = - v2, and
set 0Ü, = cv2 and <pv2 = - cvx. Then <¡>EdR(V) and the eigenvalues of <j> + A
on [vx, v2] axe ±i(c + ß).

Case 3. 0 is an eigenvalue of A.
Let E°A be the 0-eigenspace of A.  E°A is even dimensional and R EI(E°A).
lfAvx = 0 and Rvx, vx axe linearly independent, proceed as in Case 1.  So

assume Rvx = vx  (Rvx = - u, is similar).
If there exists v2 with Av2 = vx, then there are two possibilities: Rv2 G

[vx, v2] or dim [vx, v2, Rv2] = 3.  In the first case, we may assume Rv2 = - v2
and

0      1

0      0
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- cu, and perturb as in Case 2.  In

0   0
0   c
c   0

in the basis vx,v2, Rv2. <j>R = - R<p and the eigenvalues of A + <p ate 0, ±ic, so
two of them have been perturbed away from zero.

A combination of such perturbations results in A \E°A is identically zero.
Then the previous cases apply to make A A/-elementary.   D

As a corollary, the set of elementary maps in dR(V) and DR(V) is residual,
and hence dense.

For generic properties of A-reversible vector fields, we need some further
properties of DR(V). Let EXR denote the X-eigenspace of R.  ¥ixvEE~lR
and let Ju = {LEDRV\vEE-1U,L = UR}.

Any L EJV has v as a +1 eigenvector; hence one occurs as an eigenvalue of
L of multiplicity at least two. L is called sub-N-elementary if the remaining n - 1
principal eigenvalues are nontrivially multiplicatively independent over the integers
between - N and N.

Let tf denote the set of L EJV that are not sub-A/-elementary.

Proposition 5.4. (i) Jv is a submanifold of DR(V) of codimension n.
(ii) J„ is a finite union of submanifolds ofJv, each having codimension at

least one in Jv.

Proof.  Define it : GL(F) —* 7(F) by it(g) = gRg~1. it is a submersion.
Also define $ : GL(F) —► EX(R) by

*<g) = (Rg-1 +g~1)(v).

A computation shows that <I> is transverse to 0 G E1R; hence <j>_1(0) is a sub-
manifold of GL(F) of codimension n.  Now gE$_1 (0) iff gRg~l (v) = - v iff
veE~iigRg~1). Thus ir-*{U) E $-l{0) if vEE~l{U). Since tt is a submer-
sion, 7r(i>_1(0)) is a submanifold of 7(F) of codimension n and (i) follows.

A method similar to Abraham-Robbin [2, p. 99] shows that J% is a finite
union of submanifolds of Jv. The codimension of J„   follows from the fact that
sub-A/-elementary /^-reversible linear maps are dense in Jv (proof as in 5.3).   D

VI. Generic A-reversible diffeomorphisms. In this section, we prove a
Kupka-Smale theorem for R-reversible diffeomorphisms.  As in the linear case,
hyperbolicity is not a generic property of Diff^(Af), since, at symmetric periodic
points, eigenvalues can be trapped on the unit circle. Thus we weaken the notion
of hyperbolicity to obtain generic properties.

in the basis vx,v2. Set u, = cv2 and v2 =
the second case, set

<P =
0
0
o -

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



100 R. L. DEVANEY

Let x be a symmetric periodic point of L G DiffsR(M).  Then x is an ele-
mentary (resp. N-elementary) symmetric periodic point of L of period k if TxLk
is elementary (resp. A'-elementary). If x is any periodic point of L of period k,
x is called generic (resp. N-generic) if either

(i) x is an elementary (Af-elementary) symmetric periodic point of period
k, or

(ii) x is a hyperbolic nonsymmetric periodic point.
Let G*(k, N) he the set of all Cs irreversible diffeomorphisms all of whose

periodic points of period < k axe N-genexic. Define Gs(k) = 0^=0 G*(*. ̂ 0 and
G° = C\ï=xG°(k).

We need one more definition. L G Diff^(iW) is called k-transversal if

(i) k is even and F(C/fc) ffi Fi/?), F(i7fc+,) ffi F(L0,
(ii) fc is odd and F(Uk) <f\ F(/?).

Let As(k) be the set of fc-transversal C* /^-reversible diffeomorphisms.
The proof that Gs(k) is residual requires the following four lemmas.  The

proofs use the notion of pseudotransversality.  See Robinson [14] for the defini-
tions and basic properties.

Lemma 6.1. Suppose s > 1, k > 0, and G*(2k) is dense in Diff^fA/)-  Then
{L G DiffJjOW) \F{U2k+,) ffi F(R)} is open and dense in Diff^Ai)-

Proof.  Consider the action of Diff*(Ai) on IS(M) defined by g • U = gUg~l
where g G Diff*(Af), UEIS(M). This action admits local cross-sections [11].
That is, given U G /*(AÍ), there is a neighborhood 0 of U in IS(M) and a continu-
ous map x : 0 —► DifPiAf) satisfying

X{U)=1M>   X{S)-U = S.

Fix U E IS(M). Let orb (U) denote the orbit of U under this action,
orb (Ü) is open in P{M). Define n : Diff *(Af) —► orb (Ü) by nig) = ¿IV x_and
set Dk = {gE DiffJ(Af) | fctfc- '/?) G G*(Ä:)}.  Let p* : Diff^AÍ) -* Cs(F(í7), Ai)
be given by

pk{g){p) = (sÜg-lR)kg{p).

Pfcfe)(F(t/)) = F((gi/^~1)2fc+1) by Proposition 4.1. We show pk is C* pseudo-
transverse to F(R).

Let D2k he the dense set in Diffs{M), Ts(Af) the Banach space of perturba-
tions, and *g : rs(M) -* DifPiAf) given by Vg(X) = <pxg where <t>t = flow of X
and g G £>2fe. pk is a C1 pseudorepresentation.

The result is clear if k = 0.  If A: > 0, set U = gÜg~l and L = W?.  If
Pk{g){p) = Sip), then Tglp)Lk is elementary for g G D2k, so Tgfp)L2k is elemen-
tary. It follows that Tg,p)Lk (Tgip)F(U)) contains a closed complement of
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The second case is pk(g)(p) = qE F(R), but q # g(p).  If L'(g(p)) = q for
/ < k, F(U2k+x) ff)F(R) as above.  If Lk(g(p)) = q but L'(g(p)) * q for / < k,
take a neighborhood N of q with U(N) n N = 0 and L'(N) n N = 0 for 1 < i
< k.   Let AT G TS(M) nave support in N.  Then a computation shows that

T(o,p)ievopko^g)(X,Op) = Xp.

These two cases thus yield that

ev°Pk°*gÏÏ(0M)FiV>

and it follows that {g E Diff*(/W) |(gÜg~lR)gF(V) if)F(/?)} is open and dense in
TAff\M).  Since ff is an open map, {UE otb(U)\F(U2k+x) ff) F(/c)} is also open
and dense.

Since there exists at most a countable number of orbits of x [11], the
lemma follows.   D

Lemma 6.2. Suppose s > 1, k > 1, and Gs(2k - 1) is dense in DiffR(M).
Then [L E DiffR(M)\F(U2k) if) F(R)} is open and dense in DiffR(Af).

Proof.  Let7)2fc_,  be the dense set and define   pk : Diff^Af) —►
C*(F(R),M) by

Pk(g)(p) = (gUg~1R)k(p).

pk is Cs pseudotransverse to F(R) as before. The lemma then follows.    D

Lemma 6.3.    Suppose  s > 1, k > 1, and Gs(2k - 1) is dense
in DiffsR(M).  Then {L E DiffR(M)\F(U2k+x) ff) F(R)} is open and dense in
DiffR(M).

Proof.  Since RF(Uk) = F(U_k), the previous lemmas give

{L E DiffsR(M) \F(U_2k) ff) F(R)}

is open and dense.
To see the proof of 6.3, note F(U2k+x) ff) F(U) iff (Üg-lRg)kF(Ü) if)

F(Ü) iff ig-lRgÜ)F(Ü) tf\F{d). Hence the result follows from 6.2 by inter-
changing the roles of R and U.    D

As a consequence of these three lemmas, we have that if s > 1 and Gs{k-1)
is dense in Diffj| (Af), then A^fc) is open and dense in DiffR{M).

Now let As{k) he the set of Cs A-reversible diffeomorphisms satisfying TxLk
has no eigenvalue one at symmetric periodic points of prime period k.

Lemma 6.4. Let s > 1 and suppose G\k - 1) is dense in DiffR(M).  Then
As(k) is dense and open in Diff^(M).

Proof. Openness follows immediately from openness of Cs diffeomor-
phisms that are transverse to the diagonal.
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For density, assume first that L G As(k) has p G F(Uk) O F(R) as a sym-
metric periodic point with prime period k. F(Uk) ffi F(R) so F(Uk) n F(R) is a
finite set of points. Thus we may take a neighborhood 0 of p satisfying

(i) F(Uk) n F(R) n 0 - {p},
(ii) £'(ö)n 0=0 for !</<*.
Now the results of §5 give the existence of A E L(TpM, T M) arbitrarily

close to the identity so that A ° TpUk°A~1 ° TpR is elementary.  Choose X E
rs(M) with flow <pt satisfying:

(i) supp X C 0,
(ii) X{p) = 0,
(iii)  Tp<!>x =A,
(iv) the C* size of AT is small.
Define U = ^t^, and L = UR.  Then Z. is arbitrarily close to L,

LkÍP) = P> and T Lk = Tp(<f>xUk<f>_xR) is elementary.
If p E F(U) n F(Uk+,), a similar procedure makes p an elementary sym-

metric periodic point.  By the classification of symmetric periodic points, this
shows As(k) is dense.    D

Theorem 6.5. Let M be a compact, 2n-dimensional, C°° manifold.  If
s>l, Gs(k) is residual in DiffsR(M).  Thus, Gs is also residual.

Proof. We show this by induction. Assume Gs(k - 1) is dense. Lemma
5.4 shows that Gs(k - 1) dense implies As(k) is open and dense in DiffR(M).

Define p : Diff¿(AÍ) -»■ CS(M, M x AÍ) by p(L)(x) = (x, Lk(x)). p is a C1
pseudorepresentation; we show p is Cs pseudotransverse to the diagonal A in
M-x-M.

Let Dk = Gs(k - 1) n A*(Ar) be the dense set in Diff¿(Af) and TS(M) the
Banach space of perturbations at L = UR E Dk. Define *L : TS(M) —*■ TtífR(M)
by VL{X) = 0,U<l>_xR where <f>t = flow of X.  ev°p°^L is Cs by the param-
etrized flow theorem [2, p. 57].  So we must show ev°p°<itL ffi0M A.

Suppose Lk(x) = x.   If L'(x) = x for 1 < i < k, then TXL' is generic, so
TxLk is generic and ev°p°^L ffi0 x A. If y is symmetric periodic of prime pe-
riod k, TyLk has no eigenvalue one, so ev°p°^L ffi0>>> A. Finally, if x is non-
symmetric of prime period k, there exists a neighborhood N of x such that
R(N) HN = 0 and V(N) C\ N = 0 fox 1 <i <k.   Let X E rs(M) have support
in N.  Then

T(0tX)(evopo*L)(X,0p) = Xp

so T(ev°p°VL) is surjective.  Thus, ev°potyL ffi0jJlf A.
It follows that Bk = [LE DiffR(M)\p(L) ffi A} is open and dense in

Diff^fAf). The proof of Lemma 6.4 then shows that Gs(k) is dense in Bk n
Gs(k - 1). Using the fact that Gs(k, N) is open in Diff¿(AÍ), it follows that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REVERSIBLE DIFFEOMORPHISMS AND FLOWS 103

Gs(k) is residual.   This completes the proof of the theorem.    D
Note that, in the above proof, we cannot use the usual transversal-to-the-

diagonal argument to remove the eigenvalue one, since at symmetric periodic
points, T(ev°p° ^L) spans only the -1 eigenspace of TxUk.

VII.  Generic /?-reversible flows.  In this section, we prove a Kupka-Smale
theorem for /?-reversible vector fields.  The proof is similar to Robinson [13] ;
hence we only sketch the necessary modifications.

Again, M is a compact, C°°, 2n-dimensional manifold, and R is a fixed C°°
involution of Af, with dim F(R) = n.

Let X E rR(M). X has a symmetric critical point at p EM if p E F(R)
and X   = 0.  A symmetric critical point is called N-elementary if the Hessian of
X at p, X(p), is an A/-elementary infinitesimally A-reversible map.  Let HS(N) he
the set of X such that

(i)  all symmetric critical points of X ate A/-elementary,
(ii) all nonsymmetric critical points of X ate hyperbolic.

Letff^fr^ff'OV).

Lemma 7.1. Let X E rR(M) have an isolated zero at p E F(R). Ifs> 1,
there exists X E FR (M) arbitrarily close to X having p as an elementary symmetric
critical point.

Proof. Take C°° coordinates (x¡, yj) on a neighborhood N of p satisfying
(i) xi(p) = 0=yi(p),
(ii)  the local representative of R is given by (x¡, y¡) —* (x¡, - yj).
Condition (ii) is possible by the Montgomery-Bochner theorem [10].
Let g he a Cs small bump function with support in N and g = 1 on a neigh-

borhood of p in N.   Let Yx = cg(x¡(dldyj) -yfö/dxj)) where c is real.   Yx E
rsR(M).  Let Wif C Tp(M) he spanned by 3/3*,. and 3/3^-.  Then

in this basis.
Also let z¡j = x¡ + y¡ and Ff/- = x¡ - y¡. Define

Y2=cg{z¡j{dlc-zij)-Iij{dldIij)).

Y2 E rsR{M) and, in the basis 3/3z/y, 3/3Ff/

The proof of Proposition 5.3 shows that a combination of such perturbations
makes p an elementary symmetric critical point.    D
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Theorem 7.2. If s > 1, HS(N) is open and dense in TSR(M) and Hs is re-
sidual.

Proof.   First define p : TSR (M) -> CS(M, TM) by p(X) = Xp.  Let TF(R)
denote the tangent bundle of F(R) regarded as a C°° embedded submanifold of
TM.  p(X)ip) E TF(R) iff p G F(R) and *(» = 0.

If s > 1, evop is Cs transverse to TF(R). Hence

A = {ie TR(M) \X ffi 7F(/?)}

is open and dense in TR (M).  If AT G A, the set of symmetric critical points of X
is finite. Lemma 7.1 applies to make AN = {X E TR(M) |X has only Af-elemen-
tary symmetric critical points} open and dense in rR(M).

Now p is also Cs pseudotransverse to (TM)0, where AN is the dense set and
TR(M) is the Banach space of perturbations. Arbitrary perturbations in a neigh-
borhood of a nonsymmetric critical point make that point hyperbolic. Hence,
HS(N) is open and dense in TR{M).   O

Let X E rR(M) have 7 as a symmetric periodic orbit of period 2t through
p E F(R). Choose an /^-invariant neighborhood N of p with coordinates (x¡, y¡)
satisfying

(i) the local representative of R in A^ is given by {x¡, y¡) —♦ (x¡, -y¡),
(ii) X = 9/3y„ on N.

Then yn = 0 defines an R-invariant local transversal section 2p for X at p.   By
the implicit function theorem, there exist neighborhoods 0 of X in TR(M) and V
of p in 2p and C* maps

r:ÖxK-»R,   $ : Ö x F —► 2p
satisfying

*(r, ?) = *ï(Y,q)(<l)
where 0^ = flow of Y.  $ is called a Poincaré map. When dealing with symmetric
periodic orbits, we always assume 2„ is /?-invariant as above.

Since 7 is symmetric periodic of period 2r, q = <f>Tip) G F(/î). By choos-
ing 0 smaller if necessary, there exists an open neighborhood IV of q in F(R) and
a C* map * : Ö x W —► 2p satisfying *(r, y) = * iff

(7.1) 0y _,      *Zl(x)=y

where i>y(je) = ^(r', x). * picks out those orbits which cross W during the first
iteration of the Poincaré map.  * is called a semi-Poincaré map.

For fixed Y E 0, the map 4>y is a C* diffeomorphism.  Note that «Êy'ix) =
^-r(Y,*yi(x))W-   Hence
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$Y{R{x)) = 0tV,k(*»(*(*)) - ^-tyy.r (*)/*)

"^rr-y*-1      {x) = R$Zi{x)

where reversibility gives T(Y, R(x)) = T(Y, &Yl{x)).
Thus we have (d>y°/?)2 = identity on a neighborhood of p in V.  Hence

3>y = Uy°R where i/y is an involution defined near p.  We do not say that $y
is /(-reversible, however, since dim 2p = 2m - 1. But we do have that dim F{UY)
= dim F{R) = n.  This follows since jc E F{UY) iff

(7.2) (¡>Y _,      {x)EF{R).v    ' y-y2r(y,*y1(x))v '      v '

Set *y(w) = *(r, w). From (7.1) and (7.2), it follows that *yW C
F{UY) for each y G 0.

A symmetric periodic orbit 7 of A" through p E F{R) is called 0-elementary
on 2p if there exists an R-invariant local transversal section 2p on which tyx is
transverse to F{R) n 2p.  Equivalently, 7 is O-elementary if F{UX) ff) F{R) at p.
This definition is independent of the particular section chosen, and does not apply
to orbits which close up only after two or more iterates of the Poincaré map.

Proposition 7.3. Let s > 1 and suppose X E r^(Af) has a symmetric peri-
odic orbit y through p E F{R).

(i) Then there exists a local transversal section 2 , a neighborhood 0 of
X in rR{M) and a dense, open subset Ds of 0 for which Y EDghas only 0-ele-
mentary orbits on 2 .

(ii) If y0 is a O-elementary closed orbit of Y on 2 , then there exists a
smooth one-parameter family of symmetric periodic orbits of Y containing y0.

Proof.  The proof is similar to Abraham-Robbin [2, p. 109]. Choose 0,
2p, and W as above so that the associated semi-Poincaré map is defined and Cs
on W.  We show * is C" transverse to F{R) D 2p = 2Ä ifs>2.

Suppose ty{Y, y) = x G 2fi.  Let t = T{Y, x) and pick any g: [0, t/2] —► R
C~ and satisfying gik){0) = 0 = g(fc)(r/2) for 0 < it < s and

£"10*-1.
LetxETx-Zp. Denne^{(t>_s{x)) = g{s)Tx(t>_s{x)fotO<s<Tl2. Set ^{x))
= - TR{^{<p_s{x))) and note that % is C* Tî-reversible along <¡>s{x) (£ is C* at x
and v by the conditions on the derivatives of g).

Extend % to a Cs vector field on M by means of a partition of unity. Let
r¡ = lÁ{% - TR{Ç)). n E rsR{M) and 17 = % on <ps{x). Let $ = flow of Y + \r¡
where X is real.  Then

{d/d\){<t,T¡2iy)) =JT0l2T<t>°ono<t>_s+T¡2(y)ds=x.
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Thus, TfYy-,^ is surjective and (i) follows.
Now ^'(2^) has codimension n-linW and thus is a submanifold of

dimension one. This submanifold generates the one-parameter family of closed
orbits and thus proves (ii).

The proof for s = 1 uses the indifference of s.    D
A symmetric periodic orbit is called N-elementary if the principal character-

istic multipliers are Af-elementary.  As in the Hamiltonian case, not all symmetric
periodic orbits can be made A'-elementary.  See Robinson [13] for a discussion
of how this happens. Meyer and Palmore [9] have an example to show this phe-
nomenon actually occurs; their example is a Hamiltonian vector field, but it is
easily seen to be /^-reversible also.

If X has 7 as a 0-elementary symmetric periodic orbit, we may choose an
.^-invariant neighborhood of p E F(R) n y with coordinates as above.  For any
neighborhood 0 of X, the bundle 0 x 77V —► 0 x AT admits 2« global cross-sec-
tions defined by:

vi{Y,x) = {Y,(dldxi)(x)),     i=l,...,n,

pn+i(Y' *) = {Y, {Wy¡){x)),     /= 1, ...,«- 1,
v2n(Y,x) = (Y,Y(x)).

For 0 small enough, we may assume:
(i)  All orbits corresponding to fixed points of the Poincaré map are 0-ele-

mentary.
(ii) * : W —► 2p is defined and Cs.

(iii) The 2« cross-sections above are pointwise linearly independent.
Now let 7T : LR(TN) —► AT be the bundle given by

it-1 (x) = {fEL(TxN, TRxN) I/o 77? = TR o/"1}.

Let DR = DRR2n he the set of/?-reversible linear maps of R2". The cross-sec-
tions above give a map p, : 0 x LR(TN) —► N x DR. Define p2 :0 x W —►
0 x LR(TN) by

p2(X, w) = {Y, Tx4>ïiYiX)ix))

where jc = «Êy'^vv).
Finally, define ty = p, °p2. Note that * actually takes values in 2p x J

where J = J(dfdyn) is defined as in §5. JN is the set of /?-reversible linear maps
that are not sub-A/-elementary.  A symmetric periodic orbit given by transversal
intersection of $ with JN is called a bifurcation orbit.

Proposition 7.4. Let s > 2, X G rR (M), and 7 a 0-elementary closed
orbit of X.   Then there exists an R-invariant section 2p for X, a neighborhood 0
of X, and a dense, open subset SN of 0 such that

(i) all but a finite number of the symmetric periodic orbits corresponding
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to fixed points of the Poincarè map on 2   are N-elementary.
(ii)  77ze" non-N-elementary symmetric periodic orbits are bifurcation orbits.

Proof.  Choose Ö as above and define p:0 ^ CS{W, 2p x J) by ev°p
as y. JN is a finite union of submanifolds 7p . . . , Jk of J by Proposition 5.4.
We show p is Cs~x transverse to 2R x J? for each i, where 2Ä = 2p n F(#).

Since 2fi has codimension « - 1 in 2p and each J^ has codimension at
least one in J, it follows that 4ry1(2R x 7^) is a submanifold of dimension zero,
or a finite set of points in W.

To see that p is Ci_1 transverse to 2ß x/f, first note that ^ (fi 2R since
all closed orbits are O-elementary. The following lemma yields * (fiJ?.

Lemma 7.5. Let Y EVR (AT) have a symmetric periodic orbit y through
p E F{R), and let U be a neighborhood of y in M.  Let per y = t and <¡>t = flow
of Y. Let L = rp0T G DR{TpM) and choose A E TLDR{TpM) such that
A{Yp) = 0.  Then, ifs>2, there exists ^ETR{M) such that:

(0 S|T = 0,
(«) *U-i/ = o,
(iii) (3/3X)(rp^) |x=0 = A where $ - flow of Y + X?.

Proof. The proof is a modification of the tangent perturbation lemma in
Abraham-Robbin [2, p. Ill]. They construct 77 G rs{M) satisfying (i), (ii), and
(iii).  Let £ = V4(t? - TR(n)). Then % E TR {M) and % satisfies (i) and (ii). To see
(iii) also holds, note that, in the proof in [2],

H{x, TR{x)) = T2{R<p_T)H{x, Tx<j>_T{x))
and

B(y) = -T2R°B°TR(y).

The lemma then follows immediately.  Finally, the proof of the proposition for
s = 2 uses the indifference of s.    D

We now combine the two previous local lemmas with a method of Peixoto
and Robinson to prove the Kupka-Smale theorem for /?-reversible vector fields.

X ETR (M) is called N-generic (for orbits of period < t) if
(i) XEHS{N),

(ii)  all symmetric periodic orbits (of period < r) have local transversal sec-
tions on which the conclusions of Proposition 7.4 hold, and

(iii) all nonsymmetric periodic orbits (of period < t) are hyperbolic.
Let KS(JV) {KS(N, r)) be the set of all Cs R-tevetsihle vector fields that

are AZ-generic (for orbits of period < r). Set Ks = fl^=, K%N).

Theorem 7.6. 7/Af is compact and s>2, KS{N) is residual in rR{M).
Thus, Ks is also residual.
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Proof.  Robinson's proof for Hamiltonian vector fields goes over exactly
for the /?-reversible case.  See [13].  Use the usual Kupka-Smale theorem for the
nonsymmetric periodic orbits. We omit the details.   D

VIII.  Liapounov's theorem. In this section, we show that another qualita-
tive property of Hamiltonian vector fields carries over to the /?-reversible case.
The classical Liapounov theorem states that, if an analytic Hamiltonian vector
field has a purely imaginary characteristic exponent ÏX at a singular point p, then,
subject to certain resonancy restrictions, there exists an analytic one-parameter
family of nested closed orbits of the vector field about p.  Moreover, the periods
of the closed orbits tend to 27r/|X| as the initial conditions converge to p.   For a
proof, see [15]. [1, Appendix C] contains a generalization to the C1 case.  Re-
cently, some of the resonance conditions have been relaxed. See, for instance, [19].

Let X he a C2 /?-reversible vector field in a neighborhood of a symmetric
singular point p. Let X = X,,. . . , Xn be the principal characteristic exponents
of X at p and suppose X is purely imaginary.

Theorem 8.1. In the above situation, if no other principal eigenvalue is
equal to iXn for any integer n, then there exists a C2, two-dimensional, invariant
manifold Mx containing p with the property that A/x consists of a nested, one-
parameter family of symmetric periodic orbits. Moreover, the periods of the
closed orbits tend to 2tif\X\ as the initial conditions tend to p.

Remark.   Note that the resonancy restrictions are met if p is an elemen-
tary symmetric singularity of X.   Of course, the theorem is not true if p is a non-
symmetric singular point of X. M^ is called a Liapounov subcenter manifold.

Proof.  By /?-reversibility, if an orbit of X has two distinct intersections
with F(R), the orbit is symmetric periodic. We show there exists a one-dimen-
sional submanifold S of F(R) containing p with the property that each point of
S returns to F(R) after time approximately 7r/|X|.

Take C°° coordinates (x¡, y¡), i = 1,...,«, on a neighborhood U of p
with y¡ = 0 defining F(R) n U and x¡(p) = 0. Let <f>t be the flow of X and itx
the projection from i/onto thejysubspace. By the results of §5, we may assume
that 9/9x, and 9/9y, span the -1 eigenspace of T<f>n,^ip).

Now let t > 7t/|X|.  Choose an open set W C F(R) n U satisfying <f>t(W) C U
for all t in the interval [0, t] . Define F: W x [0, t] —* R" by F(x, t) =
7T, « <¡>t(x). Thus the orbit through x is symmetric periodic if there exists t > 0
with F(x, t) = 0.

Define G : W x [0, t] —*■ R"" ' by G(x, t) = Tt0<>F(x, t) where tt0 is the pro-
jection on the last « - 1 coordinates. One checks easily that TGip, 7r/|X|) has rank
« - 1. Hence G~! (0) is a two-dimensional submanifold of W x [0, t] locally at
ip, 7t/|X|). Note that G~l{0) contains the curve t —> (p, t).
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Now define ff: G-'(0)—»Rby H=it2°F where rr2 is the projection on the
y,-axis in R". An easy computation shows that (p, 7r/|X|) is a nondegenerate critical
point of index one for ff. Hence, using the Morse lemma, 77" '(0) consists locally of
two one-dimensional submanifolds intersecting transversally at (p, ir¡\\\). One of
these submanifolds is the curve t —► (p, t). The other consists of points of the form
{x, t{x)) satisfying Fix, t{x)) = 0. These points thus define the submanifold S of
F{R).

The second part of the theorem follows from the fact that (p, 7r/|X|) G 77" 1(0).
This completes the proof.  D

IX. Homoclinic orbit theorems. Throughout this section, let p he a symmetric
hyperbolic critical point of the Ä-reversible vector field X. Let

W°(p) = {xEM\<pt(x)->p, t>0}.
Ws(p) is called the stable manifold for X at p.  We also define the unstable mani-
fold for X at p to be the stable manifold for -X at p.   Let Wu(p) denote the un-
stable manifold.  It is well known that both Ws(p) and W"(p) ate immersed invari-
ant submanifolds of M [2]. By 5.2, dim Ws(p) = dim Wu(p) = n, and by /{-re-
versibility, we have R(Ws(p)) = Wu(p).

We also assume that Ws(p) has a point of transversal intersection q =£ p with
F(R).  By symmetry, q E W(p), and by invariance of the stable and unstable
manifolds, it follows that the orbit of q, <t>t(q), lies in Ws(p) n Wu(p). Such an
orbit is called a symmetric homoclinic orbit.  We remark that, since Ws(p) is
transverse to F(R) at q, it follows that the symmetric homoclinic orbit through
q cannot be perturbed away.  This, of course, is quite unlike the situation for or-
dinary vector fields. In this case, the sum of the dimensions of Ws(p) and Wu(p)
is exactly the dimension of the manifold. Hence Ws(p) and Wu(p) cannot inter-
sect transversely along a one-dimensional homoclinic orbit and may thus be per-
turbed away.

The following theorem states that homoclinic orbits are "almost" periodic
orbits in that they are the limits of one-parameter families of symmetric closed
orbits. A similar theorem is known in the Hamiltonian case only for systems with
two degrees of freedom [21].

Theorem 9.1. Let p be a symmetric hyperbolic zero of X, and let q^p
be a point of transversal intersection of Ws(p) and F(R). Then the homoclinic
orbit through q is the limit of a one-parameter family of symmetric closed orbits
whose periods tend to °°.

Proof.  Let F be a disk in Wuip) containing p.   Since V is transverse to
F(R) at p, there is an e > 0 such that any disk C1 - e close to Fin AÍ also has a
unique point of transversal intersection with F(R) near p.

Now let N he a neighborhood of q in F(R).  By the X-lemma [22], there is
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a t > 0 such that, for any t > t, there exists a disk NtCN such that 4>t(Nt) is
C1 - e close to V.  Hence (¡>t(Nt) intersects F{R) transversally at a point xt.
Since Nt varies continuously with t, it follows that xt is a curve in F(R) approach-
ing p as t approaches °°.  Finally, (¡>t(xt) E F{R), and <p_t(xt) —*■ q, so the orbits
through xt axe symmetric periodic and tend to the orbit of q.    D

Appendix. Sections with boundary. The purpose of this appendix is to give
the basic definitions and properties of sections with boundary for vector fields on
a manifold.  Most of this material can be found in Birkhoff s paper [4]. What we
add here is a criterion for the stability of such sections under perturbations of
the vector field.

Throughout, we assume M is an orientable C°° manifold of dimension n and
X is a C2 vector field on Af with flow Ff.  A section with boundary for X on M
is a pair (2, 92) where 2 is an orientable submanifold of codimension one in AÍ
and 92 is the boundary of 2.  (2, 92) has the additional properties that:

(i)  92 is an invariant manifold for X,
(ii) X is transverse to 2 - 92,

(iii) there exists TER,T>0, such that if x E 2 - 92, there exist t, s G
R, 0 < t < T, - T < s < 0, with Ft(x) G 2 and Fs(x) G 2.

Sections without boundary have often been used to reduce the study of
qualitative properties of a vector field to the study of the corresponding proper-
ties of the associated first return diffeomorphism.  Here we show that, with minor
restrictions, a similar reduction is possible in the boundary case.  For the basic
definitions and properties of sections without boundary, see [16].

If X admits a section with boundary (2, 92), there is an associated first re-
turn map L : 2 - 92 —> 2 - 92 defined by L(x) = FT,xyX where T(x) is the
first positive real number for which FT(xyX G 2. T is called the time of first re-
turn map. L is easily a diffeomorphism of 2 - 92 into itself.

To extend L over 92 differentiably, we need the following notions.  Let 72
denote the tangent bundle of 2 considered as an embedded (2« - 2)-dimensional
submanifold of TM.  We say 2 is regularly bounded if .V is transverse to 7/2.
Here we regard X as a C2 map M — TM.  Note that X(p) E 72 iff p G 92.

Proposition A.l. Let X E r2(M) admit a regularly bounded section with
boundary (2, 92). Then the first return map L extends to a C1 diffeomorphism o/2.

Proof. It suffices to show that the time of first return map T extends over
92 in a C1 manner.

To see this, take a neighborhood W of 92 in M with W diffeomorphic to 92 x
R2. This diffeomorphism can be constructed using the orientability of 2 and a C2
collaring of 92 in 2. Let x, z be global coordinates on IV with z = 0, x > 0 defining
2HIV.
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Let V he an open neighborhood of 92 in 2 n W with Lip) E 2 n IV for all
pGK-92.

Define
(zoFt{p)lx{p),   pGK-92,

g(P. 0 = {
{{dldx)(zoFt)(p),   pG92.

g is defined and C1 is a neighborhood N of {{p, T(p))\p G V - 92}. Note that
g(p, Tip)) = 0 for p E V - 92. Thus T extends over 92 providing we can solve
gip, i) = 0 for t.

But this can be done if (dglbt){p, t) # 0 for p E 92. An easy computation
then shows that this condition is a coordinate definition of regular boundedness.  D

One method of constructing sections with boundary is to suspend a given
diffeomorphism. More precisely, let L : 2 —► 2 be a diffeomorphism. Suppose
L 192 is the time-one map of some flow <f>t on 92 (this is a real restriction, since
not all diffeomorphisms can be so embedded in a flow). Let M be the quotient
space of 2 x R obtained by identifying {x, t) with (L(x), t - 1) and (y, s) with
(0f(v), s -1) when y E 92. M is easily seen to be a manifold without boundary
of dimension 1 + dim 2.

The flow generated by the constant vector field (0, 1) on 2 x R then pro-
jects to a new flow on M having an embedded copy of (2, 92) as a section with
boundary and L as the first return map. This flow is called the suspension of L.

In practice, the existence of sections with boundary is often difficult to ver-
ify.  See Birkhoff [4] for a discussion of this problem for Hamiltonian systems
with two degrees of freedom.  For higher dimensional systems, existence of sec-
tions with boundary seems rare. One would first need a compact (n - 2)-dimen-
sional invariant manifold for the flow, which probably does not exist generically.
Nevertheless, with suitable hypotheses, the existence of sections with boundary is
an open condition in rs(M).

Theorem A.2. Let X E T2(M) admit a regularly bounded section with
boundary (2, 92). Suppose there exists a neighborhood NQ of X in T2(M)
and a continuous map $:N0^>- Diff (Ai) such that if Y E N0, $(y)(92) is an
invariant manifold for Y.  Then there exists a possibly smaller neighborhood N of
X such that all YEN admit regularly bounded sections with boundary.

Proof.   First choose neighborhoods W and V of 92 in M and 2 respec-
tively as in Proposition A.l.  Let x, z be global coordinates on W as before. De-
fine hY: V x R—>-A/by

hyiP. 0=/y1°Fiyo/y

where Y E NQ, fY = <1>(Y), and Fj = flow of Y.   Also define
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zohY(p, t)/x(p),   PE K-32,

(blbx)(zohY)(p,t),   pG32.

As before, there exists a neighborhood U of {(p, T(p)) \p E V} in V x R such
that \pY : U —*■ R is defined and Cl. Thus we get a continuous map >F :N0 —*■
C\U, R) given by

ev°*(Y, p, t) = ipY(p, t).
Continuity arguments then give a neighborhood A/, of X such that each

Y ENX has fY l(V) as a local section with boundary. fY 1(V) is regularly bound-
ed via the openness of transversal intersection.

To complete the proof, choose a neighborhood F, of 32 in 2 such that
32 C F, C V.  Let V\ he the complement of F, in 2. Let e > 0. There exists
an open neighborhood N2 of X such that each Y EN2 has the property that, for
any pEVx, the integral curve of Y through fY(p) returns to /y(2) at least once
before time T(p) 4- e. This follows from the transversality of the flow of X on
Vx and the compactness of V\.

Let N = Nx n N2. Then each YEN thus has /y(2) as a regularly bounded
section with boundary.  This completes the proof.   D
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