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In recent years it has been recognized that properties of physical systems such as entanglement,

athermality, and asymmetry, can be viewed as resources for important tasks in quantum information,

thermodynamics, and other areas of physics. This recognition was followed by the development of specific

quantum resource theories (QRTs), such as entanglement theory, determining how quantum states that

cannot be prepared under certain restrictions may be manipulated and used to circumvent the restrictions.

Here we discuss the general structure of QRTs, and show that under a few assumptions (such as convexity

of the set of free states), a QRT is asymptotically reversible if its set of allowed operations is maximal, that

is, if the allowed operations are the set of all operations that do not generate (asymptotically) a resource. In

this case, the asymptotic conversion rate is given in terms of the regularized relative entropy of a resource

which is the unique measure or quantifier of the resource in the asymptotic limit of many copies of the state.

This measure also equals the smoothed version of the logarithmic robustness of the resource.

DOI: 10.1103/PhysRevLett.115.070503 PACS numbers: 03.67.Mn

Classical and quantum information theories can be

viewed as examples of theories of interconversions among

different resources [1]. These resources are classified as

being quantum or classical, dynamic or static, noisy or

noiseless, and therefore enable a plethora of quantum

information processing tasks [2,3]. For example, quantum

teleportation can be viewed as a resource interconversion

task in which one entangled bit (a quantum static noiseless

resource) is transformed by local operations and classical

communication (LOCC) into a single use of a quantum

channel (a quantum dynamic noiseless resource) [4]. Just as

the restriction of LOCC leads to the theory of entanglement

[5], in general, every restriction on quantum operations

defines a resource theory, determining how quantum states

that cannot be prepared under the restriction may be

manipulated and used to circumvent the restriction.

The scope of quantum resource theories (QRTs) goes far

beyond quantum information science. In recent years a lot

of work has been done formulating QRTs in different areas

of physics, such as the resource theory of athermality in

quantum thermodynamics [6–11], the resource theory of

asymmetry [12,13] (which led to generalizations of impor-

tant theorems in physics such as Noether’s theorem [13]),

the resource theory of non-Gaussianity in quantum optics

[14,15], the resource theory of stabilizer computation in

quantum computing [16], noncontextuality in the founda-

tions of quantum physics [17], and more recently it was

suggested that non-Markovian evolution can be formulated

as a resource theory [18]. In addition, tools and ideas from

quantum resource theories have been applied in many-body

physics (see, e.g., Ref. [19] and references therein), and

even for a universal formulation of the uncertainty principle

[20]. Furthermore, very recently an abstract formulation

using concepts from category theory has been proposed,

unifying all resource theories into a single framework [21].

Despite this large body of work, so far there are no known

theorems that can be applied to a large class of QRTs. In this

Letter we prove one such theorem, establishing a criterion

of when a resource theory is asymptotically reversible. In

particular, we show that under a few physically motivated

assumptions, a resource theory is asymptotically reversible

if its set of allowed operations is maximal, that is, if the

allowed operations are the set of all operations that do not

generate (asymptotically) a resource. Our approach is a

generalization of the results of Ref. [22,23] from entangle-

ment to general resource theories satisfying a few basic

properties. Our main innovation is to show that the argu-

ments of Ref. [22,23] can be extended to resource theories

where there is no notion of a maximally valuable resource,

as in the case of entanglement theory. Thus, our work

also simplifies parts of the proof in Ref. [22,23].

QRTs have a general structure; they all consists of three

main ingredients: (1) the resources (like entanglement),

(2) the nonresources or free states (like separable non-

entangled states in entanglement theory), and (3) the

restricted set of free (or allowed) operations (like LOCC

in entanglement theory). This structure gives rise to two

extreme limits corresponding to trivial resource theories. In

the first one, the restriction is very loose and almost nothing

is a resource since almost every operation is allowed.

The other extreme limit is when the restriction is very

strong and almost every quantum state is a resource since it

cannot be prepared under the set of allowed operations. The

most interesting resource theories are those for which the
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restrictions on the allowed operations are somewhere in the

middle of these two extremes. An important point between

these two limits is when the restriction is strong enough so

that the theory is not trivial and yet loose enough so that the

resource theory is asymptotically reversible.

The three constituents of a resource theory—namely, the

free states, the allowed or restricted operations, and the

resources—are not independent of each other. For example,

the restricted set of operations must be such that it does not

generate resources from free states (otherwise, it cannot be

called a resource theory). Therefore, any assumption being

made on one of these ingredients effects the others. Below

we give five physically motivated postulates on the set of

free states that will be used to prove our main result.

All systems considered here are finite dimensional, so

that for every system, described by a state ρ, there exists

integer s ≥ 2 and m≡ ðm1;…; msÞ (with mj positive

integers) such that ρ ∈ DðH
m
Þ, where H

m
≡ C

m1 ⊗

C
m2 ⊗ � � � ⊗ C

ms and DðH
m
Þ is the convex set of density

matrices acting on H
m
. We denote by F the set of all

free states (in all possible finite dimensions), and by

F
m
¼ F∩DðH

m
Þ the free states in DðH

m
Þ. The free states

are states that can be generated freely at no cost. Therefore,

if a state σ ∈ DððH
m
ÞÞ is free so is σ ⊗ σ. We conclude that

if ρ; σ ∈ F then ρ ⊗ σ ∈ F . We summarize this with the

first postulate on F :

Postulate I: The set of free statesF is closed under tensor

products.

The second postulate is the converse of the first postulate.

That is, if σ ∈ DðH
m
⊗ H

m
0Þ represents a composite bipar-

tite system, then discarding one of the subsystems cannot

generate a resource.Wewill only assume that it is possible to

discard a subsystem at no cost if the subsystems are spatially

separated. This amounts mathematically to the partial trace.

Note however that for a single systempartial tracewill not be

allowed even if the Hilbert space of the single system is

isomorphic to a tensor product of Hilbert spaces.

Postulate II: The set of free states F is closed under the

partial trace of spatially separated subsystems.

Clearly, in any reasonable resource theory if ρ and σ are

free states then both ρ ⊗ σ and σ ⊗ ρ should be free. Taking

this one step further, we will assume that if a free state

ρ ∈ DðCm1 ⊗ � � � ⊗ C
msÞ represents a composite system

with s spatially separated subsystems, then the permutation

of the s subsystems cannot generate a resource.

Postulate III: The set of free states F is closed under

permutations of spatially separated subsystems.

The next postulate concerns continuity. If a sequence of

free states fρng converges to a state ρ (with respect to any

of the lp-norms; i.e., limn→∞∥ρn − ρ∥p ¼ 0) then the state

ρ must also be free. Otherwise, the resource theory will not

be continuous.

Postulate IV: Each F
m

is a closed set.

The next postulate concerns convexity. Suppose ρ and σ

are two free states both acting on the same Hilbert space,

and suppose one (say Alice) flips an unbiased coin

(assuming such a coin is by itself not a resource and

available to Alice). If Alice gets a head then she prepares ρ

and if she gets a tail then she prepares σ. Here we assume

that if Alice forgets whether she got a head or a tail that

alone cannot generate a resource. That is, 1
2
ρþ 1

2
σ should

also be a free state. In the same way, since both ρ and
1
2
ρþ 1

2
σ are free states so is 3

4
ρþ 1

4
σ. Continuing in this

way, we get that ðk=2nÞρþ ½1 − ðk=2nÞ�σ is a free state for

all n ∈ N and k ¼ 0; 1; 2;…; 2n. Since the set fk=2ng is

dense in [0,1] the previous postulate implies that for any

t ∈ ½0; 1� the state tρþ ð1 − tÞσ is free. Note that we

arrived at this conclusion assuming one has access to

randomness, i.e., the unbiased coin (also biased coins will

do the job), as well as free classical communication in

distributed settings. Clearly, in some QRTs these assump-

tions don’t hold, and the set of free states are not convex.

However, convexity is for obvious reasons a convenient

mathematical property to have and a natural property in

some contexts. We therefore conclude with our last

postulate (keeping in mind that there are QRTs that do

not satisfy this assumption, and for which our main result

cannot be applied):

Postulate V: Each F
m

is a convex set.

Every state that is not in F is considered a resource.

Since F is closed, the set of resource states is open. This

means that resource states can be arbitrarily close to the set

of free states and therefore motivate the notion of highly

resourceful states (those that are far from the set of free

states) and weakly resourceful states (those that are very

close to the set of free states). Indeed, this geometrical way

to measure the resourcefulness of the states leads to a

unique measure of resourcefulness in asymptotically

reversible resource theories.

The set of free operations are the set of all possible

operations given the restrictions at hand. The type of

restrictions (and therefore the free operations) can vary

drastically from one resource theory to another. Hence, it is

hard to imagine a general resource theory unifying all

resource theories into a single framework. Nevertheless,

there is a general statement on the set of free operations

that must hold true in all resource theories, and can be

considered as the main characteristic of a resource theory:

The free operations postulate (FOP): The set of free

operations cannot generate a resource; they cannot convert

free states into resource states.

Note that clearly free operations can convert one

resource state into another. The intuition is that free

operations cannot convert a resource state into a more

resourceful state. However, the term “more” resourceful

implies a total order or hierarchy of resources. Such a total

order does not exist in general. In fact, in most cases it is a

partial order that determines the hierarchy of resources.

This kind of partial hierarchy varies a lot from one resource

theory to another and therefore cannot be postulated in
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general terms. The only distinction that we can make here is

between resource states and nonresource states.

We denote by NR the set of all completely positive maps

that satisfies the FOP; i.e., NR is the set of resource

nongenerating operations. We also denote by NRm the

elements of NR acting on DðH
m
Þ. Since the FOP is the

only constraint on the elements of NR, the set NR is bigger

than or equal to the set of allowed operations. In fact,

NR is the maximal possible set of free operations in any

nontrivial QRT.

Any measure or quantifier of the resource must be

monotonically nonincreasing under the action of free or

allowed operations. This is a necessary condition if the

measure is to have operational significance (that is, it

quantifies the optimal figure of merit for some task that

requires the resource for its implementation). If a measure

is also monotonically nonincreasing under any element of

NR then it is a resource measure for all QRTs with the same

setF of free states. Since the set of free statesF
m
is convex

and closed, it is well known that one can define a class of

geometric resource quantifiers that are monotonic under

NR and that are based on the distance of the resource from

the set of free states.

The distance, in many resource theories, is measured

by a contractive metric (see, e.g., Refs. [4,5,10,24,25]) on

the quantum states, that is, a metric C that assigns to two

quantum states ρ and σ, on the same underlying Hilbert

space, a non-negative real number Cðρ; σÞ such that

every completely positive, trace-preserving map Λ is a

contraction, i.e.,

CðΛðρÞ;ΛðσÞÞ ≤ Cðρ; σÞ: ð1Þ

Then, any measure M∶DðH
m
Þ → Rþ

MðρÞ ≔ inf
σ∈F

m

Cðρ; σÞ;

where C is a contractive metric, is a resource quantifier,

and in particular nonincreasing under any map in NRm

(see, e.g., Refs. [4,5]). This can also be seen from that fact

that for any Λ ∈ NRm we have ΛðF
m
Þ ⊂ F

m
so that

M(ΛðρÞ) ¼ inf
σ∈F

m

C(ΛðρÞ; σ) ≤ inf
σ∈F

m

C(ΛðρÞ;ΛðσÞ)

≤ inf
σ∈F

m

Cðρ; σÞ ¼ MðρÞ:

where we have used Eq. (1) in the second inequality.

The relative entropy of a resource is defined in a similar

way as (see Refs. [24,25] for the original definition in

entanglement theory)

EðρÞ ≔ inf
σ∈F

m

Sðρ∥σÞ;

where Sðρ∥σÞ ¼ Tr½ρðlog ρ − log σÞ� is the relative entropy
(which is not a metric). Since Sðρ∥σÞ is contractive, the

relative entropy of a resource is a monotone. This measure

has many useful properties [24–26] and in particular is

known to behave smoothly in the asymptotic regime when

considering arbitrarily large number of copies of a quantum

system [4,5]. In this case, its variant, the regularized

relative entropy of a resource is defined as

E∞ðρÞ≡ lim
n→∞

1

n
Eðρ⊗nÞ;

which play a key role in many quantum resource theories.

Lastly, we will be using in the definition below the robust-

ness monotone. The measure of robustness [22,23,27,28]

in entanglement theory measures the amount of noise that

can be added to an entangled state before it becomes

unentangled (separable). This measure can be easily gener-

alized to any resource theory as follows. Let ρ ∈ DðH
m
Þ.

Then, the (global) robustness of ρ is defined by

RðρÞ ≔ min
π∈DðH

m
Þ

�

s ≥ 0∶
ρþ sπ

1þ s
∈ F

m

�

: ð2Þ

Both the robustness and the relative entropy measure are

monotones under NR. They are also both convex and

faithful (see, e.g., Refs. [4,5]) in the sense that they are zero

if and only if ρ ∈ F
m
.

Since we focus here on resource manipulation in the

limit of arbitrarily many copies of the state in question, we

define an even larger class of maps than NR, those that

are not generating resources only in the asymptotic limit.

For this purpose, we first define ε-resource nongenerating

operations.

Definition 1: Let Λ∶DðH
m
Þ→ DðH

m
0Þ be a quantum

operation. We say that Λ is an ε-resource nongenerating

operation if for every free state σ ∈ DðH
m
Þ, RðΛðσÞÞ ≤ ε.

We denote the set of ε-resource nongenerating maps

by NRðεÞ.
An asymptotically resource nongenerating operation is

then defined by a sequence of trace-preserving CP maps

Λn∶DðH⊗n
m Þ → DðH⊗n

m
0 Þ, with n ∈ N, such that Λn is an

εn-resource nongenerating operation and limn→∞εn ¼ 0.

Finally, the optimal rate of converting (by asymptotically

resource nongenerating operations) n copies of a resource

state ρ into m copies of another resource σ is defined by

Rðρ→σÞ≔min

�

m

n
∶ lim
n→∞

�

min
Λ∈NRðεnÞ

∥Λðρ⊗nÞ−σ⊗m∥1

�

¼0

�

;

ð3Þ

with limn→∞εn ¼ 0. With these definitions and notations

we are ready to present the main result:

Theorem 1: Consider a QRTwith a set of free states F .

If F satisfies the five postulates above then the regularized

relative entropy of a resource can be expressed as

E∞ðρÞ¼ min
fρn∈DðH⊗n

m
Þg

×

�

lim
n→∞

logð1þRðρnÞÞ

n
∶∥ρn−ρ⊗n∥1→ 0

�

; ð4Þ
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and for every σ such that E∞ðσÞ > 0,

Rðρ → σÞ ¼
E∞ðρÞ

E∞ðσÞ
: ð5Þ

Remark.—Equation (5) in the theorem above identifies

the regularized relative entropy as the “unique” measure of

a resource in the asymptotic limit. That is, there is a single

function, E∞, that determines the rate of (reversible)

conversion of many copies of ρ to many copies of σ under

nonresource generating operations. Note however that the

proof of the theorem above cannot follow directly from its

analog in entanglement theory [22,23]. Unlike entangle-

ment theory, which has a unique “golden” unit such as the

Bell singlet state, general QRTs may have many such units,

and more precisely, can have many inequivalent maximal

resource states. For this reason, obtaining also general

results in the single shot case, similar to the ones

in Refs. [29] for single shot entanglement theory, are far

from being trivial and a subject for further study.

The proof is partly based on a recent generalization of the

quantum Stein’s lemma [30], which can be described in

terms of the following property of QRTs.

Definition 2: Consider a QRTwith a set of free states F

and denote by F n the set of all free states in DðH⊗n
m Þ (here

m is a fixed dimension vector). We say that the QRT

satisfies the exponential distinguishability property (EDP)

if there is a nonidentically zero function f∶DðHÞ→ Rþ

such that for every resource state ρ and ε > 0,

lim
n→∞

−
log (βnðρ; εÞ)

n
¼ fðρÞ; ð6Þ

with

βnðρ; εÞ≡ min
0≤An≤I

ðβð2ÞðAnÞ∶β
ð1ÞðAnÞ ≤ εÞ; ð7Þ

where βð2ÞðAnÞ≡maxωn∈F n
trðωnAnÞ and βð1ÞðAnÞ≡

tr½ρ⊗nðI − AnÞ�.
In Ref. [30] it was shown that if the set F satisfies the

five postulates then any such resource theory satisfies the

EDP with f ¼ E∞ being the regularized relative entropy of

a resource. Furthermore, it was also shown in Proposition

II.1 of Ref. [30] that in this case the relative entropy of a

resource can be expressed as in Eq. (4).

To prove Eq. (5), consider the sequence of maps

ΛnðXÞ ≔ trðAnXÞσn þ tr½ðI − AnÞX�πn: ð8Þ

In the equation above σn is chosen such that both

∥σ⊗n½E∞ðρÞ=E∞ðσÞ� − σn∥1 → 0; lim
n→∞

log½1þRðσnÞ�

n
¼ E∞ðσÞ

and πn is taken to be the optimal state in Eq. (2) for σn;

that is,

1

1þRðσnÞ
½σn þRðσnÞπn� ∈ F ⌈n½E∞ðρÞ=E∞ðσÞ�⌉: ð9Þ

The sequence of positive-operator valued measures

(POVMs) fAn; I − Ang is chosen as the optimal one for

ρ in Eq. (7) with εn → 0. With these choices we get

∥Λnðρ
⊗nÞ − σ⊗n½E∞ðρÞ=E∞ðσÞ�∥1 → 0; ð10Þ

so that indeed the rate is E∞ðρÞ=E∞ðσÞ. It is left to show

that fΛngn is asymptotically nonresource generating.

Indeed, since for every δ > 0 and large enough n

max
ω∈F

trðAnωÞ ≤ 2−nðE
∞ðρÞ−δÞ; ð11Þ

and since

RðσnÞ ¼ 2nE
∞ðρÞ − 1 and RðπnÞ ≤ 1=RðσnÞ ð12Þ

we find that indeed limn→∞maxωn∈F n
R(ΛnðωnÞ) ¼ 0.

To summarize, we have shown that under five very

reasonable assumptions on the set of free statesF , a QRT is

asymptotically reversible if the set of free operations is

maximal. This does not mean that if the set of free operation

is not maximal the theory is necessarily nonreversible. For

example, the resource theory of pure bipartite entanglement

is asymptotically reversible under LOCC which is a strictly

smaller set than nonentangling operations. Yet, reversibility

under LOCC no longer holds in the theory of mixed or

multipartite entanglement. In such cases, where the set of

free operations is not maximal, our results indicate how

much one has to increase the set of allowed operations to

achieve reversibility.

The results presented here also explain why the relative

entropy of a resource plays a key role in many QRTs, such

as the resource theory of entanglement, nonuniformity [10],

athermality [6–11], coherence (as defined in Ref. [31]),

stabilizer computation [16], and contextuality [17].

However, our results cannot be applied directly to all

QRTs since for example we considered only finite dimen-

sional Hilbert spaces, and especially it is not applicable for

the resource theory of non-Gaussianity (also the set of

Gaussian states is not convex [14]).

While the restriction to finite dimensions is a significant

one we expect that under a suitable energy constraint,

our main result can be extended to infinite dimensional

systems. However, since it would require a long technical

argument to establish it, we are leaving it to future work.

Finally, our main theorem also cannot be applied, in a

straightforward manner, to the resource theory of asym-

metry since in that theory the regularized relative entropy of

asymmetry is zero [32]. We believe that this can be resolved

by proper rescaling of the relative entropy of asymmetry (as

was shown for a special case of Uð1Þ-symmetry in [33])

and is also left for future work.
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