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Reversible Image Secret Sharing

Xuehu Yan , Yuliang Lu , Lintao Liu , and Xianhua Song

Abstract— In reversible image secret sharing (RISS), the cover
image can be recovered to some degree, and a share can be
comprehensible rather than noise-like. Reversible cover images
play an important role in law enforcement and medical diagnosis.
The comprehensible share can not only reduce the suspicion of
attackers but also improve the management efficiency of shares.
In this paper, we first provide a formal definition of RISS. Then,
we propose an RISS algorithm for a (k, n)-threshold based on the
principle of the Chinese remainder theorem-based ISS (CRTISS).
In the proposed RISS, the secret image is losslessly decoded by a
modular operation, and the original cover image is recovered by a
binarization operation, both of which are just simple operations.
Theoretical analyses and experiments are provided to validate
the proposed definition and algorithm.

Index Terms— Image secret sharing, extended image secret
sharing, Chinese remainder theorem, comprehensible share,
reversible image secret sharing.

I. INTRODUCTION

I
MAGE secret sharing (ISS) divides a secret image into

multiple shares, also known as shadows or shadow images,

which are then sent to participants. (k, n)-threshold ISS

has a loss-tolerant property, i.e., the dealer can reconstruct

the secret with at most n − k shares lost. Hence, ISS is

applied to several applications, such as key management [1],

digital watermarking [2], [3], identity authentication [4], [5],

blockchain [6], access control [7], password transmission [8]

and distributive storage for the cloud [9]–[11]. A digital image

is a specific form of data, where each grayscale (binary) pixel

is represented by 8 bits (1 bit); hence, ISS easily generates

shares for secret sharing. The principles of conventional

ISS technologies basically include visual secret sharing

(VSS) [12], [13], also known as visual cryptographic scheme

(VCS), the use of polynomials [14] and the Chinese remainder

theorem (CRT) [15], [16].

In the (k, n)-threshold VCS [17], [18], the n shares are first

printed onto transparent films and then sent to n participants.

In VCS, the secret is reconstructed from k or more shares

by stacking them and observing them using only the naked
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human eye without any cryptographic devices. If an attacker

collects fewer than k shares, she cannot reconstruct the secret

even with high computational power. However, the traditional

VCS schemes have limitations of poor image quality, basic

matrix design and pixel expansion, which have been further

discussed and considered in follow-up studies [19]–[22].

To reconstruct a high-quality secret image, Shamir [14]

introduced the first (k, n)-threshold polynomial-based secret

sharing approach using a random (k − 1)-degree polynomial

to generate n shares, which were then sent to n participants.

When k or more shares are collected, the secret can be

reconstructed according to Lagrange interpolation. Following

Shamir’s work, some studies [23]–[25] put forward several

improved ISS schemes based on polynomials to obtain better

properties. Polynomial-based ISS is advantageous because

the reconstructed secret has both high quality and no pixel

expansion. Unfortunately, ISS presents the drawback that

either the recovered secret image is slightly distorted or that

the recovery involves a high calculation of O(k log2 k) (when

there is no distortion [15]).

Since the modular approach requires only O(k) opera-

tions [15] to reconstruct each secret pixel, Chinese remainder

theorem-based ISS (CRTISS) achieves a lower calculation

level and no distortion, which has been discussed in

several other studies [26]–[31]. Chang et al. [31] proposed

multi-image threshold ISS based on CRT and a polynomial.

Their method may increase the computational complexity due

to modular and Lagrange interpolation operations. Recently,

Yan et al. [16] introduced (k, n) threshold CRTISS with

lossless recovery, in which the explicit parameters were given

according to the image characteristics.

However, in the above traditional ISS schemes, either the

cover images cannot be reconstructed or the shares are noise-

like. Such limitations make these schemes inapplicable to

some situations.

On the one hand, due to legal considerations or the required

high-precision nature, reversible cover images play an impor-

tant role in law enforcement, medical diagnosis, experimental

investigations into high-energy particle physics and remote

sensing [32], [33], where a reversible (distortion-free or

invertible) cover image in ISS means that the share can be

reversed back to the original cover image to some degree after

the secret image is decoded. More scenarios presenting need

for reversible cover images are further discussed as follows.

1) Reversible cover images are useful for integrity

authentication and media annotation. If we select a

watermark image as the secret image and the cover

images are artworks, we can utilize the watermark image

to authenticate the artworks and to losslessly recover
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the artworks (cover images) because the details of the

artworks are significant.

2) With the reversible cover image, both the secret image

and cover images can be restored, which is useful

for storage conversion and allows the cover images to

function as erasable storage disks.

3) Losslessly reconstructing the cover image is important to

share searching with image recognition since a searching

method, such as a hash function, is generally sensitive to

cover image content including even a slight distortion.

4) The reversible cover image will result in great

convenience when the user may not be satisfied with

the processed result in image processing. Taking image

inpainting as an example, an object is first cropped out

from the original cover image, and then the remaining

area is inpainted to make it visually plausible. To make

the operations reversible, we just need to reversibly

encode the cropped object into the inpainted cover

images to obtain the reversible cover image.

In addition, binary images are widely used in several

applications, such as newspapers, captchas, passwords and

program flowcharts. Thus, lossless reconstruction of binary

cover images is also meaningful.

On the other hand, a noise-like share may raise the

suspicion of attackers and reduce the management efficiency

of shares. In contrast, a comprehensible share can not only

reduce the suspicion of attackers but also improve the

management efficiency of shares. More importantly, ISS with

a comprehensible share can be applied to encrypted domain

searching with image recognition, which is important in cloud

computing and distributed storage. A comprehensible share

is useful for homomorphic computing and searching for each

secret image. In addition, a comprehensible share allows the

user to search within the encrypted domain without uploading,

downloading and decryption processing.

Reversible image secret sharing (RISS) can be applied to

the above scenarios and exhibits features such as capability

for some degree of recoverability of the cover image and a

comprehensive rather than noise-like share. RISS links two

or more images such that the cover image can be recovered

to some degree after the secret image has been decoded, thus

providing an additional method to address two or more images.

Chang et al. [34] presented ISS combining steganography

and authentication based on CRT and a polynomial. In their

scheme, the polynomial is used first to generate shares, and

CRT is used to obtain authentication bits. Then, the shares

and authentication bits are embedded into the cover images

using steganography to output stego images. Thus, the scheme

results in high visual quality of the stego images and

a participant authentication ability. However, it has high

computational complexity and pixel expansion and cannot

losslessly recover the cover image.

Lin and Chan [35] in 2010 introduced a polynomial-based

RISS scheme with high visual quality of shares and the

recovered secret image following previous work [36]. Their

method represents the secret image pixel values in the G F(P)

finite field and embeds them into the first (k−1)-th coefficients

of the constructed polynomial, in which their optical parameter

is P = 7. The remainder of the cover image pixel values

modulo 7 is embedded into the k-th coefficient of the

polynomial. The shared values are added to the cover image

pixel values minus the remainder to output n shares. Thus,

the cover image pixel value is changed to within 7 to achieve

high visual quality of the shares, as well as a reversible share.

However, when P = 7, first, their method includes large

pixel expansion when k is small, or less pixel expansion for

the (k, n) threshold with a larger k value. Second, overflow

may occur, and both the secret image pixel and the cover

image pixel are lossy when the cover image pixel value is

larger than 252. Third, their input cover images are the same,

which may decrease the share management efficiency. Finally,

slight information leakage may occur when continuous cover

image pixel values are processed [37].

Ulutas et al. [38] provided an RISS approach for a

grayscale level or dithered cover image based on the exploiting

modification direction method. Their method transforms the

secret image pixel values to base 17 and embeds them into

the first (k − 2)-th coefficients of the constructed polynomial.

The last two coefficients of the polynomial are used to process

the cover image pixels in base 9. Thus, high visual quality of

the shares as well as a reversible share are achieved. However,

their method is only applicable for (k, n) thresholds with k

equal to or greater than 3, with pixel expansion occurring

with respect to the secret image. Second, their input cover

image is also the same single image. Finally, slight information

leakage may occur when continuous cover image pixel values

are processed [37].

In a word, traditional RISS approaches have the following

limitations.

1) They are not applicable for a general (k, n)-threshold

with any n ≥ k ≥ 2.

2) They input the same cover image, resulting in shares

with similar content, which will decrease the share

management efficiency.

3) Their shares have high pixel expansion, which will

increase the necessary storage.

4) The original cover images and the secret image may not

be losslessly reconstructed.

5) The cover recovery method requires more computation.

The motivations of this paper are to address the above

issues and to propose one RISS approach with the above

comprehensive features.

In this paper, we first provide a formal definition of RISS.

In the definition, the conditions of RISS are presented, and

the quality evaluation metrics of the recovered secret image

and the reversed cover image are discussed. Then, we propose

one RISS algorithm for a general (k, n)-threshold based

on the principle of CRT and random elements in CRTISS.

n different binary cover images are input in our method to

output n different grayscale shares. The cover images’ pixels

are fused in the process of encoding the secret image pixel

based on CRT. In the recovery phase, the secret image is

losslessly decoded by a modular operation, and the original

cover image is losslessly recovered by only a binarization

operation, both of which are simple operations. Theoretical

analyses and experiments are provided to validate the proposed

definition and algorithm.
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The arrangement of the following sections is as follows.

Section II introduces CRT. In Section III, we discuss the

introduced RISS definition and our established RISS algorithm

in detail. Section IV presents the security analysis and

performance proof of our algorithm. Section V discusses the

experimental results and comparisons, and Section VI presents

the conclusion.

II. PRELIMINARIES

In this section, we illustrate CRT for our work.

A set of linear congruence equations can be solved by CRT.

When a set of integers mi (i = 1, 2, · · · , k) is chosen to

satisfy gcd(mi , m j ) = 1, i 6= j , we have a unique solution

y ≡ (a1 M1 M−1
1 + a2 M2 M−1

2 + · · · + ak Mk M−1
k )

(mod M), y ∈ [0, M − 1] to Eq. (1).

y ≡ a1 (mod m1)

y ≡ a2 (mod m2)

· · · (1)

y ≡ ak−1 (mod mk−1)

y ≡ ak (mod mk)

where M =
∏k

i=1 mi , Mi = M/mi
and Mi M−1

i ≡ 1

(mod mi ).

Proof:

Since gcd
(

mi , m j

)

= 1, i 6= j , gcd (mi , Mi ) = 1, and we

have M−1
i subject to Mi M−1

i ≡ 1 (mod mi ).

Considering a1 M1 M−1
1 , we have

ai Mi M−1
i ≡ ai (mod mi ) (2)

ai Mi M−1
i ≡ ai

(

mod m j

)

, i 6= j (3)

From Eqs. (2) and (3), y ≡ (a1 M1 M−1
1 +

a2 M2 M−1
2 + · · · + ak Mk M−1

k )(mod M), y ∈ [0, M − 1])
subject to Eq. (1).

Hence, on the one hand, y is one solution to Eq. (1).

On the other hand, if y1 and y2 are solutions to

Eq. (1), we have y1 − y2 ≡ 0 (mod mi ). Since

gcd
(

mi , m j

)

= 1, i 6= j , M is exactly divided by y1 − y2.

In addition, y is one solution to Eq. (1); therefore, the set of

solutions to Eq. (1) is {zM + y |z ∈ Z }.
Thus, there is a unique solution y ≡

(a1 M1 M−1
1 + a2 M2 M−1

2 + · · · + ak Mk M−1
k )(mod M),

y ∈ [0, M − 1]) to Eq. (1).

III. INTRODUCTION OF THE RISS

DEFINITION AND ALGORITHM

A. RISS Definition

Definition 1 (Reversible Image Secret Sharing): When n

cover images with a size of WC × HC , represented by

C1, C2, · · · Cn , are input, ISS generates a secret image,

denoted by S, with a size of WS × HS into n shares,

which in turn are denoted by SC1, SC2, · · · SCn , with a

size of WSC × HSC . We say that the ISS is an RISS for

the (k, n)-threshold subject to the following:

• security condition. The secret image cannot be recon-

structed with fewer than k shares.

• secret recovery condition. The secret image can be

reconstructed with k or more shares.

• comprehensible condition. SCi is similar to Ci for i =
1, 2, · · · n.

• reversible condition. C 0
i is similar to Ci for i =

1, 2, · · · n.

where

• C 0
i denotes the i -th recovered cover image from one or

more shares for i = 1, 2, · · · n.

• the similarity between the original image and the

recovered image, i.e., image quality, can be evaluated

by traditional metrics, such as the signal-to-noise ratio

(PSNR) given in Eq. (5), weighted PSNR (WPSNR) [39],

and contrast for VCS.

• the embedding capacity, denoted by EC , can be used

to evaluate the average embedding bit rate per share bit,

as shown in Eq. (4).

EC =
wS ×(LS ×WS ×HS)+wc×(nC ×LC ×WC ×HC)

n×LSC ×WSC ×HSC

(4)

where wx , nx , Lx , Wx , and Hx denote the weight factor,

number, grayscale level, image weight, and image height

of x , respectively. For a binary image, Lx = 1, whereas

Lx = 8 for a grayscale image. If a unique cover image is

input, nC = 1, and hence, EC is decreased. wx is used

to balance the weight between the secret image and cover

image according to the application scenario.

If C 0
i = Ci for i = 1, 2, · · · n, we say that the RISS is fully

RISS; otherwise, we say that the RISS is partially RISS.

The PSNR given in Eq. (5) between the primary image I

and I 0 is used to evaluate the image similarity, where the MSE

given in Eq. (6) indicates the mean square error.

PSN R = 10log10(
2552

M SE
)dB (5)

M SE =
1

W × H

W
∑

i=1

H
∑

j=1

[I 0(i, j) − I (i, j)]2
(6)

The WPSNR given in Eq. (7) is used to evaluate the contrast

sensitivity function (CSF) to weight the spatial frequency of

the error image [39].

W PSN R = 10log10

1
√

√

√

√

W
∑

i=1

H
∑

j=1

F2(i, j)

/

W H

(7)

where F denotes the filtered result of the error image

E = I 0 − I with coefficients FC , and
FC (ω, θ) = A (ω) B (ω, θ) ,

A (ω) = 1.5e
−a2ω2

2 − e−2a2ω2
, a = 2, ω = 2π f

60
,

f =
√

u2 + v2, u = v = −20 : 20,

B (ω, θ) = 1+eb(ω−ω0)cos42θ

1+eb(ω−ω0)
, b = 8, ω0 =1.166, θ = tan−1 v

u
.

We further explain and analyze Definition 1 as follows.
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• The security condition and secret recovery condition

are derived from ISS for the (k, n)-threshold.

• Ci , for i = 1, 2, · · · n, can be a natural image or an image

generated by a secure technique.

• In information hiding (IH), on the one hand, the stego

image is naturally comprehensible (meaningful) so that

reversible IH (RIH) does not need the comprehensible

condition. However, ISS may generate a noise-like share.

Thus, the comprehensible condition is considered in

RISS; otherwise, the ISS belongs to multiple secret

sharing. On the other hand, the stego image has high

quality in IH so that RIH generally is fully RIH. However,

ISS may output a comprehensible share with low quality;

thus, partially RISS is considered in addition to fully

RISS. In addition, we can better achieve RISS by means

of ISS rather than IH.

• To compute the image quality, some images are scaled

to a proper size when the pixel expansion coefficient is

not 1, and the binary image is converted to a grayscale

image.

• Traditional extended VCS, a.k.a. VCS with a compre-

hensible share [18], [40], belongs to partially RISS and

has a low image quality according to Definition 1.

• In Eq. (4), the numerator includes the total bits embedded

in the output shares; the denominator indicates the total

bits in all shares.

• If larger pixel expansion occurs in some ISS, its EC is

lower based on Eq. (4) due to the larger WSC × HSC .

• wS = 1 and wC = 1 in this paper.

B. Our RISS Algorithm

The design idea of the proposed RISS algorithm is

presented in Fig. 1. The detailed steps are presented in

Algorithm 1, which takes an original secret image and n binary

cover images, with a size of W × H , to output n shares

SC1, SC2, · · · SCn , also with a size of W × H . The recovery

steps are presented in Algorithm 2.

Regarding Algorithm 1, we make the following comments.

1) The binarization processing threshold values T Hi0 and

T Hi1 are input by the dealer, i = 1, 2, · · · n, subject

to NA ≥ 8, where NA denotes the number of available

values of A satisfying Q (SCi (w, h) , T Hi0, T Hi1) =
Ci (w, h) for i = 1, 2, · · · n in Step 5 of Algorithm 1 and

NA = T ×
n
∏

i=1

(

1
2

× T Hi0

mi
+ 1

2
× mi −T Hi1

mi

)

, which will

be further analyzed in Section IV and Section V-B.

2) Compared with fixed thresholds, T Hi0 and T Hi1 can

introduce dynamics into Algorithm 1 and thus improve

the feasibility and security of Algorithm 1.

3) The binarization processing threshold values T Hi0 and

T Hi1 play important roles in the similarity between SCi

and Ci under the secure condition for i = 1, 2, · · · n,

where T Hi0 ≤ (mi/2), and T Hi1 ≥ (mi/2). In general,

larger T Hi1 and smaller T Hi0 result in better image

quality for SCi as well as a smaller range of A values,

which will be further analyzed in Section V-B.

4) Step 1 intends to choose a set of integers to satisfy the

CRT conditions. In general, p is as small as possible,

Fig. 1. Design idea of the proposed reversible image secret sharing algorithm.

in consideration of security, while mi is as large as

possible to achieve a large range for the distribution of

the pixel values in shares.

5) Step 4 aims to achieve the features of the (k, n) threshold

and lossless recovery, which will be further analyzed in

Section IV.

6) Since A is randomly selected in Step 4,

when NA ≥ 8, we can search A to

satisfy Q (SCi (w, h) , T Hi0, T Hi1) = Ci (w, h) for

i = 1, 2, · · · n in Step 5. In this manner, Ci can be

losslessly recovered by binarization processing.

Regarding Algorithm 2, we note the following.

1) To recover cover image Ci j for j = 1, 2, · · · , t ,

we can directly perform binarization on share SCi j with

threshold (mi j /2) due to Step 5 in Algorithm 1.

2) Steps 3-4 can losslessly reconstruct S(w, h) = x by

collecting any k or more shared pixels. Because T

divides the interval
[⌈

N
p

⌉

,
⌊

M
p

− 1
⌋]

into two parts



3852 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Algorithm 1 The Proposed (k, n) Threshold Reversible Image

Secret Sharing

Input: A secret image S with a size of W×H; threshold

parameters (k, n), where 2 ≤ k ≤ n; n binary cover images

C1, C2, · · · Cn , with a size of W ×H ; binarization processing

threshold values T Hi0 and T Hi1, corresponding to 0 and 1,

respectively, for the i -th cover image, i = 1, 2, · · · n.

Output: Shadow image SCi , which looks similar to Ci , and

its corresponding private integer mi , i = 1, 2, · · · n.

Step 1: Select a set of integers

{128 ≤ p < m1 < m2 · · · < mn ≤ 256} that satisfy

1) gcd
(

mi , m j

)

= 1, i 6= j .

2) gcd (mi , p) = 1 for i = 1, 2, · · · , n.

3) M > pN .

where M =
∏k

i=1 mi , N =
∏k−1

i=1 mn−i+1 and p is public

among all the participants.

Step 2: Calculate T =
[

⌊

M
p −1

⌋

2

]

, which is public.

Step 3: For each secret pixel position (w, h) ∈ {(w, h)|1 ≤
w ≤ W, 1 ≤ h ≤ H }, repeat Steps 4-5.

Step 4: Let x = S(w, h).

If 0 ≤ x < p, select a random integer A from
[

T + 1,
⌊

M
p

− 1
⌋]

, and compute y = x + Ap; otherwise,

select a random integer A from [0, T ) and compute y =
x-p + Ap.

Calculate ai ≡ y (mod mi ), and set SCi (w, h) = ai for

i = 1, 2, · · · , n.

Step 5: If Q (SCi (w, h) , T Hi0, T Hi1) = Ci (w, h) , i =
1, 2, · · · n, go to the next secret pixel position; otherwise,

go to Step 4.

where

Q(SCi (w, h) , T Hi0, T Hi1) =
{

1 if SCi (w, h) ≥ T Hi1 when Ci (w, h) = 1

0 if SCi (w, h) < T Hi0 when Ci (w, h) = 0

Step 6: Output n grayscale shares SC1, SC2, · · · SCn .

corresponding to 0 ≤ x < p or p ≤ x ≤ 255 in Step 4 of

Algorithm 1, x is losslessly reconstructed for arbitrary

x ∈ [0, 255].

IV. SECURITY ANALYSIS AND PERFORMANCE PROOF

Here, we present the security analysis and performance

proof of the designed RISS by theoretically analyzing the

security and other conditions in Definition 1.

In the following analyses, we consider that both the secret

image and cover images are natural images and that they all are

independent of each other; i.e., there is no correlation among

them.

Without loss of generality, in the recovery phase, the col-

lected t grayscale pixels are denoted by sci1 , sci2 , · · · scit ,

corresponding to SCi1 (w, h), SCi2 (w, h), · · · SCit (w, h).

Lemma 1: The secret image S cannot be reconstructed with

k − 1 or fewer shares.

Algorithm 2 The Recovery in the Proposed Reversible Image

Secret Sharing for the (k, n)-Threshold.

Input: Any t grayscale shares SCi1 , SCi2 , · · · SCit (t ≥ k),

their private modular integers mi1 , mi2 , · · · mit , p and T.

Output: Reconstructed grayscale secret image S0 and

recovered binary cover image C 0
i j

for j = 1, 2, · · · , t , with

a size of W×H.

Step 1: Compute C 0
i j

from SC 0
i j

by the binarization

processing operation with threshold (mi j /2) for j =
1, 2, · · · , t .

Step 2: For each secret pixel position (w, h) ∈
{(w, h)|1 ≤ w ≤ W , 1 ≤ h ≤ H }, repeat Steps 3-4.

Step 3: Set ai j = SCi j (w, h) for j = 1, 2, · · · , k. Solve

Eq. (8) to obtain y by CRT.

y ≡ ai1

(

mod mi1

)

y ≡ ai2

(

mod mi2

)

· · · (8)

y ≡ aik−1

(

mod mik−1

)

y ≡ aik

(

mod mik

)

Step 4: Calculate T ∗ =
⌊

y
p

⌋

.

If T ∗ ≥ T , set x ≡ y (mod p); otherwise, let x =
y (mod p) + p.

Compute S0(w, h) = x .

Step 5: Output reconstructed grayscale secret image S0 and

recovered binary cover image C 0
i j

for j = 1, 2, · · · , t , with

a size of W×H

Proof: We assume that y is generated in Step 4 of

Algorithm 1, where y ∈ [N, M − 1]. When k − 1 share

pixels ai1 = sci1 , ai2 = sci2 , · · · aik−1 = scik−1 are collected,

according to CRT we can only obtain the solution y0 modulo

N2 =
∏k−1

j=1 mi j , where y0 ∈ [0, N2 − 1]. The true y value

range is different from the above y0. In addition, N ≥ N2,

N ≤ y < M and gcd (N2, p) = 1; hence, in [N2, M − 1],
y0 + b

∏k−1
j=1 mi j are also solutions to the collected k − 1

equations in Eq. (8) for b = 1, 2, · · · , mik − 1. Therefore,

we have mik solutions in [0, M − 1] rather than only one.

Lemma 2: The secret image S can be losslessly recon-

structed with k or more shares.

Proof: Since x = S(w, h) in Step 4 of Algorithm 1,

we will prove that any k or more share pixels enable the

lossless reconstruction of x . To reconstruct x , we have to

obtain y, since x ≡ y (mod p) or x ≡ y (mod p) + p. When

we collect ai1 , ai2 , · · · aik , based on CRT, we have a unique

solution y modulo N1 =
∏k

j=1 mi j due to N1 ≥ M . Finally,

we have a unique y and hence x in Step 4 of Algorithm 2.

Lemma 3: SCi looks similar to Ci for i = 1, 2, · · · n.

Proof: The white (black) pixel of Ci corresponds to the

grayscale value 255 (0) of Ci for i = 1, 2, · · · n. According

to Step 4 of Algorithm 1, we know 255 − SCi (w, h) ≤ T Hi1

when Ci (w, h) is white; SCi (w, h) − 0 < T Hi0 when

Ci (w, h) is black. Therefore, SCi looks similar to Ci for

i = 1, 2, · · · n.
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Lemma 4: C 0
i = Ci for i = 1, 2, · · · n.

Proof: In Step 1 of Algorithm 2, the binarization threshold

mi/2 for i = 1, 2, · · · , n is known. Since T Hi0 ≤ (mi/2) and

T Hi1 ≥ (mi/2), based on Step 5 of Algorithm 1, we know

that C 0
i = Ci for i = 1, 2, · · · n, where C 0

i is obtained

from SC 0
i by the binarization processing operation with

threshold mi/2.

Theorem 1: The proposed scheme is a valid fully RISS

approach.

Proof: Based on the above Lemmas 1-4, according to

Definition 1, the mentioned conditions are satisfied.

Proposition 1: In the proposed Algorithm 1, NA = T ×
n
∏

i=1

(

1
2

× T Hi0

mi
+ 1

2
× mi −T Hi1

mi

)

, and NA ≥ 8 for better

performance.

Proof: In general, A has T possible values in Step

4 of Algorithm 1. To satisfy Q (SCi (w, h) , T Hi0, T Hi1) =
Ci (w, h) for i = 1, 2, · · · n, NA will decrease to T ×

n
∏

i=1

(

1
2

× T Hi0

mi
+ 1

2
× mi −T Hi1

mi

)

.

A larger NA leads to enhanced security because the number

of brute-force attacks is T NA . We require NA ≥ 2 for the

lowest security since if NA = 1, we have only one integer A

repeatedly used in Step 4 of Algorithm 1, which is not secure.

NA ≥ 8 is suggested to achieve an acceptable time for

searching available values of A in fully RISS, which is given

in the experiments and further analyzed in section V-B.

Proposition 2: The embedding capacity of the proposed

Algorithm 1 is 8+n
8n

.

Proof: Since in this paper, wS = 1, wC = 1, nC = n,

LS = 8, LC = 1, and we have no pixel expansion, the result

is obtained.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, experiments are presented to prove the

effectiveness of our RISS. Then, some discussions regarding

our parameters are given. Finally, comparisons with related

methods will be demonstrated in terms of illustrations and

features to indicate the advantages of our scheme.

A. Image Illustration

In the following experiments, we set T Hi0 = (mi/2 − T H )

and T Hi1 = (mi/2 + T H ) for the i -th cover image,

i = 1, 2, · · · n. The experimental binary cover images and

grayscale secret images with a size of 256 × 256 used in this

paper are illustrated in Fig. 2, which are scaled to the proper

size in some experiments.

Fig. 3 shows the results of the proposed (k, n) threshold

RISS, where k = 3, n = 4, m1 = 251, m2 = 253,

m3 = 254, m4 = 255, p = 131, T H = 64 and the

input grayscale secret image is presented in Fig. 3 (a).

Figs. 3 (b-e) illustrate the output of 4 comprehensible shares

SC1, SC2, SC3 and SC4, which appear similar to the cover

images, as well as their PSNRs. Figs. 3 (f-p) show the secret

images reconstructed with any 2 or more shares based on

CRT, where S0
i1 i2 ···it denotes the secret image S0 reconstructed

from SCi1 , SCi2 , · · · , SCit . From Figs. 3 (f-p), the secret

Fig. 2. Experimental images. (a) − (d) four input binary cover images
C1, C2, C3 and C4. (e) − (f) different input grayscale secret images.

image reconstructed with any 3 or more shares is recognized,

while nothing of the secret image reconstructed with 2 or

fewer shares is recognized. The secret image is losslessly

reconstructed with any 3 or more shares, i.e., Fig. 3 (l)

is the same as the original secret image in Fig. 3 (a)

as PSN R = +∞. The recovered binary cover images are

demonstrated in Figs. 3 (q-t), which are all lossless and have

the same size as the secret image.

Fig. 4 shows the results of the proposed (k, n) threshold

RISS, where k = 2, n = 3, m1 = 251, m2 = 253,

m3 = 255, p = 128, T H = 24 and the input grayscale

secret image is presented in Fig. 4 (a). Figs. 4 (b-d) illustrate

the output of 3 comprehensible shares SC1, SC2 and SC3,

which look similar to the cover images, as well as their

PSNRs. Fig. 4 (e) shows the secret image reconstructed

with the first 2 shares based on CRT, where only the first

t − th shadows are utilized to save pages. From Fig. 4 (e),

the secret image reconstructed with any 2 or more shares is

recognized, while nothing of the secret image reconstructed

with any one share is recognized. The secret image is losslessly

reconstructed with any 2 or more shares, i.e., Fig. 4 (e)

is the same as the original secret image in Fig. 4 (a)

as PSN R = +∞. The recovered binary cover images are

demonstrated in Figs. 4 (f-h), which are all lossless and have

the same size as the secret image.

According to the above illustrations, we can conclude the

following:

1) The shares with no pixel expansion are comprehensible

and have no cross-interference for the natural secret

image.

2) With fewer than k shares, no secret information is

leaked, which indicates the security of our RISS.

3) With any k or more shares, the secret image is losslessly

reconstructed.

4) The original n different cover images are losslessly

recovered by only the binarization processing operation.

5) An RISS algorithm for a general (k, n)-threshold is

achieved, where n ≥ k ≥ 2.
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Fig. 3. Experimental results of the introduced (k, n) threshold RISS, where
k = 3, n = 4, m1 = 251, m2 = 253, m3 = 254, m4 = 255, p =
131 and T H = 64. (a) The grayscale secret image; (b) − (e) four grayscale
comprehensible shares SC1, SC2, SC3 and SC4; (f) − (p) reconstructed
grayscale secret images; (q) − (t) recovered binary cover images.

B. Available Parameters and Quality Analyses

1) Available Parameters: In step 1 of Algorithm 1,

a set of integers {128 ≤ p < m1 < m2 · · · < mn ≤ 256} is

selected to satisfy some conditions, where the conditions

intend to achieve the (k, n)-threshold CRT-based ISS.

{128 ≤ p < m1 < m2 · · · < mn ≤ 256} is required due to the

image pixel value range and pN < M .

We suggest that mi should be as large as possible to ensure

that the pixel values of shares can randomly lie within a

large range to improve the security and that p should be as

small as possible for security reasons, under the condition

that p can divide the secret pixel values into two intervals

to losslessly recover the secret. When the image pixel value

range is [0, 255], we can set p = 128. In addition, a prime

Fig. 4. Experimental results of the introduced (k, n) threshold RISS, where
k = 2, n = 3, m1 = 251, m2 = 253, m3 = 255, p = 128 and T H = 24.
(a) The grayscale secret image; (b) − (d) three grayscale comprehensible
shares SC1, SC2 and SC3; (e) grayscale secret image reconstructed with the
first two shares; (f) − (h) recovered binary cover images.

TABLE I

AVAILABLE PARAMETERS FOR p, m1, m2 · · · , mn

generally has significance in cryptography; thus, we can set

p = 131, the smallest prime greater than 128.

Ultimately, we provide some available values of parameters

p, m1, m2 · · · , mn for different values of n in Table I, some

of which are used in our experiments. The user can search for

other suitable parameters according to the specific applications

in addition to the above available parameters.

2) Image Quality Analyses: In our experiments, we set

T Hi0 = (mi/2 − T H ) and T Hi1 = (mi/2 + T H ) for the i -th

cover image for i = 1, 2, · · · n. Thus, T H plays an important

role in the quality of both the secret image and the share.

Herein, we intend to study the quality and some other curves

as T H changes. The binary cover images and grayscale secret

image with a size of 128 × 128 in Fig. 2 and Fig. 3 (a)

are employed in our experiments, where k = 3, n = 3,

m1 = 251, m2 = 253, m3 = 255, p = 128, T H ∈ [8, 120],
and PSN R/W PSN R = 100 indicates lossless recovery for

better figure presentation.

Fig. 5 shows the average of the shares’ quality evaluation

metric curves for T H , from which we can deduce the

following:

1) When 0 ≤ T H ≤ 112, the PSNR and WPSNR are both

monotonically increasing functions of T H .

2) When T H ≥ 112, the PSNR and WPSNR are both

monotonically dramatically decreasing functions of T H .

3) T H = 112 is an extreme point for the share quality.
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Fig. 5. PSNR and WPSNR curves of shadow images.

Fig. 6. PSNR and WPSNR curves of recovered cover images and the
reconstructed secret image.

Fig. 7. NA curve.

Fig. 6 depicts the mean of the quality evaluation metric

curves of the recovered cover images and reconstructed secret

image for T H , from which we can deduce the following:
1) When 0 ≤ T H ≤ 112, the PSNR and WPSNR are

both 100, i.e., both the recovered cover images and

reconstructed secret image are lossless.

2) When T H ≥ 112, the PSNR and WPSNR are both

monotonically dramatically decreasing functions of T H .

3) T H = 112 is an extreme point for the quality of the

recovered cover images and the reconstructed secret

image.

Fig. 7 shows the number of available values of A satisfying

Q (SCi (w, h) , T Hi0, T Hi1) = Ci (w, h) for i = 1, 2, · · · n in

Fig. 8. Sharing time curve.

Step 5 of Algorithm 1, i.e., the NA–T H curve, from which

we can deduce the following:
1) NA is a monotonically decreasing function of T H .

2) When T H = 112, NA = 11.85 ≥ 8; when T H = 114,

NA = 7.58 < 8.

Fig. 8 shows the sharing time–T H curve, from which we

can deduce the following:

1) When 0 ≤ T H ≤ 112, the sharing time is a

monotonically increasing function of T H .

2) When T H ≥ 112, the sharing time is a monotonically

dramatically increasing function of T H .

3) When T H = 112, the sharing time is 7591 (s), which

is an acceptable time for sharing.

We further analyze the above curves as follows.

1) T H = 112 (NA = 8) is the extreme point. When

T H ≥ 112 (NA < 8), we cannot find A subject

to Q (SCi (w, h) , T Hi0, T Hi1) = Ci (w, h) for i =
1, 2, · · · n, which leads to lossy recovered cover images

and a lossy reconstructed secret image. When T H ≥
112 (NA < 8), the sharing time dramatically increases,

which leads to a low sharing efficiency.

2) Hence, in our algorithm, NA ≥ 8 is suggested to result

in an acceptable time for searching available values of

A in fully RISS. NA may be slightly different in some

other environments.

C. Comparisons With Relative Schemes

We will compare our RISS with the method of

Ulutas et al. [38] by means of illustrations and features,

in which the same secret image as in Fig. 9 (a) and

a (3, 3) threshold are used. The method of Ulutas et al. [38] is

selected for comparison because their ISS method is reversible

for a binary cover image.

1) Illustration Comparison: Ulutas et al. [38] proposed an

RISS approach for a dithered binary cover image based on the

exploiting modification direction method, which transforms

the secret image pixel values to base 17 and embeds them into

the first (k − 2)-th coefficients of the constructed polynomial.

We use the same parameters as those of Ulutas et al. to realize

their results, as shown in Fig. 9, where k = 3, n = 3

and the grayscale secret image of size 256 × 256 is shown

in Fig. 9 (a). Figs. 9 (c-e) are the 3 output shares of size
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Fig. 9. Experimental example by using the method of Ulutas et al. [38],
where k = 3, n = 3. (a) The grayscale secret image; (b) grayscale secret image
reconstructed with all three shares; (c) − (e) three grayscale comprehensible
shares SC1, SC2 and SC3; (f) the same recovered binary cover image.

512 × 512, which are comprehensible and have the same

content. Fig. 9 (b) displays the grayscale secret image of

size 256 × 256 reconstructed with all three shares using

Lagrange interpolation. The recovered binary cover image is

demonstrated in Fig. 9 (f), which is a lossless image of size

512 × 512.

Fig. 10 shows the comparison example of our (k, n) thresh-

old RISS, where k = 3, n = 3, m1 = 253, m2 = 254,

m3 = 255, p = 131, T H = 114 and the input grayscale

secret image is presented in Fig. 10 (a). Figs. 10 (b-d) illustrate

the output of 3 comprehensible shares SC1, SC2 and SC3 of

size 256 × 256, which are similar to different cover images,

as well as their PSNRs. Fig. 10 (e) shows the secret image

of size 256 × 256 losslessly reconstructed with all 3 shares

based on CRT. The three recovered binary cover images of

size 256 × 256 are depicted in Figs. 10 (f-h), which are all

lossless.

Fig. 10. Experimental comparison example of our (k, n) threshold RISS,
where k = 3, n = 3, m1 = 253, m2 = 254, m3 = 255, p = 131 and T H =
114. (a) The grayscale secret image; (b) − (d) three grayscale comprehensible
shares SC1, SC2 and SC3; (e) grayscale secret image reconstructed with the
first two shares; (f) − (h) recovered binary cover images.

According to Figs. 9 and 10, comparisons between our

method and that of Ulutas et al. [38] reveal the following.

1) Both methods can losslessly reconstruct the secret image

with any k or more shares. Our method is suitable for

k ≥ 2, while the method of Ulutas et al. [38] is only

suitable for k ≥ 3. More importantly, our method needs

only O(k) operations [15] to recover each secret pixel

due to the modularity of CRT, while the method of

Ulutas et al. [38] requires Lagrange interpolation. Thus,

our method is more general, with a lower computational

complexity for secret images.

2) The shares of both methods are comprehensible.

Our method includes no pixel expansion, while that

of Ulutas et al. [38] includes pixel expansion. More

importantly, our method outputs n different shares, while

that of Ulutas et al. [38] outputs only the same single

share. Thus, our method has higher share management

efficiency.

3) The original cover image is losslessly recovered in both

methods. Our method losslessly recovers n different

cover images, while that of Ulutas et al. [38] recovers

only one cover image. More importantly, our method

needs only the binarization processing operation to

recover the cover image, while Lagrange interpolation

is needed in the method of Ulutas et al. [38]. Thus,

our method has lower computational complexity when

recovering the cover image.

4) The EC of our method is 8+3
8×3

= 0.46, while that of

Ulutas et al. [38] is 8+4
8×3×4

= 0.125. Thus, our method

has a higher embedding capacity.

5) Our method is only suitable for binary cover images,

while the method of Ulutas et al. [38] is suitable for
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TABLE II

FEATURE COMPARISON WITH RELATED SCHEMES

both grayscale and binary cover images. In addition,

the method of Ulutas et al. [38] has a higher share PSNR

than our method. Our method only outputs an acceptable

share quality.

2) Feature Comparison: Our RISS is applicable for a

general (k, n) threshold with n different input cover images,

while conventional RISS schemes are applicable to a

specific (k, n) threshold with the same single input cover

image; thus, we further compare our method with related

schemes according to features rather than statistics.

Feature comparisons between our RISS and related methods

are shown in Table II, from which our method is shown to have

more features as follows.

1) Our method is applicable for a (k, n)-threshold with any

n ≥ k ≥ 2 due to the use of (k, n)-threshold CRT-based

ISS.

2) We input n different cover images, resulting in n

different shares, which improves the share management

efficiency.

3) Our shares have no pixel expansion, which can save

storage space.

4) Both the original cover images and the secret image are

losslessly reconstructed in our method.

5) Our secret recovery method includes modular arithmetic

(O(k) operations [15]), as implemented with CRT, and

the cover recovery method only includes binarization,

achieving a lower operation time than that with Lagrange

interpolation.

In particular, compared with traditional methods, the proposed

RISS for the (k, n)-threshold exhibits the features of n cover

images, no pixel expansion, low recovery operation and

lossless recovery for both the secret image and cover image,

with an acceptable share quality that outperforms conventional

schemes.

D. Discussion

Both polynomial-based ISS and CRT-based ISS are studied.

They are compared as follows.

1) The reconstruction operation is Lagrange interpolation

(O(k log2 k)) in polynomial-based ISS, while that

in CRT-based ISS is modular operation (O(k)); thus,

CRT-based ISS has a lower computational cost than that

of polynomial-based ISS to reconstruct the secret image.

2) CRT-based ISS can achieve lossless reconstruction,

while most polynomial-based ISS schemes are lossy.

3) The shadow size of polynomial-based ISS is easily

reduced.

4) The principle of CRT-based ISS is complex and hard to

be understood.

5) The number of owners is not limited in

polynomial-based ISS, while that in CRT-based

ISS is generally small, such as n ≤ 6, since the

available value of mi decreases as n increases, which

will affect the distribution of shadow pixel values and

thus further lead to security issues. However, n ≤ 6 is

applicable in most situations.

We choose CRT in our scheme due to the advantages of

lower computation cost and lossless reconstruction, where

lower computation cost is significant in mobile applications

and lossless reconstruction is important to image details.

Actually, Shamir’s polynomial-based ISS schemes are

widely studied, and they can be applied to our scheme as

well. When applying Shamir’s polynomial-based ISS to our

scheme, Steps 1 and 2 can be removed; in Step 4, we can

construct a k−1 degree polynomial as Eq.(9), with the constant

coefficient equal to the secret pixel grayscale value and the

other coefficients chosen randomly; Step 5 can be preserved.

In such a way, we could use polynomial-based ISS.

f (x) = (a0 + a1x + · · · + ak−1xk−1) mod P (9)

where a0 = S(w, h) and ai is random, for i = 1, 2, · · · k − 1.

VI. CONCLUSION

In this paper, we have introduced a formal definition

of reversible image secret sharing (RISS). Based on this

definition, our proposed RISS algorithm for a (k, n)-threshold

implements the principle of Chinese remainder theorem-based

ISS (CRTISS), exhibiting the features of n cover images,

no pixel expansion, low recovery operation, lossless recovery

and share comprehensibility. The experiments have proven

the effectiveness of the algorithm. Available parameters and

quality analyses have been provided as well. We have

performed experiments and feature comparisons with related

schemes to indicate the advantages of our approach. We will

focus on the following aspects in future work. First, we will

test and theoretically analyze the optical image quality factors

T Hi0, T Hi1 and NA to balance the sharing time, image quality

and security. Second, we will extend the cover pattern to

grayscale and color patterns. Third, we will apply other ISS

mechanisms to our scheme, such as polynomial-based ISS.
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Fourth, we will apply other authentication techniques to our

scheme to achieve participant authentication, such as the hash

function.
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