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Abstract

Reversible integer-to-integer (ITI) wavelet transforms are studied in the context of image coding. Considered are

matters such as transform frameworks, transform design techniques, the utility of transforms for image coding, and

numerous practical issues related to transforms.

The generalized reversible ITI transform (GRITIT) framework, a single unified framework for reversible ITI

wavelet/block transforms, is proposed. This new framework is then used to study several previously proposed frame-

works and their interrelationships. For example, the framework based on the overlapping rounding transform is shown

to be a special case of the lifting framework with only trivial extensions. The applicability of the GRITIT framework

for block transforms is also demonstrated. Throughout all of this work, particularly close attention is paid to rounding

operators and their characteristics.

Strategies for handling the transformation of arbitrary-length signals in a nonexpansive manner are considered

(e.g., symmetric extension, per-displace-step extension). Two families of symmetry-preserving transforms (which are

compatible with symmetric extension) are introduced and studied. We characterize transforms belonging to these

families. Some new reversible ITI structures that are useful for constructing symmetry-preserving transforms are

also proposed. A simple search-based design technique is explored as means for finding effective low-complexity

transforms in the above-mentioned families.

In the context of image coding, a number of reversible ITI wavelet transforms are compared on the basis of their

lossy compression performance, lossless compression performance, and computational complexity. Of the transforms

considered, several were found to perform particularly well, with the best choice for a given application depending on

the relative importance of the preceding criteria. Reversible ITI versions of numerous transforms are also compared

to their conventional (i.e., non-reversible real-to-real) counterparts for lossy compression. At low bit rates, reversible

ITI and conventional versions of transforms were found to often yield results of comparable quality. Factors affecting

the compression performance of reversible ITI wavelet transforms are also presented, supported by both experimental

data and theoretical arguments.

In addition to this work, the JPEG-2000 image compression standard is discussed. In particular, the JPEG-2000

Part-1 codec is described, analyzed, and evaluated.
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1

Chapter 1

Introduction

Maelstrom Within

Here I sit, my eyes transfixed upon the barren white canvas before me, emotions struggling to

escape the bondage of my troubled mind, begging for release as a river of black ink upon the page.

Yet, the words are elusive, taunting and teasing me, as they run dizzying circles in my mind. I clutch

desperately for them, but their nimble bodies evade my touch, continuing their seductive dance just

out of reach. Am I forever doomed to this life of torment, never to be free from the emotions raging

within? Unable to bleed my feelings upon the page, am I destined to be consumed by them?

—Michael D. Adams

1.1 Reversible Integer-to-Integer (ITI) Wavelet Transforms

In recent years, there has been a growing interest in reversible integer-to-integer (ITI) wavelet transforms for image

coding applications [1,9,13,23,26,29,39,40,51,50,59,79,85,86,87,100,101,114,118,120,126,127,148,11,72,27,

102, 44]. Such transforms are invertible in finite-precision arithmetic (i.e., reversible), map integers to integers, and

approximate linear wavelet transforms. Due largely to these properties, reversible ITI wavelet transforms are extremely

useful for image compression systems requiring efficient handling of lossless coding, minimal memory usage, or low

computational complexity. For example, these transforms are particularly attractive for supporting functionalities such

as progressive lossy-to-lossless recovery of images [114,1,112,148], lossy compression with the lossless reproduction

of a region of interest [102, 26], and strictly lossy compression with minimal memory usage [9], to name but a few.

1.2 Utility of Reversible ITI Wavelet Transforms

One might wonder why reversible ITI wavelet transforms are such a useful tool. As suggested above, both the re-

versible and ITI properties are of great importance. In what follows, we will explain why these properties are desirable.

Also, we will briefly note a few other characteristics of reversible ITI wavelet transforms that make them well suited

for signal coding applications.

In order to efficiently handle lossless coding in a transform-based coding system, we require transforms that

are invertible. If the transform employed is not invertible, the transformation process will typically result in some

information loss. In order to allow lossless reconstruction of the original signal, this lost information must also be

coded along with the transform data. Determining this additional information to code, however, is usually very costly

in terms of computation and memory requirements. Moreover, coding this additional information can adversely affect

compression efficiency. Thus, invertible transforms are desired.

Often the invertibility of a transform depends on the fact that the transform is calculated using exact arithmetic.

In practice, however, finite-precision arithmetic is usually employed, and such arithmetic is inherently inexact due to

rounding error. Consequently, we need transforms that are reversible (i.e., invertible in finite-precision arithmetic).

Fortunately, as will be demonstrated in later chapters, it is possible to construct transforms that are not only invertible,

but reversible as well.

In order to be effective for lossless coding, it is not sufficient that a transform simply be reversible. It must also

yield transform coefficients that can be efficiently coded. In the lossless case, all of the transform coefficient bits must

be coded to ensure perfect reconstruction of the original signal. Thus, we would like to avoid using any transform that
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unnecessarily introduces more bits to code. Assuming that the image is represented by integer-valued samples (which

is the case in the vast majority of applications), we would like a transform that does not introduce additional bits to the

right of the radix point. In other words, we would like a transform that maps integers to integers. If the transform were

to introduce bits to the right of the radix point, many more bits would need to be coded in the lossless case, leading to

very poor compression efficiency.

The use of ITI transforms has other benefits as well. Typically, in the case of ITI transforms, a smaller word size

can be used for storing transform coefficients, leading to reduced memory requirements. Also, this smaller word size

may potentially reduce computational complexity (depending on the method of implementation).

Reversible ITI wavelet transforms approximate the behavior of their parent linear transforms, and in so doing

inherit many of the desirable properties of their parent transforms. For example, linear wavelet transforms are known

to be extremely effective for decorrelation and also have useful multiresolution properties.

For all of the reasons described above, reversible ITI wavelet transforms are an extremely useful tool for sig-

nal coding applications. Such transforms can be employed in lossless coding systems, hybrid lossy/lossless coding

systems, and even strictly lossy coding systems as well.

1.3 Common Misconceptions

Before proceeding further, it might be wise to debunk a number of common myths about reversible ITI wavelet

transforms. In so doing, we may avoid the potential for confusion, facilitating easier understanding of subsequent

material in this thesis.

Although reversible ITI wavelet transforms map integers to integers, such transforms are not fundamentally integer

in nature. That is, these transforms are based on arithmetic over the real numbers in conjunction with rounding

operations. Unfortunately, this is not always understood to be the case. The frequent abuse of terminology in the

research literature is partially to blame for the perpetuation of this myth. Many authors abbreviate the qualifier “integer-

to-integer” simply as “integer”. This, however, is a confusing practice, as it actually suggests that the transforms are

based solely on integer arithmetic (which is not the case). In the interest of technical accuracy, this thesis will always

use the qualifier “integer-to-integer”.

When real arithmetic is implemented on a computer system, a (finite- and) fixed-size word is typically employed

for representing real quantities. This, however, has the implication that only a finite number of real values can be

represented exactly. Consequently, some arithmetic operations can yield a result that cannot be represented exactly,

and such a result must be rounded to a machine-representable value. For this reason, real arithmetic is not normally

exact in a practical computing system.

Two different types of representations for real numbers are commonly employed: fixed point and floating point. If

the radix point is fixed at a particular position in the number, the representation is said to be fixed point. Otherwise, the

representation is said to be floating point. Fixed-point arithmetic is typically implemented using machine instructions

operating on integer types, and is much less complex than floating-point arithmetic. It is important to understand the

above concepts and definitions in order to debunk the next myth about reversible ITI wavelet transforms. (For a more

detailed treatment of computer arithmetic, we refer the reader to [42].)

One must be mindful not to make the mistake of confusing the theoretical definition of a transform with its practical

implementation. Unfortunately, this happens all too often. For example, reversible ITI transforms are often (incor-

rectly) extolled as being superior to conventional (i.e., real-to-real) wavelet transforms in a computational complexity

sense, simply because the former can be computed using fixed-point arithmetic. Such a belief, however, is misguided,

since both reversible ITI and conventional wavelet transforms can be implemented using fixed-point arithmetic. For

that matter, both types of transforms can also be implemented using floating-point arithmetic (although, in practice,

one would probably never realize reversible ITI transforms in this manner). Although reversible ITI wavelet trans-

forms do (potentially) have computational/memory complexity advantages over their conventional counterparts, these

advantages cannot be attributed solely to the use of fixed-point arithmetic, as explained above. We will have more to

say on this topic later in the thesis.

1.4 Historical Perspective

In some sense, reversible ITI wavelet transforms are not new. The S transform [28, 108], a reversible ITI version of

the Haar wavelet transform [62], has been known for at least a decade. What has not been clear until more recently,
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however, was how the ideas behind the S transform could be extended in order to obtain a general framework for

reversible ITI wavelet transforms. As a consequence, the S transform remained, for a number of years, the most

effective reversible ITI wavelet transform known.

General frameworks for reversible ITI wavelet transforms are a more recent innovation. In fact, many of the key

developments associated with such frameworks have occurred only in the last several years. The common element

in all of the frameworks proposed to date is the ladder network. Wavelet transforms are realized using uniformly

maximally-decimated (UMD) filter banks, and the UMD filter banks are implemented in polyphase form using ladder

networks to perform the polyphase filtering. Such networks are of critical importance as they can be made invertible

even in the presence of various types of quantization error, especially the rounding error introduced by finite-precision

arithmetic.

In 1992, Breukers and van den Enden [36] were the first to propose invertible polyphase networks based on ladder

structures. Soon afterward, such networks were studied in detail by Kalker and Shah [81, 82]. A few years later, more

examples of reversible ITI transforms began to appear in the literature (e.g., [148,87]). In fact, Komatsu et al. [87] even

proposed a transform based on nonseparable sampling/filtering. Around this time, Said and Pearlman [114] proposed

the S+P family of transforms, an extension of the S transform which made use of ladder structures. Despite of all of

this work, however, the full potential of ladder networks had not yet been fully appreciated.

In 1995, Sweldens [129,130] initially proposed the lifting framework for the design and implementation of wavelet

transforms—this new framework being based on ladder-type polyphase networks. At this time, he first coined the

term “lifting”, and detailed some of the many advantages of this realization strategy. Soon afterward, Daubechies

and Sweldens [49] demonstrated that any (appropriately normalized) one-dimensional (1D) two-band biorthogonal

wavelet transform (associated with finitely-supported wavelet and scaling functions) can be realized using the lifting

framework. This development further increased the popularity of lifting. Sweldens later authored several other papers

related to lifting including [131].

As it turns out, determining the lifting realization of a wavelet transform is equivalent to a matrix factorization

problem. More specifically, one must decompose the polyphase matrix of a UMD filter bank into factors of a particular

form. In the general D-dimensional M-band case, a solution to this problem may not exist. In some cases, however, a

solution must exist as a consequence of a mathematical result known as Suslin’s stability theorem [128]. Recently, a

constructive proof of this theorem was devised by Park and Woodburn [106]. Tolhuizen et al. [137] have also devised

a related factorization algorithm. These works are practically significant as they provide a means by which to perform

the factorization (in the general case), and thus find a lifting realization of a transform (when such exists).

Although ladder-based polyphase networks, such as those employed by the lifting framework, are ideally suited

for the construction of reversible ITI wavelet/subband transforms, this fact was not realized until 1996. At this time,

Calderbank et al. [38] (later published as [40]) first demonstrated that the lifting scheme forms an effective framework

for constructing reversible ITI approximations of linear wavelet transforms. Furthermore, they showed that such trans-

forms could be used to good effect for lossless signal coding. This work was of crucial importance, as it established a

linkage between all of the previous studies of ladder-based polyphase networks and reversible ITI wavelet transforms.

Also, around the same time as the discovery by Calderbank et al., several other researchers proposed some similar

ideas (e.g., Chao et al. [44] and Dewitte and Cornelis [50]).

More recently, Jung and Prost [79] have proposed an alternative method for constructing reversible ITI transforms

based on the overlapping rounding transform (ORT)—the ORT again being based on ladder networks. Also, Li et

al. [93] have considered the more general problem of creating reversible ITI versions of arbitrary linear transforms. In

the context of wavelet/subband transforms, their work essentially suggests the use of ladder networks with IIR filters

(in addition to FIR filters).

So far, in this historical commentary, we have focused our attention primarily on the events leading to the de-

velopment of general frameworks for reversible ITI wavelet transforms. Of course, the frameworks themselves are

not particularly useful unless methods exist for designing effective transforms based on these frameworks. As sug-

gested earlier, this design problem is one of perfect-reconstruction (PR) UMD filter bank design. In the 1D case, the

PR UMD filter bank design problem has been extensively studied and a multitude of design techniques have been

proposed (e.g., [140,125,141]). Although the multidimensional case has received much less attention, numerous tech-

niques have been devised (e.g., [90, 98, 95, 117, 136, 45, 105, 48]). Unfortunately, very few of the design techniques

proposed to date specifically consider UMD filter banks with the reversible and ITI properties. For this reason, many

of the previously proposed design methods are either not directly useful or impractical to apply.

Of the PR UMD filter bank design methods proposed to date, the most useful ones are those based on ladder-type

polyphase networks (e.g., lifting). Recent work by Kovacevic and Sweldens [90] and Marshall [98] both consider such



Chapter 1. Introduction 4

networks. Other work by Redmill [111] has examined the 1D case.

Alternatively, one can design PR UMD filter banks based on arbitrary filtering structures and then attempt to find

an equivalent ladder-based realization. In this regard, the results of [49, 106, 137] are helpful. Such an approach

may not be the most attractive, however. Both nonexistence and nonuniqueness of the ladder-based realization pose

potential problems.

1.5 Overview and Contribution of the Thesis

This thesis studies reversible ITI wavelet transforms and their application to image coding. In short, this work examines

such matters as: transform frameworks, rounding operators and their characteristics, transform design techniques,

strategies for handling the transformation of arbitrary-length signals in a nonexpansive manner, computational and

memory complexity issues for transforms, and the utility of various transforms for image coding.

Structurally, this thesis is organized into six chapters and one appendix. The first two chapters provide the back-

ground information necessary to place this work in context and facilitate the understanding of the research results

presented herein. The remaining four chapters present a mix of research results and additional concepts required for

the comprehension of these results. The appendix provides supplemental information about related topics of interest,

but such details are not strictly necessary for an understanding of the main thesis content.

Chapter 2 begins by presenting the notation, terminology, and basic concepts essential to the understanding of this

thesis. Multirate systems are introduced, and UMD filter banks are examined in some detail. Then, the link between

UMD filter banks and wavelet systems is established. Following this, a brief introduction to image coding is given.

Chapter 3 examines frameworks for reversible ITI wavelet/block transforms. Ideas from previously proposed

frameworks are integrated and extended in order to construct a single unified framework known as the generalized

reversible ITI transform (GRITIT) framework. This new framework is then used to study the relationships between

the various other frameworks. For example, we show that the framework based on the overlapping rounding transform

(ORT) is simply a special case of the lifting framework with only trivial extensions.

Next, the GRITIT framework is examined in the context of block transforms. We propose the generalized S trans-

form (GST), a family of reversible ITI block transforms. This family of transforms is then studied, by considering top-

ics such as the relationship between the GST and the GRITIT framework, GST parameter calculation, and the effects

of using different rounding operators in the GST. We show that, for a fixed choice of integer-bias invariant rounding

operator, all GST-based approximations to a given linear transform are equivalent. The reversible color transform

(RCT) is shown to belong to the GST family, and a new transform in this family, called the modified reversible color

transform (MRCT), is also proposed and shown to be effective for image coding purposes. We demonstrate how the

various degrees of freedom in the choice of GST parameters can be exploited in order to find transform implementa-

tions with reduced computational complexity. For example, the GST framework is used to derive lower complexity

implementations of the S transform and RCT.

In this chapter, we also focus our attention on rounding operators. Such operators may potentially be integer-bias

invariant or odd. These two attributes are shown to be mutually exclusive, and their significance is also discussed.

Several common rounding operators are considered. Relationships between these operators are examined, and these

operators are also characterized in terms of their approximation properties (i.e., error interval, peak absolute error, and

mean absolute error) and computational complexity. In so doing, we show that the floor operator incurs the least com-

putation, while, under most circumstances, the biased floor and biased ceiling operators share the best rounding error

performance at a slightly higher computational cost. We also demonstrate that, in some cases, the floor operator can

actually share the best error performance (in spite of its low computational complexity), a fact that is often overlooked

in the existing literature.

Chapter 4 examines various strategies for handling the transformation of arbitrary-length signals in a nonexpan-

sive manner, including symmetric extension and per-displace-step (PDS) extension. In this context, two families of

symmetry-preserving transforms are introduced, and the transforms from both families are shown to be compatible

with symmetric extension, which allows arbitrary-length signals to be treated in a nonexpansive manner. The charac-

teristics of the two families and their constituent transforms are then studied. We identify which transforms belong to

each family. For the more constrained of the two families, we show that 1) such transforms are associated with analysis

filters having transfer functions of a highly structured form, 2) the DC and Nyquist gains of these analysis filters are

fixed, independent of the choice of free parameters, and 3) if a particular filter bank is associated with a transform in

this family, then so too is its “transposed” version. Some new reversible ITI structures that facilitate the construction
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of symmetry-preserving transforms are also proposed. In addition, a simple exhaustive search technique is explored

as a means for finding good low-complexity transforms in the above-mentioned families. Several new transforms

are found with this approach and shown to be effective for image coding. Next, the relationship between symmetric

extension and PDS extension is studied. We show that, in some specific cases, symmetric extension is equivalent to

constant PDS extension. We explain how this equivalence can be exploited in order to simplify JPEG-2000 codec

implementations.

Chapter 5 studies the use of reversible ITI wavelet transforms for image coding. In this context, a number of

reversible ITI wavelet transforms are compared on the basis of their lossy compression performance, lossless com-

pression performance, and computational complexity. Of the transforms considered, several were found to perform

particularly well, with the best choice for a given application depending on the relative importance of the preceding

criteria. Transform-coefficient dynamic range is also examined and its implications on word size and memory com-

plexity considered. Reversible ITI versions of numerous transforms are also compared to their conventional (i.e., non-

reversible real-to-real) counterparts for lossy compression. At low bit rates, reversible ITI and conventional versions of

transforms were found to often yield results of comparable quality. Factors affecting the compression performance of

reversible ITI wavelet transforms are also presented, supported by both experimental data and theoretical arguments.

Finally, Chapter 6 summarizes some of the more important results presented in this thesis along with the contribu-

tions that it makes. The chapter concludes by suggesting directions for future research.

Much of the work presented herein was conducted in the context of JPEG-2000 standardization activities. In fact,

many of the image coding results were obtained with various implementations of the JPEG-2000 codec (at varying

stages of development). For this reason, the JPEG-2000 standard is of direct relevance to this thesis, and a detailed

tutorial on the standard is provided in Appendix A. One of the JPEG-2000 codec implementations used to obtain some

of the experimental results presented herein belongs to the JasPer software. A very brief description of this software

can also be found in the same appendix.

Those who educate children well are more to be honored than parents, for these

only gave life, those the art of living well.

—Aristotle
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Chapter 2

Preliminaries

There is only one thing you should do. Go into yourself. Find out the reason that commands you

to write; see whether it has spread its roots into the very depths of your heart; confess to yourself

whether you would have to die if you were forbidden to write. This most of all: ask yourself in the

most silent hour of your night: must I write? Dig into yourself for a deep answer. And if this answer

rings out in assent, if you meet this solemn question with a strong, simple “I must,” then build your

life in accordance with this necessity; your whole life, even into its humblest and most indifferent

hour, must become a sign and witness to this impulse.

—Rainer Maria Rilke, Letters to a Young Poet (First letter, 1903)

2.1 Introduction

In order to facilitate the understanding of the research results presented in this thesis, we must first explain some of

the fundamental concepts relevant to this work. Such preliminaries are provided by this chapter. First, we briefly

introduce some of the basic notation and terminology used herein. Then, we proceed to give a tutorial on multirate

filter banks and wavelet systems. Lastly, we introduce some basic concepts from image coding.

2.2 Notation and Terminology

Before proceeding further, a brief digression concerning the notation used in this thesis is appropriate. In the remainder

of this section we introduce some of the basic notational conventions and terminology employed herein.

The symbols Z, R, and C are used to denote the sets of integer, real, and complex numbers, respectively. The

symbol j denotes the quantity
√
−1. Matrix and vector quantities are indicated using bold type (usually in upper and

lower case, respectively). The transpose and transposed inverse of a matrix A are denoted, respectively, as AT and

A−T . The symbols IN and JN denote the N ×N identity and anti-identity matrices, respectively, where the subscript

N may be omitted when clear from the context. A matrix A is said to be unimodular if |detA| = 1. The (i, j)th minor

of the N ×N matrix A, denoted minor(A, i, j), is the (N − 1)× (N − 1) matrix formed by removing the ith row and

jth column from A.

In the case of matrix multiplication, we define the product notation as follows:

∏N
i=M Ai

△
= ANAN−1 · · ·AM+1AM

for N ≥ M. One should note the order in which the matrix factors are multiplied above, since matrix multiplication

is not commutative. In the case that N < M, we define the product notation to denote an “empty” product (i.e., the

multiplicative identity, I).

The notation Pr(x) denotes the probability of event x, and the notation E(x) denotes the expected value of the

quantity x.

For two vectors

z = [ z0 z1 ··· zD−1 ]T and k = [ k0 k1 ··· kD−1 ]T ,

we define the scalar quantity

zk △
= ∏D−1

i=0 z
ki
i .
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Moreover, for a D×D matrix M , we define

zM = [z
m0 z

m1 ··· z
mD−1 ]T ,

where mk is the kth column of M .

For a Laurent polynomial P(z), we denote the degree of P(z) as degP(z), and define this quantity as follows. In the

case that P(z) has the form P(z) = ∑N
i=M piz

−i where N ≥ M, pM 6= 0, and pN 6= 0 (i.e., P(z) 6≡ 0), degP(z)
△
= N −M.

In the case that P(z) is the zero polynomial (i.e., P(z) ≡ 0), we define degP(z)
△
= −∞. Thus, for any two Laurent

polynomials, A(z) and B(z), we have that deg(A(z)B(z)) = degA(z)+degB(z).
For α∈R, the notation ⌊α⌋ denotes the largest integer not more than α (i.e., the floor function), and the notation ⌈α⌉

denotes the smallest integer not less than α (i.e., the ceiling function). One can show that the following relationships

hold for the floor and ceiling functions:

⌊x+α⌋ = x+ ⌊α⌋ , (2.1)

⌈x+α⌉ = x+ ⌈α⌉ , and (2.2)

⌈α⌉ = −⌊−α⌋ , (2.3)

for all α ∈ R and all x ∈ Z. The biased floor, biased ceiling, truncation, biased truncation, and rounding-away-from-

zero (RAFZ) functions are defined, respectively, as

bfloorα △
=
⌊

α+ 1
2

⌋

, (2.4)

bceilα △
=
⌈

α− 1
2

⌉

, (2.5)

truncα △
=

{

⌊α⌋ for α ≥ 0

⌈α⌉ for α < 0,
(2.6)

btruncα △
=

{

bfloorα for α ≥ 0

bceilα for α < 0, and
(2.7)

rafzα △
=

{

⌈α⌉ for α ≥ 0

⌊α⌋ for α < 0,
(2.8)

where α ∈ R. The mapping associated with the biased truncation function is essentially equivalent to traditional

rounding (to the nearest integer). The signum function is defined as

sgnα △
=











1 for α > 0

0 for α = 0

−1 for α < 0,

where α ∈ R. The fractional part of a real number α is denoted fracα and defined as

fracα △
= α−⌊α⌋ .

Thus, we have that 0 ≤ fracα < 1 for all α ∈ R. We define the mod function as

mod(x,y)
△
= x− y⌊x/y⌋ where x,y ∈ Z. (2.9)

In passing, we note that the mod function simply computes the remainder when x is divided by y, with division being

defined in such a way that the remainder is always nonnegative. From (2.9) and (2.3), we trivially have the identities

⌊x/y⌋ = x−mod(x,y)
y

for y 6= 0, and (2.10)

⌈x/y⌉ = x+mod(−x,y)
y

for y 6= 0. (2.11)

Suppose that Q denotes a rounding operator. In this thesis, such operators are defined only in terms of a single scalar

operand. As a notational convenience, however, we use an expression of the form Q(x), where x is a vector/matrix
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quantity, to denote a vector/matrix for which each element has had the operator Q applied to it. A rounding operator

Q is said to be integer invariant if it satisfies

Q(x) = x for all x ∈ Z (2.12)

(i.e., Q leaves integers unchanged). For obvious reasons, rounding operators that are not integer invariant are of little

practical value. Thus, we consider only integer-invariant rounding operators in this work.

A rounding operator Q is said to be integer-bias invariant if

Q(α+ x) = Q(α)+ x for all α ∈ R and all x ∈ Z. (2.13)

Similarly, a rounding operator Q is said to be odd if

Q(α) = −Q(−α) for all α ∈ R. (2.14)

We will later show that a rounding operator cannot be both odd and integer-bias invariant. In passing, we note that the

floor, biased floor, ceiling, and biased ceiling functions are integer-bias invariant (but not odd), while the truncation,

biased truncation, and RAFZ functions are odd (but not integer-bias invariant). All rounding operators considered in

this thesis are tacitly assumed to be memoryless and shift invariant. Any (reasonable) rounding operator will preserve

signal symmetry (but not necessarily signal antisymmetry), while any odd rounding operator will preserve both signal

symmetry and antisymmetry.

The z-transform of a sequence x[n] is denoted as Zx[n] (or X(z)) and is defined as

Zx[n]
△
= X(z) = ∑

n∈ZD

x[n]z−n.

The inverse z-transform operator is denoted as Z−1. The notation f ∗g stands for the convolution of f and g.

For convenience, we also define the quantities

⌊X(z)⌋z

△
= ∑

n∈Z

⌊x[n]⌋z−n and

⌈X(z)⌉z

△
= ∑

n∈Z

⌈x[n]⌉z−n

(i.e., ⌊x[n]⌋ ↔ ⌊X(z)⌋z and ⌈x[n]⌉ ↔ ⌈X(z)⌉z).

Also, the floor and ceiling operators for sequences are shift invariant. That is, we have that

⌊

zKX(z)
⌋

z
= zK ⌊X(z)⌋z and

⌈

zKX(z)
⌉

z
= zK ⌈X(z)⌉z

(2.15)

where K ∈ Z.

A (linear) D-point block transform is a transformation that maps an input vector x
△
= [ x0 x1 ··· xD−1 ]T to the output

vector y
△
= [ y0 y1 ··· yD−1 ]T , and can be expressed in the form

y = Ax

where A is a D×D matrix. The discrete Fourier transform (DFT) and discrete cosine transform (DCT) are examples

of commonly used block transforms.

2.3 Multirate Filter Banks and Wavelet Systems

Multirate filter banks play an important role in the study of wavelet systems. In particular, the class of systems known

as uniformly maximally-decimated (UMD) filter banks is especially significant in this regard. Wavelet transforms can

be constructed through the design of UMD filter banks and implemented very efficiently in terms of these structures.

In order to study UMD filter banks, we must first understand the fundamentals of multirate systems. In what

follows, we begin by introducing some basic multirate system concepts, and then use these concepts to establish a
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general framework for the study of UMD filter banks. Finally, the link between UMD filter banks and wavelet systems

is established.

The theory of multirate filter banks and wavelet systems is quite involved, and one could easily devote several

books to this topic. Consequently, due to space constraints, we cannot hope to provide a comprehensive introduction

to this theory here. We will only briefly present some of the fundamental concepts that are most relevant to our work.

For information beyond that which we present here, one might consider further reading in the following areas: mul-

tirate systems and filter banks [140, 141, 125, 139, 37], multidimensional signal processing [53, 94], multidimensional

multirate systems [138, 143, 83], multidimensional sampling [52], and multidimensional wavelet theory [91].

2.3.1 Multirate Systems

A system is said to be multirate if signals at different points in the system are defined on different sampling lattices.

For the purpose of this discussion, a lattice is simply a regular periodic configuration of points in some space. The

physical significance of the lattice axes depends on the particular system involved. For example, in the case of a system

that processes images (which are 2D signals), the lattice axes correspond to two directions of displacement in physical

space. In the case of a system that processes audio signals (which are 1D), the single lattice axis corresponds to time,

and a multirate system would be one that employs more than one sampling rate.

2.3.2 Sampling

In multirate systems, we obviously need a means for identifying how signals are sampled. In this context, some

basic definitions and other concepts from lattice theory are of great importance. As suggested previously, a lattice

is a regular periodic configuration of points in some space. Often, we are also interested in a sublattice, which is a

lattice comprised of a subset of the points from another lattice. Of particular interest to us here is the integer lattice.

The D-dimensional integer lattice is simply the set of all D-dimensional integer vectors (i.e., all vectors of the form

n ∈ Z
D).

Sublattices of the integer lattice can be specified using a sampling matrix. Such a matrix is square, nonsingular, and

has only integer entries. The sublattice (of the integer lattice) generated by the D×D sampling matrix M is denoted

as LAT(M), and is defined as the set of all vectors of the form Mn where n is a D-dimensional integer column

vector. In other words, LAT(M) is the set of all integer linear combinations of the columns of M . If a sampling

matrix is diagonal, then the corresponding sampling scheme is said to be separable; otherwise, the scheme is said to

be nonseparable. In general, the sampling matrix generating a particular lattice is not unique. In fact, for any sampling

matrix M and unimodular integer matrix U , one can show [52] that LAT(M) and LAT(MU) (i.e., the sublattices

generated by M and MU ) are the same. Some examples of lattices are illustrated in Figure 2.1. The rectangular and

quincunx lattices shown in the figure can be generated, respectively, with the following sampling matrices:

M0 =

[

2 0

0 2

]

and M1 =

[

1 1

−1 1

]

.

A coset of a sublattice is the set of points obtained by shifting the entire sublattice by an integer vector. Moreover, a

shift vector associated with a particular coset is referred to as a coset vector. The number of distinct cosets of LAT(M)
is |detM |, and the union of these cosets is the integer lattice.

The quantity |detM | frequently appears in mathematical expressions and physically represents the reciprocal of

the sampling density. In other words, LAT(M) (i.e., the lattice generated by M ) has 1
|detM | the sampling density of

the integer lattice.

2.3.3 Downsampling

Downsampling is one of the fundamental processes in multirate systems, and is performed by a processing element

known as the downsampler. The downsampler, shown in Figure 2.2, takes an input signal x[n] and produces the output

signal

y(n) = x(Mn) (2.16)

where M is a sampling matrix. In simple terms, this process samples the input x[n] by mapping the points on the

sublattice LAT(M) to the integer lattice and discarding all others. The relationship between the input and output of
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Figure 2.1: Examples of 2D lattices. (a) The integer lattice. (b) A rectangular lattice. (c) The quincunx lattice.

↓M
✲ ✲x[n] y[n]

Figure 2.2: Downsampler.

the downsampler in the z-domain is given by

Y (z) =
1

M

M−1

∑
i=0

X
(

e
M−1(2πki)z

M
−1
)

, (2.17)

where

M = |detM | , eM (ω) =
[

e− jωT
m0 e− jωT

m1 · · · e− jωT
mM−1

]T

,

and mk is the kth column of M . This leads directly to the frequency domain relation

YF(ω) =
1

M

M−1

∑
i=0

XF

(

M−T (ω−2πki)
)

. (2.18)

In the 1D case, the quantities n, z, and ω can be replaced with their respective scalar equivalents n, z, and ω,

and M becomes synonymous with the scalar quantity M. Thus, in this special case, we can simplify (2.16), (2.17),

and (2.18), respectively, to obtain

y(n) = x(Mn), (2.19a)

Y (z) =
1

M

M−1

∑
i=0

X(e−2 jπi/Mz1/M), and (2.19b)

YF(ω) =
1

M

M−1

∑
i=0

XF ((ω−2πi)/M) . (2.19c)

From (2.18) and (2.19c), we can see that downsampling has a simple interpretation in the frequency domain. That

is, the spectrum of a downsampled signal is merely the average of M shifted and “stretched” versions of the original

input spectrum. Evidently, downsampling can result in multiple baseband frequencies in the input signal being mapped

to a single frequency in the output signal. This phenomenon is called aliasing. If aliasing occurs, it is not possible to

recover the original signal from its downsampled version.
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↑M
✲ ✲x[n] y[n]

Figure 2.3: Upsampler.

2.3.4 Upsampling

Upsampling is another fundamental process in multirate systems, and is performed by a processing element known as

the upsampler. The upsampler, shown in Figure 2.3, takes an input signal x[n] and produces the output signal

y(n) =

{

x(M−1n) if n ∈ LAT(M)

0 otherwise
(2.20)

where M is a sampling matrix. One can see that this process maps a signal on the integer lattice to another signal that

is nonzero only at points on the sampling sublattice LAT(M). In the z-domain, the relationship between the input and

output of the upsampler is given by

Y (z) = X(zM ). (2.21)

This directly yields the frequency domain relation

YF(ω) = XF(MT ω). (2.22)

In the 1D case, the quantities n, z, and ω can be replaced with their respective scalar equivalents n, z, and ω,

and M becomes synonymous with the scalar quantity M. Thus, in this special case, we can simplify (2.20), (2.21),

and (2.22), respectively, to obtain

y[n] = x[Mn], (2.23a)

Y (z) = X(zM), and (2.23b)

YF(ω) = XF(Mω). (2.23c)

From (2.22) and (2.23c), we can see that upsampling has a simple interpretation in the frequency domain. That

is, the spectrum of the upsampled signal is just a “compressed” version of the input signal spectrum. In general, we

obtain exactly M complete images of one period of XF(ω) in YF(ω). This phenomenon is called imaging. The original

signal can be recovered from its upsampled version by removing the M −1 superfluous images of the original signal

baseband.

2.3.5 Noble Identities

Often an upsampler or downsampler appears in cascade with a filter. Although it is not always possible to interchange

the order of upsampling/downsampling and filtering without changing system behavior, it is sometimes possible to find

an equivalent system with the order of these operations reversed, through the use of two very important relationships

called the noble identities. The first identity, illustrated in Figure 2.4(a), allows us to replace a filtering operation

on one side of a downsampler with an equivalent filtering operation on the other side of the downsampler. The

second identity, shown in Figure 2.4(b), allows us to replace a filtering operation on one side of an upsampler with an

equivalent filtering operation on the other side of the upsampler.

In addition to their theoretical utility, the noble identities are of great practical significance. For performance

reasons, it is usually desirable to perform filtering operations on the side of an upsampler or downsampler with the

lower sampling density. Using the noble identities, we can move filtering operations across upsamplers/downsamplers

in order to achieve improved computational efficiency.

2.3.6 Polyphase Representation of Signals and Filters

A fundamental tool in the study of multirate systems is the polyphase representation of a signal. Such a representation

is defined with respect to a particular sampling matrix and corresponding set of coset vectors, and serves to decompose
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✲✲ ✲ ✲ ✲ ✲G(z) ≡

x[n] y[n]
G(zM )

x[n] y[n]
↓M ↓M

(a)

✲ ✲ ✲ ✲ ✲✲G(z)
≡ G(zM )

x[n] y[n] x[n] y[n]
↑M ↑M

(b)

Figure 2.4: Noble identities. The (a) first and (b) second identities.
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Figure 2.5: Polyphase form of a filter. (a) Original filter. The (b) type-1 and (c) type-2 polyphase representations of

the filter.

a signal into a sum of signals called polyphase components. Two types of polyphase representations are commonly

used, which we refer to as type 1 and type 2. Mathematically, the polyphase representation of the signal x[n], with

respect to the sampling matrix M and corresponding set of coset vectors {ml}M−1
l=0 , is defined as

x[n] =
M−1

∑
l=0

xl [n] (2.24)

where

xl [n] =

{

x[Mn+ml ] type 1

x[Mn−ml ] type 2,

and M = |detM |. In the above equation, xl [n] denotes the lth polyphase component of x[n]. In the z-domain, we have

X(z) =

{

∑M−1
l=0 z−ml Xl(z

M ) type 1

∑M−1
l=0 zml Xl(z

M ) type 2.

Not only can we represent signals in polyphase form, but we can also represent filters in this manner. In this case,

the signal x[n] that we decompose in (2.24) is the impulse response of the filter in question. This process yields a

number of polyphase filters (which correspond to the xl [n]). This leads to the structures shown in Figure 2.5 for the

type-1 and type-2 polyphase representations of a filter.

As we shall see, the polyphase representation is often a mathematically convenient form in which to express

filtering operations in multirate systems, facilitating easier analysis of such systems and greatly simplifying many

theoretical results. Also, this representation leads to an efficient means for implementing filtering operations in a

multirate framework, as elaborated upon below.

In multirate systems, filters are often connected in cascade with upsamplers/downsamplers. For reasons of compu-

tational efficiency, it is usually preferable to perform any filtering on the side of the upsampler/downsampler with the
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Figure 2.7: Synthesis bank.

lower sampling density. We have seen how the noble identities can be used to move a filtering operation across upsam-

plers/downsamplers, but in order to move filtering to the side of the upsampler/downsampler with the lower sampling

density, the transfer function of the filter must be an expression in zM which is not generally the case. The polyphase

representation, however, provides us with a means to express any filter as a set of filters with transfer functions in zM

so that filtering can be moved to the more desirable side of an upsampler or downsampler.

2.3.7 Filter Banks

A filter bank is a collection of filters having either a common input or common output. When the filters share a

common input, they form what is called an analysis bank. When they share a common output, they form a synthesis

bank. These two types of filter banks are depicted in Figures 2.6 and 2.7. Each of the filter banks shown consists of

M filters. The filters {Hk} belonging to the analysis bank are called analysis filters and the filters {Fk} comprising

the synthesis bank are referred to as synthesis filters. The signals {uk[n]} and {vk[n]} are called subband signals.

The frequency responses of the analysis/synthesis filters may be non-overlapping, marginally overlapping, or greatly

overlapping depending on the application.

2.3.8 Uniformly Maximally-Decimated (UMD) Filter Banks

Although many filter bank configurations exist, an extremely useful one is the so called uniformly maximally-decimated

(UMD) filter bank1. The general structure of such a system is shown in Figure 2.8 where M = |detM |. The analysis

bank and downsamplers collectively form the analysis side of the UMD filter bank. Similarly, the upsamplers and

synthesis bank together constitute the synthesis side of the UMD filter bank.

The UMD filter bank (shown in Figure 2.8) operates in the following manner. On the analysis side, the input signal

x[n] is processed by the analysis filters {Hk}, and the resulting filter outputs are then downsampled by M , yielding

the subband signals {yk[n]}. On the synthesis side, the subband signals {yk[n]} are upsampled by M . Then, the

upsampler outputs are transformed by the synthesis filters {Fk}, and the resulting filter outputs are summed to produce

the output signal x̂[n].
Each of the M subband signals {yk[n]} has 1

M
-th the sampling density of the original input signal x[n]. Conse-

quently, the subband signals collectively possess the same number of samples as the original input signal. For this

reason, the filter bank is referred to as maximally decimated. Furthermore, since all of the subband signals have the

same sampling density, the filter bank is said to be uniformly decimated. Hence, a filter bank of the above form is

referred to as uniformly maximally decimated.

2.3.9 Perfect-Reconstruction (PR) UMD Filter Banks

For the UMD filter bank of Figure 2.8 to be of practical use, the output x̂[n] is usually required to be an accurate

reproduction of the input x[n]. If the system is such that x̂[n] = x[n−n0] for all x[n] and for some integer vector n0,

the system is said to have the perfect reconstruction (PR) property. In other words, a PR system can reproduce the

1Sometimes, the qualifier “quadrature mirror-image” (abbreviated QM) is used as a synonym for “uniformly maximally decimated”, but strictly

speaking this is an abuse of terminology.
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Figure 2.8: Canonical form of a D-dimensional M-channel UMD filter bank.

input signal exactly except for a possible shift. In the special case that n0 = 0, the system is said to possess the shift-

free PR property. Generally, there are three reasons that the reconstructed signal x̂[n] can differ from x[n]: aliasing

distortion, amplitude distortion, and phase distortion. The analysis and synthesis filters can be designed in such a way

so as to eliminate some or all of these distortions depending on what is required by the application. (In practice, the

effects of finite-precision arithmetic can also introduce distortion, but we are only considering the theoretical reasons

for distortion here.) Since our interests lie with invertible transforms, we focus exclusively on UMD filter banks having

the PR property in this thesis.

2.3.10 Polyphase Form of a UMD Filter Bank

Although the structure for the UMD filter bank shown in Figure 2.8 may be intuitively appealing, it is often not the

most convenient structure with which to work. This leads us to the polyphase form of a UMD filter bank, which

is related to the polyphase representation of individual filters (as discussed earlier). The polyphase representation

has many advantages, but most importantly it simplifies many theoretical results and suggests an efficient means of

implementation.

Suppose that we have a UMD filter bank with analysis filters {Hk}, synthesis filters {Fk}, sampling matrix M , and

the corresponding coset vectors {ml}M−1
l=0 , where M = |detM |. For notational convenience, we define the quantities

h(z) =











H0(z)
H1(z)

...
HM−1(z)











, f(z) =











F0(z)
F1(z)

...
FM−1(z)











, u(z) =











zm0

zm1

...
zmM−1











, and v(z) =











z−m0

z−m1

...
z−mM−1











.

First, let us consider the analysis filters of the UMD filter bank. We can express the transfer functions {Hk(z)} in

type-2 polyphase form as

Hk(z) =
M−1

∑
l=0

zml Ek,l(z
M ).

This equation can be rewritten in matrix form as











H0(z)
H1(z)

...
HM−1(z)











=











E0,0(z
M ) E0,1(z

M ) · · · E0,M−1(z
M )

E1,0(z
M ) E1,1(z

M ) · · · E1,M−1(z
M )

...
...

. . .
...

EM−1,0(z
M ) EM−1,1(z

M ) · · · EM−1,M−1(z
M )





















zm0

zm1

...
zmM−1











or more compactly as

h(z) = E(zM )u(z) (2.25)
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Figure 2.9: Polyphase realization of a D-dimensional M-channel UMD filter bank before simplification using the noble

identities.

where

E(z) =











E0,0(z) E0,1(z) · · · E0,M−1(z)
E1,0(z) E1,1(z) · · · E1,M−1(z)

...
...

. . .
...

EM−1,0(z) EM−1,1(z) · · · EM−1,M−1(z)











.

Equation (2.25) completely characterizes the analysis bank and is called the polyphase representation of the analysis

bank. The quantity E(z) is referred to as the analysis polyphase matrix.

Now, let us consider the synthesis filters of the UMD filter bank. We can express the transfer functions {Fk(z)} in

type-1 polyphase form as

Fk(z) =
M−1

∑
l=0

z−ml Rl,k(z
M ).

In matrix form, this becomes

[

F0(z) F1(z) · · · FM−1(z)
]

=

[

z−m0 z−m1 · · · z−mM−1
]











R0,0(z
M ) R0,1(z

M ) · · · R0,M−1(z
M )

R1,0(z
M ) R1,1(z

M ) · · · R1,M−1(z
M )

...
...

. . .
...

RM−1,0(z
M ) RM−1,1(z

M ) · · · RM−1,M−1(z
M )











which can be written more concisely as

fT (z) = vT (z)R(zM ) (2.26)

where

R(z) =











R0,0(z) R0,1(z) · · · R0,M−1(z)
R1,0(z) R1,1(z) · · · R1,M−1(z)

...
...

. . .
...

RM−1,0(z) RM−1,1(z) · · · RM−1,M−1(z)











.

Equation (2.26) completely characterizes the synthesis bank and is called the polyphase representation of the synthesis

bank. The quantity R(z) is referred to as the synthesis polyphase matrix.

Observe that (2.25) and (2.26) provide an alternative way in which to express the analysis and synthesis banks

of the UMD filter bank. Suppose now that we have a UMD filter bank where the analysis and synthesis banks have

been represented in this manner. In this case, these equations give us the transformed, but mathematically equivalent,

system shown in Figure 2.9. Using the noble identities, however, we can move the analysis polyphase filtering to

the right of the downsamplers and the synthesis polyphase filtering to the left of the upsamplers. This gives us the

polyphase form of the filter bank shown in Figure 2.10.

In effect, the polyphase representation reorganizes a filter bank so that it operates on the polyphase components of

the input signal. The analysis and synthesis polyphase filtering is performed by M-input M-output networks. On the

analysis side of the filter bank, the shift operators and downsamplers form what is referred to as the forward polyphase
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Figure 2.10: Polyphase realization of a D-dimensional M-channel UMD filter bank.

transform (FPT). Similarly, the upsamplers and shift operators form what is called the inverse polyphase transform

(IPT).

It is important to note that with the polyphase form of a UMD filter bank, analysis filtering is performed after

downsampling, and synthesis filtering is performed before upsampling. In other words, all filtering is performed

in the downsampled domain (i.e., at the lower sampling density). This leads to improved computational efficiency

over a UMD filter bank implemented in its canonical form. Consequently, most practical implementations of UMD

filter banks make use of the polyphase form. Moreover, the polyphase form is of great importance in the context of

reversible ITI transforms, as will become apparent later.

2.3.11 Conditions for PR System

Many applications necessitate the use of a filter bank with the PR property. Moreover, we often further require that a

filter bank possess the shift-free PR property. Therefore, it is only natural to wonder what conditions a filter bank must

satisfy in order to have this property. One can show that a UMD filter bank has the shift-free PR property if and only

if

R(z)E(z) = I (2.27)

where E(z) and R(z), respectively, denote the analysis and synthesis polyphase matrices of the filter bank. By

examining the polyphase form of a UMD filter bank (shown in Figure 2.10), we can see the reason behind the above

condition for shift-free PR. If (2.27) is satisfied, then the synthesis polyphase filtering (represented by R(z)) cancels

the effects of the analysis polyphase filtering (represented by E(z)). This being the case, the filter bank, in effect,

only serves to split a signal into its polyphase components and then recombine these components, yielding the original

input signal with no shift.

2.3.12 Octave-Band Filter Banks

As shown in Figure 2.11, the analysis side of a UMD filter bank decomposes the input signal x[n] into M subband

signals {yk[n]}. The synthesis side then recombines these subband signals to obtain x̂[n], the reconstructed version of

the original signal. There is nothing, however, to prevent the use of additional UMD filter banks to further decompose

some or all of the subband signals {yk[n]}. Of course, some or all of the resulting subband signals can again be

decomposed with even more UMD filter banks. In other words, this idea can be applied recursively, and the final result

is a filter bank with a tree structure. If a tree-structured UMD filter bank is such that 1) only the lowpass subband signal

is decomposed at each level in the tree, 2) the same basic UMD filter bank building block is used for decomposition

at all levels, and 3) this basic block has PR and satisfies certain regularity conditions, then the tree-structured filter

bank can be shown to compute a wavelet transform. Such a tree-structured filter bank is called an octave-band filter

bank. The analysis side of the octave-band filter bank calculates the forward wavelet transform and the synthesis side

calculates the inverse wavelet transform.

At this point, our motivation for studying UMD filter banks becomes apparent. Under the conditions stated above,

a UMD filter bank can be directly linked to a wavelet decomposition. Thus, UMD filter banks can be used to both

design and implement wavelet transforms.
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Figure 2.11: The UMD filter bank (revisited).

2.3.13 UMD Filter Bank Implementation

In principle, the design of a PR UMD filter bank amounts to decomposing the identity matrix into two factors with

desired properties. These two factors are simply the polyphase matrices of the filter bank. Once we have determined the

analysis and synthesis polyphase matrices E(z) and R(z), respectively, we are ready to proceed to the implementation

of the filter bank. Of course, the filter bank could be realized by directly implementing the filtering operations in each

of the polyphase matrices, but it is often beneficial to break the filtering process into a number of smaller and simpler

cascaded stages.

Consider for a moment the analysis side of the filter bank. Instead of implementing E(z) directly, we further

decompose E(z) as follows

E(z) = En−1(z) · · ·E1(z)E0(z).

Each of the {Ei(z)} can then be taken to represent a single filtering stage in the final implementation as depicted in

Figure 2.12. Similarly, R(z) can be decomposed to produce

R(z) = Rm−1(z) · · ·R1(z)R0(z).

This corresponds to the cascade realization of the synthesis polyphase matrix shown in Figure 2.13. In the event that

R(z)E(z) = I , we have R(z) = E−1(z). Thus, we could choose R(z) as

R(z) = E−1
0 (z)E−1

1 (z) · · ·E−1
n−1(z).

This factorization results in a certain symmetry between the analysis and synthesis sides of the filter bank which can

often be advantageous.

Assuming that we want to realize the polyphase matrices with a number of cascaded blocks, what type of polyphase

matrix factorization might we use? As mentioned earlier, a wavelet transform can be constructed from one or more

instances of a single UMD filter bank building block. Thus, in order to generate a wavelet transform that is both

reversible and ITI, one need only construct a UMD filter bank building block with both of these properties. Given that

we would like to construct reversible ITI transforms, are there particular factorizations that help to achieve this goal?

This question will be addressed at length in the next chapter.

2.4 Image Coding

The particular application of reversible ITI wavelet transforms considered in this thesis is image coding. In the sections

that follow, topics relevant to this application are discussed briefly. We begin with a short introduction to image

coding and compression. Then, transform-based image compression is discussed along with the motivation for its use.

Performance measures for both lossy and lossless compression are also described. We discuss wavelet transforms in

the context of image compression, and explain why such transforms are particularly effective for coding purposes.

2.4.1 Image Coding and Compression

The discipline of image coding studies alternative representations of images, usually with some specific purpose in

mind. The goal may be to find a representation with less redundancy so that fewer bits are required to encode the
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Figure 2.14: General structure of a transform-based image compression system.

image, or to add redundancy in order to facilitate error detection/correction for information transmitted over noisy

channels. The former type of coding is referred to as image compression. In this thesis, our interests focus primarily

on image compression.

There are two general approaches to image compression. In the first approach, the sample values of the original

image are encoded directly to generate the coded bitstream. Such an approach is often referred to as a spatial-domain

approach. In the second method, a transformation is first applied to the samples of the original image and then the

transformed data are encoded to produce the compressed bitstream. A system employing this philosophy is said to be

transform based. For lossy compression, transform-based coders are almost exclusively used as they tend to have much

better performance for fixed complexity. On the other hand, in the case of lossless compression, spatial-domain coders

have traditionally been employed in the past. In recent years, however, coders employing reversible ITI transforms

have been growing in popularity for lossless coding.

For a more detailed treatment of image compression and signal coding techniques beyond that which we present

here, the reader is referred to [108] and [77].

2.4.2 Transform-Based Image Compression Systems

The general structure of a transform-based image compression system is shown in Figure 2.14. In this diagram,

x represents the original image, y denotes the compressed image, and x̂ represents the reconstructed image obtained

from decompression. The goal, of course, is to design a system so that the coded signal y can be represented with fewer

bits than the original signal x. As indicated by the diagram, the compressed bitstream may be stored or transmitted.

In the case of storage, compression has the benefit of reducing disk or memory requirements, and in transmission

scenarios, compression reduces the bandwidth (or time) required to send the data.

Rather than attempt to code the sample values of the original image directly, a transform-based coder first applies a

transform to the image and then codes the resulting transform coefficients instead. The transform is used in an attempt

to obtain coefficients that are easier to code.

Many signals of practical interest are characterized by a spectrum that decreases rapidly with increasing frequency.

Images are a good example of a class of signals with this property. By employing transforms that decompose a signal
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into its various frequency components, one obtains many small or zero-valued coefficients which correspond to the

high-frequency components of the original signal. Due to the large number of small coefficients, the transformed

signal is often easier to code than the original signal itself. As a practical matter, in order for a transform to be useful,

it must be effective for a reasonably large class of signals and efficient to compute.

Consider now the compression process. First, the transform of the image is calculated. The particular transform

employed is chosen so as to pack the energy from the original signal into a small number of coefficients that can be

more efficiently coded. The next step in the compression process is to quantize and code the transform coefficients.

Quantization is used to discard transform coefficient information that is deemed to be insignificant. In the case of

lossless compression, no quantization is performed since all transform coefficient bits are equally important. Finally,

the quantized coefficients are coded to produce the compressed bitstream. The coding process typically exploits a

statistical model in order to code symbols with a higher probability of occurrence using fewer bits. In so doing,

the size of the compressed bitstream is reduced. Assuming that the transform employed is truly invertible, the only

potential for information loss is due to coefficient quantization, as the quantized coefficients are coded in a lossless

manner.

The decompression process simply mirrors the process used for compression. First, the compressed bitstream is

decoded to obtain the quantized transform coefficients. Then, the inverse of the transform used during compression is

employed to obtain the reconstructed image x̂.

2.4.3 Wavelet Transforms for Image Compression

Wavelet transforms have proven extremely effective for transform-based image compression. Since many of the

wavelet transform coefficients for a typical image tend to be very small or zero, these coefficients can be easily coded.

Thus, wavelet transforms are a useful tool for image compression.

The main advantage of wavelet transforms over other more traditional decomposition methods (like the DFT

and DCT) is that the basis functions associated with a wavelet decomposition typically have both long and short

support. The basis functions with long support are effective for representing slow variations in an image while the

basis functions with short support can efficiently represent sharp transitions (i.e., edges). This makes wavelets ideal for

representing signals having mostly low-frequency content mixed with a relatively small number of sharp transitions.

With more traditional transforms techniques like the DFT and DCT, the basis functions have support over the entire

image, making it difficult to represent both slow variations and edges efficiently.

The wavelet transform decomposes a signal into frequency bands that are equally spaced on a logarithmic scale.

The low-frequency bands have small bandwidths, while the high-frequency bands have large bandwidths. This loga-

rithmic behavior of wavelet transforms can also be advantageous. Since human visual perception behaves logarithmi-

cally in many respects, the use of wavelet decompositions can sometimes make it easier to exploit characteristics of

the human visual system in order to obtain improved subjective lossy compression results.

Although wavelet transforms with many different characteristics are possible, orthogonal transforms with sym-

metric finitely-supported basis functions are ideally most desirable for image compression. Orthogonality is beneficial

as it ensures that transform coefficients do not become unreasonably large and also because it easily facilitates the

selection of the most important transform coefficients in the sense of minimizing mean squared error. Symmetric

basis functions are desirable in order to avoid undesirable phase distortion as a result of compression. If phase is not

preserved, edges and lines can become severely distorted, resulting in poor subjective image quality. Moreover, the

symmetric extension method for handling finite-length signals can only be applied to transforms with symmetric basis

functions. This is yet another incentive for using transforms with symmetric basis functions.

Unfortunately, in the case of two-band wavelet transforms, orthogonality, symmetry, and finite support can only

be achieved in the trivial case of the Haar and other Haar-like transforms. For this reason, we usually choose to

sacrifice orthogonality, and use biorthogonal transforms instead. In practice, this concession does not pose any serious

problems.

2.4.4 Compression Performance Measures

Obviously, in order to evaluate the performance of image compression systems, we need a way to measure compres-

sion. For this purpose, the compression ratio (CR) metric is often employed and is defined as

CR =
original image size in bits

compressed image size in bits
.
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In some cases, the normalized bit rate (NBR) is more convenient to use, and is defined as the reciprocal of compression

ratio. That is,

NBR =
compressed image size in bits

original image size in bits
.

Sometimes compression is instead quantified by stating the bit rate (BR) achieved by compression in bpp (bits per

pixel). The bit rate after compression and compression ratio are simply related as

BR = (bits/pixel for original image)/CR.

In most cases, the author prefers to use the normalized bit rate and compression ratio metrics, since in order for the

bit rate metric to be meaningful one must also state the initial bit rate. The normalized bit rate and compression ratio

metrics, however, are meaningful if stated in isolation.

In the case of lossy compression, the reconstructed image is only an approximation to the original. The difference

between the original and reconstructed signal is referred to as approximation error or distortion. Although many

metrics exist for quantifying distortion, it is most commonly expressed in terms of mean-squared error (MSE) or

peak-signal-to-noise ratio (PSNR). These quantities are defined, respectively, as

MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

(x̂[i, j]− x[i, j])2, and (2.28)

PSNR = 20log10

(

2P −1√
MSE

)

, (2.29)

where x[i, j] is the original image with dimensions M ×N having P bpp, and x̂[i, j] is the reconstructed image. Ev-

idently, smaller MSE and larger PSNR values correspond to lower levels of distortion. Although these metrics are

frequently employed, it is important to note that the MSE and PSNR metrics do not always correlate well with image

quality as perceived by the human visual system. This is particularly true at high compression ratios (i.e., low bit

rates). For this reason, one should ideally supplement any objective lossy compression performance measurements

with subjective tests to ensure that the objective results are not misleading.

Generally speaking, distortion varies with the amount of compression. In other words, distortion is implicitly a

function of rate (i.e., compression ratio). For this reason, plots (or tables) of distortion versus rate are often used to

analyze lossy compression performance. Obviously, for any given rate, the lowest possible distortion is desired.

In the case of lossless compression, the reconstructed image is an exact replica of the original image. In other

words, the distortion is always zero. Since the distortion is zero, we only need to consider the rate achieved when

analyzing lossless compression performance. Obviously, the lower the rate, the better is the compression performance.

Despair is the price one pays for setting oneself an impossible aim. It is, one is

told, the unforgivable sin, but it is a sin the corrupt or evil man never practices.

He always has hope. He never reaches the freezing-point of knowing absolute

failure. Only the man of goodwill carries always in his heart this capacity for

damnation.

—Graham Greene, The Heart of the Matter, 1948
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Chapter 3

Frameworks for Reversible ITI

Wavelet/Block Transforms

Wednesday night I fell asleep naturally, exhausted, but woke up with the most intense feeling of

sadness . . . fragments of dreams spinning into lonely wakefulness . . . Do you know what it’s like to

be sad like that? As if your best friend had just died, except the sorrow is worse because that’s not

what happened, because even while people are leaving you you’ve always been alone.

—Evelyn Lau, Runaway: Diary of a Street Kid, 1989

Overview

The generalized reversible ITI transform (GRITIT) framework, a single unified framework for reversible ITI wavelet/block

transforms, is proposed. This new framework is then used to study several previously proposed frameworks and their

interrelationships. For example, the framework based on the overlapping rounding transform is shown to be a spe-

cial case of the lifting framework with only trivial extensions. The applicability of the GRITIT framework for block

transforms is also demonstrated. The generalized S transform (GST), a family of reversible ITI block transforms, is

proposed. This family of transforms is then studied in detail. Throughout all of this work, particularly close attention

is paid to rounding operators and their characteristics.

3.1 Introduction

Although reversible ITI wavelet transforms can be constructed using ad-hoc methods, a more structured approach to

the design of such transforms is clearly advantageous. By using a highly structured approach to transform design, we

can produce more sophisticated transforms than is possible with ad-hoc methods. Thus, general frameworks for the

construction of reversible ITI wavelet transforms are of great interest.

In this chapter, we consider frameworks for the construction of reversible ITI wavelet transforms. We begin, in

Section 3.2, by studying one of the key elements in such frameworks, namely rounding operators. This study of

rounding operators will prove quite useful at various junctures in this thesis. In Section 3.3, we examine several pre-

viously proposed frameworks. Then, in Section 3.4, we integrate and extend the key concepts from these frameworks

in order to form a single unified framework, known as the generalized reversible ITI transform (GRITIT) framework.

The GRITIT framework is then used, in Section 3.5, to study the relationships between the various other frameworks

introduced in Section 3.3. Next, Section 3.7 demonstrates the applicability of the GRITIT framework to the design

of reversible ITI block transforms. In this context, we propose and study the generalized S transform (GST), a new

family of reversible ITI block transforms. Finally, in Section 3.8, we summarize the results of this chapter. In passing,

we would like to note that some of our results presented in this chapter have also been published in [10, 17, 15, 18].



Chapter 3. Frameworks for Reversible ITI Wavelet/Block Transforms 22

❥+

Q

❥+ Q−1 −1

❥+

Q

❥+ Q

✲

✲✲✲✲

✲

✲✲ ✲

✻

✲ ✲

✲

✻

✲ ✲ ✲

✲

≡

α

x y x y

α

−

≡

αα

x y x y

−

Figure 3.1: Identities for an integer-bias invariant rounding operator (x,y ∈ Z, α ∈ R, and Q is a rounding operator).

3.2 Rounding Operators

As will soon become evident, rounding operators play an important role in reversible ITI wavelet transforms. There-

fore, it is beneficial to devote some time to studying such operators. In what follows, we examine various matters

concerning rounding operators. For example, we consider their basic properties, rounding error characteristics, and

implementation. At times, we focus our attention on several common rounding operators (i.e., the floor, biased floor,

ceiling, biased ceiling, truncation, biased truncation, and RAFZ functions).

3.2.1 Integer-Bias Invariance and Oddness

Two properties that rounding operators may possess are integer-bias invariance and oddness, as defined by (2.13)

and (2.14), respectively. First, let us consider integer-bias invariance. If a rounding operator has this property, the

order of rounding and integer increment/decrement operations can be interchanged without affecting system behavior.

In other words, we have the identities shown in Figure 3.1. Next, let us consider oddness. As noted earlier, if a round-

ing operator possesses this property, it will preserve both symmetry and antisymmetry in signals. For example, if an

antisymmetric signal is rounded with an odd operator, the resulting signal will also be antisymmetric. In some appli-

cations, such as symmetric extension (to be discussed later), rounding operators that preserve both signal symmetry

and antisymmetry are often desirable.

For the reasons outlined above, the integer-bias invariance and oddness properties are both highly desirable. Un-

fortunately, as it turns out, these properties are also mutually exclusive, as demonstrated by the proposition and ac-

companying proof below.

Proposition 1 (Mutual exclusivity of integer-bias invariance and oddness). A rounding operator cannot be both

integer-bias invariant and odd.

Proof. Let Q denote a rounding operator. Assume that Q is both integer-bias invariant and odd. Now, consider the

quantity Q(k + 1
2
) where k ∈ Z. Using trivial algebraic manipulation and the integer-bias invariance property, we have

Q(k + 1
2
) = Q(2k +1− k− 1

2
) = 2k +1+Q(−k− 1

2
). (3.1)

From the oddness property, we can write

Q(k + 1
2
) = −Q(−[k + 1

2
]) = −Q(−k− 1

2
). (3.2)

Combining (3.1) and (3.2), we obtain

2k +1+Q(−k− 1
2
) = −Q(−k− 1

2
) ⇒ 2Q(−k− 1

2
) = −2k−1 ⇒ Q(−k− 1

2
) = −k− 1

2
.

Thus, we have that Q(−k − 1
2
) /∈ Z. Since, by definition, Q must always yield an integer result, the integer-bias

invariance and oddness properties cannot be simultaneously satisfied by Q.
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3.2.2 Relationships Involving Rounding Functions

In this section, we introduce some important relationships involving specific rounding operators (namely, the floor,

biased floor, ceiling, and biased ceiling functions). To begin, we remind the reader of the very basic identities involving

the floor and ceiling functions given by (2.1), (2.2), and (2.3). These identities are extremely useful and will be used

repeatedly throughout this thesis. In what follows, we introduce some additional relationships involving rounding

operators.

First, we examine the relationship between the floor and ceiling of a quotient of integers. In this case, a simple

identity can be shown to hold, as evidenced by the proposition and accompanying proof below.

Proposition 2 (Relationship between floor and ceiling of quotient). For all x ∈ Z and all y ∈ Z except y = 0, the

following identity holds:

⌈x/y⌉ = ⌊(x+ y−1)/y⌋ . (3.3)

Proof. One can easily confirm that, for y 6= 0, the mod function satisfies the relationships

mod(x,y) = x for 0 ≤ x ≤ y−1, and

mod(x+ y,y) = mod(x,y).

From the two preceding properties, we can deduce

mod(−x,y) = y−1−mod(x−1,y) for y 6= 0. (3.4)

Now we consider the expression on the right-hand side of equation (3.3). Using (2.10), we can write

⌊(x+ y−1)/y⌋ = ⌊(x−1)/y⌋+1 (3.5)

= (x+ y−1−mod(x−1,y))/y.

Using (2.11) and (3.4), we can further manipulate (3.5) as follows:

⌊(x+ y−1)/y⌋ = (x+mod(−x,y))/y

= ⌈x/y⌉ .

Thus, the identity given in (3.3) holds.

The identity given by the above proposition is practically useful, as it allows us to implement the ceiling of a

quotient in terms of the floor of a quotient and vice versa.

Next, we consider the relationship between the biased floor and biased ceiling functions. The relationship between

these functions is, in fact, quite simple, and is given by the following proposition and accompanying proof.

Proposition 3 (Relationship between biased floor and biased ceiling functions). The biased floor and biased ceiling

functions are related as follows:

bceilα =

{

bfloor(α)−1 if α is an odd integer multiple of 1
2

bfloorα otherwise
(3.6)

for all α ∈ R.

Proof. First, let us consider the case that α is an odd integer multiple of 1
2
. In this case, α + 1

2
and α− 1

2
are both

integer quantities. Thus, we have

bfloorα =
⌊

α+ 1
2

⌋

= α+ 1
2

and bceilα =
⌈

α− 1
2

⌉

= α− 1
2
.

Combining these two equations, we obtain

bceilα = bfloor(α)−1.

Thus, we have shown that (3.6) holds when α is an odd integer multiple of 1
2
.
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Now, let us consider the case that α is not an odd integer multiple of 1
2
. In this case, we have

bfloorα =
⌊

α+ 1
2

⌋

= α+ 1
2
+∆0 and (3.7)

bceilα =
⌈

α− 1
2

⌉

= α− 1
2
+∆1, (3.8)

where ∆0 and ∆1 are real and satisfy ∆0 ∈ (−1,0) and ∆1 ∈ (0,1). The intervals for ∆0 and ∆1 follow immediately

from the definition of the floor and ceiling functions and the fact that the rounding error cannot be zero since α + 1
2

and α− 1
2

cannot be integer quantities. Using simple interval arithmetic, we can deduce from (3.7) and (3.8) that the

quantities bfloorα and bceilα must both be contained on the interval (α− 1
2
,α + 1

2
). Since this interval has a width

of one and is open at both ends, however, it cannot contain more than one integer value. Therefore, bfloorα and

bceilα, which are integer quantities, must be equal. Thus, we have shown that (3.6) holds when α is not an odd integer

multiple of 1
2
, completing the proof.

The identity given by the above proposition is useful in that it allows us to convert expressions using the biased

floor function to expressions employing the biased ceiling function and vice versa.

In practice, it is frequently necessary to round a real number of the form x
2F where x ∈ Z, F ∈ Z, and F ≥ 1 (i.e.,

a dyadic rational number). That is, we often need to compute an expression of the form Q( x
2F ) where Q is a rounding

operator. For this reason, we desire some efficient means of evaluating such an expression for various choices of Q.

Many of today’s computing platforms utilize two’s complement integer arithmetic. On such platforms, a very efficient

method exists for computing the floor of a dyadic rational number. This method involves the arithmetic shift right

(ASR) operation, and is given by the proposition and accompanying proof below.

Proposition 4 (Relationship between arithmetic right shift and floor of quotient). Suppose that x is an integer

represented in two’s complement form with a word size of P bits. Let asr(x,n) denote the quantity resulting from the

arithmetic right shift of x by n bits. We assert that

asr(x,n) =
⌊

x
2n

⌋

where 0 ≤ n ≤ P−1. (3.9)

Proof. Let a0,a1, . . . ,aP−1 denote the P bits of the word representing x, where a0 and aP−1 are the least- and most-

significant bits, respectively. In two’s complement form, the integer x is represented as

x = −aP−12P−1 +∑P−2
i=0 ai2

i.

Through the properties of modular arithmetic, one can use the preceding equation to show that

mod(x,2n) = ∑n−1
i=0 ai2

i for 0 ≤ n ≤ P−1. (3.10)

From the definition of the arithmetic shift right operation, we can write (for 0 ≤ n ≤ P−1)

asr(x,n) = −aP−12P−1 +aP−1

(

∑P−2
i=P−1−n 2i

)

+∑P−2−n
i=0 ai+n2i

= −aP−1(2
P−1 −2P−1 +2P−1−n)+∑P−2−n

i=0 ai+n2i

= −aP−12P−1−n +∑P−2−n
i=0 ai+n2i.

Using simple algebraic manipulation, (2.10), and (3.10), we can further rearrange the preceding equation as follows:

asr(x,n) = −aP−12P−1−n +∑P−2−n
i=−n ai+n2i −∑−1

i=−n ai+n2i

= 1
2n (−aP−12P−1 +∑P−2

i=0 ai2
i)− 1

2n mod(x,2n)

= x−mod(x,2n)
2n

=
⌊

x
2n

⌋

.

Thus, the identity given in (3.9) holds. (As an aside, we note that (3.9) also trivially holds for n ≥ P. This case,

however, is of relatively little practical interest.)
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Table 3.1: Error characteristics for various rounding operators (for F ≥ 1)

Operator Error Interval PAE MAE

Exact For Large F Exact For Large F Exact For Large F

floor [− 2F−1
2F ,0] (−1,0] 2F−1

2F 1 2F−1
2F+1

1
2

bfloor [− 2F−1−1
2F , 1

2
] (− 1

2
, 1

2
] 1

2
1
2

1
4

1
4

ceiling [0, 2F−1
2F ] [0,1) 2F−1

2F 1 2F−1
2F+1

1
2

bceil [− 1
2
, 2F−1−1

2F ] [− 1
2
, 1

2
) 1

2
1
2

1
4

1
4

trunc [− 2F−1
2F , 2F−1

2F ] (−1,1) 2F−1
2F 1 2F−1

2F+1
1
2

btrunc [− 1
2
, 1

2
] [− 1

2
, 1

2
] 1

2
1
2

1
4

1
4

rafz [− 2F−1
2F , 2F−1

2F ] (−1,1) 2F−1
2F 1 2F−1

2F+1
1
2

Let us continue to assume a two’s complement representation for integers. This being the case, we can use the

results of Propositions 2 and 4 to derive the following expressions:

⌊

x
2F

⌋

= asr(x,F), (3.11a)

bfloor( x
2F ) = asr(x+H,F), (3.11b)

⌈

x
2F

⌉

= asr(x+M,F), (3.11c)

bceil( x
2F ) = asr(x+B,F), (3.11d)

trunc( x
2F ) =

{

asr(x,F) for x ≥ 0

asr(x+M,F) for x < 0,
(3.11e)

btrunc( x
2F ) =

{

asr(x+H,F) for x ≥ 0

asr(x+B,F) for x < 0,
and (3.11f)

rafz( x
2F ) =

{

asr(x+M,F) for x ≥ 0

asr(x,F) for x < 0,
(3.11g)

where M = 2F −1, H = 2F−1, B = 2F−1 −1, and asr(x,n) denotes the arithmetic right shift of x by n bits. The above

expressions are useful as they provide an efficient means for applying rounding operations to dyadic rational numbers.

3.2.3 Rounding Error

Suppose that we must round real numbers of the form x
2F where x∈Z, F ∈Z, and F ≥ 1 (i.e., dyadic rational numbers).

Such numbers are associated with a fixed-point representation having F fraction bits (i.e., F bits to the right of the

binary point). If we assume that, for both negative and nonnegative quantities, all 2F representable fractional values

are equiprobable, one can show that the error interval, peak absolute error (PAE), and mean absolute error (MAE) for

each of the rounding operators under consideration are as listed in Table 3.1. The derivation of these expressions is

given by the proposition below.

Proposition 5 (Approximation error for various rounding operators). Consider the quantity x
2F where x is a

random integer and F is a strictly positive integer constant. If we suppose that frac x
2F may assume all 2F possible

(distinct) values, then the error incurred by rounding the quantity x
2F using the the floor, biased floor, ceiling, biased

ceiling, truncation, biased truncation, and RAFZ functions, is bounded as follows:

− 2F−1
2F ≤

⌊

x
2F

⌋

− x
2F ≤ 0, − 2F−1−1

2F ≤ bfloor
(

x
2F

)

− x
2F ≤ 1

2
,

0 ≤
⌈

x
2F

⌉

− x
2F ≤ 2F−1

2F , − 1
2
≤ bceil

(

x
2F

)

− x
2F ≤ 2F−1−1

2F , (3.12)

− 2F−1
2F ≤ trunc( x

2F )− x
2F ≤ 2F−1

2F , − 1
2
≤ btrunc

(

x
2F

)

− x
2F ≤ 1

2
, and

− 2F−1
2F ≤ rafz( x

2F )− x
2F ≤ 2F−1

2F .
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If we further suppose that all 2F possible values of frac x
2F are equiprobable for x

2F < 0 and are also equiprobable for
x

2F ≥ 0, then rounding x
2F with the floor, biased floor, ceiling, biased ceiling, truncation, biased truncation, and RAFZ

functions incurs the respective mean absolute errors:

E
(∣

∣

⌊

x
2F

⌋

− x
2F

∣

∣

)

= 2F−1
2F+1 , E

(∣

∣bfloor( x
2F )− x

2F

∣

∣

)

= 1
4
,

E
(∣

∣

⌈

x
2F

⌉

− x
2F

∣

∣

)

= 2F−1
2F+1 , E

(∣

∣bceil( x
2F )− x

2F

∣

∣

)

= 1
4
, (3.13)

E
(∣

∣trunc( x
2F )− x

2F

∣

∣

)

= 2F−1
2F+1 , E

(∣

∣btrunc( x
2F )− x

2F

∣

∣

)

= 1
4
, and

E
(∣

∣rafz( x
2F )− x

2F

∣

∣

)

= 2F−1
2F+1 .

Proof. From (2.9) and (2.3), we can show that the rounding error incurred by the floor, biased floor, ceiling, and biased

ceiling functions is, respectively, given by:

⌊

x
2F

⌋

− x
2F = −mod(x,2F )

2F , (3.14)

bfloor
(

x
2F

)

− x
2F = 2F−1−mod(2F−1+x,2F )

2F , (3.15)

⌈

x
2F

⌉

− x
2F = mod(−x,2F )

2F , and (3.16)

bceil
(

x
2F

)

− x
2F = mod(2F−1−x,2F )−2F−1

2F . (3.17)

Using the definitions of the truncation, biased truncation, and RAFZ functions given by (2.6), (2.7), and (2.8), respec-

tively, and the identities (3.14)–(3.17), we can easily deduce:

trunc( x
2F )− x

2F =

{

−mod(x,2F )
2F for x ≥ 0

mod(−x,2F )
2F for x < 0,

(3.18)

btrunc( x
2F )− x

2F =

{

2F−1−mod(2F−1+x,2F )
2F for x ≥ 0

mod(2F−1−x,2F )−2F−1

2F for x < 0,
and (3.19)

rafz( x
2F )− x

2F =

{

mod(−x,2F )
2F for x ≥ 0

−mod(x,2F )
2F for x < 0.

(3.20)

Since mod(±x,2F) and mod(2F−1 ± x,2F) can assume any integer value on [0,2F − 1], we can easily deduce all of

the error bounds in (3.12) from (3.14)–(3.20). For example, consider the case of the floor function. The rounding

error in this case is given by (3.14). Clearly, the minimum value of the rounding error is − 2F−1
2F , occurring when

mod(x,2F) = 2F −1. Similarly, the maximum value of the rounding error is 0, occurring when mod(x,2F) = 0. Thus,

we have that − 2F−1
2F ≤

⌊

x
2F

⌋

− x
2F ≤ 0. The remaining error bounds in (3.12) can be shown to hold in a similar manner.

Now, let us consider the mean absolute error expressions for the various rounding operators. Since, by assumption,

all 2F possible values for frac x
2F are equiprobable, we know that mod(±x,2F) and mod(2F−1 ± x,2F) are both uni-

formly distributed over the integer values on [0,2F −1]. Consequently, in the case of the floor, biased floor, ceiling, and

biased ceiling functions, the mean absolute error can be found by computing the expected value over the 2F possible

absolute error values (associated with the 2F distinct fractional parts) using (3.14)–(3.17). Straightforward analysis

and algebraic manipulation yield the following:

E
(∣

∣

⌊

x
2F

⌋

− x
2F

∣

∣

)

=E
(∣

∣

∣

−mod(x,2F )
2F

∣

∣

∣

)

= 1
2F

2F−1

∑
i=0

∣

∣

−i
2F

∣

∣= 2F−1
2F+1 , (3.21)

E
(∣

∣bfloor( x
2F )− x

2F

∣

∣

)

=E
(∣

∣

∣

2F−1−mod(2F−1+x,2F )
2F

∣

∣

∣

)

= 1
2F

2F−1

∑
i=0

∣

∣

∣

2F−1−i
2F

∣

∣

∣
= 1

4
, (3.22)
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E
(∣

∣

⌈

x
2F

⌉

− x
2F

∣

∣

)

=E
(∣

∣

∣

mod(−x,2F )
2F

∣

∣

∣

)

= 1
2F

2F−1

∑
i=0

∣

∣

i
2F

∣

∣= 2F−1
2F+1 , and (3.23)

E
(∣

∣bceil( x
2F )− x

2F

∣

∣

)

=E
(∣

∣

∣

mod(2F−1−x,2F )−2F−1

2F

∣

∣

∣

)

= 1
2F

2F−1

∑
i=0

∣

∣

∣

i−2F−1

2F

∣

∣

∣
= 1

4
. (3.24)

Let us now consider the mean absolute error for the truncation function. From (3.21), (3.23), and the definition of

the truncation function in (2.6), it follows that

E
(∣

∣trunc( x
2F )− x

2F

∣

∣

)

= Pr( x
2F < 0)E

(∣

∣

⌈

x
2F

⌉

− x
2F

∣

∣ | x
2F < 0

)

+Pr( x
2F ≥ 0)E

(∣

∣

⌊

x
2F

⌋

− x
2F

∣

∣ | x
2F ≥ 0

)

. (3.25)

Since, by assumption, all 2F possible values of frac x
2F are equiprobable for x

2F < 0, we have from (3.23) that

E
(∣

∣

⌈

x
2F

⌉

− x
2F

∣

∣ | x
2F < 0

)

= 2F−1
2F+1 . (3.26)

Similarly, since all 2F possible values of frac x
2F are assumed to be equiprobable for x

2F ≥ 0, we have from (3.21) that

E
(∣

∣

⌊

x
2F

⌋

− x
2F

∣

∣ | x
2F ≥ 0

)

= 2F−1
2F+1 . (3.27)

By substituting (3.26) and (3.27) into (3.25) and then observing that Pr( x
2F < 0)+Pr( x

2F ≥ 0) = 1, we obtain

E
(∣

∣trunc( x
2F )− x

2F

∣

∣

)

= Pr( x
2F < 0)

(

2F−1
2F+1

)

+Pr( x
2F ≥ 0)

(

2F−1
2F+1

)

= 2F−1
2F+1 .

Therefore, the identity for the truncation function in (3.13) holds.

Consider now the mean absolute error for the biased truncation function. From (3.22), (3.24), and the definition of

the biased truncation function in (2.7), it follows that

E
(∣

∣btrunc( x
2F )− x

2F

∣

∣

)

=Pr( x
2F < 0)E

(∣

∣bceil( x
2F )− x

2F

∣

∣ | x
2F < 0

)

(3.28)

+Pr( x
2F ≥ 0)E

(∣

∣bfloor( x
2F )− x

2F

∣

∣ | x
2F ≥ 0

)

.

Since, by assumption, all 2F possible values of frac x
2F are equiprobable for x

2F < 0, we have from (3.24) that

E
(∣

∣bceil( x
2F )− x

2F

∣

∣ | x
2F < 0

)

= 1
4
. (3.29)

Similarly, since all 2F possible values of frac x
2F are equiprobable for x

2F ≥ 0, we have from (3.22) that

E
(∣

∣bfloor( x
2F )− x

2F

∣

∣ | x
2F ≥ 0

)

= 1
4
. (3.30)

By substituting (3.29) and (3.30) into (3.28) and observing that Pr( x
2F < 0)+Pr( x

2F ≥ 0) = 1, we obtain

E
(∣

∣btrunc( x
2F )− x

2F

∣

∣

)

= 1
4

Pr( x
2F < 0)+ 1

4
Pr( x

2F ≥ 0) = 1
4
. (3.31)

Therefore, the identity for the biased truncation function in (3.13) holds. Using similar reasoning to that above, in the

case of the RAFZ function, we can write:

E
(∣

∣rafz( x
2F )− x

2F

∣

∣

)

= Pr( x
2F < 0)E

(∣

∣

⌊

x
2F

⌋

− x
2F

∣

∣ | x
2F < 0

)

+Pr( x
2F ≥ 0)E

(∣

∣

⌈

x
2F

⌉

− x
2F

∣

∣ | x
2F ≥ 0

)

= 1
2

(

2F−1
2F+1

)

+ 1
2

(

2F−1
2F+1

)

= 2F−1
2F+1 .

Therefore, the identity for the RAFZ function in (3.13) holds. Thus, we have shown that all of the identities in (3.13)

hold, completing the proof.
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Figure 3.2: The S transform. The networks for the (a) forward and (b) inverse transforms.

3.3 Previously Proposed Frameworks

To date, numerous frameworks have been proposed for reversible ITI wavelet transforms. In the sections that follow,

we introduce several of the more popular frameworks, namely the S+P transform, lifting, and overlapping rounding

transform (ORT) frameworks. We begin, however, by introducing the S transform, a specific example of a reversible

ITI wavelet transform. A brief examination of this transform is instructive as such provides additional insight into the

evolution of frameworks for reversible ITI transforms. In recent years, these frameworks have evolved considerably,

and consequently, it is now possible to design transforms that are much more sophisticated than the S transform.

Notwithstanding its crudeness, however, the S transform is still useful in some applications. For this reason also, we

elect to discuss the S transform herein.

3.3.1 S Transform

One of the simplest and most ubiquitous reversible ITI transforms is the S (i.e., sequential) transform [28, 108]. The

S transform is essentially a reversible ITI approximation of the (linear) Haar wavelet transform [62]. According to [28],

the S transform, as it is known today, appears to have originated from the work of Wendler [146] (which relates to the

earlier work of Lux [96]). The S transform has become quite popular for lossless signal coding applications and has

received considerable attention in the literature over the years (e.g., [110, 28, 118, 108, 148, 114]).

Several slightly different definitions of the S transform exist in the literature. In what follows, we consider one of

the more commonly used definitions (e.g., equations (1) and (2) in [114] and equation (3.3) in [148]). The S transform

is associated with the UMD filter bank shown in Figure 3.2. The forward transform is computed by the analysis side

of the filter bank (shown in Figure 3.2(a)), while the inverse transform is computed by the synthesis side of the filter

bank (shown in Figure 3.2(b)).

From Figure 3.2, we can see that the S transform can be characterized mathematically as follows. The forward

transform splits the input signal x[n] into the lowpass and highpass subbands signals, y0[n] and y1[n], respectively, as

given by

y0[n] =
⌊

1
2
(x[2n]+ x[2n+1])

⌋

and (3.32a)

y1[n] = x[2n]− x[2n+1]. (3.32b)

The inverse transform combines the lowpass and highpass subband signals, y0[n] and y1[n], respectively, to yield the

output signal x[n], as specified by

x[2n] = y0[n]+
⌊

1
2
y1[n]

⌋

and (3.33a)

x[2n+1] = x[2n]− y1[n]. (3.33b)

Although equations (3.32) and (3.33) assume signals to be of infinite length (i.e., boundary conditions for filtering

are not considered), finite-length signals can be accommodated by using various extension strategies (e.g., periodic

extension or symmetric extension). The treatment of finite-length signals will be discussed at length later in this thesis.
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Figure 3.3: The S+P family of transforms. The networks for the (a) forward and (b) inverse transforms, where Q

denotes the biased floor operation.

The development of the S transform is based on two key observations. First, any two numbers can be unambigu-

ously determined from their sum and difference. Second, the sum and difference of any two integers always have

the same parity (i.e., the sum and difference are either both even or both odd). The first observation initially leads

to the formulation of a transform that simply computes the pairwise sum and difference of samples. Although such

a transform is reversible and ITI, we can further refine its definition by making use of the second observation above.

Because the sum and difference of two integers must have the same parity, the least significant bit of either the sum

or difference is redundant and may be discarded without losing information. Thus, we can choose to divide the sum

by two and discard the fractional part of the result without any information loss. This is, in fact, exactly what the

S transform does. Moreover, this explains how it is possible for the S transform to be reversible.

A formal proof of the reversibility of the S transform is omitted here, but one can be found, for example, in [1].

For reasons yet to be discussed, one can trivially deduce the reversibility of the S transform directly from its associated

filter bank shown in Figure 3.2.

3.3.2 S+P Transform Framework

One of the first proposed frameworks for reversible ITI wavelet transforms was introduced by Said and Pearlman [114],

and is known as the S+P (i.e., sequential plus prediction) transform framework. This framework can be viewed as a

direct extension of the S transform. In fact, the S transform is an example of one specific transform that can be

constructed using this framework.

The S+P transform framework is associated with a filter bank of the form shown in Figure 3.3. The forward

transform is computed by the analysis side of the filter bank (shown in Figure 3.3(a)), while the inverse transform is

computed by the synthesis side of the filter bank (shown in Figure 3.3(b)). By comparing Figures 3.3 and 3.2, we can

see that the transforms in the S+P family and the S transform share a similar structure.

Mathematically, we can describe the S+P transform as follows. The forward transform splits the input signal x[n]
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Table 3.2: Sets of predictor coefficients for the S+P transform framework

Predictor α−1 α0 α1 β−1

A 1
4

1
4

0 0

B 3
8

2
8

0 2
8

C 8
16

4
16

− 1
16

6
16

into the lowpass and highpass subband signals, y0[n] and y1[n], respectively, as given by

y0[n] =
⌊

1
2
(x[2n]+ x[2n+1])

⌋

and (3.34a)

y1[n] = v0[n]−
⌊

t[n]+ 1
2

⌋

, (3.34b)

where

v0[n] = x[2n]− x[2n+1],

t[n] =
L1

∑
i=L0

αi (y0[n− i−1]− y0[n− i])−
−1

∑
i=K

βiv0[n− i],

and L0, L1, and K are integers satisfying L0 ≤ L1 and K ≤ −1. The inverse transform uses the lowpass and highpass

subband signals, y0[n] and y1[n], respectively, to form the output signal x[n] as follows:

x[2n] = y0[n]+
⌊

1
2
(v0[n]+1)

⌋

and (3.35a)

x[2n+1] = x[2n]− v0[n], (3.35b)

where

v0[n] = y1[n]+
⌊

t[n]+ 1
2

⌋

and t[n] is as given above. From the above equations, we can see that the S+P transform framework is obtained by

simply adding an extra processing step to the S transform. That is, this framework is generated by adjusting the

highpass subband signal of the forward S transform with an extra prediction operation. The predictor is associated

with the coefficients {αi} and {βi}.

Three sets of predictor coefficients have been suggested by Said and Pearlman [114], as listed in Table 3.2. Of

these, predictor A has the lowest computational complexity, and corresponds to the well known two-six (TS) trans-

form [148]. In the degenerate case where all of the predictor coefficients are zero, the S transform is obtained. It is

important to note that the synthesis side of the filter bank is associated with recursive filtering structures if any of the

{βi} are nonzero.

Although equations (3.34) and (3.35) assume signals to be of infinite length (i.e., boundary conditions for filtering

are not considered), finite-length signals can also be accommodated. In order to handle finite-length signals, techniques

such as periodic extension and symmetric extension (to be discussed later) can be used in some cases. This matter

becomes somewhat more complicated when recursive filtering structures are employed. Moreover, the use of recursive

structures has other important implications. All of these matters will be addressed later in this thesis.

3.3.3 Lifting Framework

One of the most popular frameworks for reversible ITI wavelet transforms is based on the lifting scheme, a polyphase

realization strategy for UMD filter banks. The lifting scheme, proposed by Sweldens [129], was originally presented

as an alternative method for constructing biorthogonal 1D two-band wavelet transforms [130, 131]. This scheme,

however, has proven to be extremely useful in numerous other contexts as well. In particular, the lifting scheme has

been shown to provide a means for constructing reversible ITI wavelet transforms.

Essentially, the lifting scheme is a polyphase realization strategy for UMD filter banks that employs ladder net-

works for polyphase filtering. The lifting realization of a 1D two-channel UMD filter bank has the general form shown
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Figure 3.4: The lifting realization of a linear 1D two-band wavelet transform. The network for the (a) forward and

(b) inverse transforms.
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Figure 3.5: Two ladder steps. (a) A ladder step and (b) its inverse.

in Figure 3.4 (where FPT and IPT denote forward and inverse polyphase transforms, respectively). From the diagram,

we can see that the polyphase filtering is performed by a ladder network and some additional amplifiers. The filters

{Ak} are referred to as lifting-step filters, and each such filter constitutes what is called a lifting step. The amplifiers,

associated with the gains {sk}, each constitute what is called a scaling step.

The lifting realization is a particularly interesting one, primarily because of its use of ladder networks. Such

networks have the remarkable property that they can be made to maintain their invertibility even in the presence of

certain types of quantization error, particularly the rounding error introduced by finite-precision arithmetic. To see

why this is so, consider the two ladder steps shown in Figure 3.5. Clearly, if exact arithmetic is employed, these

two networks invert one another. Suppose now that the filtering operations (associated with A(z)) are implemented

using finite-precision arithmetic and some roundoff error is incurred. When we cascade these two networks together,

both ladder-step filters are presented with the same input. Since the two filters are identical (and assumed to use

the same implementation strategy), they will both incur the same rounding error, and their outputs will be identical.

Therefore, whatever value is added by the adder in the first network will be subtracted by the adder in the second

network. Consequently, the two networks continue to invert one another, even in the presence of rounding error. It is

not difficult to see that we can apply this argument repeatedly in order to show that a ladder network with any number

of ladder steps can maintain its invertibility even in the presence of rounding error. In other words, such networks are

fundamentally reversible in nature.

Although the lifting realization has become quite popular recently, the idea of reversible ladder-based polyphase

networks is not new. Such networks were first proposed by Bruekers and van den Enden [36], and later studied in

some detail by others [81, 82, 137]. In spite of the interest in the lifting realization, its application to reversible ITI

wavelet transforms was not seen until later.

In their seminal work, Calderbank et al. [40] first proposed using the lifting realization as a framework for con-

structing reversible ITI 1D two-band wavelet transforms. In order to create a reversible ITI version of a linear wavelet
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Figure 3.6: Modifying a lifting step to map integers to integers. (a) Before modification. (b) After modification.
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Figure 3.7: The lifting realization of a reversible ITI 1D two-band wavelet transform. The networks for the (a) forward

and (b) inverse transforms.

transform, we first find its lifting realization, which has the form shown in Figure 3.4. Then, we eliminate any scaling

steps in the forward transform having a non-integer gain factor, by either discarding these steps or converting them

to equivalent lifting steps if possible. Finally, we transform each lifting step in the resulting system by introducing

a rounding operation Q at the output of its corresponding filter, as shown in Figure 3.6. The above process yields

a system of the form depicted in Figure 3.7. Clearly, the polyphase filtering is performed using lifting (i.e., L-type)

and scaling (i.e., S-type) networks of the form shown in Figure 3.8. Since each lifting and scaling step in the forward

transform is ITI in nature, the resulting transform is ITI. Moreover, the transform is reversible, since the lifting and

scaling steps are also reversible. Any (reasonable) rounding operator may be used for Q.

Techniques similar to the one described above have also been suggested by other researchers. For example, similar

ideas for constructing reversible ITI wavelet transforms have been proposed by Chao et al. [44] and Dewitte and

Cornelis [50]. The lifting framework extends easily to the case of M-band wavelet transforms (e.g., as described

in [1]).

3.3.4 Overlapping Rounding Transform (ORT) Framework

Although the lifting framework has become quite popular since its introduction, other frameworks for reversible ITI

wavelet/subband transforms have also been suggested. One such framework is the overlapping rounding transform
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Figure 3.9: The ORT realization of a reversible ITI two-band wavelet/subband transform. The networks for the

(a) forward and (b) inverse transforms.

(ORT) framework, as proposed by Jung and Prost [79, 78].

The ORT framework is a polyphase realization strategy for UMD filter banks that employs networks with a par-

ticular structure for polyphase filtering. The ORT realization of a 1D two-channel UMD filter bank has the general

form shown in Figure 3.9. The forward transform is computed by the analysis side of the filter bank (shown in Fig-

ure 3.9(a)), while the inverse transform is calculated by the synthesis side of the filter bank (shown in Figure 3.9(b)).

As the diagram illustrates, polyphase filtering is performed by a cascade of two-input two-output reversible ITI net-

works (associated with the {Ti}N−1
i=0 ). Only eight types of reversible ITI networks can be employed, with the forms

shown in Figure 3.10. The forward transform can utilize any number of A-, B-, C-, D-, and E-type operations in any

order. The inverse transform is then formed by using the inverse networks corresponding to those used in the forward

transform.

The necessary networks for the inverse transform are obtained by making the following observations. The inverse

of the A-, B-, and C-type networks are, respectively, the A−1-, B−1-, and C−1-type networks, as depicted in Fig-

ure 3.10. The inverse of a D-type network is another D-type network with the opposite shift (i.e., in the diagram, K is

replaced by −K in order to obtain the inverse structure). An E-type network is self inverting.

Consider, for a moment, a transform constructed with the above framework. Clearly, any such transform is re-

versible, since the FPT and each of the networks used for analysis polyphase filtering are reversible. Furthermore,

since the FPT and each of these networks are ITI, the overall transform is also ITI.

Although originally proposed in the context of two-band wavelet/subband transforms, the ORT framework can

also be easily extended to the M-band case (e.g., as described in [80]).

3.4 Generalized Reversible ITI Transform (GRITIT) Framework

In the preceding sections, we considered several previously proposed frameworks for reversible ITI wavelet transforms

(namely, the S+P transform, lifting, and ORT frameworks). These frameworks utilize a number of key ideas, but only a

subset of these ideas is employed by each individual framework. Clearly, it would be beneficial to have a single unified

framework that exploited all of these ideas at once. Having such a tool at our disposal, we could more easily study

different frameworks and the relationships between them. To this end, we have integrated the key ideas from existing

frameworks and extended them somewhat in order to create a single unified framework for reversible ITI transforms

known as the generalized reversible ITI transform (GRITIT) framework. In our work, we explicitly consider the most



Chapter 3. Frameworks for Reversible ITI Wavelet/Block Transforms 34

H(z) ❥+

❥+ s

⌊·⌋

−1

✲

✻

✲ ✲❄

✲
✻

✲

❄

✻

✲✲

✲✲

✲

✲

✲

✲ ✲ y1[n]

y0[n]

1−H(z)

x1[n]

x0[n]

(a)

❥+

❥+1
s

−H(z)

1−H(z)

✲

✲✲✲✲
✻

✲ ✲❄

✲
✻

❄

✻

✲✲

✲✲

✲

✲

⌈·⌉
y0[n] x0[n]

x1[n]y1[n]
⌈·⌉

(b)

❥+

❥+

⌊·⌋

⌊·⌋✲✲
✻

✲ ✲❄

✲
✻

❄

✻

✲✲

✲✲✲

✲ ✲

✲

y1[n]

y0[n]x0[n]

x1[n]
H(z)±1

H(z)

(c)

❥+

❥+

✲

✲

✲✲✲
✻

✲ ✲❄

✲
✻

✲

❄
✲

✻

✲✲✲

✲ x1[n]

x0[n]

∓H(z)

1±H(z) ⌈·⌉

y1[n]

y0[n]

∓1

±1

(d)

❥+ ⌊·⌋

H(z)

s

✲

✻

✲

✲

✲✻✲

✲ y0[n]

y1[n]

x0[n]

x1[n]

(e)

❥+ ✲

✲

✻

✲ ✲

✻✲ ✲

−H(z)

⌈·⌉

1
s

y1[n]

y0[n] x0[n]

x1[n]

(f)

✲✲ yi[n]xi[n]
zK

(g)

❭
❭

❭✜
✜

✜
✲

✲

✲

✲

x0[n]

x1[n]

y0[n]

y1[n]

(h)

Figure 3.10: Networks used for polyphase filtering in the ORT framework. Networks for (a) A-type, (b) A−1-type,
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general case of D-dimensional M-band wavelet transforms (where D ≥ 1 and M ≥ 2). As we shall see later, the

GRITIT framework can also be used as a framework for reversible ITI block transforms.

With the GRITIT framework, a transform is constructed using a number of primitive reversible ITI operations.

Given the operations employed in the forward transform, one can easily construct the inverse transform through the

stepwise inversion of each operation in the forward transform. That is, the inverse transform is formed by applying, in

reverse order, the inverse of each operation in the forward transform. In what follows, we will introduce the primitive

reversible ITI operations employed by the GRITIT framework, and study this framework in more detail. As we shall

see, in the case of wavelet transforms, this framework is fundamentally based on the polyphase realization of a UMD

filter bank.

3.4.1 Primitive Reversible ITI Operations

As suggested above, a number of primitive reversible ITI operations are employed by the GRITIT framework. Using

these building blocks, we can construct both wavelet and block transforms. Six distinct types of operations are em-

ployed, known as the split, join, displace, exchange, shift, and scale operations. Below, we will describe each of these

operations in more detail.

3.4.1.1 Split Operation

The split operation is associated with the 1-input M-output network shown in Figure 3.11(a). This operation decom-

poses the input signal x[n] into M polyphase components {yi[n]}M−1
i=0 , where the polyphase decomposition is per-

formed with respect to the the sampling matrix M and corresponding coset vectors {mi}M−1
i=0 , and M = |detM |. In

other words, the split operation simply computes a FPT. As a matter of notation, we denote an operation of this type as

P (M , [m0 m1 ··· mM−1 ]). The split operation is linear and shift variant. Since the downsampling and shift operations

are ITI, the split operation is also ITI in nature. The inverse of a split operation is a join operation (to be defined next).

(More specifically, in terms of notation yet to be defined, P −1 (M , [m0 m1 ··· mM−1 ]) = J (M , [m0 m1 ··· mM−1 ])).

3.4.1.2 Join Operation

The join operation is associated with the M-input 1-output network shown in Figure 3.11(b). This operation sim-

ply synthesizes a signal y[n] from its M polyphase components {xi[n]}M−1
i=0 . In other words, the join operation

simply computes an IPT. As a matter of notation, we denote an operation of this type as J (M , [ m0 m1 ··· mM−1 ]).
The join operation is linear. Since the upsampling, shift, and addition operations are ITI, the join operation is also

ITI in nature. The inverse of a join operation is a split operation. More specifically, J −1 (M , [m0 m1 ··· mM−1 ]) =
P (M , [m0 m1 ··· mM−1 ]).

3.4.1.3 Displace Operation

The displace operation is associated with the M-input M-output network depicted in Figure 3.11(c). As a matter of

notation, the network inputs and outputs are denoted as {xi[n]} and {yi[n]}, respectively. In order to simplify the

diagram, only the Kth output is shown. All of the other outputs are directly connected to their corresponding inputs

(i.e., yi[n] = xi[n] except for i = K). The Kth output (i.e., yK [n]) is generated by adding an adjustment value to the

Kth input (i.e., xK [n]). This adjustment value is calculated by summing filtered versions of one or more inputs (i.e.,

{xi[n]}M−1
i=0 ) and possibly the Kth output (i.e., yK [n]), and then rounding the result with the operator Q. If s is odd, the

sign of the adjustment value is also inverted. Finally, the Kth output is formed by adding the adjustment value to the

Kth input. Mathematically, we have

yi[n] =

{

xi[n]+Q
(

b[n]∗ yi[n]+∑M−1
l=0 al [n]∗ xl [n]

)

for i = K

xi[n] otherwise.

As a matter of notation, we denote an operation of this type as

L (K,Q,s, [A0(z) A1(z) ··· AM−1(z) ] ,B(z)) . (3.36)

In order to avoid delay-free loops (which are physically unrealizable), B(z) must have a constant term of zero.
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The inverse of a displace operation is another displace operation. More specifically,

L−1 (K,Q,s, [A0(z) A1(z) ··· AM−1(z) ] ,B(z)) = L
(

K,Q,1− s, [A′

0(z) A′

1(z) ··· A′

M−1(z) ] ,B′(z)
)

where

B′(z) = AK(z) and A′
i(z) =

{

Ai(z) for i 6= K

B(z) for i = K,

for i = 0,1, . . . ,M−1.

The displace operation is shift invariant, provided that Q is shift invariant. If Q is nonlinear (which is most fre-

quently the case in practice), the displace operation is also nonlinear. One can easily confirm that, for any (reasonable)

choice of Q, the displace operation is reversible. Since the rounding operator Q always yields an integer result (and

the set of integers is closed on addition), the displace operation is ITI in nature.

If all of the filter coefficients (i.e., the coefficients of the {Ai(z)}M−1
i=0 and B(z)) are integer valued, then no rounding

operation is required in order to map integers to integers, and Q can simply be made the identity. In this case, we use

the symbol /0 to indicate that no rounding operator is employed (e.g., as in L(1, /0,1, [ 0 1 ] ,0)).
The displace operation can be viewed as a generalization of the lifting operation employed in the lifting framework.

The primary difference between the displace and lifting operations is that the displace operation has a provision for

feedback. That is, the displace operation is associated with a recursive filtering structure if B(z) 6≡ 0. (In effect, the

lifting scheme always has B(z) ≡ 0.) In the recursive case, however, care must be taken to ensure the existence of

a causal inverse. For example, in the 1D case, one could choose B(z) to have either strictly positive powers of z or

strictly negative powers of z.

If we neglect the effects of the rounding operator Q, the displace operation is linear, and therefore, its behavior can

be characterized by a transfer matrix. This M ×M matrix only has nonzero entries on the main diagonal and in the

Kth row. Each of the entries along the main diagonal is one, except (possibly) for the entry in the Kth row. The entries

along the Kth row are such that the (K, l)th entry has the form
1+(−1)sAl(z)

1−B(z) if l = K and
(−1)sAl(z)

1−B(z) otherwise. In other

words, the matrix has a form resembling the following:
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3.4.1.4 Exchange Operation

The exchange operation is associated with the M-input M-output network illustrated in Figure 3.11(d). As a matter

of notation, the network inputs and outputs are, respectively, denoted as {xi[n]} and {yi[n]}. In order to simplify the

diagram, only the Kth and Lth outputs and inputs are shown. All of the other outputs are directly connected to their

corresponding inputs (i.e., yi[n] = xi[n] except for i ∈ {K,L}). The exchange operation simply swaps the signals in

the Kth and Lth channels. Mathematically, we have

yi[n] =











xL[n] for i = K

xK [n] for i = L

xi[n] otherwise.

As a matter of notation, this type of operation is denoted as E(K,L).
The exchange operation is linear and shift invariant. Moreover, one can see that this operation is trivially ITI in

nature. Lastly, an exchange operation is self inverting. That is, E−1(K,L) = E(K,L).
Since the exchange operation (i.e., E(K,L)) is linear, it can be characterized by a transfer matrix. This M ×M

matrix has all of its entries on the main diagonal equal to one, except the Kth and Lth entries which are zero. All of

the off-diagonal entries are zero, except for the (K,L)th and (L,K)th entries which are one.
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3.4.1.5 Shift Operation

The shift operation is associated with the M-input M-output network depicted in Figure 3.11(e). As a matter of

notation, the network inputs and outputs are, respectively, denoted as {xi[n]} and {yi[n]}. In order to simplify the

diagram, only the Kth input and Kth output are shown. Each of the remaining outputs is directly connected to its

corresponding input (i.e., yi[n] = xi[n] except for i = K). The shift operation forms the Kth output by translating the

Kth input by the integer vector m. Mathematically, we have

yi[n] =

{

xi[n−m] for i = K

xi[n] otherwise.

As a matter of notation, we denote this type of operation as T (K,m). This operation is linear and shift invariant. The

inverse of a shift operation is another shift operation. More specifically, T −1(K,m) = T (K,−m).
Since the shift operation (i.e., T (K,m)) is linear, it can be characterized by a transfer matrix. This M×M matrix

is diagonal and has all of its diagonal entries equal to one, except for the Kth entry which is z−m. In other words, the

matrix has a form resembling the following:
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3.4.1.6 Scale Operation

The scale operation is associated with the M-input M-output network illustrated in Figure 3.11(f). The network inputs

and outputs are, respectively, denoted as {xi[n]} and {yi[n]}. To simplify the diagram, only the Kth output is shown.

Each of the remaining outputs is directly connected to its corresponding input (i.e., yi[n] = xi[n] except for i = K).

Evidently, the scale operation forms the Kth output (i.e., yK [n]) by simply applying a multiplicative (scalar) gain s to

the Kth input (i.e., xK [n]). Mathematically, we have

yi[n] =

{

sxi[n] for i = K

xi[n] otherwise.

As a matter of notation, we denote this type of operation as S(K,s).
The scale operation is linear and shift invariant. The inverse of a scale operation is another scale operation. More

specifically, S−1(K,s) = S(K,s−1). Clearly, a scale operation is only invertible if its associated gain s is nonzero.

This type of operation is ITI in nature if the gain s is an integer. For this reason, any scale operations used in the

computation of a forward transform must employ integer gain factors.

Since the scale operation (i.e., S(K,s)) is linear, it can be characterized by a transfer matrix. This M ×M matrix

is diagonal, and has all of its diagonal entries equal to one, except for the Kth entry which is s. In other words, the

matrix has a form resembling the following:
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Figure 3.11: The six types of operations used in the GRITIT framework. The (a) split, (b) join, (c) displace, (d) ex-

change, (e) shift, and (f) scale operations.
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Figure 3.12: The general structure of a reversible ITI wavelet/subband transform using the GRITIT framework. The

networks for the (a) forward and (b) inverse transforms.

3.4.2 Reversible ITI Wavelet Transforms

Having introduced the primitive reversible ITI operations employed by the GRITIT framework, we are now in a posi-

tion to explain how such operations can be utilized in order to construct reversible ITI wavelet transforms. As explained

earlier, the basic building block for wavelet transforms is the UMD filter bank. Consequently, in order to synthesize a

reversible ITI wavelet transform, we simply need to construct a reversible ITI UMD filter bank. Fortunately, this can

be easily accomplished via the GRITIT framework.

With the GRITIT framework, we can readily construct D-dimensional M-channel UMD filter banks based on

polyphase techniques. Such filter banks are realized by employing the general structure shown in Figure 3.12. The

analysis side of the filter bank, shown in Figure 3.12(a), is comprised of a split operation (i.e., P ) followed by one

or more polyphase filtering operations (i.e., {Ti}η−1
i=0 ), and serves to decompose the input signal x[n] into M subband

signals {yi[n]}M−1
i=0 . The polyphase filtering operations {Ti}η−1

i=0 are chosen as displace, exchange, shift, and scale

operations (as desired). The synthesis side of the filter bank, shown in Figure 3.12(b), generates the output signal x[n]
from its corresponding subband signals (i.e., {yi[n]}M−1

i=0 ). This is accomplished via the stepwise inversion of each

operation from the analysis side. (Recall that the inverse of a split operation is a join operation (i.e., P −1).)

Since all of the operations employed (i.e., P , P−1, {Ti}) are reversible, one can easily see that the overall transform

is also reversible. Furthermore, since each operation on the analysis side maps integers to integers, the transform is

also ITI.

3.4.3 Reversible ITI Block Transforms

As suggested previously in Section 3.4, the GRITIT framework is applicable not only to wavelet/subband transforms

but also block transforms as well. Block transforms are associated with M-input M-output networks. In the case
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Figure 3.13: The general structure of a reversible ITI block transform using the GRITIT framework. The networks for

the (a) forward and (b) inverse transforms.

of block transforms, each of the inputs and outputs is comprised of a single sample and not a sequence (as in the

wavelet/subband transform case). For this reason, some minor modifications are required to adapt the GRITIT frame-

work to the block transform case. First, we discard the split, join, and shift operations, as such operations are only

meaningful for sequences. This leaves us with the displace, exchange, and scale operations. Next, we redefine these

remaining operations to operate on individual sample values, as opposed to sequences. This redefinition is trivial for

the exchange and scale operations. In the case of the displace operation, we restrict all of its associated filters to have

constant transfer functions. This, in effect, replaces the filters by simple amplifiers.

With the aforementioned modifications in place, we can employ the GRITIT framework to construct reversible

ITI block transforms. This is accomplished by using the general structure shown in Figure 3.13. The networks in

Figures 3.13(a) and 3.13(b), compute the forward and inverse transforms, respectively. The inputs and outputs of the

forward transform are denoted, respectively, as {xi}M−1
i=0 and {yi}M−1

i=0 .

By using the GRITIT framework, we can construct reversible ITI versions of linear block transforms such as the

DCT and DFT. In fact, similar ideas have been recently proposed by a number of researchers [104,63,150]. Later, we

will consider a particular family of block transforms in order to demonstrate the applicability of the GRITIT framework

in the block transform case.

3.4.4 Practical Considerations Concerning Rounding

As should now be apparent, the displace operation plays a crucial role in the construction of reversible ITI wavelet/block

transforms using the GRITIT framework. This operation is associated with the computational structure shown ear-

lier in Figure 3.11(c). The displace operation employs a rounding operator, denoted as Q in the diagram. Since any

(reasonable) rounding operator can be selected for use in a displace operation, it is only natural to consider the impli-

cations of such a choice. In what follows, we examine the impact that this choice has on computational complexity

and rounding error for several common rounding operators, namely, the floor, biased floor, ceiling, biased ceiling,

truncation, biased truncation, and RAFZ functions.
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Impact of Rounding Operator on Computational Complexity

As one might suspect, the choice of rounding operator can affect the computational complexity of a displace operation.

Consider, again, the network associated with such an operation, as illustrated in Figure 3.11(c). This network simply

computes

yK [n] = xK [n]+ (−1)sQ

(

b[n]∗ yK [n]+
M−1

∑
i=0

ai[n]∗ xi[n]

)

(3.37)

where b[n]
△
= Z−1B(z) and ai[n]

△
= Z−1Ai(z) for i = 0,1, . . . ,M−1.

Without loss of generality1, we assume that all of the filter coefficients (i.e., the samples in the sequences {ai[n]}M−1
i=0

and b[n]) can be expressed exactly as dyadic rational numbers (i.e., numbers of the form x
2F , where x ∈ Z, F ∈ Z, and

F ≥ 1). Provided that F is chosen large enough, we can always define

Âi(z)
△
= 2F Ai(z) for i = 0,1, . . . ,M−1 and

B̂(z)
△
= 2F B(z)

such that {âi[n]} and b̂[n] are integer sequences, where âi[n]
△
= Z−1Ai(z) and b̂[n]

△
= Z−1B(z). Often, in practice,

we need to compute the expression given by (3.37) using integer arithmetic. In such cases, we typically calculate

yK [n] = xK [n]+ (−1)sQ

(

1
2F

(

b̂[n]∗ yK [n]+
M−1

∑
i=0

âi[n]∗ xi[n]

))

.

Thus, we must compute an expression of the form

Q
(

x
2F

)

(3.38)

where x ∈ Z.

In Section 3.2.2, we devised an efficient means for the computation of such an expression, for the cases of the

floor, biased floor, ceiling, biased ceiling, truncation, biased truncation, and RAFZ functions. In particular, we derived

the expressions given by (3.11). By examining these expressions, we can see that the floor function incurs the least

computation (i.e., one shift). The biased floor, ceiling, and biased ceiling function require slightly more computation

(i.e., one addition and one shift in total). Finally, the truncation, biased truncation, and RAFZ functions are the most

complex due to their behavioral dependence on the sign of the operand.

Impact of Rounding Operator on Rounding Error

When constructing reversible ITI versions of linear transforms, one must remember that the effects of rounding error

can be significant. The objective is to produce a (nonlinear) ITI mapping that closely approximates some linear

transform with desirable properties. In order to preserve the desirable properties of the parent linear transform, it is

usually beneficial to minimize the error introduced by rounding intermediate results to integers.

In the GRITIT framework, rounding is performed exclusively in displace operations. The displace operation is

associated with the network shown in Figure 3.11(c). If a (forward) transform only utilizes a single displace operation,

the associated rounding error will be relatively small and its impact minimal. More typically, however, multiple dis-

place operations are employed. In this case, rounding error may be more of a concern. Therefore, in some applications,

it may be desirable to choose the rounding operator in order to minimize rounding error.

Suppose that we must round numbers of the form x
2F where x∈Z, F ∈Z, and F ≥ 1 (i.e., dyadic rational numbers),

as in (3.38). In Section 3.2.3, we considered the rounding of such numbers, and characterized the error interval, MAE,

and PAE for several common rounding operators (i.e., the floor, biased floor, ceiling, biased ceiling, truncation, biased

truncation, and RAFZ functions). The results were summarized in Table 3.1.

By examining the table, one can easily see that, for F ≥ 2, the biased rounding operators have the smallest MAEs

and PAEs. Consequently, the use of the biased operators has the advantage of reduced rounding error. It is important

to note, however, that the preceding assertion does not hold if F = 1. (Typically, we would have F = 1 when the filter

1 Any given real number can be approximated with arbitrary accuracy by an appropriately chosen dyadic rational number.
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Figure 3.14: Combining multiple displace operations that modify the same channel into a single displace operation.

(a) Original network with multiple displace operations. (b) Network obtained after combining multiple displace oper-

ations into a single displace operation.

coefficients associated with a displace operation are all integer multiples of one half.) If F = 1, all of the rounding

operators under consideration have the same PAE (i.e., 1
2
) and the same MAE (i.e., 1

4
), and consequently, all of these

operators are equally good in terms of rounding error. In practice, the case of F = 1 is not so unlikely to occur.

Consequently, it is important to note the peculiar behavior in this case. In fact, some well known papers on reversible

ITI transforms have overlooked this fact (and used a bias of one half when it is not beneficial to do so).

Reducing Rounding Error By Combining Displace Operations

When constructing reversible ITI wavelet/block transforms, we may occasionally encounter a network with several

successive displace operations that all modify the same channel. In such a situation, in order to reduce rounding error,

we can combine these displace operations into a single one. For example, suppose that we have a sequence of displace

operations, all of which modify the 0th channel, as shown in Figure 3.14(a). Although we could naively perform

rounding at the output of each filter, as shown in Figure 3.14(a), the rounding error can be significantly reduced by

grouping the filters together and performing rounding only once, as shown in Figure 3.14(b). Clearly, in the absence

of rounding, both networks are equivalent. Therefore, both networks approximate the same linear transform. In the

first case, we have N − 1 displace operations, whereas in the second case, we have only one displace operation. By

reducing the number of rounding operations, however, we can reduce the overall rounding error in the system.

3.4.5 GRITIT Realization of Wavelet/Block Transforms

Earlier, we introduced the GRITIT framework and showed how the primitive reversible ITI operations associated

with this framework can be used to obtain general structures for reversible ITI wavelet/block transforms. We have

yet to discuss, however, how one might choose the specific operations and corresponding parameters for a particular

transform. That is, so far, we have not considered the transform design problem. We will now turn our attention to this

matter.

The most common design technique is of an indirect nature. That is, we do not directly generate a reversible

ITI transform. Instead, we first construct a linear wavelet/block transform with desirable properties. Then, we find

a reversible ITI approximation of this transform. As we shall see, this design approach is essentially equivalent to a

matrix factorization problem. The particulars of the factorization problem differ, however, in the wavelet and block

transform cases.

Wavelet Transforms

In the wavelet transform case, we first choose a specific polyphase decomposition. This defines the split operation

to be used. Next, we must determine the polyphase operations associated with the transform. To accomplish this,

we simply need to decompose the analysis polyphase matrix into factors of the forms associated with the relevant
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GRITIT operations (i.e., the displace, exchange, shift, and scale operations). That is, we must decompose the analysis

polyphase matrix E(z) as

E(z) = EN−1(z) · · ·E1(z)E0(z) (3.39)

where the {Ei(z)} are transfer matrices of the forms associated with the displace, exchange, shift, and scale opera-

tions. (The forms of such transfer matrices are specified in Section 3.4.1.) Once we have determined the factorization

in (3.39), the polyphase operations in the forward transform are obtained by simply selecting the operations corre-

sponding to each of the matrix factors (i.e., the {Ei}). The inverse transform is trivially formed by the stepwise

inversion of each of the operations in the forward transform.

Often, we are interested in wavelet transforms that are associated with FIR UMD filter banks. In this case, the

corresponding analysis polyphase matrix E(z) has Laurent polynomial entries. Typically, in such a scenario, we want

to obtain polyphase operations that are associated with FIR filters. That is, we want to obtain a factorization with

Laurent polynomial matrix factors. In the 1D case, in order to accomplish this, the factorization in (3.39) can be

performed using a matrix Euclidean algorithm (e.g., as described in [49]). Provided that the transform is appropriately

normalized, a solution to the factorization problem will always exist. This follows from the work of Daubechies and

Sweldens [49] in which it was demonstrated that any (appropriately normalized) biorthogonal 1D two-band wavelet

transform associated with finitely-supported wavelet and scaling functions admits a lifting factorization with Laurent

polynomial matrix factors. In the general D-dimensional case (where D ≥ 1), this factorization problem is somewhat

more complex, and a solution may not necessarily exist. For example, Kalker and Shah [81] have noted that not all

2D UMD filter banks have a ladder realization. In some cases, however, a solution must exist as a consequence of

a mathematical result known as Suslin’s stability theorem [128]. To solve the factorization problem in the general

D-dimensional case (assuming a solution exists), one can employ algorithms such as those proposed by Park and

Woodburn [106] and Tolhuizen et al. [137].

Block Transforms

In the block transform case, we simply need to decompose the forward transform matrix into factors having the forms

associated with the relevant GRITIT operations (i.e., the displace, exchange, and scale operations). Let us denote the

forward transform matrix as T . (We assume that T is a real matrix.) Then, we must decompose T as follows:

T = TN−1 · · ·T1T0 (3.40)

where the {Ti} are matrices of the forms associated with the displace, exchange, and scale operations. Once we have

determined the factorization in (3.40), the operations in the forward transform are obtained by simply selecting the

operations corresponding to each of the matrix factors (i.e., the {Ti}). The inverse transform is trivially formed by the

stepwise inversion of each of the operations in the forward transform.

The above factorization process can be performed by simple Gaussian elimination. In order to avoid an unneces-

sarily large number of factors, one might wish to employ a slightly more sophisticated technique like that proposed by

Hao and Shi [63].

3.4.6 Variations on the GRITIT Framework

The GRITIT framework, as described previously, constitutes a very powerful tool for the study and construction of

reversible ITI wavelet/block transforms. In the interest of simplicity, we chose to describe this framework in the most

basic form suitable to our needs herein. We would be remiss, however, if we failed to note that many variations on this

framework are possible.

In this thesis, we are interested exclusively in reversible ITI transforms that approximate linear wavelet/block

transforms. For this reason, the displace operation is based on linear filtering operations. One could, however, just as

easily employ other types of (possibly nonlinear) operations such as median filtering or morphological operators. To

this end, one might exploit some of the ideas in [60, 65, 54, 43].

In this work, we consider only non-adaptive transforms. Our bias against adaptive transforms arises from simple

practical considerations. Adaptive transforms are inherently more complex. Moreover, in the application of image

coding (which is our focus herein), other difficulties arise when adaptive transforms are employed (e.g., how to syn-

chronize the adaptation algorithm in the encoder and decoder). Although we do not explicitly consider the adaptive

case in our work, one can certainly construct adaptive transforms using the GRITIT framework. That is, displace
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operations can certainly employ adaptive filters. For example, one might exploit adaptive filtering by using some of

the related ideas in [58, 57].

Another slight variation on the GRITIT framework can be obtained by changing the displace operations to employ

modular arithmetic. By using modular arithmetic, one can construct transforms that avoid dynamic range growth.

Such an idea has been proposed, for example, by Chao et al. [44] in the context of the lifting framework. In the

opinion of this author, however, such an approach is not particularly practical when lossy coding may be desired. If

modular arithmetic is employed, the transform behavior can become extremely nonlinear. That is, small perturbations

in the transform coefficients can result in very large changes in the reconstructed signal. Obviously, such behavior

is undesirable in the case of lossy coding, since the effect of transform coefficient quantization (on distortion) can

become quite unpredictable.

When the GRITIT framework is used to construct reversible ITI wavelet transforms, the resulting computational

structure is essentially a polyphase realization of a UMD filter bank. In such a scenario, we have a structure analagous

to that in Figure 2.10. Such a structure is desirable from the standpoint of computational complexity, since analysis

and synthesis filtering are performed in the downsampled domain (i.e., at the lower sampling density). We could,

however, perform the analysis and synthesis filtering in the upsampled domain. That is, we could use a structure

analagous to that in Figure 2.9. An approach like this has been proposed by Komatsu and Sezaki [88, 89]. Clearly,

from a computational standpoint, such an approach is less attractive (due to filtering operations being performed at the

higher sampling density). For this very reason, we do not consider this type of scheme in detail in this thesis.

We are interested exclusively in ITI transforms in this thesis. One can, however, construct (reversible) real-to-real

transforms using the GRITIT framework. This is accomplished by modifying the displace operation such that the

rounding operator quantizes with some granularity finer than integers. For example, one might employ an operator

that rounds results to the nearest integer multiple of 2−10.

In passing, we note that the GRITIT framework can also be employed to build reversible ITI transmultiplexors

(i.e., the “dual” of analysis-synthesis filter banks). This possibility is not explored further in this thesis, however, as

our application of interest (i.e., image coding) does not necessitate the use of transmultiplexors.

3.5 Relationship Between GRITIT and Other Frameworks

As suggested earlier, the proposal of the GRITIT framework was partially motivated out of the desire to have a single

unified view of frameworks for reversible ITI wavelet/block transforms. In the sections that follow, we examine the

relationship between the GRITIT framework and each of a number of other frameworks, including the S+P transform,

lifting, and ORT frameworks. As well, we consider the relationship between the GRITIT framework and the well

known S transform. From this analysis, we are able to obtain some interesting insights into the interrelationships

between the various frameworks.

3.5.1 S Transform

First, we consider the relationship between the GRITIT framework and the S transform. Although the S transform is

an example of a specific transform, rather than a transform framework, this relationship is still an interesting one to

examine.

The S transform was defined earlier in Section 3.3.1. By examining the network associated with the forward

transform, shown in Figure 3.2(a), we can express the forward transform in operator notation (using the notation

defined in Section 3.4.1) as

L
(

0,⌊·⌋ ,0,
[

0
1
2

]

,0
)

L (1, /0,0, [−1 0 ] ,0)E(0,1)P (2, [ 0 1 ]) . (3.41)

Similarly, the inverse transform, associated with the network shown in Figure 3.2(b), can be expressed in operator

notation as

J (2, [0 1 ])E(0,1)L (1, /0,1, [−1 0 ] ,0)L
(

0,⌊·⌋ ,1,
[

0
1
2

]

,0
)

. (3.42)

From (3.41) and (3.42), we can see that the forward and inverse transforms are each comprised of a split/join, exchange,

and two displace operations. Although the reversible nature of the S transform is not immediately obvious when the

transform is viewed in its traditional form (i.e., as (3.32)), when viewed as a transform derived from the GRITIT

framework, we can easily deduce that the S transform is reversible (and ITI).
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3.5.2 S+P Transform Framework

Now, let us consider the relationship between the GRITIT and S+P transform frameworks. The S+P transform frame-

work was described earlier in Section 3.3.2, and is associated with the network shown in Figure 3.3. By examining

the network in Figure 3.3(a), we can express the forward transform in operator notation as

L (1,bfloor,1, [A(z) −B(z) ] ,0)L
(

0,⌊·⌋ ,0,
[

0
1
2

]

,0
)

L (1, /0,0, [−1 0 ] ,0)E(0,1)P (2, [ 0 1 ]) . (3.43)

Similarly, by examining the network in Figure 3.3(b), we can express the inverse transform as

J (2, [0 1 ])E(0,1)L (1, /0,1, [−1 0 ] ,0)L
(

0,⌊·⌋ ,1,
[

0
1
2

]

,0
)

L (1,bfloor,0, [A(z) 0 ] ,−B(z)) . (3.44)

From (3.43) and (3.44), we can see that the forward and inverse transforms are each comprised of a split/join, exchange,

and three displace operations.

3.5.3 Lifting Framework

Next, we consider the relationship between the GRITIT and lifting frameworks. The lifting framework was described

in Section 3.3.3, and is associated with the network shown in Figure 3.7. By examining the network in Figure 3.7(a),

we can express the forward transform in operator notation as

Sρ−1 · · ·S1S0Lλ−1 · · ·L1L0P (3.45)

where P is a split operation, the {Si} are scale operations, and the {Li} are displace operations. The scale operations

{Si} are constrained to have nonzero integer scaling factors, in order for the resulting transform to be both reversible

and ITI. The displace operations {Li} are constrained such that the AK(z) and B(z) parameters in (3.36) are zero. By

examining the network in Figure 3.7(b), we can express the inverse transform as

P−1L−1
0 L−1

1 · · ·L−1
λ−1

S−1
0 S−1

1 · · ·S−1
ρ−1. (3.46)

From (3.45) and (3.46), we can see that the forward and inverse transforms are each comprised of one split/join

operation, λ displace operations, and ρ scale operations.

3.5.4 ORT Framework

Now, we consider the relationship between the GRITIT and ORT frameworks. The ORT framework was described

in Section 3.3.4, and is associated with the network shown in Figure 3.9, where polyphase filtering is accomplished

using the networks illustrated in Figure 3.10.

In what follows, we will show that the ORT networks in Figures 3.10 can be realized using GRITIT networks.

Consider the networks shown in Figures 3.15(a), 3.15(b), 3.15(c), 3.15(d), 3.15(e), 3.15(f), and 3.15(g). In operator

notation, these networks can be expressed, respectively, as

S(1,−s)L(0,⌊·⌋ ,0, [0 1−H(z) ] ,0)L(1, /0,0, [−1 0 ] ,0), (3.47a)

L(1, /0,1, [−1 0 ] ,0)L(0,⌊·⌋ ,1, [0 1−H(z) ] ,0)S(1,−1/s), (3.47b)

S(1,±1)L(1, /0,0, [±1 0 ] ,0)L(0,⌊·⌋ ,0, [ 0 H(z) ] ,0), (3.47c)

L(0,⌊·⌋ ,1, [0 H(z) ] ,0),L(1, /0,1, [±1 0 ] ,0)S(1,±1), (3.47d)

S(1,s)L(0,⌊·⌋ ,0, [0 H(z) ] ,0), (3.47e)

L(0,⌊·⌋ ,1, [ 0 H(z) ] ,0)S(1,1/s), and (3.47f)

S(1,−1)L(0, /0,0, [0 1 ] ,0)L(1, /0,0, [−1 0 ] ,0)L(0, /0,0, [0 1 ] ,0). (3.47g)

Clearly, these networks are comprised of only displace and scale operations, and therefore, can be constructed using

the GRITIT framework. Now, we will prove that the ORT networks depicted in Figures 3.10(a), 3.10(c), 3.10(e),

and 3.10(h) are equivalent to the GRITIT networks shown in Figures 3.15(a), 3.15(c), 3.15(e), and 3.15(g), respec-

tively.
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Figure 3.15: Equivalent GRITIT networks for the (a) A-type, (b) A−1-type, (c) B-type, (d) B−1-type, (e) C-type,

(f) C−1-type, and (g) E-type networks of the ORT framework.



Chapter 3. Frameworks for Reversible ITI Wavelet/Block Transforms 47

First, let us consider the A-type network shown in Figure 3.10(a). By observing that x0[n] and x1[n] are integer

sequences and using (2.1), this network can be shown to be equivalent to that in Figure 3.15(a). In the case of the

network in Figure 3.10(a), the relationship between the inputs and outputs is given by

Y0(z) = ⌊H(z)X0(z)+(1−H(z))X1(z)⌋z (3.48a)

= X1(z)+ ⌊H(z)(X0(z)−X1(z))⌋z , and

Y1(z) = s(X0(z)−X1(z)). (3.48b)

Similarly, for the network in Figure 3.15(a), the input-output behavior is given by

Y0(z) = X0(z)+ ⌊(1−H(z))(X1(z)−X0(z))⌋z (3.49a)

= X0(z)+ ⌊X1(z)−X0(z)+H(z)(X0(z)−X1(z))⌋z

= X1(z)+ ⌊H(z)(X0(z)−X1(z))⌋z , and

Y1(z) = −s(X1(z)−X0(z)) (3.49b)

= s(X0(z)−X1(z)).

By comparing (3.48) and (3.49), it is clear that both networks have the same input-output characteristics. In other

words, we have shown that the structures in Figures 3.10(a) and 3.15(a) are equivalent. Thus, an A-type network can

be realized using only displace and scale operations (as given by (3.47a)).

Next, we consider the B-type network shown in Figure 3.10(c). Using the same approach as above, this structure

can be shown to be equivalent to that in Figure 3.15(c). In the case of the network in Figure 3.10(c), the relationship

between the inputs and outputs is given by

Y0(z) = ⌊X0(z)+H(z)X1(z)⌋z (3.50a)

= X0(z)+ ⌊H(z)X1(z)⌋z , and

Y1(z) = ⌊X0(z)+(H(z)±1)X1(z)⌋z (3.50b)

= ⌊X0(z)±X1(z)+H(z)X1(z)⌋z

= X0(z)±X1(z)+ ⌊H(z)X1(z)⌋z .

Similarly, for the network in Figure 3.15(c), the input-output behavior is characterized by

Y0(z) = X0(z)+ ⌊H(z)X1(z)⌋z , and (3.51a)

Y1(z) = ±(X1(z)±Y0(z)) (3.51b)

= ±(X1(z)± (X0(z)+ ⌊H(z)X1(z)⌋z))

= ±X1(z)+X0(z)+ ⌊H(z)X1(z)⌋z

= X0(z)±X1(z)+ ⌊H(z)X1(z)⌋z .

Comparing (3.50) and (3.51), we see that both networks have the same input-output characteristics. In other words,

the filtering structures in Figures 3.10(c) and 3.15(c) are equivalent. Thus, a B-type network can also be realized using

only displace and scale operations (as given by (3.47c)).

Next, let us consider the C-type network shown in Figure 3.10(e). This is equivalent to the network shown in

Figure 3.15(e). To see this, we simply invoke identity (2.1). Hence, a C-type network can be realized using only

displace and scale operations (as given by (3.47e)).

Lastly, consider the E-type network shown in Figure 3.10(h). This linear system has the transfer matrix

T =

[

0 1

1 0

]

. (3.52)

The network shown in Figure 3.15(g) has the transfer matrix

T =

[

1 0

0 −1

][

1 1

0 1

][

1 0

−1 1

][

1 1

0 1

]

=

[

0 1

1 0

]

. (3.53)
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Comparing (3.52) and (3.53), we see that both networks have the same input-output behavior. In other words, the

structures in Figures 3.10(h) and 3.15(g) are equivalent. Thus, an E-type network can be realized using only displace

and scale operations (as given by (3.47g)).

Using techniques similar to those employed above, the networks in Figures 3.10(b), 3.10(d), and 3.10(f) can also be

shown to be equivalent to those in Figures 3.15(b), 3.15(d), and 3.15(f), respectively. The only additional tools needed

are identities (2.2) and (2.3). For example, consider the networks of Figures 3.10(b) and 3.15(b). We proceed by using

identities (2.1), (2.2), and (2.3), and the fact that s−1y1[n] ∈ Z. For the network in Figure 3.10(b), the relationship

between the inputs and outputs is given by

X0(z) =
⌈

Y0(z)+ s−1((1−H(z))Y1(z)
⌉

z
(3.54a)

= Y0(z)+
⌈

s−1Y1(z)− s−1H(z)Y1(z)
⌉

z

= Y0(z)+ s−1Y1(z)+
⌈

−s−1H(z)Y1(z)
⌉

z

= Y0(z)+ s−1Y1(z)−
⌊

s−1H(z)Y1(z)
⌋

z
, and

X1(z) =
⌈

Y0(z)− s−1H(z)Y1(z)
⌉

z
(3.54b)

= Y0(z)+
⌈

−s−1H(z)Y1(z)
⌉

z

= Y0(z)−
⌊

s−1H(z)Y1(z)
⌋

z
.

In the case of the network in Figure 3.15(b), the inputs and outputs are related by

X0(z) = Y0(z)−
⌊

−s−1(1−H(z))Y1(z)
⌋

z
(3.55a)

= Y0(z)−
⌊

−s−1Y1(z)+ s−1H(z)Y1(z)
⌋

z

= Y0(z)+ s−1Y1(z)−
⌊

s−1H(z)Y1(z)
⌋

z
, and

X1(z) = X0(z)− s−1Y1(z) (3.55b)

= Y0(z)−
⌊

s−1H(z)Y1(z)
⌋

z
.

Comparing (3.54) and (3.55), we see that the two networks have the same input-output behavior. In other words, the

networks in Figures 3.10(b) and 3.15(b) are equivalent. This result should not be surprising, however. In fact, it must

be so. If we have two invertible transformations with identical forward transforms, the inverse transforms must also

be identical. This argument can be used to show that the remaining networks are also equivalent.

To summarize our results so far, we have shown that the A-, A−1-, B-, B−1-, C-, C−1-, and E-type networks of the

ORT framework can be realized using the GRITIT networks (as given by (3.47) and Figure 3.15). Next, we observe that

the D-type ORT network is exactly equivalent to the GRITIT shift operation. Consequently, the polyphase filtering

networks employed by the ORT framework can be realized using GRITIT networks. Thus, the ORT framework is

simply a special case of the GRITIT framework. More specifically, with the ORT framework, the forward transform

has the form

TN−1 · · ·T1T0P

where P is a split operation and the {Ti} are chosen from shift operations or operations of the forms given in (3.47a),

(3.47c), (3.47e), and (3.47g). The inverse transform follows immediately from the forward transform:

P−1T−1
0 T−1

1 · · ·T−1
N−1.

3.6 Relationship Between the ORT and Lifting Frameworks

Although the ORT and lifting frameworks appear quite different at first glance, they are, in fact, intimately related. In

what follows, we will show that the ORT framework is, in fact, a special case of the lifting framework with only trivial

extensions.

In Section 3.5.4, we showed that ORT polyphase filtering networks can be decomposed into GRITIT networks as

given by (3.47). These GRITIT networks, however, only utilize displace and scale operations that have the same form
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Figure 3.16: Identities for interchanging (a) D-type and L-type operations (first case), (b) D-type and L-type operations

(second case), and (c) D-type and S-type operations.

as the L- and S-type operations from the lifting framework. Therefore, the ORT networks can also be decomposed

into L- and S-type operations.

In the ORT framework, the analysis polyphase filtering is performed by a cascade of A-, B-, C-, D-, and E-type

networks in any number and any order. Since the A-, B-, C-, and E-type networks can be realized using only L- and

S-type networks, it follows that such an analysis polyphase filtering network can be replaced by an equivalent one

consisting of only L-, S-, and D-type operations in any number and any order. This new filtering structure, however,

is exactly that employed by the lifting framework with two simple extensions: 1) the L- and S-type operations are

allowed to be intermixed, and 2) the use of D-type operations is also permitted. One might wonder what additional

degrees of freedom are offered by these extensions. As we shall demonstrate, these extensions are, in fact, of very

little practical value.

Initially, let us consider the second extension above. Suppose we allow D-type operations to be used. One can

easily show that, given a network where D-type operations are intermixed with other operations, it is always possible

to find an equivalent network with the D-type operations applied last. Using (2.15) and straightforward manipulation,

one can easily confirm that the identities shown in Figure 3.16 hold. By repeated application of these identities, one

can always obtain a new network with the D-type operations applied last. From this, we can see that there is little

flexibility afforded by the second extension listed above. This extension only allows the introduction of an additional

shift in the subband signals. Clearly, this does not change the underlying transform in any fundamental way.

Let us now consider the first extension above. For lossless signal coding applications, we would like a transform

that yields coefficients having small magnitudes. Such coefficients are desirable as they can be more efficiently en-

coded. This being the case, it is undesirable to employ S-type operations having scaling factors other than ±1. The use

of such operations would unnecessarily increase the dynamic range of the subband signals and, hence, the resulting

transform coefficients as well. Suppose now that we restrict the scaling factors to be ±1. Since scaling by one has no

effect, we need only consider the case of scaling by −1. In this scenario, one can easily show that given a network of

L- and S-type operations where the two types of operations are intermixed, it is always possible to find an equivalent

network with the S-type operations applied last. Using (2.3) and straightforward manipulation, we can show that the
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Figure 3.17: Identities for interchanging L-type and S-type operations (in the scaling by −1 case).

identities in Figure 3.17 hold. By repeated application of these identities, one can always obtain a new network with

the S-type operations applied last. Although the L-type operations in the resulting network may employ either the

floor or ceiling function for rounding, the network is still a lifting network. As noted previously, the lifting framework

allows any rounding operation to be used in the L-type networks. As we can see from the above analysis, allowing

a scaling factor of −1 only allows one to change the sign of subband signals. Thus, there is little to be gained by

employing S-type operations in the first place.

As we have shown above, the additional degrees of freedom offered by the two lifting framework extensions are

of little practical value. Thus, we assert that there are no practically useful transforms that can be generated with the

ORT framework that cannot be generated with the lifting framework. As a final note, it is important to emphasize the

generality of lifting. For the purposes of showing the relationship between the ORT and lifting frameworks, it was

necessary to use the floor and ceiling functions for the rounding operations in the lifting case. In general, however,

the lifting framework allows the use of an arbitrary rounding function (e.g., floor, ceiling, truncation, rounding to the

nearest integer, etc.). In fact, with the appropriate choice of rounding function, the lifting framework can even be used

to generate reversible real-to-real mappings [9]. This, however, is not generally possible with the ORT framework due

to its use of the A- and B-type networks. The lifting framework has another important advantage over the one based

on the ORT. Lifting always facilitates in-place calculation of a transform. This, however, is not generally true for the

ORT framework. This is, again, due to its use of the A- and B-type networks. Therefore, lifting is arguably a more

powerful and practical framework than that based on the ORT.

3.7 Generalized S Transform

In Section 3.4.3, we explained how the GRITIT framework can be used to construct reversible ITI block transforms.

Here, we provide a concrete example to demonstrate the applicability of the GRITIT framework in this context. In the

sections that follow, we propose the generalized S transform (GST), a family of reversible ITI block transforms based

on the key ideas behind the S transform. We then study the GST in some detail. This leads to a number of interesting

insights about transforms belonging to the GST family, the S transform, and reversible ITI transforms in general.

The remainder of this material is structured as follows. The block S transform is introduced in Section 3.7.1, and

the GST family of transforms is defined in Section 3.7.2. Sections 3.7.3 and 3.7.4 proceed to examine GST parameter

calculation and the effects of using different rounding operators in the GST. Some examples of well known transforms

belonging to the GST family are given in Section 3.7.5, and in Section 3.7.6, we present a new GST-based transform,
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Figure 3.18: The block S transform. The networks for the (a) forward and (b) inverse transforms.

and demonstrate its utility for image coding applications.

3.7.1 Block S Transform

In Section 3.3.1, we introduced the S transform, one of the simplest and most ubiquitous reversible ITI wavelet

transforms. The S transform is associated with the networks shown earlier in Figure 3.2. By examining these networks,

we can see that the polyphase filtering operations of the S transform themselves constitute a simple two-point block

transform, which we refer to as the block S transform. That is, the block S transform is associated with the networks

shown in Figure 3.18, where the networks in Figures 3.18(a) and 3.18(b) correspond to the forward and inverse

transforms, respectively. Mathematically, the forward transform maps the integer vector [ x0 x1 ]T to the integer vector

[ y0 y1 ]T , as given by

[ y0
y1

] =

[

⌊

1
2
(x0+x1)

⌋

x0−x1

]

.

The corresponding inverse transform is given by

[ x0
x1

] =
[

t
t−y1

]

, where t
△
= y0 +

⌊

1
2
(y1 +1)

⌋

. (3.56)

3.7.2 Generalized S Transform

By examining the block S transform in the context of the GRITIT framework, we are inspired to propose a natural

extension to this transform, which we call the generalized S transform (GST). For convenience in what follows, let us

define two integer vectors x and y as

x
△
= [ x0 x1 ... xN−1 ]T and y

△
= [ y0 y1 ... yN−1 ]T .

The forward GST is a mapping from x to y of the form

y = Cx+Q((B−I)Cx) , (3.57)

where B is real matrix of the form

B
△
=





1 b1 b2 ... bN−1

0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1



 ,

C is a unimodular (i.e., |detC| = 1) integer matrix defined as

C
△
=







c0,0 c0,1 c0,2 ... c0,N−1
c1,0 c1,1 c1,2 ... c1,N−1
c2,0 c2,1 c2,2 ... c2,N−1

...
...

...
. . .

...
cN−1,0 cN−1,1 cN−1,2 ... cN−1,N−1






,
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Figure 3.19: Network realization of the generalized S transform. (a) Forward transform and (b) inverse transform.

and Q is a rounding operator. By examining (3.57), one can easily see that this transform maps integers to integers. In

the absence of the rounding operator Q, the GST simply degenerates into a linear transform with transfer matrix A,

where A
△
= BC. Thus, the GST can be viewed as a reversible ITI mapping that approximates the linear transform

characterized by the matrix A. The inverse GST is given by

x = C−1 (y−Q((B−I)y)) . (3.58)

Note that C−1 is an integer matrix, since, by assumption, C is a unimodular integer matrix. To show that (3.58) is, in

fact, the inverse of (3.57), one need only observe that due to the form of B, for any two N ×1 vectors u and v:

v = u+Q((B−I)u) (3.59)

implies

u = v−Q((B−I)v) . (3.60)

By substituting u = Cx and v = y into (3.59) and (3.60), we obtain (3.57) and (3.58), respectively.

As suggested earlier, the GST is an example of a reversible ITI block transform generated using the GRITIT

framework. The GST can be realized using the networks shown in Figure 3.19. The forward transform, associated with

the network in Figure 3.19(a), is comprised of a unimodular integer transfer matrix C followed by a single GRITIT

displace operation (i.e., L (0,Q,0, [ 0 b1 b2 ··· bN−1 ] ,0)). Furthermore, the unimodular integer matrix C can always be

realized using the exchange, scale, and (linear) displace operations from the GRITIT framework. To see why this is so,

we observe that any unimodular integer matrix can be decomposed into a product of elementary unimodular integer

matrices. (The proof that a unimodular integer matrix can be decomposed into a product of elementary unimodular

integer matrices is constructive by the standard algorithm for computing the Smith normal form of an integer matrix

(e.g., as described in [56]).) Since any elementary unimodular integer transfer matrix trivially has a corresponding

GRITIT operation (i.e., a displace, scale, or exchange operation), we can always find a GRITIT-based realization of a

unimodular integer transfer matrix. Therefore, the GST is clearly generated by the GRITIT framework.

From a mathematical viewpoint, the specific strategy used to realize the transforms C and C−1 is not particularly

critical. Since both transforms are linear, each has many equivalent realizations. These two transforms could be

implemented using GRITIT networks, as suggested above, but this is not necessary.

In passing, we would like to note that Hao and Shi [63] have done some related work with N-point block transforms.

Their work is concerned primarily with the lifting factorization problem for general block transforms, whereas we

study in detail a very specific class of these transforms (i.e., those belonging to the GST family). Thus, the results

presented herein and those presented in [63] are complementary. Other works, such as [36, 1], have also considered

reversible N-input N-output ladder networks in various contexts (where N ≥ 2). These other works, however, do not

specifically consider the GST family of transforms. Thus, our results are distinct from those in the preceding works.

3.7.3 Calculation of GST Parameters

Suppose that we are given a linear transform characterized by the transform matrix A, and we wish to find a reversible

ITI approximation to this transform based on the GST framework. In order for this to be possible, we must be able to
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decompose A as

A = BC (3.61)

where the matrices B and C are of the forms specified in (3.57). Therefore, we wish to know which matrices have

such a factorization. The answer to this question is given by the theorem below.

Theorem 1 (Existence of GST Factorization). The real matrix A, defined as

A
△
=





a0,0 a0,1 ... a0,N−1
a1,0 a1,1 ... a1,N−1

...
...

. . .
...

aN−1,0 aN−1,1 ... aN−1,N−1



 ,

has a GST factorization (i.e., a factorization of the form of (3.61)) if and only if all of the following conditions hold:

1. The last N −1 rows of A must contain only integer entries. That is,

ai, j ∈ Z for i = 1,2, . . . ,N −1, j = 0,1, . . . ,N −1.

2. A is unimodular.

3. The integers {detminor(A,0, i)}N−1
i=0 are relatively prime.

Proof. First, we prove the sufficiency of the above conditions. We begin by considering the slightly more general

decomposition

A = BDC (3.62)

where B and C are defined as in (3.61), and

D
△
=





b0 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . . 0
0 0 0 0 1



 .

A comparison of the left- and right-hand sides of (3.62) yields the trivial relationships

ci, j = ai, j for i = 1,2, . . . ,N −1, j = 0,1, . . . ,N −1 (3.63)

and the nontrivial system of equations

a = bC

where

a
△
= [ a0,0 a0,1 ... a0,N−1 ] and b

△
= [b0 b1 ... bN−1 ] .

If C is nonsingular, we can solve for b in terms of a as

b = aC−1.

By considering the determinants of the various matrices in the factorization, we can write

detA = det(BDC) = (detB)(detD)(detC) = b0 detC.

Therefore, b0 = (detA)/(detC). Consequently, we want to choose C such that detC = detA. In this case, b0 = 1,

so D = I , and we have A = BDC = BC, a factorization of the desired form. Let wi
△
= detminor(A,0, i) for

i = 0,1, . . . ,N −1. From (3.63), we know

wi = detminor(C,0, i) (3.64)

for i = 0,1, . . . ,N −1. Using the Laplacian expansion for the determinant of C across row 0, we obtain

detC = ∑N−1
i=0 (−1)ic0,iwi. (3.65)
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Since detA ∈ {−1,1} and we want to choose the {c0,i}N−1
i=0 such that detC = detA, from (3.65) we must solve

1 = ∑N−1
i=0 c′0,iw

′
i (3.66)

where c′0,i = c0,i/detA and w′
i = (−1)iwi for i = 0,1, . . . ,N − 1. In this equation, the {w′

i}N−1
i=0 are relatively prime

since the {wi}N−1
i=0 are (by assumption) relatively prime, and the {c′0,i}N−1

i=0 are integers since the {c0,i}N−1
i=0 are integers

and detA ∈ {−1,1}. We can show that (3.66) always has a solution. This result follows immediately from the

well known result in number theory that states: The greatest common divisor (GCD) of a set of integers is a linear

combination (with integer coefficients) of those integers, and moreover, it is the smallest positive linear combination

of those integers [121]. In our case, the integers {w′
i}N−1

i=0 are relatively prime, so their GCD is 1, and therefore, 1 must

be a linear combination of the integers {w′
i}N−1

i=0 . Furthermore, the coefficients of the linear combination can be found

using the Euclidean algorithm [121]. Therefore, we can use (3.66) to generate a valid choice for C, and knowing C,

we can solve for b, and hence find B. Thus, we have a constructive proof that the desired factorization of A exists.

This shows the sufficiency of the above conditions on the matrix A.

The necessity of the above conditions on the matrix A is easily shown. Due to the form of B, the last N−1 rows of

the matrices A and C must be the same. Thus, the last N−1 rows of A must contain only integer entries, since C is an

integer matrix. If A is not unimodular, obviously it cannot be decomposed into a product of two unimodular matrices

(namely, B and C). This follows from the fact that detA = (detB)(detC), detB ∈ {−1,1}, and detC ∈ {−1,1}.

The relative primeness of {detminor(A,0, i)}N−1
i=0 follows from the “GCD is a linear combination” theorem stated

above. If this set of integers is not relatively prime, their GCD is greater than one, and no solution to (3.66) can exist.

Thus, the stated conditions on the matrix A are necessary for a GST factorization to exist.

From the proof of the above theorem, we know that the factorization is not necessarily unique, since more than

one choice may exist for the {c0,i}N−1
i=0 above. In instances where the solution is not unique, we can exploit this degree

of freedom in order to minimize the computational complexity of the resulting transform realization.

For most practically useful transforms in the GST family, it is often the case that {minor(A,0, i)}N−1
i=0 are all

unimodular (i.e., |detminor(A,0, i)| = 1 for all i ∈ {0,1, . . . ,N − 1}). This condition holds for all of the examples

considered later in Section 3.7.5. In such instances, the most useful GST factorizations are often obtained by choosing

the unknowns {c0,i}N−1
i=0 so that all but one are zero, with the remaining unknown being chosen as either −1 or 1 in

order to satisfy (3.66). In this way, we can readily obtain N distinct GST factorizations of A which typically yield low

complexity transform realizations.

In all likelihood, the most practically useful transforms in the GST family are those for which the output y0 is

chosen to be a rounded weighted average of the inputs {xi}N−1
i=0 (with the weights summing to one) and the remaining

outputs {yi}N−1
i=1 are chosen to be any linearly independent set of differences formed from the inputs {xi}N−1

i=0 . Such

transforms are particularly useful when the inputs {xi}N−1
i=0 tend to be highly correlated.

Obviously, there are many ways in which the above set of differences can be chosen. Here, we note that two

specific choices facilitate a particularly computationally efficient and highly regular structure for the implementation

of C (and C−1). Suppose the difference outputs are selected in one of two ways:

type 1: yi = xi − x0

type 2: yi = xi − xi−1

for i = 1, . . . ,N−1. Since these differences completely define the last N−1 rows of A, we can calculate detminor(A,0,0).
Furthermore, one can easily verify that in both cases detminor(A,0,0) = 1. Thus, we may choose C for type-1 and

type-2 systems, respectively, as





1 0 0 ... 0
−1 1 0 ... 0
−1 0 1 ... 0
...

...
...

. . . 0
−1 0 0 ... 1



 and





1 0 0 ... 0 0
−1 1 0 ... 0 0
0 −1 1 ... 0 0
...

...
...

. . . 0 0
0 0 0 ... −1 1



 .

Furthermore, we can show that the corresponding solutions for B are, respectively, given by

type 1: bi = a0,i

type 2: bi = ∑N−1
k=i a0,k
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Figure 3.20: Networks for realizing particular forms of the C and C−1 matrices. The networks for type-1 systems:

(a) forward and (b) inverse networks. The networks for type-2 systems: (c) forward and (d) inverse networks.

for i = 1,2, . . . ,N −1.

In the above cases, the transform matrices for C and C−1 can be realized using the ladder networks shown in

Figure 3.20. The forward and inverse networks for a type-1 system are shown in Figures 3.20(a) and (b), respectively.

Similarly, the forward and inverse networks for a type-2 system are shown in Figures 3.20(c) and (d). For each of the

two system types, the forward and inverse networks have the same computational complexity (in terms of the number

of arithmetic operations required).

Other choices of differences also facilitate computationally efficient implementations. Choices that yield a C

matrix with all ones on the diagonal are often good in this regard.

3.7.4 Choice of Rounding Operator

So far, we have made only one very mild assumption about the rounding operator Q (i.e., property (2.12) holds). At

this point, we now consider the consequences of a further restriction. Suppose that the rounding operator Q is integer-

bias invariant (as defined by (2.13)). The operator Q could be chosen, for example, as the floor, biased floor, ceiling,

or biased ceiling function (as defined in Section 2.2). Note that the truncation and biased truncation operators are not

integer-bias invariant. To demonstrate this for either operator, one can simply evaluate the expressions on the left- and

right-hand sides of equation (2.13) for α = − 1
2

and x = 1. Clearly, the two expressions are not equal (i.e., 0 6= 1 or

1 6= 0).

If Q is integer-bias invariant, we trivially have the two identities shown earlier in Figure 3.1. Therefore, in the

case that Q is integer-bias invariant, we can redraw each of the networks shown in Figures 3.19(a) and 3.19(b) with

the rounding unit moved from the input side to the output side of the adder. This results in the networks shown in

Figures 3.21(a) and 3.21(b). Mathematically, we can rewrite (3.57) and (3.58), respectively, as

y = Cx+Q((B−I)Cx) (3.67a)

= Q(Cx+(B−I)Cx)

= Q(BCx) , and
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Figure 3.21: Equivalent representation of the generalized S transform for an integer-bias invariant rounding operator.

(a) Forward transform and (b) inverse transform.

x = C−1 (y−Q((B−I)y)) (3.67b)

= −C−1 (Q((B−I)y)−y)

= −C−1Q((B−I)y−y)

= −C−1Q((B−2I)y)

= −C−1Q
(

−B−1y
)

.

Or alternately, in the latter case, we can write

x = C−1Q′(B−1y)

where

Q′(α)
△
= −Q(−α).

At this point, we note that Q and Q′ must be distinct (i.e., different) operators. This follows from the fact that a

rounding operator cannot both be integer-bias invariant and satisfy Q(α) = −Q(−α) for all α ∈ R. (See Proposition 1

for a simple proof.) By using (2.3), we have, for the case of the floor and ceiling functions

Q′(x) =

{

⌈x⌉ for Q(x) = ⌊x⌋
⌊x⌋ for Q(x) = ⌈x⌉.

The above results are particularly interesting. Recall that the GST approximates a linear transform characterized

by the matrix A
△
= BC. Examining the definition of the forward GST given by (3.57), we can see that, due to the
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rounding operator Q, the underlying transform is a function of both B and C individually, and not just their product

A. In other words, different factorizations of A (into B and C) do not necessarily yield equivalent transforms. When

Q is integer-bias invariant, however, (3.57) simplifies to (3.67a), in which case the underlying transform depends only

on the product A. Thus, for a fixed choice of integer-bias invariant operator Q, all GST-based approximations to a

given linear transform (characterized by A) are exactly equivalent. This helps to explain why so many equivalent

realizations of the S transform are possible, as this transform utilizes the floor function which is integer-bias invariant.

3.7.5 Examples

One member of the GST family is, of course, the block S transform. We can factor the transform matrix A as A = BC

where

A =
[

1
2

1
2

1 −1

]

, B =
[

1
1
2

0 1

]

, and C =
[

0 1
1 −1

]

=
[

1 0
−1 1

][

0 1
1 0

]

.

The block S transform is obtained by using the parameters from the above factorization for A in the GST network in

conjunction with the rounding operator Q(x) = ⌊x⌋. (The particular network used to realize the matrix C is indicated

by the factorization of C shown above.) Mathematically, this gives us

[ y0
y1

] =
[

x1+
⌊

t
2

⌋

t

]

where t = x0 − x1 and (3.68a)

[ x0
x1

] = [ y1+s
s ] where s = y0 −

⌊

y1
2

⌋

. (3.68b)

Comparing (3.56) to (3.68b), we observe that the computational complexity of the latter expression is lower (i.e.,

one less addition is required). Due to our previous results, however, we know that both equations are mathematically

equivalent. Thus, we have found a lower complexity implementation of the inverse block S transform. In turn, this also

yields a reduced complexity implementation of the inverse S transform (which employs the inverse block S transform

for polyphase filtering).

Another example of a transform from the GST family is the reversible color transform (RCT), defined in the

JPEG-2000 Part-1 standard [72] (and differing only in minor details from a transform described in [59]). Again, we

can factor the transform matrix A as A = BC where

A =

[ 1
4

1
2

1
4

0 −1 1
1 −1 0

]

, B =

[

1
1
4

1
4

0 1 0
0 0 1

]

, and C =
[

0 1 0
0 −1 1
1 −1 0

]

=
[

1 0 0
−1 1 0
0 0 1

][

1 0 0
0 1 0
−1 0 1

][

0 1 0
0 0 1
1 0 0

]

.

The RCT is obtained by using the parameters from the above factorization for A in the GST network in conjunction

with the rounding operator Q(x) = ⌊x⌋. (Again, the particular network used to realize the matrix C is indicated by the

factorization of C shown above.) Mathematically, this gives us

[ y0
y1
y2

]

=

[

x1+
⌊

1
4
(t0+t1)

⌋

t0
t1

]

where
t0=x2−x1
t1=x0−x1

and (3.69a)

[

x0
x1
x2

]

=
[

s+y2
s

s+y1

]

where s = y0 −
⌊

1
4
(y1 + y2)

⌋

. (3.69b)

The formula given for the forward RCT in [72] is

[ y0
y1
y2

]

=

[

⌊

1
4
(x0+2x1+x2)

⌋

x2−x1
x0−x1

]

. (3.70)

By comparing (3.69a) and (3.70), we observe that the computational complexity of the former expression is lower (i.e.,

four adds and one shift are required instead of, say, four adds and two shifts). Thus, we have found a lower complexity

implementation of the forward RCT. Although the computational complexity is reduced by only one operation, this

savings is very significant in relative terms (since only six operations were required before the reduction).

Recall that for integer-bias invariant rounding operators, multiple realization strategies often exist for a particular

GST-based reversible ITI transform. In order to demonstrate this, we now derive an alternative implementation of the
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RCT. To do this, we factor the transform matrix associated with the RCT (i.e., the matrix A from above) as A = BC

where

B =

[

1
−3
4

1
4

0 1 0
0 0 1

]

and C =
[

0 0 1
0 −1 1
1 −1 0

]

=
[

1 0 0
0 −1 0
0 0 1

][

1 0 0
−1 1 0
0 0 1

][

1 0 0
0 1 0
0 −1 1

][

0 0 1
0 1 0
1 0 0

]

.

The alternative RCT implementation is obtained by using the parameters from the above factorization for A in the

GST network in conjunction with the rounding operator Q(x) = ⌊x⌋. (Again, the particular network used to realize the

matrix C is indicated by the factorization of C shown above.) The corresponding RCT implementation is given by

[ y0
y1
y2

]

=

[

x2+
⌊

1
4
(−3t0+t1)

⌋

t0
t1

]

where
t0=x2−x1
t1=x0−x1

and

[

x0
x1
x2

]

=
[

s0+y2
s0
s1

]

where
s0=s1−y1

s1=y0−
⌊

1
4
(−3y1+y2)

⌋

.

One can see that the computational complexity of this alternative implementation is higher than the one proposed

in (3.69). In fact, it is likely that, due to the simple nature of the RCT, the implementation given by (3.69) is probably

the most efficient.

3.7.6 Practical Application: Modified Reversible Color Transform

When compressing a color image, a multicomponent transform is often applied to the color components in order to

improve coding efficiency. Such a transform is frequently defined so that one of its output components approximates

luminance. In this way, one can easily extract a grayscale version of a coded image if so desired. For RGB color

imagery, luminance is related to the color component values by

y = 0.299r +0.587g+0.114b (3.72)

where y is the luminance value, and r, g, and b are the red, green, and blue component values, respectively.

The forward RCT is defined in such a way that one of its output components approximates luminance. In effect, the

RCT computes the luminance as 1
4
r + 1

2
g+ 1

4
b. Obviously, this is a rather crude approximation to the true luminance

as given by (3.72). Without a huge sacrifice in complexity, however, we can define a new RCT-like transform that

provides a much better approximation to true luminance. To this end, we propose a slightly altered version of the RCT

called the modified RCT (MRCT).

The forward and inverse equations for the MRCT are given, respectively, by

[ y0
y1
y2

]

=

[

x0+
⌊

1
128

(90t0+15t1)
⌋

t0
t1

]

where
t0=x1−x0
t1=x2−x1

and (3.73a)

[

x0
x1
x2

]

=
[ s0

s1
s1+y2

]

where s0=y0−
⌊

1
128

(90y1+15y2)
⌋

s1=s0+y1.
(3.73b)

The MRCT is associated with the transform matrix

A =

[

38
128

75
128

15
128

−1 1 0
0 −1 1

]

,

which can be factored as A = BC, where

B =

[

1
90

128
15

128
0 1 0
0 0 1

]

and C =
[

1 0 0
−1 1 0
0 −1 1

]

=
[

1 0 0
−1 1 0
0 0 1

][

1 0 0
0 1 0
0 −1 1

]

.

The MRCT is obtained by using the above factorization for A in the GST network in conjunction with the rounding

operator Q(x) = ⌊x⌋. (The particular network used to realize the matrix C is indicated by the factorization of C shown

above.) The forward and inverse MRCT can each be implemented with six adds and four shifts (where expressions

of the form
⌊

1
128

(90u+15v)
⌋

can be computed as asr((16−1)[(4 + 2)u + v],7)). Recall that the forward and inverse
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Table 3.3: Deviation from the true luminance for the MRCT and RCT
MRCT RCT

Image MAE PAE MAE PAE

flowers 0.654 1.635 6.515 25.326

food 0.734 1.777 8.860 34.821

sailboat 0.566 1.438 1.888 20.580

tile 0.776 1.369 9.591 14.560

RCT, as given by (3.69), each require four adds and one shift. Thus, in terms of computational complexity, the MRCT

compares quite favorably with the RCT, when one considers the RCT’s extreme simplicity.

Having defined the MRCT, we first studied its coding performance. A set of 196 RGB color images, covering a

wide variety of content, was compressed losslessly using both the MRCT and RCT in the same coding system. The

difference in the overall bit rate obtained with the two transforms was less than 0.1%. Thus, the MRCT and RCT are

quite comparable in terms of coding efficiency.

In addition to coding efficiency, we also examined the luminance approximation quality. For each image, we

computed the true luminance component as given by (3.72) and the luminance components generated by the MRCT

and RCT. We then proceeded to calculate the approximation error for each transform. The results for several of the test

images are shown in Table 3.3. Clearly, the MRCT approximates true luminance much more accurately than the RCT

(in terms of both MAE and PAE). Furthermore, this difference in approximation quality is usually visually perceptible.

That is, the MRCT yields a luminance component that appears visually identical to the true luminance component,

while the RCT generates a luminance component that is often visibly different from the ideal.

When designing the MRCT, we had to choose which set of differences to employ (for the two non-luminance

outputs of the forward transform). In passing, we would like to note that this choice can impact coding efficiency. For

natural imagery, experimental results suggest that the difference between the red and blue components is often slightly

more difficult to code than the other two differences (i.e., green-blue and green-red). For this reason, we chose to use

the green-blue and green-red differences to form the non-luminance outputs of the (forward) MRCT.

3.8 Summary

In this chapter, we proposed the generalized reversible ITI transform (GRITIT) framework, a single unified framework

for reversible ITI wavelet/block transforms. This new framework was then used to study several previously developed

frameworks and their interrelationships. For example, the ORT framework was shown to be equivalent to a special

case of the lifting framework with only trivial extensions. Moreover, we demonstrated that any practically useful

reversible ITI mapping that can be realized using the ORT framework can also be realized using the lifting one.

This development is significant in that it demonstrates the generality of the lifting framework for the construction of

reversible ITI transforms.

Rounding operators were examined in some detail. The significance of the integer-bias invariance and oddness

properties was discussed, and the mutual exclusivity of these two properties was demonstrated. Several common

rounding operators were characterized in terms of their approximation properties (i.e., error interval, PAE, MAE) and

computational complexity. Relationships between these rounding operators were also examined. When considering

both computational complexity and rounding error characteristics together, the floor, biased floor, and biased ceiling

operators are arguably the most practically useful of those considered. The floor operator is desirable as it has the

lowest computational complexity, while the biased floor and biased ceiling operators are slightly more computationally

complex but normally have the best rounding error performance. Under certain circumstances, the floor function was

shown to share the best rounding error performance, in spite of its low computational complexity, a fact that is often

overlooked in the existing literature.

The GRITIT framework was demonstrated (by example) to be useful for the construction of reversible ITI block

transforms. The generalized S transform (GST), a family of reversible ITI block transforms, was proposed. Then,

the GST was studied in some detail, leading to a number of interesting results. We proved that for a fixed choice of

integer-bias invariant rounding operator, all GST-based approximations to a given linear transform are equivalent. The

RCT was shown to be a specific instance of the GST. We showed how various degrees of freedom in the choice of

GST parameters can be exploited in order to find transform implementations with minimal computational complexity.

flowers
food
sailboat
tile
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Moreover, the GST framework was used as a means to derive reduced complexity implementations of the S transform

and RCT. A new transform belonging to the GST family, called the MRCT, was introduced, and shown to be practically

useful for image coding applications. Due to its utility, the GST family of transforms will no doubt continue to prove

useful in both present and future signal coding applications.

When I despair, I remember that all through history, the way of truth and love

has always won. There have been murderers and tyrants, and for a time they

can seem invincible. But in the end they always fall. Think of it, always.

—Mohandas Karamchand Gandhi (1869–1948)
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Chapter 4

Nonexpansive Reversible ITI Wavelet

Transforms

They said the birds refused to sing and the thermometer fell suddenly as if God Himself had His

breath stolen away. No one there dared speak aloud, as much in shame as in sorrow. They

uncovered the bodies one by one. The eyes of the dead were closed as if waiting for permission to

open them. Were they still dreaming of ice cream and monkey bars? Of birthday cake and no future

but the afternoon? Or had their innocence been taken along with their lives buried in the cold earth

so long ago? These fates seemed too cruel, even for God to allow. Or are the tragic young born

again when the world’s not looking? I want to believe so badly in a truth beyond our own, hidden and

obscured from all but the most sensitive eyes, in the endless procession of souls, in what cannot

and will not be destroyed. I want to believe we are unaware of God’s eternal recompense and

sadness. That we cannot see His truth. That that which is born still lives and cannot be buried in

the cold earth. But only waits to be born again at God’s behest. . . where in ancient starlight we lay

in repose.

—Fox Mulder, The X-Files: Closure

Overview

Strategies for handling the transformation of finite-extent signals in a nonexpansive manner are considered (e.g.,

symmetric extension, per-displace-step extension). Two families of symmetry-preserving transforms (which are com-

patible with symmetric extension) are introduced and studied. We characterize the transforms belonging to these

families. Some new reversible ITI structures that are useful for constructing symmetry-preserving transforms are also

proposed. A simple search-based design technique is explored as means for finding low-complexity transforms in the

above-mentioned families and is shown to yield good results. With this method, new effective transforms are found in

addition to ones already reported in the literature.

4.1 Introduction

Most frequently, wavelet transforms are defined in such a way as to operate on signals of infinite extent. In practice,

however, we must almost invariably deal with finite-extent signals. Therefore, we require some means for adapting

wavelet transforms to handle such signals.

A reversible ITI wavelet transform is associated with a UMD filter bank of the form shown earlier in Figure 3.12.

Obviously, one of the key processes involved in the computation of a such a transform is filtering. When a finite-

extent signal is filtered, however, we are often faced with the so called boundary filtering problem. That is, in order to

calculate the output of a filter when filtering near signal boundaries, we typically need to evaluate the signal at indices

for which it is not defined. Therefore, we must alter the behavior of the transform near signal boundaries to eliminate

the need for such unknown quantities. This objective can be accomplished by either changing the filters employed

near the boundaries (i.e., boundary filtering) or extending the signal (i.e., signal extension). In this manner, we can

eliminate the need to evaluate a signal outside of its region of definition.
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Of course, signal extension and boundary filtering must be performed with care in order to avoid destroying the

invertibility of a transform. Moreover, in applications such as signal coding, we almost always want to employ a

transform that is nonexpansive. As a matter of terminology, a transform is said to be nonexpansive if its application

to a signal comprised of N samples always yields a result that can be completely characterized by no more than N

transform coefficients. In other words, a transform is nonexpansive if its use does not cause any net growth in the

number of samples being processed.

In this chapter, we study nonexpansive reversible ITI wavelet transforms in some detail. We begin, in Section 4.2,

by discussing several signal extension techniques (e.g., periodic extension, symmetric extension, and per-displace-step

extension). In so doing, we introduce the notion of a transform that preserves symmetry, and explain the significance

of this property. Next, in Section 4.3, we study two families of symmetry-preserving transforms. In the context of

these transform families, we also consider the relationship between symmetric and per-displace-step extension. In

Section 4.4, we propose a simple technique for designing effective low-complexity transforms from the two families

mentioned above. Lastly, Section 4.5 summarizes the results of this chapter. In passing, we note that some of our work

presented in this chapter has also been published in [20, 22, 21, 12, 16, 10].

4.2 Extension Methods

As mentioned above, one way in which to overcome the boundary filtering problem is to extend the signal being

processed. In what follows, we introduce three different signal extension methods for UMD filter banks, namely

periodic extension, symmetric extension, and per-displace-step extension. We also examine how the various techniques

can be exploited in order to construct nonexpansive transforms. As we shall see, some of these techniques are more

generally applicable than others.

4.2.1 Periodic Extension

One of the simplest techniques for handling finite-extent signals is periodic extension. This technique is based on the

key observation that many systems, when excited by a periodic input, always produce a periodic output (or outputs).

Consider a reversible ITI wavelet transform based on the GRITIT framework. Such a transform is computed using

a structure of the form shown in Figure 3.12. Let us now consider the 1D case. Suppose that we are given a finite-

length signal x̂[n] defined for n = 0,1, . . . ,N − 1. We then choose x[n], the input to the analysis filter bank, as the

following periodic extension of x̂[n]:
x[n] = x̂[mod(n−K,N)], K ∈ Z

(i.e., x[n] is defined such that x[n] = x[n + N]). For illustrative purposes, a simple example of periodic extension is

given in Figure 4.1 for N = 4. Provided that M|N (i.e., M divides N), the output of each of the M downsamplers will

be N
M

periodic. Let us assume that none of the displace operations employed are recursive in nature. In this case, the

polyphase operations preserve periodicity, and each of the M subband signals (i.e., {yi[n]}) will also be N
M

-periodic.

Thus, we can completely characterize the subband signals by M N
M

= N sample values. In this manner, we obtain a

nonexpansive transform for a finite-length signal.

Obviously, the above constraint on M and N may not necessarily be satisfied. That is, we may have that M 6 |N.

For example, consider a transform based on a two-channel UMD filter bank (i.e., M = 2). In this case, the divisibility

constraint is satisfied only if N is even. Clearly, in some applications, however, N may be odd. Thus, we cannot always

use periodic extension to obtain a nonexpansive transform. Furthermore, periodic extension can potentially result in

an extended signal with large jumps at the splice points between periods. Such discontinuities introduce additional

high-frequency content into the signal being processed, which is often undesirable in applications like signal coding.

For the reasons outlined above, periodic extension is often not the most attractive method to employ.

Periodic extension also has applicability in the D-dimensional case where D ≥ 2. Again, we have constraints sim-

ilar to the 1D case (i.e., the downsampler outputs must be periodic with no net growth in the number of nonredundant

samples).

4.2.2 Symmetric Extension

Another technique for handing finite-extent signals is symmetric extension. The use of symmetric extension with

UMD filter banks was first proposed by Smith and Eddins [122], and subsequently received considerable attention
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Figure 4.1: Periodic extension of a signal. (a) Original signal. (b) Periodic extension of signal.
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Figure 4.2: Types of signal symmetries. (a) WS symmetry, (b) HS symmetry, (c) WS antisymmetry, and (d) HS

antisymmetry.

in the literature (e.g., [123, 99, 34, 33, 1]). With this technique, a signal is extended so that it is both symmetric and

periodic. Then, both the symmetry and periodicity properties are exploited.

Consider a 1D signal with symmetry. Such a signal can be symmetric or antisymmetric. In each case, the point

of symmetry can either be coincident with a single sample or lie midway between two samples. These two types

of symmetry point locations are referred to as whole sample (WS) and half sample (HS), respectively. Examples of

various types of symmetries are illustrated in Figure 4.2. The symmetry centers for periodic signals always appear in

pairs. If the period of a signal is even, the symmetry centers in a pair will be either both WS or both HS. If the period

is odd, one will be WS and the other HS.

More than one way to symmetrically extend a signal is possible. The main difference is in the number of times

the first and last sample of the original signal are repeated in the extended signal. Here, we use the notation (k, l)
to indicate that the first and last samples are repeated k and l times, respectively. For an input signal of length N,

(k, l)-symmetric extension yields a (2N + k + l − 2)-periodic signal as output. Some illustrative examples of various

types of symmetric extension are shown in Figure 4.3. As will be seen later, (1,1)- and (2,2)-symmetric extension are

of the most interest in the context of our work herein.

Consider now the UMD filter bank shown in Figure 3.12. More specifically, let us consider the two-channel case

(i.e., M = 2). Suppose that we have a finite-length signal x̂[n] defined for n = 0,1, . . . ,N − 1. We then choose x[n],
the input to the analysis filter bank, as a symmetric extension of x̂[n]. Thus, the period of x[n] is (approximately)

2N. Symmetric extension is usually employed only with transforms that preserve signal symmetry. Therefore, let

us assume that the filter bank preserves symmetry and periodicity. From this assumption, we have that each of the

subband signals is symmetric (or antisymmetric) with a period of (approximately) N. Since each of the subband

signals has symmetry, only (about) one half of the samples of a single period are required to characterize the signal. In

other words, we only need (about) N
2

samples from each subband signal. Thus, we need a total of N
2

+ N
2

= N samples.

Therefore, the transform is nonexpansive.

Unfortunately, symmetric extension cannot always be used to obtain nonexpansive transforms. For example, this

approach requires a UMD filter bank that preserves signal symmetry. This restriction is quite limiting since many
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Figure 4.3: Symmetric extension examples. (a) Original signal. Extended signal obtained with (b) (1,1)-symmetric

extension, and (c) (2,2)-symmetric extension.

wavelet transforms do not have an underlying UMD filter bank that preserves symmetry. Also, symmetric extension

is more difficult to apply in the D-dimensional case where D ≥ 2. This is, in part, due to the many more types of

symmetry that are possible for multidimensional signals. Symmetric extension is considered, for example, in the 2D

case in [64].

4.2.3 Per-Displace-Step Extension

Although periodic and symmetric extension are quite popular, other simple extension schemes can also be devised.

One extension technique used in conjunction with GRITIT-based (or lifting-based) transforms is the per-displace-step

(PDS) extension method. This technique is mentioned briefly in [16] and used in the SBTLIB [10] and JasPer [14]

software. More recently, this method has also been described in [32, 31] (under the name of “iterated extension”).

Consider the displace operation in the two-channel case as illustrated in Figure 4.4. With PDS extension, signal

extension is performed at the input to each displace filter rather than being performed at the input to the filter bank.

That is, each displace step on the analysis side of the filter bank has the form shown in Figure 4.5(a). In the diagram,

p0[n] and q0[n] represent intermediate lowpass channel signals, p1[n] and q1[n] represent intermediate highpass channel

signals, and Q is a rounding operator. The parameter d determines the channel modified by the displace operation. On

the synthesis side of the filter bank, the displace operation of Figure 4.5(a) has a corresponding inverse of the form

shown in Figure 4.5(b). Clearly, the same extension values can be generated on both the analysis and synthesis sides

(since p1−d [n] = q1−d [n]). Thus, this scheme can generate reversible transforms.

The PDS extension technique is extremely powerful, as it can always be used to form a nonexpansive transform.

This method can be applied in the case of UMD filter banks with any arbitrary displace-step filters. That is, there is

no need for the filter bank to preserve signal symmetry (unlike in the case of symmetric extension). Furthermore, one

can easily apply PDS extension in the D-dimensional case (where D ≥ 2).

4.3 Symmetry-Preserving Transforms

As explained earlier, it is often desirable to employ transforms that preserve symmetry (i.e., transforms that yield sym-

metric/antisymmetric output signals for symmetric/antisymmetric input signals). In particular, symmetry-preserving
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Figure 4.5: Structure of a displace step in the case of PDS extension. (a) Forward displace step and (b) inverse displace

step.

transforms have the advantage of being compatible with symmetric extension techniques [123, 99, 33, 34], allowing

signals of arbitrary length to be handled in a nonexpansive manner.

In what follows, we introduce two families of symmetry-preserving reversible ITI wavelet transforms. Then, we

proceed to study the characteristics of these families and their constituent transforms. Several interesting results are

presented, which provide new insights into the transforms belonging to each family. During the course of our anal-

ysis, we also develop some new reversible ITI structures that are useful for the construction of symmetry-preserving

transforms. We also examine the relationship between symmetric extension and PDS extension.

The presentation of this work is structured as follows. In Section 4.3.1, the two families of transforms under

consideration are introduced. We proceed to show, in Section 4.3.2, that transforms from these families are compatible

with symmetric extension, and can be used to handle arbitrary-length signals in a nonexpansive manner. The base

filter bank associated with one of the transform families is examined in Section 4.3.3, with the filter bank’s symmetry-

preserving properties being of particular interest. This is followed by a more detailed study of the two transform

families in Sections 4.3.4 and 4.3.5. Also, of interest, the relationship between symmetric extension and PDS extension

is examined in Section 4.3.6.

4.3.1 Transform Families

In our work, we consider two families of symmetry-preserving reversible ITI wavelet transforms. Both are derived

from the lifting-based parameterizations of linear-phase filter banks presented in [12], and have the general form

shown in Figure 4.6. In the figure, the {Qk}2λ−1
k=0 are rounding operators, and the analysis and synthesis polyphase

filtering networks each consist of 2λ lifting step filters {Ak}2λ−1
k=0 . As we will demonstrate, by choosing the lifting step

filters {Ak}2λ−1
k=0 wisely, one can construct filter banks that not only yield symmetric/antisymmetric subband signals

(i.e., y0[n] and y1[n]) for an appropriately chosen input signal (i.e., x[n]), but also yield intermediate signals (i.e.,

{uk[n]}2λ−1
k=0 , {vk[n]}2λ−2

k=0 ) that are all or mostly symmetric/antisymmetric.
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Figure 4.6: Lifting realization of a reversible ITI wavelet transform. (a) Forward and (b) inverse transforms.

4.3.1.1 OLASF Family

The first family of reversible ITI wavelet transforms is associated with a linear-phase filter bank having odd-length

analysis/synthesis filters, and has been described in [12]. For convenience, we will refer to this family as the odd-

length analysis/synthesis filter (OLASF) parameterization. In the case of this family, the parameters in Figure 4.6 are

constrained as follows: The filters {Ak}2λ−1
k=0 are chosen to have transfer functions of the form

Ak(z) =

{

∑(Lk−2)/2

i=0 ak,i(z
−i + zi+1) for even k

∑(Lk−2)/2

i=0 ak,i(z
−i−1 + zi) for odd k

(4.1)

where the {Lk}2λ−1
k=0 are all even integers, and the rounding operators {Qk}2λ−1

k=0 are chosen arbitrarily (e.g., as the

floor, biased floor, ceiling, biased ceiling, truncation, biased truncation, or RAFZ function). Without loss of generality,

we assume that none of the {Ak(z)}2λ−2
k=1 are identically zero. That is, only A0(z) and A2λ−1(z) may be identically

zero. Some well known members of this family include the 5/3, 9/7-M, 5/11-C, 13/7-T, 13/7-C, and 9/7-F transforms

discussed in Chapter 5.

4.3.1.2 ELASF Family

The second family of reversible ITI wavelet transforms is associated with a linear-phase filter bank having even-length

analysis/synthesis filters, and has been described in [12]. For convenience, we will refer to this family as the even-

length analysis/synthesis filter (ELASF) parameterization. In the case of this family, the parameters in Figure 4.6 are

constrained as follows: The filters {Ak}2λ−1
k=0 are chosen to have transfer functions of the form

Ak(z) =











−1 for k = 0
1
2
+ Â1(z) for k = 1

Âk(z) for k ≥ 2

(4.2a)

where

Âk(z) = ∑(Lk−1)/2

i=1 âk,i(z
−i − zi), (4.2b)
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Figure 4.7: Two different reversible ITI approximations of the 6/14 transform. The analysis filter bank based on

the (a) commonly referenced parameterization and (b) our more general parameterization. Â1(z) = − 1
16

(z− z−1),

Â2(z) = 1
16

(

(z2 − z−2)−6(z− z−1)
)

, Q1 is integer-bias invariant, Q′
1 is arbitrary, and Q2 is odd.

λ ≥ 1, and the {Lk}2λ−1
k=1 are all odd integers; and the rounding operators {Qk} are chosen such that Q0 is the identity,

Q1 is integer-bias invariant (e.g., the floor, biased floor, ceiling, or biased ceiling function), and the remaining rounding

operators {Qk}2λ−1
k=2 are odd (e.g., the truncation, biased truncation, or RAFZ function) for even k and arbitrary for odd

k. Without loss of generality, we assume that none of the {Âk(z)}2λ−2
k=2 are identically zero. That is, only Â1(z) and

Â2λ−1(z) may be identically zero. Some well known members of this family include the 2/6, 2/10, and 6/14 transforms

discussed in Chapter 5, in addition to the S transform.

The above transform family is a generalization of ones commonly considered in the literature (e.g., [32]). Our

proposed family is a generalization in two respects. First, in the case of transform families with a similar structure, it

is often suggested (e.g., as in [32]) that the {Qk}2λ−1
k=2 must all be chosen as odd functions. Such a choice, however,

is overly restrictive. The rounding operators {Qk}2λ−1
k=2 only need to be chosen as odd functions for even k. Second,

and more fundamentally, the related families commonly considered in the literature (e.g., as in [32]) are essentially a

special case of our proposed family with Â1(z) ≡ 0.

The additional flexibility afforded by the introduction of the Â1(z) parameter has important practical implications.

In many cases, by using our more general parameterization in (4.2), the number of lifting steps can be reduced by one.

By reducing the number of lifting steps, the number of rounding operations is also decreased, leading to a reduction in

rounding error. Consider, for example, the two (ITI) filter banks shown in Figure 4.7. One can easily verify that both

filter banks approximate the same linear transform, namely the one associated with the 6/14 transform in [16] which

is known to be effective for image coding purposes. Both filter banks are reversible, as both employ lifting/ladder

networks for polyphase filtering, but due to the nonlinearities introduced by rounding, the two filter banks are not

equivalent. Comparing the filter banks of Figures 4.7(a) and 4.7(b), we can see that the former has one more rounding

operation than the latter. For this reason, the filter bank in Figure 4.7(b) will normally have better approximation

properties (i.e., smaller rounding error) than the filter bank of Figure 4.7(a). Although not immediately obvious, like

the filter bank in Figure 4.7(a), the filter bank in Figure 4.7(b) also preserves symmetry, as we will show in a later

section.

4.3.2 Transforms and Symmetric Extension

In the previous section, we introduced the OLASF and ELASF families of reversible ITI wavelet transforms. Now, we

show that the transforms from these two families can be used with symmetric extension in order to handle signals of

arbitrary length in a nonexpansive manner.

4.3.2.1 OLASF Case

Consider a filter bank of the form shown in Figure 4.6 that is constrained to be of the OLASF type as defined by (4.1).

Suppose that we are given a signal x̂[n] defined for n = 0,1, . . . ,N −1. By using symmetric extension, one can form a

nonexpansive transform, as demonstrated by the proposition and accompanying proof below.

Proposition 6 (Compatibility of transforms from the OLASF family with symmetric extension). Consider a filter

bank of the form shown in Figure 4.6 that is constrained to be of the OLASF type as defined by (4.1). Suppose now
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that we are given a signal x̂[n] defined for n = 0,1, . . . ,N−1. If we choose x[n], the input to the analysis filter bank, as

the symmetric extension of x̂[n] given by

x[n] =x̂[min(mod(n−K,2N −2),2N −2−mod(n−K,2N −2))], K ∈ Z

(i.e., x[n] is defined such that x[n] = x[n+2N −2] and x[n] = x[2K −n]), then

1. y0[n] is completely characterized by its N0 samples at indices
⌈

K
2

⌉

,
⌈

K
2

⌉

+1, . . . ,
⌊

K+N−1
2

⌋

;

2. y1[n] is completely characterized by its N1 samples at indices
⌈

K−1
2

⌉

,
⌈

K−1
2

⌉

+1, . . . ,
⌊

K+N−2
2

⌋

; and

3. N0 +N1 = N (i.e., the transform is nonexpansive).

Proof. Consider the OLASF-type system associated with Figure 4.6. Evidently, x[n] is (2N−2)-periodic and symmet-

ric about K and K +N −1 (with additional pairs of symmetry points following from periodicity). From the properties

of downsampling, one can show that u0[n] is (N−1)-periodic and symmetric about K
2

and K+N−1
2

, and v0[n] is (N−1)-

periodic and symmetric about K−1
2

and K+N−2
2

. Consider now the first lifting step (associated with filter A0). Since,

from (4.1), the filter A0 has a group delay of − 1
2

and the rounding operator Q0 preserves symmetry, the adder (follow-

ing Q0) is summing two (N −1)-periodic symmetric signals with the same symmetry centers. Thus, the adder output,

v1[n], is also (N − 1)-periodic and symmetric with the same symmetry centers, namely K−1
2

and K+N−2
2

. Consider

now the second lifting step (associated with filter A1). Since, from (4.1), the filter A1 has a group delay of 1
2

and the

rounding operator Q1 preserves symmetry, both adder inputs are (N − 1)-periodic symmetric signals with the same

symmetry centers. Therefore, the adder output, u2[n], must also be (N − 1)-periodic and symmetric with the same

symmetry centers, namely K
2

and K+N−1
2

. By repeating the above reasoning for each of the remaining lifting steps,

we have that the {uk[n]}2λ−1
k=0 and y0[n] are all (N − 1)-periodic and symmetric about K

2
and K+N−1

2
. Likewise, the

{vk[n]}2λ−2
k=0 and y1[n] are all (N −1)-periodic and symmetric about K−1

2
and K+N−2

2
.

By examining the form of the various signals, we can see that the {uk[n]}2λ−1
k=0 and y0[n] are completely character-

ized by their samples at indices
⌈

K
2

⌉

,
⌈

K
2

⌉

+1, . . . ,
⌊

K+N−1
2

⌋

, for a total of N0 independent samples, where

N0
△
=
⌊

K+N−1
2

⌋

−
⌈

K
2

⌉

+1. (4.3)

Similarly, we have that the {vk[n]}2λ−2
k=0 and y1[n] are completely characterized by their samples at indices

⌈

K−1
2

⌉

,
⌈

K−1
2

⌉

+

1, . . . ,
⌊

K+N−2
2

⌋

, for a total of N1 independent samples, where

N1
△
=
⌊

K+N−2
2

⌋

−
⌈

K−1
2

⌉

+1. (4.4)

Using (2.11) and (2.10), we can further simplify (4.3) and (4.4) to obtain

N0 =











N
2

for even N
N+1

2
for odd N, even K

N−1
2

for odd N, odd K,

and N1 =











N
2

for even N
N−1

2
for odd N, even K

N+1
2

for odd N, odd K.

(4.5)

Thus, from (4.5), we have that, regardless of the parities of K and N, N0 + N1 = N. In other words, the total number

of independent samples in the transformed signal is always equal to the number of samples in the original signal, and

the resulting transform is, therefore, nonexpansive.

4.3.2.2 ELASF Case

Consider a filter bank of the form shown in Figure 4.6 that is constrained to be of the ELASF type as defined by (4.2).

Suppose that we are given a signal x̂[n] defined for n = 0,1, . . . ,N −1. By using symmetric extension, one can form a

nonexpansive transform, as demonstrated by the proposition and accompanying proof below.

Proposition 7 (Compatibility of transforms from the ELASF family with symmetric extension). Consider a filter

bank of the form shown in Figure 4.6 that is constrained to be of the ELASF type as defined by (4.2). Suppose now
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that we are given a signal x̂[n] defined for n = 0,1, . . . ,N−1. If we choose x[n], the input to the analysis filter bank, as

the symmetric extension of x̂[n] given by

x[n] = x̂[min(mod(n−K,2N),2N −1−mod(n−K,2N))], K ∈ Z (4.6)

(i.e., x[n] is defined such that x[n] = x[n+2N] and x[n] = x[2K −1−n]), then

1. y0[n] is completely characterized by its N0 samples at indices
⌈

K−1
2

⌉

,
⌈

K−1
2

⌉

+1, . . . ,
⌊

K+N−1
2

⌋

;

2. y1[n] is completely characterized by its N1 samples at indices
⌈

K
2

⌉

,
⌈

K
2

⌉

+1, . . . ,
⌊

K+N−2
2

⌋

; and

3. N0 +N1 = N (i.e., the transform is nonexpansive).

Proof. Consider the ELASF-type system associated with Figure 4.6. For the time being, we assume that u2[n] is N-

periodic and symmetric about K−1
2

and K+N−1
2

, and v2[n] is N-periodic and antisymmetric with the same symmetry

points as u2[n]. These assumptions will be proven valid in Section 4.3.3. Consider now the third lifting step (associated

with filter A2). Since, from (4.2), the filter A2 has a group delay of zero, and the rounding operator Q2 preserves

antisymmetry (since it is odd, by assumption), the adder is summing two N-periodic antisymmetric signals with

the same symmetry centers. Thus, the adder output is also N-periodic and antisymmetric with the same symmetry

centers. Consider the fourth lifting step (associated with filter A3). Since, from (4.2), the filter A3 has a group delay

of zero, and the rounding operator Q3 preserves symmetry, the adder is summing two N-periodic symmetric signals

with the same symmetry centers. Thus, the adder output is also N-periodic and symmetric with the same symmetry

centers. It is important to note that, for odd k, Qk need not be odd, contrary to the suggestions of some, in the case of

similar parameterizations. By repeating the above reasoning for each of the remaining lifting steps, we have that the

{uk[n]}2λ−1
k=2 and y0[n] are N-periodic and symmetric with symmetry centers K−1

2
and K+N−1

2
, and the {vk[n]}2λ−2

i=1 and

y1[n] are N-periodic and antisymmetric with the same symmetry centers.

By examining the form of the various signals, we note that the {uk[n]}2λ−1
k=2 and y0[n] are completely characterized

by their samples at indices
⌈

K−1
2

⌉

,
⌈

K−1
2

⌉

+1, . . . ,
⌊

K+N−1
2

⌋

, for a total of N0 independent samples, where

N0
△
=
⌊

K+N−1
2

⌋

−
⌈

K−1
2

⌉

+1. (4.7)

Similarly, we have that the {vk[n]}2λ−2
k=1 and y1[n] are completely characterized by their samples at indices

⌈

K
2

⌉

,
⌈

K
2

⌉

+

1, . . . ,
⌊

K+N−2
2

⌋

, for a total of N1 independent samples, where

N1
△
=
⌊

K+N−2
2

⌋

−
⌈

K
2

⌉

+1. (4.8)

Using (2.10) and (2.11), we can further simplify (4.7) and (4.8) to obtain

N0 =











N+1
2

for N odd
N
2

for N even, K even
N+2

2
for N even, K odd,

and N1 =











N−1
2

for N odd
N
2

for N even, K even
N−2

2
for N odd, K odd.

(4.9)

Thus, from (4.9), we have that, regardless of the parities of K and N, N0 + N1 = N. In other words, the total number

of independent samples in the transformed signal is always equal to the number of samples in the original signal, and

the resulting transform is, therefore, nonexpansive.

4.3.3 Symmetry Preservation in the ELASF Base Filter Bank

Consider a filter bank of the form shown in Figure 4.6 that is constrained to be of the ELASF type as defined by (4.2)

with λ = 1. The analysis side of such a filter bank has the form illustrated in Figure 4.8. In the previous section, we

assumed that if x[n] is generated using (4.6), then y0[n] is N-periodic and symmetric about K−1
2

and K+N−1
2

, and y1[n]
is N-periodic and antisymmetric with the same symmetry centers as y0[n]. We will now prove these assumptions to be

valid.



Chapter 4. Nonexpansive Reversible ITI Wavelet Transforms 70

✲

✲ ✲

❄

❄ ❄

❄

✲

✻

✻

✻

✲

✲

✲

✲↓2 ❥+

↓2

z −1

❥+x[n]

1
2
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Figure 4.8: Base analysis filter bank for the ELASF family of transforms.
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Figure 4.9: The general structure of a two-channel UMD filter bank. (a) Analysis filter bank and (b) synthesis filter

bank.

4.3.3.1 Symmetry Preservation

We begin by considering a slightly different filter bank of the form shown in Figure 4.10. This filter bank can be

represented in canonical form as shown in Figure 4.9. Let us denote the transfer functions of the lowpass and highpass

analysis filters associated with the canonical form of the filter bank as H0(z) and H1(z), respectively. Using the noble

identities, we can show that

H0(z) = 1
2
(z+1)+(z−1)Â1(z

2) and H1(z) = z−1.

Due to the form of Â1(z) in (4.2), it follows that the filter H0 has an impulse response symmetric about − 1
2
. Clearly,

the filter H1 has an impulse response that is antisymmetric about − 1
2
. Consequently, if x[n] is generated using (4.6),

we have that y0[n] is N-periodic and symmetric about K−1
2

and y1[n] is N-periodic and antisymmetric with the same

symmetry center as y0[n]. Since y0[n] and y1[n] are N-periodic, it follows that both signals must also have another

symmetry center at K+N−1
2

.

Now, suppose that we round the lowpass subband output, so as to obtain the system shown in Figure 4.11. For any

(non-pathological) rounding function, this process will maintain signal symmetry. Moreover, if the rounding operator,

Q, is integer-bias invariant, we can equivalently move the rounding operator to the input side of the adder, resulting in

the system in Figure 4.8. Consequently, in the case of the system in Figure 4.8, if the input x[n] has the form of (4.6),

y0[n] must be N-periodic and symmetric about K−1
2

and K+N−1
2

. (Since y1[n] has not been changed by the introduction

of the rounding operator Q, this signal’s symmetry properties are obviously unchanged from above.) Thus, we have

shown our above assumptions about the form of y0[n] and y1[n] to be correct.

4.3.3.2 Modifying the ELASF Base Filter Bank

As demonstrated above, the system of Figure 4.11 has the symmetry-preserving properties that we desire, regardless

of whether or not the rounding operator Q is integer-bias invariant. If Q is not integer-bias invariant, however, it is not

clear that the resulting transform will necessarily have an inverse. In what follows, we will examine this question of

transform invertibility more closely.

Consider a network of the form shown in Figure 4.12, where the c0[n], c1[n], d0[n], and d1[n] are integer sequences

and Q is a rounding operator. Obviously, the network in Figure 4.11 can be inverted if the network in Figure 4.12

can be inverted. In turn, the latter network can be inverted if we can invert the network in Figure 4.13, where x,y ∈ Z

and α ∈ R. Thus, we have reduced the overall invertibility problem to a much simpler one. That is, the network
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in Figure 4.11 is invertible if we can invert (i.e., solve uniquely for x in terms of y) the equation

y = Q(α+ x) (4.10)

where x,y ∈ Z and α is a real constant. We assert that this equation has an inverse if Q is chosen as either the biased

truncation or RAFZ function, but not if Q is chosen as the truncation function. This assertion is proven by the three

propositions below.

Proposition 8. Consider the equation

y = trunc(α+ x) (4.11)

where x,y ∈ Z and α is a real constant. (This equation is a special case of (4.10) where Q is chosen as the truncation

function.) If α 6∈ Z, the above equation is not invertible (i.e., one cannot always uniquely solve for x in terms of y).

Proof. Since α 6∈ Z, from the definition of the floor function, we have

0 < α−⌊α⌋ < 1 which implies −1 < α−⌊α⌋−1 < 0.

The preceding two relationships imply, respectively, that trunc(α− ⌊α⌋) = 0 and trunc(α−⌊α⌋− 1) = 0. Thus, for

any α 6∈ Z, we have that trunc(α+ x) = 0 for both x = −⌊α⌋ and x = −⌊α⌋−1. Since two distinct values for x both

yield the same value for y, (4.11) cannot be invertible.

In passing, we note that, obviously, (4.11) is invertible if α ∈ Z. In this case, (4.11) is simply equivalent to

y = α+ x, which is trivially invertible.

Proposition 9. Consider the equation

y = btrunc(α+ x) (4.12)

where x,y ∈ Z and α is a real constant. (This equation is a special case of (4.10) where Q is chosen as the biased

truncation function.) For any choice of α, the above equation is invertible (i.e., one can always uniquely solve for x in

terms of y). Moreover, the inverse is given by

x =

{

y−α− 1
2

sgny if α is an odd integer multiple of 1
2

y−bfloorα otherwise.
(4.13)
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Proof. Let us begin by considering the case that α is an odd integer multiple of 1
2
. From the definition of the btrunc

function in (2.7), we can rewrite (4.12) as

y = btrunc(α+ x)

=

{

⌊

α+ x+ 1
2

⌋

for α+ x ≥ 0
⌈

α+ x− 1
2

⌉

for α+ x < 0.
(4.14)

Since α is an odd integer multiple of 1
2
, we know that α + x + 1

2
and α + x− 1

2
are both integers. Thus, we can

simplify (4.14) as follows:

y =

{

α+ x+ 1
2

for α+ x ≥ 0

α+ x− 1
2

for α+ x < 0

= α+ x+ 1
2

sgn(α+ x).

From (4.12), we can deduce that sgn(α + x) = sgny, since sgnbtrunc(α + x) = sgn(α + x) if |α+ x| ≥ 1
2

which must

be the case here. Consequently, we can solve for x in terms of y in the above equation to obtain

x = y−α− 1
2

sgny.

Thus, we have proven (4.13) to be correct in the case that α is an odd integer multiple of 1
2
.

Now let us consider the case that α is not an odd integer multiple of 1
2
. Using (2.7) and Proposition 3 (in Sec-

tion 3.2.2), we can simplify (4.12) as follows:

y = btrunc(α+ x)

= bfloor(α+ x)

= x+bfloorα.

Solving for x in terms of y in the preceding equation, we obtain

x = y−bfloorα.

Thus, we have proven (4.13) to be correct in the case that α is not an odd integer multiple of 1
2
, completing the

proof.

Proposition 10. Consider the equation

y = rafz(α+ x) (4.15)

where x,y ∈ Z and α is a real constant. (This equation is a special case of (4.10) where Q is chosen as the RAFZ

function.) For any choice of α, the above equation is invertible (i.e., one can always uniquely solve for x in terms of

y). Moreover, the inverse is given by

x =

{

⌊y−α⌋ for y ≥ 0

⌈y−α⌉ for y < 0.
(4.16)

Proof. Using the definition of the RAFZ function in (2.8), we can rewrite (4.15) as follows:

y = rafz(x+α)

=

{

⌈x+α⌉ for x+α ≥ 0

⌊x+α⌋ for x+α < 0

=

{

x+ ⌈α⌉ for x+α ≥ 0

x+ ⌊α⌋ for x+α < 0.

Solving for x in the above equation, we obtain

x =

{

y−⌈α⌉ for x+α ≥ 0

y−⌊α⌋ for x+α < 0.
(4.17)
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Figure 4.14: Linear version of the base analysis filter bank

for the new ELASF-like family of transforms.
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x[n]

Â1(z)−
1
2

y1[n]

y0[n]

Figure 4.15: Modified base analysis filter bank for the new

ELASF-like family of transforms.

From the definition of the RAFZ function, however, we know that sgn(rafzα) = sgnα for all α ∈ R (i.e., the RAFZ

function preserves signedness). Consequently, we have that sgn(x+α) = sgny. Using this fact and algebraic manipu-

lation, we can rewrite (4.17) as follows:

x =

{

y−⌈α⌉ for y ≥ 0

y−⌊α⌋ for y < 0

=

{

⌊y−α⌋ for y ≥ 0

⌈y−α⌉ for y < 0.

Thus, we have solved for x in terms of y and α, proving the correctness of (4.16).

From the above propositions, we consequently have that the the network in Figure 4.11 can be inverted if Q is

chosen as the biased truncation or RAFZ function, but not if Q is chosen as the truncation function. We can exploit this

knowledge in order to gain increased flexibility in the construction of symmetry-preserving reversible ITI transforms.

For example, consider the linear-phase analysis filter bank shown in Figure 4.14, where Â1(z) is of the form given

in (4.2b). Due to the linear-phase property of the analysis filters, this linear filter bank is symmetry preserving. In

particular, one can show that if x[n] is generated using (4.6), then y0[n] is symmetric and y1[n] is antisymmetric. We

can, therefore, obtain a symmetry-preserving ITI version of this filter bank by simply rounding the output of the

highpass subband signal (to an integer value). In so doing, we obtain the new structure shown in Figure 4.15, where

Q is a rounding operator. Since we would like to preserve antisymmetry in the highpass subband output, we must

choose Q to be odd. This has the implication, however, that Q cannot be integer-bias invariant. Consequently, unlike

in the case of the ELASF base filter bank of Figure 4.11 (considered earlier in this section), we cannot simply move

the rounding unit before the adder. We know from our previous results, however, that if Q is chosen as either the

biased truncation or RAFZ function, the resulting filter bank (in Figure 4.15) must be reversible. Furthermore, in

each case, the corresponding inverse filter bank can be easily deduced by using the results of Propositions 9 and 10

above. Thus, we have, in effect, constructed a new symmetry-preserving base filter bank, similar to the one used in

the ELASF family. Moreover, the newly proposed reversible structures may be useful for the construction of more

general symmetry-preserving reversible ITI transforms.

Summary

In summary, this section first examined the symmetry-preservation properties of the ELASF base filter bank. This, in

turn, led us to consider the properties of a slightly different base filter bank. By studying this new filter bank, we were

able to propose some new reversible ITI structures that are useful for constructing symmetry-preserving transforms.

4.3.4 OLASF Family

One can show that any PR (i.e., perfect-reconstruction) linear-phase FIR 1D two-channel filter bank with odd-length

analysis/synthesis filters has a corresponding OLASF parameterization, provided that the analysis and synthesis filters

are normalized appropriately (via a scaling and shift of their impulse responses). For example, the lowpass and high-

pass analysis filters must be normalized such that they have impulse responses centered about 0 and −1, respectively.

The proof is constructive by a matrix Euclidean algorithm (e.g., by using an algorithm based on that described in [49]).
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4.3.5 ELASF Family

Only a subset of all PR linear-phase FIR 1D two-channel filter banks with even-length analysis/synthesis filters have

corresponding ELASF parameterizations. Moreover, this subset is quite small, as there are many such filter banks that

cannot be realized in this way. In what follows, we examine some of the characteristics of transforms in the ELASF

family, and in so doing, demonstrate some of the reasons for the incompleteness of this parameterization.

4.3.5.1 Transform Properties

Consider the linear version of a filter bank of the form shown in Figure 4.6(a) that is constrained to be of the ELASF

type as defined by (4.2). (By “linear version”, we mean the filter bank obtained by simply setting all of the {Qk}2λ−1
k=0

equal to the identity.) This filter bank can be represented in canonical form as shown in Figure 4.9. Let us denote

the corresponding lowpass and highpass analysis filter transfer functions as H0(z) and H1(z), respectively. Further, we

define the transfer matrix for part of the polyphase filtering network as follows:

P (z)
△
=
[

P0,0(z) P0,1(z)

P1,0(z) P1,1(z)

]

(4.18)

=

(

λ−1

∏
k=1

[

1 Â2k+1(z)
0 1

][

1 0
Â2k(z) 1

]

)

[

1 Â1(z)
0 1

]

.

Using noble identities and straightforward algebraic manipulation, we can show

[

H0(z)
H1(z)

]

= P (z2)
[

1
1
2

0 1

]

[

1 0
−1 1

][

1
z

]

= P (z2)
[

1
2
(z+1)

z−1

]

.

For convenience, can rewrite the preceding equation as follows:

H0(z) = 1
2
(z+1)P0,0(z

2)+(z−1)P0,1(z
2) and (4.19a)

H1(z) =(z−1)P1,1(z
2)+ 1

2
(z+1)P1,0(z

2). (4.19b)

A detailed analysis of (4.18) reveals that P (z) has the following important properties:

1. P0,0(z) and P1,1(z) both have coefficient sequences that are symmetric about 0;

2. P0,1(z) and P1,0(z) both have coefficient sequences that are antisymmetric about 0;

3. For i = 0,1 and j = 0,1, degPi, j(z) is even, except when Pi, j(z) ≡ 0; degP0,0(z) ≥ 0 and degP1,1(z) ≥ 0.

4. If at least one of the {Âk(z)} is not identically zero, we have that either: degP0,0(z)> degP0,1(z) and degP1,0(z)>
degP1,1(z); or degP0,0(z) < degP0,1(z) and degP1,0(z) < degP1,1(z);

5. degP0,0(z) 6= degP0,1(z), degP1,0(z) 6= degP1,1(z), degP0,0(z) 6= degP1,0(z), and degP0,1(z) 6= degP1,1(z);

6. P0,0(1) = 1 and P1,1(1) = 1.

The above properties can be easily deduced from Propositions 11 and 12 given below.

Proposition 11. Suppose that we have a product of the form

P (N)(z)
△
=

[

P
(N)
0,0 (z) P

(N)
0,1 (z)

P
(N)
1,0 (z) P

(N)
1,1 (z)

]

= ∏N−1
i=0 Ai(z) (4.20)

where N ≥ 0,

Ai(z) =







[

1 Ai(z)
0 1

]

for even i
[

1 0
Ai(z) 1

]

for odd i,
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Ai(z) 6≡ 0, and Z−1Ai(z) is antisymmetric about 0, for i = 0,1, . . . ,N −1. Then, P (N)(z) must be such that

Z−1P
(N)
0,0 (z) and Z−1P

(N)
1,1 (z) are symmetric about 0; (4.21a)

Z−1P
(N)
0,1 (z) and Z−1P

(N)
1,0 (z) are antisymmetric about 0; (4.21b)

for N 6= 0: degP
(N)
0,0 (z) < degP

(N)
0,1 (z), degP

(N)
1,0 (z) < degP

(N)
1,1 (z); (4.21c)

for even N, N 6= 0: degP
(N)
0,0 (z) < degP

(N)
1,0 (z), degP

(N)
0,1 (z) < degP

(N)
1,1 (z); (4.21d)

for odd N: degP
(N)
0,0 (z) > degP

(N)
1,0 (z), degP

(N)
0,1 (z) > degP

(N)
1,1 (z); (4.21e)

P
(N)
0,0 (1) = 1, P

(N)
1,1 (1) = 1. (4.22)

Proof. The first part of the proof is by induction on N. First, consider the cases of N = 0,1,2. For these three cases,

respectively, P (N)(z) is given by
[

1 0
0 1

]

,
[

1 A0(z)
0 1

]

, and
[

1 A0(z)
A1(z) 1+A0(z)A1(z)

]

. (4.23)

In the first two of the above three cases, we can easily confirm that (4.21) is satisfied. In the third case, (4.21) can

also be shown to hold by using reasoning similar to that which follows. In the interest of brevity, however, we will not

explicitly demonstrate this here.

To complete the inductive process, we must now show that if (4.21) holds for N = K then (4.21) also holds for

N = K +1. Thus, we begin by assuming that (4.21) is satisfied for N = K. From (4.20), we can write

P (K+1)(z)
△
=

[

P
(K+1)
0,0 (z) P

(K+1)
0,1 (z)

P
(K+1)
1,0 (z) P

(K+1)
1,1 (z)

]

= AK(z)P (K)(z)

=















[

1 AK(z)
0 1

]

[

P
(K)
0,0 (z) P

(K)
0,1 (z)

P
(K)
1,0 (z) P

(K)
1,1 (z)

]

for even K

[

1 0
AK(z) 1

]

[

P
(K)
0,0 (z) P

(K)
0,1 (z)

P
(K)
1,0 (z) P

(K)
1,1 (z)

]

for odd K

=















[

P
(K)
0,0 (z)+AK(z)P

(K)
1,0 (z) P

(K)
0,1 (z)+AK(z)P

(K)
1,1 (z)

P
(K)
1,0 (z) P

(K)
1,1 (z)

]

for even K

[

P
(K)
0,0 (z) P

(K)
0,1 (z)

P
(K)
1,0 (z)+AK(z)P

(K)
0,0 (z) P

(K)
1,1 (z)+AK(z)P

(K)
0,1 (z)

]

for odd K.

Thus, the expression for P (K+1)(z) can have one of two forms depending on the parity (i.e., evenness/oddness) of K.

Consider (4.21a). First, suppose that K is even. Since P
(K)
0,0 (z) and AK(z)P

(K)
1,0 (z) both have a coefficient sequence

that is symmetric about 0, their sum P
(K+1)
0,0 (z) must also have a coefficient sequence with the same symmetry. Thus,

by observing P
(K+1)
1,1 (z) = P

(K)
1,1 (z), we have proven that (4.21a) holds for N = K + 1 when K is even. In a similar

manner, we can also show that (4.21a) holds for N = K +1 when K is odd.

Consider (4.21b). First, suppose that K is even. Since P
(K)
0,1 (z) and AK(z)P

(K)
1,1 (z) both have a coefficient sequence

that is antisymmetric about 0, their sum P
(K+1)
0,1 (z) must also have a coefficient sequence with the same symmetry.

Thus, by noting P
(K+1)
1,0 (z) = P

(K)
1,0 (z), we have proven that (4.21b) holds for N = K +1 when K is even. Using similar

reasoning, we can also show that (4.21b) holds for N = K +1 when K is odd.

Consider now (4.21c) to (4.21e) when K is even. Since P
(K)
0,0 (z) and AK(z)P

(K)
1,0 (z) both have a coefficient sequence

centered about 0 and degP
(K)
0,0 (z) < degP

(K)
1,0 (z), the terms with the lowest and highest powers of z in P

(K+1)
0,0 (z) are

contributed exclusively by AK(z)P
(K)
1,0 (z). Consequently, we have

degP
(K+1)
0,0 (z) = degAK(z)P

(K)
1,0 (z) = degAK(z)+degP

(K+1)
1,0 (z). (4.24)

Since P
(K)
0,1 (z) and AK(z)P

(K)
1,1 (z) both have a coefficient sequence centered about 0 and degP

(K)
0,1 (z) < degP

(K)
1,1 (z), the

terms with the lowest and highest powers of z in P
(K+1)
0,1 (z) are contributed exclusively by AK(z)P

(K)
1,1 (z). Consequently,
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we have

degP
(K+1)
0,1 (z) = degAK(z)P

(K)
1,1 (z) = degAK(z)+degP

(K+1)
1,1 (z). (4.25)

From (4.24) and (4.25), we have degP
(K+1)
0,0 (z)− degP

(K+1)
0,1 (z) = degP

(K+1)
1,0 (z)− degP

(K+1)
1,1 (z). This, however, im-

plies that (4.21c) holds for N = K + 1 when K is even. From (4.24), since degAK(z) > 0, we have degP
(K+1)
0,0 (z) >

degP
(K+1)
1,0 (z), proving that the first part of (4.21e) holds for N = K +1 when K is even. From (4.25), since degAK(z) >

0, we have degP
(K+1)
0,1 (z) > degP

(K+1)
1,1 (z), proving that the second part of (4.21e) holds for N = K +1 when K is even.

Consider now (4.21c) to (4.21e) when K is odd. Since P
(K)
1,0 (z) and AK(z)P

(K)
0,0 (z) both have a coefficient sequence

centered about 0 and degP
(K)
0,0 (z) > degP

(K)
1,0 (z), the terms with the lowest and highest powers of z in P

(K+1)
1,0 (z) are

contributed exclusively by AK(z)P
(K)
0,0 (z). Consequently, we have

degP
(K+1)
1,0 (z) = degAK(z)P

(K)
0,0 (z) = degAK(z)+degP

(K+1)
0,0 (z). (4.26)

Since P
(K)
1,1 (z) and AK(z)P

(K)
0,1 (z) both have a coefficient sequence centered about 0 and degP

(K)
0,1 (z) > degP

(K)
1,1 (z), the

terms with the lowest and highest powers of z in P
(K+1)
1,1 (z) are contributed exclusively by AK(z)P

(K)
0,1 (z). Consequently,

we have

degP
(K+1)
1,1 (z) = degAK(z)P

(K)
0,1 (z) = degAK(z)+degP

(K+1)
0,1 (z). (4.27)

From (4.26) and (4.27), we have degP
(K+1)
1,0 (z)− degP

(K+1)
1,1 (z) = degP

(K)
0,0 (z)− degP

(K)
0,1 (z). This, however, implies

that (4.21c) holds for N = K + 1 when K is odd. From (4.26), since degAK(z) > 0, we have degP
(K+1)
0,0 (z) <

degP
(K+1)
1,0 (z), proving that the first part of (4.21d) holds for N = K +1 when K is odd. From (4.27), since degAK(z) >

0, we have degP
(K+1)
0,1 (z) < degP

(K+1)
1,1 (z), proving that the second part of (4.21d) holds for N = K +1 when K is odd.

From above, we have shown that if (4.21) holds for N = K, then it also holds for N = K + 1. This completes the

inductive part of the proof.

Since, for i = 0,1, . . . ,N −1, Z−1Ai(z) is antisymmetric, Ai(1) = 0 and Ai(1) = I . Thus, P (N)(1) = IN = I , and

this implies that P
(N)
0,0 (1) = 1 and P

(N)
1,1 (1) = 1. Thus, we have that (4.22) holds for any N.

In passing, we note that conditions (4.21a) and (4.21b) together imply that for i = 0,1, j = 0,1, degP
(N)
i, j (z) must

be even, unless P
(N)
i, j (z) ≡ 0.

Proposition 12. Suppose that we have a product of the form

P (N)(z)
△
=

[

P
(N)
0,0 (z) P

(N)
0,1 (z)

P
(N)
1,0 (z) P

(N)
1,1 (z)

]

= ∏N−1
i=0 Ai(z) (4.28)

where N ≥ 0,

Ai(z) =







[

1 0
Ai(z) 1

]

for even i
[

1 Ai(z)
0 1

]

for odd i,

Ai(z) 6≡ 0, and Z−1Ai(z) is antisymmetric about 0, for i = 0,1, . . . ,N −1. Then, P (N)(z) must be such that

Z−1P
(N)
0,0 (z) and Z−1P

(N)
1,1 (z) are symmetric about 0; (4.29a)

Z−1P
(N)
0,1 (z) and Z−1P

(N)
1,0 (z) are antisymmetric about 0; (4.29b)

for N 6= 0: degP
(N)
0,0 (z) > degP

(N)
0,1 (z), degP

(N)
1,0 (z) > degP

(N)
1,1 (z); (4.29c)

for even N, N 6= 0: degP
(N)
0,0 (z) > degP

(N)
1,0 (z), degP

(N)
0,1 (z) > degP

(N)
1,1 (z); (4.29d)

for odd N: degP
(N)
0,0 (z) < degP

(N)
1,0 (z), degP

(N)
0,1 (z) < degP

(N)
1,1 (z); and (4.29e)

P
(N)
0,0 (1) = 1, P

(N)
1,1 (1) = 1. (4.29f)
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Proof. We begin by rewriting (4.28) as

P (N)(z) = J
(

∏N−1
i=0 Âi(z)

)

J (4.30)

where

Âi(z) =







[

1 Ai(z)
0 1

]

for even i
[

1 0
Ai(z) 1

]

for odd i.

From (4.30), we can write

P̂ (z)
△
=
[

P̂0,0(z) P̂0,1(z)

P̂1,0(z) P̂1,1(z)

]

= ∏N−1
i=0 Âi(z) (4.31)

where

P̂ (z) = JP (N)(z)J . (4.32)

From (4.32), we have that P̂ (z) and P (N)(z) are related as follows:

P
(N)
0,0 (z) = P̂1,1(z), P

(N)
0,1 (z) = P̂1,0(z), (4.33)

P
(N)
1,0 (z) = P̂0,1(z), and P

(N)
1,1 (z) = P̂0,0(z).

We now observe that the product in (4.31) is of the same form considered in Proposition 11. Consequently, we can

easily show, by using Proposition 11 and (4.33), that (4.29) holds.

In what follows, the above properties will be used to study various characteristics of the analysis filters such as the

form of their transfer functions, their lengths, and their DC and Nyquist gains. These characteristics will also be used

to explain the reasons for the incompleteness of the ELASF parameterization.

4.3.5.2 Lowpass Analysis Filter Transfer Function

For convenience, let us denote the first and second terms in the expression for H0(z) in (4.19a) as B(z) and C(z),

respectively. That is, we define B(z)
△
= 1

2
(z+1)P0,0(z

2) and C(z)
△
= (z−1)P0,1(z

2). Due to the form of P0,0(z
2) (which

is implied by property 1 of P (z)), B(z) has a coefficient sequence b[n] that is symmetric about − 1
2

with adjacent pairs

of samples being equal in value (i.e., b[2n] = b[2n− 1]). Likewise, due to the form of P0,1(z
2) (which is implied by

property 2 of P (z)), C(z) has a coefficient sequence c[n] that is symmetric about − 1
2

with adjacent pairs of samples

being equal in magnitude but opposite in sign (i.e., c[2n] = −c[2n−1]). Suppose that P0,1(z) 6≡ 0. In this case, from

properties 3 and 5 of P (z), we know that degP0,0(z
2) and degP0,1(z

2) must differ by a nonzero integer multiple of 4.

Since H0(z) = B(z)+C(z), H0(z) must have a coefficient sequence that is symmetric about − 1
2

and begins and ends

with pairs of coefficients that are either equal or equal in magnitude but opposite in sign. In the degenerate case, in

which P0,1(z) ≡ 0, we simply have H0(z) = 1
2
(z + 1). By considering the degrees of B(z) and C(z), we can also see

that

degH0(z) = 1+2max(degP0,0(z),degP0,1(z)). (4.34)

Since, by property 3 of P (z), degP0,0(z) is always even and degP0,1(z) is even (except when P0,1(z)≡ 0), we have that

degH0(z) is odd. Thus, as had been suggested earlier, H0 is an even-length filter.

4.3.5.3 Highpass Analysis Filter Transfer Function

For convenience, let us denote the first and second terms in the expression for H1(z) in (4.19b) as B(z) and C(z),

respectively. That is, we define B(z)
△
= (z−1)P1,1(z

2) and C(z)
△
= 1

2
(z+1)P1,0(z

2). Due to the form of P1,1(z
2) (which

is implied by property 1 of P (z)), B(z) has a coefficient sequence b[n] that is antisymmetric about − 1
2

with adjacent

pairs of samples being equal in magnitude but opposite in sign (i.e., b[2n] = −b[2n− 1]). Likewise, due to the form

of P1,0(z
2) (which is implied by property 2 of P (z)), C(z) has a coefficient sequence c[n] that is antisymmetric about

− 1
2

with adjacent pairs of samples being equal (i.e., c[2n] = c[2n− 1]). Suppose that P1,0(z) 6≡ 0. In this case, from

properties 3 and 5 of P (z), we know that degP1,1(z
2) and degP1,0(z

2) must differ by a nonzero integer multiple of

4. Since H1(z) = B(z)+C(z), H1(z) must have a coefficient sequence that is antisymmetric about − 1
2

and begins and



Chapter 4. Nonexpansive Reversible ITI Wavelet Transforms 78

ends with pairs of coefficients that are either equal or equal in magnitude but opposite in sign. In the degenerate case,

in which P1,0(z) ≡ 0, we simply have H1(z) = z−1. By examining the degrees of B(z) and C(z), we can see that

degH1(z) = 1+2max(degP1,1(z),degP1,0(z)). (4.35)

Since, by property 3 of P (z), degP1,1(z) is always even and degP1,0(z) is even (except when P1,0(z)≡ 0), we have that

degH1(z) is odd. Thus, as had been suggested earlier, H1 is an even-length filter.

4.3.5.4 Analysis Filter Lengths

The above results are significant as they show that H0(z) and H1(z) both have a highly structured form (i.e., their

coefficient sequences are each the sum of two highly structured sequences). Examining the expression for degH0(z)
and degH1(z), we can make one further observation regarding the analysis filters. That is, except in the degenerate

case in which all of the {Âk(z)}2λ−1
k=1 are identically zero, the analysis filters cannot have the same length. To see why

this is so, we proceed as below.

Since, by assumption, at least one of the {Âk(z)}2λ−1
k=1 is not identically zero, property 4 of P (z) implies that

two cases are possible: 1) degP0,0(z) > degP0,1(z) and degP1,0(z) > degP1,1(z); or 2) degP0,0(z) < degP0,1(z) and

degP1,0(z) < degP1,1(z). In the first case, we have from (4.34) and (4.35) that degH0(z) = 1 + 2degP0,0(z) and

degH1(z) = 1 + 2degP1,0(z). From property 5 of P(z), however, we know that degP0,0(z) 6= degP1,0(z). Therefore,

degH0(z) 6= degH1(z). In the second case, we have from (4.34) and (4.35) that degH0(z) = 1 + 2degP0,1(z) and

degH1(z) = 1 + 2degP1,1(z). From property 5 of P (z), however, we know that degP0,1(z) 6= degP1,1(z). Therefore,

degH0(z) 6= degH1(z). By combining the results for the above two cases, we have that degH0(z) 6= degH1(z), except

in the degenerate case in which all of the {Âk(z)}2λ−1
k=1 are identically zero. Consequently, the analysis filters cannot

have the same lengths, except in this degenerate case.

4.3.5.5 Incompleteness of Parameterization

In order to belong to the ELASF family, a transform must have analysis filters of the form described above. Obviously,

the close relationship between pairs of samples in the analysis filter impulse responses is quite constraining. For this

reason, the ELASF family cannot be a complete parameterization of all PR linear-phase FIR 1D two-channel filter

banks with even-length filters. Furthermore, an even more basic reason exists for this lack of completeness. As noted

above, the analysis filters cannot be of equal length, except in the degenerate case in which all of the {Âk(z)}2λ−1
k=1 are

identically zero.

4.3.5.6 Analysis Filter Gains

Consider now the DC and Nyquist gains of the analysis filters, H0 and H1. From property 2 of P (z), we know that

P0,1(z) and P1,0(z) both have antisymmetric coefficient sequences, and consequently,

P0,1(z
2)|z=±1 = 0 and P1,0(z

2)|z=±1 = 0. (4.36)

From property 6 of P (z), we have that P0,0(1) = 1 and P1,1(1) = 1, and consequently,

P0,0(z
2)|z=±1 = 1 and P1,1(z

2)|z=±1 = 1. (4.37)

Using (4.36) and (4.37), we can deduce from (4.19) that

H0(1) = 1, H0(−1) = 0, H1(−1) = −2, and H1(1) = 0.

Thus, for any transform in the ELASF family, the associated lowpass analysis filter must have DC and Nyquist gains

of 1 and 0, respectively, while the associated highpass analysis filter must have Nyquist and DC gains of 2 and 0,

respectively. This result is of practical interest, since it is often desirable for a reversible ITI wavelet transform to have

a corresponding lowpass analysis filter with a DC gain of 1 (which typically results in a transform with good dynamic

range properties).
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4.3.5.7 Swapping Analysis and Synthesis Filters

Consider a filter bank of the form in Figure 4.6 that is constrained to be of the ELASF type as defined by (4.2). The

linear version of this filter bank has the canonical form shown in Figure 4.9(a) with the corresponding inverse shown

in Figure 4.9(b). Let us denote the analysis filter transfer functions as H0(z) and H1(z) and the corresponding synthesis

filter transfer functions as F0(z) and F1(z). Suppose now that we swap the analysis and synthesis filters, allowing the

filters to be renormalized in the process. We will show below that this renormalization can always be performed in

such a way that the resulting filter bank also belongs to the ELASF family. To date, this fact seems to have been

overlooked (e.g., as in [32]).

From the diagram, we can see that the analysis polyphase matrix, E(z), is given by

E(z) =
(

∏λ−1
k=1

[

1 Â2k+1(z)
0 1

][

1 0
Â2k(z) 1

])[

1 Â1(z)
0 1

]

(4.38)

[

1
1
2

0 1

]

[

1 0
−1 1

]

.

Suppose that we now construct a new filter bank with the analysis filters H ′
0(z) and H ′

1(z) where H ′
0(z) = α0zF0(z)

and H ′
1(z) = α1zF1(z). In other words, the new analysis filters are chosen to be renormalized versions of the synthesis

filters from the original filter bank. Further assume that we continue to employ the same polyphase representation for

the new filter bank. Let us denote the new analysis polyphase matrix as E ′(z). From the definition of the polyphase

representation, we can show

E′(z) =
[

α0 0
0 α1

]

(

E−1(z)
)T

J . (4.39)

Substituting (4.38) in (4.39), we obtain

E′(z) =
[

α0 0
0 α1

](

∏λ−1
k=1

[

1 0
−Â2k+1(z) 1

][

1 −Â2k(z)
0 1

])

(4.40)

[

1 0
−Â1(z) 1

][

1 0

−
1
2

1

]

[

1 1
0 1

]

J .

Suppose now that we choose α0 = 1
2

and α1 = −2. In this case, we can rewrite (4.40) as follows:

E′(z) =
[

1
2

0

0 −2

](

∏λ−1
k=1

[

1 0
−Â2k+1(z) 1

][

1 −Â2k(z)
0 1

])

[

1 0
−Â1(z) 1

][

1 0

−
1
2

1

]

[

1 1
0 1

]

J

=
[

1
2

0

0 −2

](

∏λ−1
k=1

[

1 0
−Â2k+1(z) 1

][

1 −Â2k(z)
0 1

])

[

1 0
−Â1(z) 1

][

2 0

0 −
1
2

][

1
1
2

0 1

]

[

1 0
−1 1

]

=
(

∏λ−1
k=1

[

1 0
4Â2k+1(z) 1

][

1
1
4

Â2k(z)

0 1

])[

1 0
4Â1(z) 1

]

[

1
1
2

0 1

]

[

1 0
−1 1

]

.

Thus, the new analysis polyphase matrix, E ′(z), (corresponding to the swapped filter bank) has the same general

form as the original one, E(z). In other words, the new filter bank also has a symmetry-preserving reversible ITI

implementation (which belongs to the ELASF family). The above result is practically useful, since, in some cases, the

“transposed” filter bank (i.e., the one with the analysis and synthesis filters swapped) may also be effective for coding

purposes.

4.3.6 Relationship Between Symmetric Extension and Per-Displace-Step Extension

Consider again a system of the form shown in Figure 4.6. In Section 4.3.2, we carefully examined the symmetry prop-

erties of the signals {uk[n]}2λ−1
k=0 , {vk[n]}2λ−2

k=0 , y0[n], and y1[n]. In the OLASF case, all of these signals are symmetric,

while in the ELASF case, all of these signals are symmetric/antisymmetric, except u0[n], u1[n], and v0[n]. Since these

signals are symmetric/antisymmetric, we can equivalently define symmetric extension in terms of PDS extension (in-

troduced in Section 4.2.3) in which case the input to each lifting step filter is extended by symmetric extension (with

the appropriate choice of symmetry type and centers).
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Suppose that we have a filter bank of the form shown in Figure 4.6 that is constrained to be of the OLASF type as

defined by (4.1) with Lk ≤ 2 for k = 0,1, . . . ,2λ−1. In this case, we assert that symmetric extension (with K = 0) is

equivalent to constant PDS extension (where the lifting step filter input is extended to the left by repeating its leftmost

sample and to the right by repeating its rightmost sample). In the case of both symmetric extension and constant

PDS extension, the signals {uk[n]}2λ−1
k=0 and y0[n] are completely characterized by their samples at indices n = 0,1, . . . ,

⌊

N−1
2

⌋

and the signals {vk[n]}2λ−2
k=0 and y1[n] are completely characterized by their samples at indices n = 0,1, . . . ,

⌊

N−2
2

⌋

. Furthermore, both extension methods yield the same u0[n] and v0[n] for n over their characteristic sample

indices.

Consider the lifting steps involving the filters {Ak} for even k. When filtering with the filter Ak, uk[n] only ever

requires right extension by one sample (if at all) in order to obtain the value for uk[
⌊

N+1
2

⌋

]. Suppose first that N is

even. In the case of symmetric extension, the symmetry center of uk[n] at N−1
2

is an odd multiple of 1
2
, so the sample

obtained by extension is equal to uk[
N−2

2
]. This, however, is the same result obtained by constant PDS extension.

Finally, if N is odd, one less sample needs to be computed for vk+1[n] than uk[n], and uk[n] need not be extended at all.

Thus, symmetric extension is equivalent to constant PDS extension for the lifting steps involving the filters {Ak} for

even k.

Consider the lifting steps involving the filters {Ak} for odd k. When filtering with the filter Ak, vk[n] always

requires left extension by one sample in order to obtain the value for vk[−1]. In the case of symmetric extension, since

a symmetry center of vk[n] is − 1
2
, the sample obtained by extension is equal to vk[0]. Clearly, this is the same result

obtained by constant PDS extension. If N is odd, vk[n] must also be right extended by one sample in order to obtain the

value for vk[
N−1

2
] (since one fewer sample is associated with vk[n] than uk+1[n]). In the case of symmetric extension,

the symmetry center N−2
2

is an odd multiple of 1
2
, so the sample obtained by extension is equal to vk[

N−3
2

]. Again, this

is the same result that is obtained from constant PDS extension. Thus, symmetric extension is equivalent to constant

PDS extension for the lifting steps involving the filters {Ak} for odd k.

Combining the above results for both sets of lifting filters, we see that constant PDS extension is equivalent to

symmetric extension for the specific case considered. Since constant PDS extension is typically easier to implement

than symmetric extension, this equivalence is potentially quite useful. For example, both of the filter banks defined

in the JPEG-2000 Part-1 standard (i.e., ISO/IEC 15444-1:2001 [72]) are of the form assumed above. Therefore, one

can exploit the equivalence between symmetric extension and constant PDS extension in order to simplify JPEG-2000

codec implementations. For example, this equivalence has been employed by the JasPer software [14,76] since at least

version 0.044.

4.4 Design of Low-Complexity Symmetry-Preserving Transforms

In the preceding sections, we studied two families of symmetry-preserving transforms. These families are of great

practical value since their constituent transforms can be used in conjunction with symmetric extension in order to han-

dle arbitrary-length signals in a nonexpansive manner. Another important consideration, however, is the computational

complexity of transforms. For this reason, we are also interested in low-complexity transforms in these families. In

what follows, we employ a simple exhaustive search technique to find effective low-complexity transforms from the

two families mentioned above. The transforms obtained are then employed in an image coding system to demonstrate

their effectiveness.

4.4.1 Transforms

To begin, we recall the form of the OLASF and ELASF families of symmetry-preserving transforms introduced earlier.

These families are associated with a UMD filter bank having the general structure shown in Figure 4.6. In the OLASF

and ELASF cases, the various transform parameters are chosen as specified by (4.1) and (4.2), respectively. If we

neglect the effects of the rounding operations {Qk}, we obtain the linear system shown in Figure 4.9. As a matter of

notation, we denote the lowpass and highpass analysis filter transfer functions as H0(z) and H1(z), respectively. The

number of ladder steps is denoted as N. The kth ladder step filter has transfer function Ak(z) and length Lk.
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4.4.2 Design Method

To date, many criteria have been suggested for UMD filter bank design. For image coding applications, however, the

following criteria have proven to be particularly useful: coding gain, analysis filter frequency selectivity, the number

of vanishing moments of the analyzing and synthesizing wavelet functions, and the smoothness of the synthesizing

scaling and wavelet functions. Moreover, experimental results suggest that UMD filter banks which are effective for

image coding generally satisfy the following conditions:

|H0(e
j0)| 6= 0 and |H0(e

jπ)| = 0,

|H1(e
jπ)| 6= 0 and |H1(e

j0)| = 0,
(4.41a)

η̃ ≥ 2 or η ≥ 2, (4.41b)

SH0
≤ 0.25 and SH1

≤ 0.25 (4.41c)

G6 ≥ 9 (4.41d)

where

SH0
=

∫ 3π/8

0

(

|H0(e
jω)|− |H0(e

j0)|
)2

dω+
∫ π

5π/8
|H0(e

jω)|2dω, (4.42a)

SH1
=

∫ 3π/8

0
|H1(e

jω)|2dω+
∫ π

5π/8

(

|H1(e
jω)|− |H1(e

jπ)|
)2

dω, (4.42b)

G6 is the coding gain of the sixfold iterated UMD filter bank (i.e., the coding gain associated with a 6-level wavelet

decomposition), and η̃ and η are the number of vanishing moments of the analyzing and synthesizing wavelet func-

tions, respectively. The above conditions lead us to propose a simple design algorithm based on an exhaustive search

as described below.

Suppose that we choose a small finite set of admissible values for the coefficients of the filters {Ak}. Given the

type of ladder network and its associated parameters, namely the number of ladder steps N, and the filter lengths {Lk},

we can perform an exhaustive search of the solution space, seeking UMD filter banks which satisfy the conditions

given by (4.41). Any UMD filter bank satisfying these conditions can be taken as an output of the design process.

Clearly, the above design technique has one severe limitation. The size of the solution space must be kept small

enough that an exhaustive search is feasible. Hence, we can only use such an approach for small design problems. For

our purposes here, however, this limitation is not a serious one. Since we are interested in low-complexity transforms,

we wish to keep the number of ladder step filters and their lengths to a minimum. Provided that the number of

admissible filter coefficient values is also kept small enough, the resulting design problem is computationally tractable.

4.4.3 Design Examples

Our design method was applied to several filter bank configurations. The filter coefficient values were selected to be

either powers of two or dyadic rational numbers. Numerous transforms were obtained. Several of the more promising

new solutions are listed in Table 4.1. Of these, the 5/11-A and 13/7-A transforms belong to the OLASF family, while

the 6/14-A transform belongs to the ELASF family. Note that the 5/11-A and 6/14-A transforms have strictly power-

of-two filter coefficients. A number of important parameters for the various transforms are listed in Table 4.2. As can

be seen from the table, these transforms have both high coding gain and good frequency selectivity. In addition to the

new transforms obtained, our design method also found many of the more performant transforms already described in

the literature, including the 5/3, 5/11-C, 9/7-M, 13/7-T, 2/6, and 2/10 transforms discussed in Chapter 5 as well as the

6/14-CRF and 13/7-CRF transforms of [27].

4.4.4 Coding Results

To demonstrate the effectiveness of the new transforms, they were employed in the JPEG-2000 image codec (or, more

precisely, version 0.0 of the JPEG-2000 verification model software) [112]. Two grayscale images from the JPEG-2000
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Table 4.1: Transforms

5/11-A







A0(z) = 1
2
(−z−1)

A1(z) = 1
4
(1+ z−1)

A2(z) = 1
32

(z2 − z−1+ z−1)

6/14-A







A0(z) = −1

A1(z) = 1
32

(−z+16+1)

A2(z) = 1
32

(z2 − z+ z−1 − z−2)

13/7-A

{

A0(z) = 1
32

(3z2 −19z1 −19+3z−1)

A1(z) = 1
32

(−z+5+5z−1 − z−2)

Table 4.2: Transform parameters

Transform η̃ η G6 SH0
SH1

5/11-A 2 2 9.603 0.165 0.131

6/14-A 3 1 9.713 0.075 0.072

13/7-A 2 2 9.729 0.025 0.034

test set [68] (e.g., gold and finger) were used as input data. The lossy and lossless results for the various transforms

are given in Tables 4.3 and 4.4, respectively. For comparison purposes, we also include the results obtained with the

well-known 5/11-C and 2/10 transforms. Clearly, the new transforms perform quite well for both lossy and lossless

compression. In the case of lossy compression, the subjective image quality obtained with the new transforms is also

good, as demonstrated by the example depicted in Figure 4.16. In Chapter 5, we also present a detailed performance

evaluation of several transforms for image coding purposes, including the 5/11-A transform. As the results of this later

evaluation demonstrate, the 5/11-A is very effective for both lossy and lossless coding.

4.5 Summary

In this chapter, we studied nonexpansive reversible ITI wavelet transforms. We commenced by introducing various

strategies for handling finite-extent signals. Then, we explained how each technique can be used to form nonexpansive

transforms. The advantages and disadvantages of the various schemes were discussed.

Two families of symmetry-preserving reversible ITI wavelet transforms were studied (i.e., the OLASF and ELASF

families). We showed that the transforms from both families are compatible with symmetric extension (as described

in Section 4.3.2), and can be used to handle signals of arbitrary length in a nonexpansive manner. The characteristics

of the two transform families and their constituent transforms were then studied. For the more constrained of the two

families (i.e., the ELASF family), we characterized the transforms belonging to this family. That is, we showed that:

1) such transforms are associated with analysis filters having transfer functions of a highly structured form; 2) the

DC and Nyquist gains of the analysis filters are fixed, independent of the choice of lifting step filters; and 3) if a

particular filter bank is associated with a transform in the ELASF family, then so too is its “transposed” version. By

better understanding the characteristics of this family of transforms, one can hope to better utilize this family in signal

coding applications. During the course of our work, we derived some new reversible structures that are useful for

the construction of symmetry-preserving transforms. For OLASF systems with length-2 lifting filters, we showed

that symmetric extension is equivalent to constant PDS extension. This fact can be exploited in order to reduce the

complexity of JPEG-2000 Part-1 codec implementations.

A simple exhaustive search technique was explored as a means to design low-complexity symmetry-preserving

reversible ITI wavelet transforms for image coding. Several good transforms were obtained. Two of these trans-

forms have strictly power-of-two filter coefficients which is attractive for shift-and-add implementations. As lossy

and lossless compression results demonstrate, these transforms are all particularly effective, often outperforming the

gold
finger
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Table 4.3: Lossy compression results for the (a) finger and (b) gold images

(a)

Bit Rate PSNR (dB)

(bpp) 5/11-A 6/14-A 13/7-A 5/11-C 2/10

0.0625 19.93 20.44 20.31 19.90 20.36

0.125 21.52 21.93 21.90 21.55 21.88

0.250 24.15 24.41 24.64 24.27 24.37

0.500 27.66 27.56 28.27 27.91 27.57

1.000 31.51 31.08 32.06 31.77 31.13

2.000 37.52 36.92 37.91 37.77 36.99

(b)

Bit Rate PSNR (dB)

(bpp) 5/11-A 6/14-A 13/7-A 5/11-C 2/10

0.0625 27.21 27.36 27.33 27.18 27.27

0.125 28.99 29.13 29.12 28.92 29.00

0.250 31.21 31.25 31.26 31.13 31.13

0.500 33.85 33.82 33.85 33.75 33.67

1.000 37.29 37.14 37.16 37.15 36.95

2.000 42.34 42.15 41.85 42.10 42.04

Table 4.4: Lossless compression results

Bit Rate (bpp)

Image 5/11-A 6/14-A 13/7-A 5/11-C 2/10

finger 5.380 5.457 5.305 5.323 5.415

gold 4.467 4.488 4.483 4.472 4.498

finger
gold
finger
gold
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: Part of the gold image. (a) Original. Lossy reconstruction at a bit rate of 0.125 bpp using the (b) 5/11-A,

(c) 6/14-A, (d) 13/7-A, (e) 5/11-C, and (f) 2/10 transforms.

gold


Chapter 4. Nonexpansive Reversible ITI Wavelet Transforms 85

well-known 5/11-C and 2/10 transforms.

The world is a comedy to those who think and a tragedy to those who feel.

—Horace Walpole (1717–1797)
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Chapter 5

Reversible ITI Wavelet Transforms for

Image Coding

If it weren’t for the sadness it wouldn’t be so bad . . . If it were just the rage at my mother’s unchanged

personality and my father’s unchanged silence, then it would be manageable. But my mother per-

sists in making small, desperate, pathetic gestures of love; my father persists in attempting an

understanding silence. It tears me apart. It makes me want to kill somebody or destroy something

while simultaneously committing suicide. The sadness is unbearable, watching my parents try to

contain themselves, try not to do anything wrong or alienate me again. Yet their attempts are so

obvious, clumsy, revealing all the more starkly what they are trying to hide. Their efforts fall short but

are efforts nonetheless, and it makes me feel immensely sad, a sorrow that burns and washes in

the biggest fires and oceans. I want to protect them, throw my arms around them and demonstrate

total, self-sacrificing love. And I know that I can’t because it isn’t there.

—Evelyn Lau, Runaway: Diary of a Street Kid, 1989

Overview

In the context of image coding, a number of reversible ITI wavelet transforms are compared on the basis of their

lossy compression performance, lossless compression performance, and computational complexity. Of the transforms

considered, several were found to perform particularly well, with the best choice for a given application depending on

the relative importance of the preceding criteria. Reversible ITI versions of numerous transforms are also compared

to their conventional (i.e., non-reversible real-to-real) counterparts for lossy compression. At low bit rates, reversible

ITI and conventional versions of transforms were found to often yield results of comparable quality. Factors affecting

the compression performance of reversible ITI wavelet transforms are also presented, supported by both experimental

data and theoretical arguments.

5.1 Introduction

The particular application of reversible ITI wavelet transforms considered in this thesis is image coding. In recent

years, reversible ITI wavelet transforms have become a popular tool for image coding applications. Transforms of

this type are extremely useful for image compression systems requiring efficient handling of lossless coding, minimal

memory usage, or low computational complexity. Furthermore, such transforms are particularly attractive for sup-

porting functionalities such as progressive lossy-to-lossless recovery of images, lossy compression with the lossless

reproduction of a region of interest, and strictly lossy compression with minimal memory usage. Due to their utility,

reversible ITI wavelet transforms have been adopted for use in the JPEG-2000 standard [72, 73, 19].

In this chapter, several reversible ITI wavelet transforms are compared on the basis of their lossy compression

performance, lossless compression performance, and computational complexity. By using the results of such an eval-

uation, not only are we able to build systems with improved compression efficiency, but we can also better understand

the tradeoffs between compression efficiency and computational complexity. Reversible ITI versions of transforms
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Table 5.1: Transforms
Name Description / References

5/3 5/3, (2, 2), [55], equation (4.1) in [40]

2/6 2/6, (3, 1), [142], [148]

SPB S+P Transform with Predictor B, IIR synthesis filters, [114]

9/7-M 9/7, (4, 2), [125], equation (4.2) in [40]

2/10 2/10, (5, 1), [59]

5/11-C 5/11, (4, 2), equation (4.6) in [40]

5/11-A 5/11, (2, 2), [12]

6/14 6/14, (3, 3), [6]

SPC S+P Transform with Predictor C, IIR synthesis filters, [114]

13/7-T 13/7, (4, 4), [125], equation (4.5) in [40]

13/7-C 13/7, (4, 2), [6]

9/7-F 9/7, (4, 4), [24], section 4.4 in [40]

are also compared to their conventional (i.e., non-reversible real-to-real) counterparts for lossy compression. The ob-

jective, in this case, is to quantify any performance degradation associated with the introduction of the reversible and

ITI properties (especially the latter). If these properties do not adversely affect image quality, this would provide a

compelling argument for the use of reversible ITI transforms in strictly lossy compression systems in order to reduce

memory and computational requirements. If, however, compression performance is negatively impacted, it would be

useful to have some quantitative measure of this degradation. Finally, factors affecting the compression performance

of reversible ITI wavelet transforms are discussed, supported by both experimental data and theoretical arguments.

Through the insight such information provides, one can hope to design new and more effective transforms.

The remainder of this chapter is structured as follows. Section 5.2 begins by introducing the reversible ITI wavelet

transforms considered in this study. This is followed, in Section 5.3, by a brief comparison of the various transforms in

terms of their computational complexity and memory requirements. Then, in Section 5.4, the transforms are employed

for both lossy and lossless coding in a state-of-the-art image compression system and the results compared. Of the

transforms considered, several were found to perform particularly well, with the best choice for a given application

depending on the relative importance of lossy compression performance, lossless compression performance, and com-

putational complexity. At low bit rates, reversible ITI and conventional versions of transforms were found to often

yield results of comparable quality. In Section 5.5, the lossy and lossless coding results are analyzed in more detail.

Finally, we summarize our results in Section 5.6. Some of the work presented in this chapter has also been published

in [16, 19, 11, 12, 13, 6, 9, 7, 10, 8].

5.2 Transforms

The reversible ITI wavelet transforms considered in this study are based on the lifting framework [129], or a general-

ization thereof [1, 9], and were constructed using the technique described in [40]. In all, twelve transforms known to

be effective for image coding were evaluated as listed in Table 5.1. All of these transforms are strictly 1D in nature

and based on two-channel UMD filter banks. The SPB and SPC transforms are based on filter banks with FIR analysis

filters and IIR synthesis filters, not all of which have linear phase. All of the other transforms, however, are based on

filter banks with linear-phase FIR filters. In the case of transforms based on FIR filter banks, we use the notation x/y

to indicate that the underlying filter bank has lowpass and highpass analysis filters of lengths x and y, respectively.

The notation (Ñ,N) is also employed to indicate that the analyzing and synthesizing wavelet functions have Ñ and N

vanishing moments, respectively.

Since the transforms under consideration are 1D in nature, images are handled by transforming the rows and

columns in succession. Unlike in the case of conventional (linear) versions of transforms, however, the order in which

rows and columns are transformed is important. That is, the inverse transform must operate on rows and columns in

the reverse order from that used in the forward transform; otherwise, invertibility cannot be guaranteed.

The forward transformation equations for each of the transforms are given in Table 5.2. The input signal, lowpass

subband signal, and highpass subband signal are denoted as x[n], s[n], and d[n], respectively. For convenience, we also
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define the quantities s0[n]
△
= x[2n] and d0[n]

△
= x[2n+1]. The inverse transformation equations can be trivially deduced

from the forward transformation equations, and thus are not given here.

When transforming finite-length signals, it is necessary to adopt some strategy for handling filtering at the signal

boundaries. In image coding applications, symmetric extension [33] is often employed for this purpose. To use

symmetric extension, however, the underlying filter bank must preserve signal symmetry. Although most of the

transforms considered here are derived from linear filter banks with linear-phase filters, this is not sufficient to ensure

compatibility with symmetric extension. Due to the rounding operations introduced in order to force a filter bank to

map integers to integers, the symmetry-preserving property is often lost.

In our study, one of two techniques for handling finite-length signals is employed, depending on the transform at

hand. In both instances, the method employed results in a nonexpansive transform for signals of arbitrary length. In

cases where the underlying reversible ITI filter bank preserves signal symmetry, symmetric extension (as described

in Section 4.3.2) is used. More specifically, this strategy is employed in the case of the 5/3, 9/7-M, 5/11-C, 5/11-

A, 13/7-T, 13/7-C, and 9/7-F transforms. In the case of the other transforms, constant PDS extension (described in

Section 4.2.3) is employed. Periodic extension is avoided due to its poor performance in image coding applications.

Reversible ITI wavelet transforms approximate their parent linear transforms. For this reason, the characteristics

of the parent transforms are of great interest. In the case of linear wavelet transforms, a number of characteristics have

been shown to potentially influence a transform’s effectiveness for coding purposes, including the number of vanishing

moments of the analyzing and synthesizing wavelet functions, the regularity of the analyzing and synthesizing scaling

functions, coding gain, and the frequency selectivity of the analysis filters. These parameters are given for each

transform in Table 5.3. Also of great importance is the shape of the synthesizing scaling and wavelet functions. It is the

shape of these functions that ultimately determines the signals for which a transform is effective. In addition, the shape

of these functions determines the nature of the artifacts obtained in lossy signal reconstructions. The synthesizing

scaling and wavelet functions for each transform are shown in Figures 5.1–5.12.

5.3 Computational Complexity and Memory Requirements

All of the reversible ITI wavelet transforms considered in this study are calculated using only fixed-point arithmetic.

In particular, only integer addition/subtraction, multiplication, and division operations are required. Since all filter

coefficients are approximated by dyadic rational numbers, all division operations can be implemented as bit shifts. For

the purposes of computational complexity analysis, we assume that the two’s complement representation for integers

is used. By assuming a two’s complement representation, we can take advantage of the fact that
⌊

x/2N
⌋

is equivalent

to the arithmetic right shift of x by N bits (as shown much earlier in Proposition 4).

Assuming a one-level wavelet decomposition (in one dimension), the number of addition, multiplication, and

shift operations required per two input samples for each transform is as given in Table 5.4. In each case, two sets

of numbers are provided. The first set shows the number of operations in the straightforward implementation of the

transform. The second set, shown in parentheses, indicates the number of operations required if all multiplications are

converted to shift and add operations (via Booth’s algorithm [30]). This complexity metric is of particular interest for

hardware implementations or software implementations on architectures where integer multiplications are more costly

than addition and shift operations. In the case where both sets of numbers are the same, only one is given. Symmetry

in filter coefficients was considered in the calculation of these values.

Note that although a number of the transforms have equal operation counts, some require more multiplications than

others. In particular, note that the 5/3, 2/6, 5/11-C and 5/11-A transforms are truly multiplierless (i.e., their underlying

lifting filters all have coefficients that are strictly powers of two). Evidently, the 5/3 and 2/6 transforms require the

least computation, followed by the SPB, 9/7-M, 2/10, 5/11-C, and 5/11-A transforms as a group, and then the 6/14,

SPC, 13/7-T, and 13/7-C transforms as a group, and lastly the 9/7-F transform which requires the most computation.

As mentioned previously, reversible ITI versions of transforms have the potential for simpler implementations

than their conventional counterparts. In the conventional case, all operands are real-valued. In the reversible ITI case,

however, many operands are integers. Since, in both cases, approximately the same number of bits are required for

the integer part of numbers, it follows that more bits require processing in the conventional case. Thus, reversible ITI

transforms can offer reduced computational complexity through a smaller wordsize for arithmetic operations.

The amount of memory needed by a transform-based coder can be strongly influenced by the amount of memory

required to store transform coefficients. In many image coding systems, transform coefficients are represented as

real numbers. Typically, in such systems, 32 bits of memory are needed to store each coefficient. Transforms which
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Table 5.2: Forward transforms

5/3

{

d[n] = d0[n]−
⌊

1
2
(s0[n+1]+ s0[n])

⌋

s[n] = s0[n]+
⌊

1
4
(d[n]+d[n−1])+ 1

2

⌋

2/6







d1[n] = d0[n]− s0[n]
s[n] = s0[n]+

⌊

1
2
d1[n]

⌋

d[n] = d1[n]+
⌊

1
4
(−s[n+1]+ s[n−1])+ 1

2

⌋

SPB







d1[n] = d0[n]− s0[n]
s[n] = s0[n]+

⌊

1
2
d1[n]

⌋

d[n] = d1[n]+
⌊

1
8
(−3s[n+1]+ s[n]+2s[n−1]+2d1[n+1])+ 1

2

⌋

9/7-M

{

d[n] = d0[n]+
⌊

1
16

((s0[n+2]+ s0[n−1])−9(s0[n+1]+ s0[n]))+ 1
2

⌋

s[n] = s0[n]+
⌊

1
4
(d[n]+d[n−1])+ 1

2

⌋

2/10







d1[n] = d0[n]− s0[n]
s[n] = s0[n]+

⌊

1
2
d1[n]

⌋

d[n] = d1[n]+
⌊

1
64

(22(s[n−1]− s[n+1])+3(s[n+2]− s[n−2]))+ 1
2

⌋

5/11-C







d1[n] = d0[n]−
⌊

1
2
(s0[n+1]+ s0[n])

⌋

s[n] = s0[n]+
⌊

1
4
(d1[n]+d1[n−1])+ 1

2

⌋

d[n] = d1[n]+
⌊

1
16

(s1[n+2]− s1[n+1]− s1[n]+ s1[n−1])+ 1
2

⌋

5/11-A







d1[n] = d0[n]−
⌊

1
2
(s0[n+1]+ s0[n])

⌋

s[n] = s0[n]+
⌊

1
4
(d1[n]+d1[n−1])+ 1

2

⌋

d[n] = d1[n]+
⌊

1
32

(s1[n+2]− s1[n+1]− s1[n]+ s1[n−1])+ 1
2

⌋

6/14







d1[n] = d0[n]− s0[n]
s[n] = s0[n]+

⌊

1
16

(−d1[n+1]+d1[n−1]+8d1[n])+ 1
2

⌋

d[n] = d1[n]+
⌊

1
16

(s1[n+2]− s1[n−2]+6(−s1[n+1]+ s1[n−1]))+ 1
2

⌋

SPC







d1[n] = d0[n]− s0[n]
s[n] = s0[n]+

⌊

1
2
d1[n]

⌋

d[n] = d1[n]+
⌊

1
16

(−8s[n+1]+4s[n]+5s[n−1]− s[n−2]+6d1[n+1])+ 1
2

⌋

13/7-T

{

d[n] = d0[n]+
⌊

1
16

((s0[n+2]+ s0[n−1])−9(s0[n+1]+ s0[n]))+ 1
2

⌋

s[n] = s0[n]+
⌊

1
32

(−d[n+1]−d[n−2])+9(d[n]+d[n−1]))+ 1
2

⌋

13/7-C

{

d[n] = d0[n]+
⌊

1
16

(s0[n+2]+ s0[n−1]−9(s0[n+1]+ s0[n]))+ 1
2

⌋

s[n] = s0[n]+
⌊

1
16

(5(d[n]+d[n−1])− (d[n+1]+d[n−2]))+ 1
2

⌋

9/7-F















d1[n] = d0[n]+
⌊

1
128

(203(−s0[n+1]− s0[n]))+ 1
2

⌋

s1[n] = s0[n]+
⌊

1
4096

(217(−d1[n]−d1[n−1]))+ 1
2

⌋

d[n] = d1[n]+
⌊

1
128

(113(s1[n+1]+ s1[n]))+ 1
2

⌋

s[n] = s1[n]+
⌊

1
4096

(1817(d1[n]+d1[n−1]))+ 1
2

⌋
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Table 5.3: Transform parameters. The (a) parameter values, and (b) parameter definitions

(a)

Transform Ñ N R̃ R G1 G6 SH0
SH1

5/3 2 2 0.000 1.000 6.277 9.579 0.165 0.192

2/6 3 1 0.000 1.000 5.651 9.601 0.134 0.138

SPB 2 1 — — — — 0.134 0.217

9/7-M 4 2 0.142 2.000 6.181 9.566 0.129 0.065

2/10 5 1 0.000 1.804 5.625 9.615 0.134 0.062

5/11-C 4 2 0.000 2.142 6.280 9.550 0.165 0.085

5/11-A 2 2 0.000 1.220 6.300 9.603 0.165 0.131

6/14 3 3 1.000 1.809 5.885 9.750 0.035 0.025

SPC 2 1 — — — — 0.134 0.255

13/7-T 4 4 0.841 2.000 6.241 9.708 0.062 0.065

13/7-C 4 2 0.809 2.000 6.260 9.735 0.029 0.065

9/7-F 4 4 1.034 1.701 5.916 9.883 0.043 0.058

(b)

Parameter Definition

Ñ number of vanishing moments of analyzing wavelet

N number of vanishing moments of synthesizing wavelet

R̃ regularity of analyzing scaling function

R regularity of synthesizing scaling function

G1 coding gain for 1-level decomposition

G6 coding gain for 6-level decomposition

SH0
frequency selectivity of analysis lowpass filter (as given by (4.42))

SH1
frequency selectivity of analysis highpass filter (as given by (4.42))

Table 5.4: Computational complexity

Transform Adds Shifts Multiplies Total

5/3 5 2 0 7

2/6 5 2 0 7

SPB 7 (8) 4 (3) 1 (0) 12 (11)

9/7-M 8 (9) 2 (3) 1 (0) 11 (12)

2/10 7 (10) 2 (6) 2 (0) 11 (16)

5/11-C 10 3 0 13

5/11-A 10 3 0 13

6/14 10 (11) 3 (5) 1 (0) 14 (16)

SPC 8 (10) 4 (5) 2 (0) 14 (15)

13/7-T 10 (12) 2 (4) 2 (0) 14 (16)

13/7-C 10 (12) 2 (4) 2 (0) 14 (16)

9/7-F 12 (26) 4 (18) 4 (0) 20 (44)
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Figure 5.1: Synthesizing scaling and wavelet functions

for the 5/3 transform. (a) Scaling function. (b) Wavelet

function.

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

(b)

Figure 5.2: Synthesizing scaling and wavelet functions

for the 2/6 transform. (a) Scaling function. (b) Wavelet

function.
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Figure 5.3: Synthesizing scaling and wavelet func-

tions for the 9/7-M transform. (a) Scaling function.

(b) Wavelet function.
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Figure 5.4: Synthesizing scaling and wavelet functions

for the 2/10 transform. (a) Scaling function. (b) Wavelet

function.
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Figure 5.5: Synthesizing scaling and wavelet func-

tions for the 5/11-C transform. (a) Scaling function.

(b) Wavelet function.
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Figure 5.6: Synthesizing scaling and wavelet func-

tions for the 5/11-A transform. (a) Scaling function.

(b) Wavelet function.
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Figure 5.7: Synthesizing scaling and wavelet functions

for the 6/14 transform. (a) Scaling function. (b) Wavelet

function.
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Figure 5.8: Synthesizing scaling and wavelet func-

tions for the 13/7-T transform. (a) Scaling function.

(b) Wavelet function.
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Figure 5.9: Synthesizing scaling and wavelet func-

tions for the 13/7-C transform. (a) Scaling function.

(b) Wavelet function.
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Figure 5.10: Synthesizing scaling and wavelet functions

for the 9/7-F transform. (a) Scaling function. (b) Wavelet

function.
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Figure 5.11: Synthesizing scaling and wavelet functions

for the SPB transform. (a) Scaling function. (b) Wavelet

function.
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Figure 5.12: Synthesizing scaling and wavelet functions

for the SPC transform. (a) Scaling function. (b) Wavelet

function.
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map integers to integers can improve significantly upon this situation. Although some intermediate results are still

real-valued, such results are only needed transiently. All stored values, including the final transform coefficients, are

integers. In fact, experimental results suggest that for many reversible ITI wavelet transforms, 16-bit integers provide

sufficient dynamic range for representing the transform coefficients (at least, for 8-bpp images). For example, in this

study, 16-bit integers proved to be sufficient for all of the test images that were 10 bpp or less. By using 16 bits of

memory per coefficient instead of 32, memory requirements can be reduced by half. (As an aside, we note that some

numerical results showing the dynamic range properties of the 5/3 transform can be found in [19].)

One might even be able to use a smaller number of bits to represent transform coefficients in some cases. Using a

smaller number of bits, however, does increase the risk of numerical overflow. Fortunately, the invertibility of lifting-

based transforms can be made to hold even in the presence of overflow (e.g., by exploiting the properties of modular

integer arithmetic as in [44]). Provided that occurrences of overflow are infrequent, lossless compression performance

is not seriously affected. In the case of lossy compression, however, one needs to be much more cautious about

overflow. Overflow has the potential to cause very disturbing artifacts, especially if the overflow impacts coefficients

that affect large areas in the reconstructed image.

5.4 Experimental Results

As part of our study, various experimental results were obtained regarding the compression performance of the trans-

forms under evaluation. In the sections that follow, we briefly present these results without any analysis. A detailed

analysis of the results will be provided in Section 5.5.

5.4.1 Evaluation Methodology

For evaluation purposes, the JPEG-2000 verification model (VM) software (versions 0.0 and 2.1) was employed.

Although some support for reversible ITI wavelet transforms was provided in this software, much of the functionality

required for our analysis was not present. Therefore, in order to facilitate our testing, the original transform-related

code was replaced with new and more flexible code. This new transform code is described at some length in [10].

The JPEG-2000 VM software employed in this work handles both lossy and lossless compression using transform-

based methods. In the lossy case, a subband transform is applied to the original image, the transform coefficients are

quantized using trellis-coded quantization (TCQ) [84], and the resulting TCQ indices are entropy coded to yield the

compressed bit stream. In the lossless case, a reversible ITI subband transform is applied to the original image, and

the transform coefficients are then bitplane and entropy coded.

The various transforms under consideration were employed for decorrelation purposes in the image coder described

above, and the results examined. Both lossy and lossless compression were considered in our analysis. Using the

various transforms, each of the test images was compressed in a lossy manner at several bit rates (i.e., 0.0625, 0.125,

0.25, 0.5, 1, and 2 bpp), in addition to being compressed losslessly. In the lossless case, compression performance was

measured in terms of the final bit rate. In the lossy case, compression performance was assessed using both the PSNR

and subjective image quality metrics.

The test data used in our study consisted of the grayscale images listed in Table 5.5, all of which were taken from

the JPEG-2000 test set [68]. These images vary considerably in size and cover a wide variety of content. For each

set of experimental results, the same number of decomposition levels was employed for all transforms (typically six).

Since the goal of the subjective evaluations was only to compare artifacts obtained from the transforms themselves

and not tiling artifacts, the use of tiling was avoided whenever possible. More specifically, tiling was used only in the

case of the cmpnd2 image due to its large size, where a tile size of 2048×2048 was employed.

In order to perform the subjective testing, several regions from the various lossy reconstructed images were selected

to be scrutinized. Small regions of interest were used (instead of whole images) for two reasons:

1. Many of the test images were too large to be displayed at their original resolution on the computer screen, and

displaying the images at reduced resolution hides most of the artifacts introduced by compression.

2. If the whole image is used, there might be too much information for a human observer to analyze, making an

accurate and meaningful comparison difficult.

Since the human eye often cannot distinguish between a high bit rate lossy reconstruction of an image and the original,

the subjective testing was restricted to the lower bit rates under consideration. As most applications typically utilize

cmpnd2
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Table 5.5: Test images

Image Size Depth Description

aerial2 2048×2048 8 aerial photograph

bike 2048×2560 8 collection of objects

cafe 2048×2560 8 outside of cafe

cats 3072×2048 8 cats

chart 1688×2347 8 color chart

cmpnd1 512×768 8 mixed text and graphics

cmpnd2 5120×6624 8 mixed text and graphics

cr 1744×2048 10 computer radiology

ct 512×512 12 computer tomography

elev 1201×1201 12 fractal-like pattern

finger 512×512 8 fingerprint

gold 720×576 8 houses and countryside

hotel 720×576 8 hotel

mat 1528×1146 8 mountains

mri 256×256 11 magnetic resonance

sar1 1024×1024 16 synthetic aperture radar

sar2 800×800 12 synthetic aperture radar

seismic 512×512 8 seismic data

target 512×512 8 patterns and textures

tools 1524×1200 8 collection of tools

txtur1 1024×1024 8 aerial photograph

txtur2 1024×1024 8 aerial photograph

us 512×448 8 ultrasound

water 1465×1999 8 water and land

woman 2048×2560 8 lady

xray 2048×1680 12 x-ray

aerial2
bike
cafe
cats
chart
cmpnd1
cmpnd2
cr
ct
elev
finger
gold
hotel
mat
mri
sar1
sar2
seismic
target
tools
txtur1
txtur2
us
water
woman
xray
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compression ratios from 16:1 to 128:1, the bit rates corresponding to these compression ratios were of most interest.

The participants involved in the subjective testing came from diverse backgrounds, some having a strong grounding in

image processing and/or image coding, while others were end users with no special technical training. Two types of

subjective evaluations were employed in our study as described below.

The first type of subjective evaluation served to compare the image quality obtained with different reversible

ITI wavelet transforms. For a specific test image and bit rate, a particular region of the lossy reconstructed images

obtained with the various transforms was shown under magnification. The original image was also shown for reference

purposes. Then, a human observer was asked to assign a simple integer ranking to the different results, with a value of

one corresponding to best result and larger values indicating poorer results. In instances where a distinction in quality

could not be made between two or more results, these results could be assigned the same rank. This process was

repeated for various test images, bit rates, regions of interest within the image, and observers. The rankings were then

used to determine the most effective transform from a subjective image quality standpoint.

The second type of subjective evaluation was used to compare the quality of the lossy reconstructed images ob-

tained with reversible ITI and conventional versions of the same transform. For a specific test image, bit rate, and

transform, a particular region of interest in the lossy reconstructed images obtained with the reversible ITI and con-

ventional versions of a transform was shown under magnification. Again, the original image was also shown for

reference purposes. Then, the observer was asked to rank the two reconstructed images relative to one another. The

ranking was done on an integer scale from -2 to 2. The values -2, -1, 0, 1, 2 correspond to the result obtained with the

reversible ITI version of the transform being significantly worse than, slightly worse than, the same as, slightly better

than, and significantly better than the result obtained with the conventional version, respectively. This process was

repeated for numerous transforms, images, bit rates, and observers.

5.4.2 Lossless Compression Performance

Each of the test images in Table 5.5 was compressed in a lossless manner using the various transforms under evaluation,

resulting in the bit rates shown in Table 5.6. For each image, the best result has been highlighted. Clearly, no single

transform performs best for all of the images. In order to provide additional insight into the results of Table 5.6, relative

differences were also computed. For each image, the best transform was used as a reference and the relative differences

for the remaining transforms were calculated. Often, the difference between the best and worst transforms is less than

2%. For the images where this difference is more significant (i.e., greater than 2%), the relative performance numbers

have been included in Table 5.7. Note that, although the various transforms often yield comparable lossless coding

efficiency, their computational complexities can vary significantly, as detailed earlier in Section 5.3.

As one might expect, image content is an important factor influencing transform effectiveness. If one considers

only natural imagery, some particularly useful observations can be made. In addition to the lossless results for each

image, Table 5.6 provides the average bit rate for each transform taken over all of the natural 8-bpp images. For images

of this type (e.g., cafe, gold, woman), the 5/11-C, 5/11-A, and 13/7-T transforms generally perform best, followed

closely by the 9/7-M and 13/7-C transforms. The 5/3 transform also fares reasonably well considering its very low

computational complexity. For images with a relatively greater amount of high-frequency content (e.g., cmpnd2 and

target), the 5/3 transform tends to yield the best results, often by a significant margin.

In [40] and [39], Calderbank et al. compare the lossless compression performance of several reversible ITI wavelet

transforms also considered in our study (i.e., the 2/6, 5/3, SPB, 9/7-M, 5/11-C, and 9/7-F transforms). The image

coder employed in their evaluation was based on techniques described in [114]. Generally, the results presented

by Calderbank and his colleagues coincide with our findings. For example, both studies found that (for lossless

compression):

1. The 5/3 transform outperforms the 2/6 transform for the vast majority of images.

2. The 9/7-F transform consistently performs very poorly.

3. The 5/11-C transform fares amongst the best for natural imagery.

Interestingly, the 13/7-T transform, which we found to be particularly effective for natural imagery, was described

in [40] and [39], but was not included in their performance evaluation.

In the context of a reversible embedded image coder based on the EZW coding scheme [119], lossless compression

results similar to those above have also been obtained [1, 5]. Thus, these results appear to be consistent across most

types of lossless coders, especially those employing bitplane coding of the transform coefficients.

cafe
gold
woman
cmpnd2
target
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Table 5.6: Lossless compression results
Bit Rate (bpp)

Image 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

aerial2 5.243 5.250 5.234 5.221 5.232 5.223 5.226 5.229 5.262 5.217 5.222 5.233
bike 4.415 4.437 4.417 4.406 4.427 4.407 4.401 4.429 4.454 4.397 4.402 4.456
cafe 5.194 5.215 5.191 5.177 5.203 5.178 5.175 5.217 5.228 5.175 5.186 5.220
cats 2.534 2.528 2.500 2.493 2.499 2.493 2.509 2.493 2.493 2.491 2.494 2.518
chart 3.052 3.095 3.088 3.103 3.115 3.094 3.063 3.176 3.156 3.104 3.117 3.225
cmpnd1 2.142 2.143 2.216 2.454 2.368 2.487 2.403 2.578 2.362 2.492 2.523 2.540
cmpnd2 2.540 2.605 2.655 2.753 2.733 2.770 2.686 2.855 2.790 2.775 2.797 2.906
cr 3.216 3.225 3.230 3.225 3.230 3.225 3.219 3.220 3.262 3.217 3.216 3.221
ct 2.886 2.890 2.739 2.654 2.710 2.663 2.784 2.727 2.578 2.664 2.677 2.778
elev 2.453 2.464 2.408 2.320 2.358 2.317 2.380 2.378 2.350 2.326 2.335 2.530
finger 5.470 5.550 5.423 5.321 5.415 5.323 5.381 5.380 5.312 5.328 5.337 5.372
gold 4.476 4.502 4.497 4.476 4.498 4.471 4.467 4.490 4.539 4.473 4.477 4.518
hotel 4.458 4.475 4.476 4.458 4.469 4.449 4.440 4.466 4.528 4.448 4.453 4.493
mat 2.994 3.102 3.110 3.036 3.116 2.984 2.983 3.173 3.164 3.049 3.081 3.270
mri 4.022 4.034 3.939 3.926 3.960 3.926 3.970 3.954 3.879 3.925 3.931 3.971
sar1 12.68 12.69 12.68 12.68 12.69 12.68 12.67 12.69 12.73 12.67 12.68 12.67

sar2 7.610 7.625 7.626 7.615 7.627 7.616 7.610 7.627 7.662 7.612 7.616 7.611
seismic 2.781 2.807 2.704 2.610 2.684 2.654 2.724 2.653 2.577 2.613 2.615 2.879
target 2.129 2.231 2.234 2.256 2.313 2.247 2.213 2.355 2.242 2.250 2.243 2.546
tools 5.281 5.293 5.272 5.260 5.283 5.263 5.261 5.289 5.308 5.256 5.263 5.286
txtur1 6.581 6.579 6.590 6.584 6.586 6.586 6.578 6.585 6.644 6.577 6.581 6.578
txtur2 5.427 5.426 5.430 5.421 5.433 5.425 5.418 5.440 5.486 5.418 5.425 5.435
us 3.031 3.054 3.078 3.169 3.111 3.141 3.104 3.211 3.162 3.167 3.192 3.473
water 3.325 3.334 3.368 3.357 3.354 3.338 3.325 3.333 3.436 3.337 3.331 3.408
woman 4.394 4.407 4.382 4.366 4.387 4.367 4.372 4.385 4.409 4.362 4.368 4.420
x_ray 4.408 4.418 4.408 4.404 4.414 4.407 4.405 4.414 4.435 4.400 4.403 4.410

Mean† 4.599 4.623 4.607 4.583 4.608 4.577 4.580 4.608 4.636 4.579 4.586 4.631
†Mean over natural 8-bpp images (i.e., aerial2, bike, cafe, cats, finger, gold, hotel, mat, tools, txtur1, txtur2, water, woman).

Table 5.7: Lossless compression results relative to the best transform for each image
Increase in Bit Rate (%)

Image 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

chart — 1.4 1.2 1.7 2.1 1.4 0.4 4.1 3.4 1.7 2.1 5.7

cmpnd1 — 0.0 3.5 14.6 10.6 16.1 12.2 20.4 10.3 16.3 17.8 18.6

cmpnd2 — 2.6 4.5 8.4 7.6 9.1 5.7 12.4 9.8 9.3 10.1 14.4

ct 11.9 12.1 6.2 2.9 5.1 3.3 8.0 5.8 — 3.3 3.8 7.8

elev 5.9 6.3 3.9 0.1 1.8 — 2.7 2.6 1.4 0.4 0.8 9.2

finger 3.0 4.5 2.1 0.2 1.9 0.2 1.3 1.3 — 0.3 0.5 1.1

mat 0.4 4.0 4.3 1.8 4.5 0.0 — 6.4 6.1 2.2 3.3 9.6

mri 3.7 4.0 1.5 1.2 2.1 1.2 2.3 1.9 — 1.2 1.3 2.4

seismic 7.9 8.9 4.9 1.3 4.2 3.0 5.7 2.9 — 1.4 1.5 11.7

target — 4.8 4.9 6.0 8.6 5.5 3.9 10.6 5.3 5.7 5.4 19.6

us — 0.8 1.6 4.6 2.6 3.6 2.4 5.9 4.3 4.5 5.3 14.6

water — 0.3 1.3 1.0 0.9 0.4 — 0.2 3.3 0.4 0.2 2.5
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5.4.3 PSNR Lossy Compression Performance

Each of the test images in Table 5.5 was compressed in a lossy manner at several bit rates using the various transforms

under evaluation. The image quality was then measured using the PSNR metric as defined by (2.29). The results for a

representative subset of the test images are given in Table 5.8. For each test image and bit rate pair, the best result has

been highlighted.

For low bit rates (i.e., compression ratios of 16:1 or greater), the 9/7-F, 6/14, 13/7-C, and 13/7-T transforms

are consistently the best performers in approximately that order. The SPC and SPB transforms fare the worst. As

the bit rate increases, lossy compression performance becomes increasing influenced by the lossless performance

characteristics of the transforms. These results will be revisited later in Section 5.5.2 for analysis purposes.

In applications where lossy image reconstructions are processed by a computer system (e.g., some scientific ap-

plications), the use of a distortion metric based on the mean-squared error (i.e., PSNR) can be quite appropriate.

Unfortunately, the PSNR can be a poor measure of image quality for applications in which images are to be viewed

by humans. Hence, a subjective evaluation, the results of which are presented in the next section, was necessary.

5.4.4 Subjective Lossy Compression Performance

Since the PSNR does not necessarily correlate well with image quality as perceived by the human visual system, we

supplemented our PSNR results with a subjective evaluation. This subjective testing was undertaken as specified in

Section 5.4.1. In order to make the testing more practical, the evaluation was divided into two stages. The same testing

strategy was used in each stage. Only the transforms under evaluation in each case differed.

In the first stage, the 5/3, 2/6, SPB, 9/7-M, 2/10, SPC, 13/7-T, and 9/7-F transforms were compared. After obtaining

the rankings for 14 sets of images using 12 observers, these results were averaged together to yield the overall rankings

given in Table 5.9. From these results, we see that the transforms fall into three distinct performance categories. The

9/7-F, 5/3, 13/7-T, and 9/7-M transforms perform best, followed by the 2/6 and 2/10 transforms, followed by the

SPB and SPC transforms. These numerical results generally agree with comments made by participants during the

subjective tests—namely, that the transforms fall into three distinct performance categories.

The second stage of subjective testing included some of the best transforms from the first stage and several new

transforms, resulting in the following set of transforms: 5/3, 9/7-M, 5/11-C, 5/11-A, 6/14, 13/7-T, and 13/7-C. After

conducting the subjective tests with 14 sets of images and 12 observers, the rankings were averaged together with the

results shown in Table 5.10. In this round of tests, the general consensus amongst the test participants is that all of

the transforms are very close in terms of subjective quality, with the possible exception of the 6/14 transform which

performs slightly worse. In other words, although the average rankings may differ by a large amount in this stage of

the testing, it is important to note that even large disparities correspond to very minute differences in subjective image

quality.

Considering the results from both stages of the subjective testing, we conclude that the 9/7-F, 5/3, 13/7-T, 13/7-C,

5/11-C, 5/11-A, and 9/7-M transforms have the best performance, followed by the 6/14, 2/6, and 2/10 transforms,

followed by the SPB and SPC transforms. Examples of the quality obtained with transforms from each performance

category are shown in Figure 5.13. We will again revisit these results in Section 5.5.2 where they will be examined in

more detail.

5.4.5 Reversible ITI Versus Conventional Transforms for Lossy Compression

Using both reversible ITI and conventional versions of the transforms listed in Table 5.1, the test images in Table 5.5

were compressed in a lossy manner at several bit rates. The reconstructed images obtained with the two different

versions of each transform were then compared. The difference in the PSNR for a representative subset of the images

is given in Table 5.11. A negative value corresponds to poorer performance in the reversible ITI transform case. As is

evident from these results, the performance is almost always degraded in terms of PSNR in the reversible ITI transform

case, although the degradation is often very small. These numerical results also suggest some other important trends

that will be discussed later in Section 5.5.1.

Subjective testing was also undertaken to compare the quality of the lossy image reconstructions obtained with

reversible ITI and conventional versions of transforms. This testing was performed as described previously in Sec-

tion 5.4.1. Due to the time consuming nature of subjective testing, only a subset of the transforms listed in Table 5.1

was used, namely the 5/3, 2/6, SPB, 9/7-M, 2/10, SPC, 13/7-T, and 9/7-F transforms. After averaging the scores
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Table 5.8: Lossy compression results for (a) aerial2, (b) bike, (c) cafe, (d) sar2, and (e) target images

(a)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 24.40 24.47 24.05 24.46 24.55 24.41 24.45 24.66 23.63 24.60 24.64 24.72
0.1250 26.24 26.31 25.83 26.36 26.42 26.30 26.33 26.53 25.35 26.50 26.54 26.59
0.2500 28.15 28.25 27.49 28.35 28.37 28.26 28.25 28.53 26.91 28.50 28.55 28.60
0.5000 30.36 30.37 29.25 30.49 30.48 30.47 30.45 30.68 28.54 30.62 30.67 30.69

1.0000 33.30 33.30 31.89 33.35 33.31 33.34 33.36 33.54 30.97 33.50 33.53 33.50
2.0000 38.55 38.51 36.74 38.46 38.52 38.45 38.53 38.56 35.72 38.56 38.58 38.13

(b)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 22.49 22.63 22.16 22.61 22.70 22.59 22.52 22.88 21.60 22.78 22.85 22.95
0.1250 25.03 25.26 24.63 25.12 25.32 25.03 25.08 25.47 24.02 25.34 25.41 25.58
0.2500 28.27 28.34 27.84 28.31 28.37 28.21 28.31 28.56 27.17 28.57 28.62 28.76

0.5000 32.27 32.24 31.59 32.23 32.18 32.13 32.29 32.33 30.77 32.30 32.51 32.57
1.0000 36.97 36.87 35.60 36.85 36.74 36.82 36.95 36.87 34.76 37.04 37.06 36.83
2.0000 42.77 42.57 40.55 42.42 42.43 42.48 42.70 42.35 39.49 42.47 42.42 41.12

(c)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 18.77 18.89 18.17 18.78 18.88 18.72 18.77 18.99 17.61 18.92 18.97 19.04
0.1250 20.29 20.47 19.77 20.30 20.45 20.25 20.29 20.59 19.14 20.45 20.50 20.62

0.2500 22.75 22.90 22.10 22.75 22.89 22.72 22.77 23.03 21.39 22.94 22.98 23.12
0.5000 26.33 26.31 25.56 26.36 26.30 26.32 26.39 26.43 24.81 26.55 26.56 26.64
1.0000 31.41 31.30 30.59 31.42 31.26 31.37 31.47 31.38 29.76 31.62 31.62 31.63
2.0000 38.62 38.42 36.98 38.41 38.32 38.39 38.58 38.33 35.98 38.52 38.49 38.06

(d)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 22.21 22.33 21.77 22.22 22.34 22.18 22.21 22.41 21.31 22.32 22.34 22.42

0.1250 22.97 23.09 22.28 22.98 23.09 22.94 22.97 23.18 21.76 23.07 23.10 23.18
0.2500 23.99 24.12 23.06 23.95 24.13 23.93 23.97 24.25 22.44 24.09 24.13 24.26
0.5000 25.54 25.63 24.43 25.50 25.60 25.47 25.53 25.80 23.65 25.64 25.70 25.82

1.0000 28.22 28.44 27.08 28.08 28.35 28.12 28.20 28.54 26.03 28.32 28.38 28.55
2.0000 33.85 33.86 32.26 33.66 33.74 33.63 33.79 33.98 31.04 33.86 33.90 34.08

(e)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 17.57 17.30 17.04 17.55 17.34 17.46 17.54 18.17 16.41 18.12 18.36 18.95
0.1250 19.89 19.44 18.12 20.20 19.34 19.99 19.98 20.45 17.54 20.73 21.05 20.97
0.2500 23.28 23.01 22.75 23.64 23.18 23.36 23.41 24.76 22.31 24.38 25.48 24.92
0.5000 29.98 29.30 28.81 30.73 29.74 30.64 30.55 31.15 28.49 31.76 32.51 31.82
1.0000 41.38 40.03 37.99 41.25 39.79 41.04 40.99 40.68 37.69 41.70 41.94 40.21
2.0000 54.14 54.79 50.79 52.26 52.91 52.07 52.37 52.22 48.42 52.13 51.78 44.60

Table 5.9: Overall subjective rankings from first stage of testing

Rank

5/3 2/6 SPB 9/7-M 2/10 SPC 13/7-T 9/7-F

2.51 4.47 6.05 2.97 4.57 6.88 2.88 2.36

Table 5.10: Overall subjective rankings from second stage of testing

Rank

5/3 9/7-M 5/11-C 5/11-A 6/14 13/7-T 13/7-C

1.84 2.30 2.34 2.15 2.75 1.77 1.83

aerial2
bike
cafe
sar2
target
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(a) (b)

(c) (d)

Figure 5.13: Part of cafe image. (a) Original. Lossy reconstruction at a bit rate of 0.25 bpp using the (b) 5/3, (c) 2/10,

and (d) SPC transforms.

cafe
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Table 5.11: Difference in PSNR performance between reversible ITI and conventional versions of transforms for the

(a) aerial2, (b) bike, (c) cafe, (d) sar2, and (e) target images

(a)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 -0.03 -0.04 -0.54 -0.05 -0.04 -0.03 -0.03 -0.05 -0.69 -0.03 -0.03 -0.03
0.1250 -0.05 -0.06 -0.64 -0.06 -0.07 -0.06 -0.04 -0.06 -0.84 -0.05 -0.02 -0.08
0.2500 -0.14 -0.09 -0.96 -0.10 -0.10 -0.15 -0.07 -0.10 -1.29 -0.09 -0.09 -0.08
0.5000 -0.09 -0.14 -1.31 -0.13 -0.16 -0.13 -0.11 -0.15 -1.63 -0.15 -0.15 -0.16

(b)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 -0.02 -0.02 -0.52 -0.02 -0.03 -0.02 -0.02 -0.02 -0.70 -0.02 -0.02 -0.01
0.1250 -0.04 -0.06 -0.75 -0.05 -0.05 -0.05 -0.05 -0.05 -0.94 -0.04 -0.05 -0.02
0.2500 -0.08 -0.09 -0.71 -0.10 -0.10 -0.10 -0.08 -0.09 -0.87 -0.09 -0.10 -0.07
0.5000 -0.16 -0.21 -0.99 -0.20 -0.23 -0.21 -0.16 -0.22 -1.16 -0.36 -0.22 -0.24

(c)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 -0.01 -0.01 -0.62 -0.01 -0.01 -0.01 -0.01 -0.01 -0.84 -0.01 -0.00 -0.01
0.1250 -0.01 -0.02 -0.68 -0.01 -0.02 -0.01 -0.01 -0.01 -0.86 -0.01 -0.01 -0.01
0.2500 -0.02 -0.03 -0.82 -0.04 -0.03 -0.03 -0.03 -0.02 -1.00 -0.03 -0.02 0.02
0.5000 -0.05 -0.06 -0.91 -0.06 -0.07 -0.07 -0.06 -0.07 -0.94 -0.05 -0.07 -0.07

(d)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 -0.01 -0.00 -0.54 -0.00 -0.00 0.00 -0.00 0.00 -0.79 -0.00 0.00 -0.00
0.1250 -0.00 -0.00 -0.76 -0.00 -0.00 0.00 -0.00 -0.00 -1.05 -0.00 -0.00 -0.00
0.2500 0.03 -0.00 -0.97 0.00 -0.00 -0.00 0.00 -0.00 -1.24 0.00 -0.00 0.00
0.5000 -0.00 -0.03 -1.10 -0.00 -0.00 -0.00 -0.00 -0.00 -1.37 -0.00 -0.00 0.00
1.0000 -0.00 0.00 -1.15 -0.07 0.00 -0.00 -0.00 -0.00 -1.36 -0.00 0.07 -0.00
2.0000 -0.00 -0.01 -1.27 -0.00 -0.00 -0.00 -0.01 -0.00 -1.39 -0.00 0.00 0.00

(e)
Bit Rate PSNR (dB)

(bpp) 5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

0.0625 0.01 -0.05 -0.34 -0.01 -0.03 0.01 0.02 0.08 -0.69 -0.01 -0.01 0.05
0.1250 0.00 0.03 -1.01 -0.00 -0.14 -0.03 -0.02 -0.06 -1.12 -0.00 -0.11 -0.07
0.2500 0.00 -0.35 -0.28 -0.02 -0.12 -0.03 -0.03 -0.01 -0.87 -0.02 -0.03 -0.03
0.5000 -0.05 -0.25 -1.20 -0.11 -0.14 -0.14 -0.13 -0.11 -1.55 -0.20 -0.17 -0.33

aerial2
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Table 5.12: Difference in subjective performance between reversible ITI and conventional versions of transforms

Rank

5/3 2/6 SPB 9/7-M 2/10 SPC 13/7-T 9/7-F

-0.20 -0.41 -0.80 -0.29 -0.36 -0.77 -0.37 -0.24

obtained using 7 sets of images (per transform) and 10 observers, the results in Table 5.12 were obtained. These

numerical results indicate the relative performance of the reversible ITI and conventional versions of the transforms.

A negative value corresponds to better performance in the conventional transform case. From the experimental results,

we can see that in most cases there is only a small bias favoring the conventional version of a transform. Thus, there

is a very slight performance penalty associated with using reversible ITI transforms in place of their conventional

counterparts. In many practical applications, however, this difference in performance is not likely to be of concern.

Again, we will revisit the results for analysis purposes in Section 5.5.1.

5.5 Analysis of Experimental Results

Having briefly presented the various experimental results, we now examine these results in more detail in the sections

that follow. To begin, we discuss the factors that affect the relative lossy compression performance of reversible ITI

and conventional versions of transforms. Then, factors influencing the compression performance of reversible ITI

wavelet transforms are presented.

5.5.1 Reversible ITI Versus Conventional Transforms for Lossy Compression

In Section 5.4.5, we presented results comparing the lossy compression performance of reversible ITI and conventional

versions of transforms. Examining these results more closely, we see that several factors affect the performance of

reversible ITI transforms relative to their conventional counterparts: 1) whether the underlying filter bank has IIR

filters, 2) the number of lifting steps in the filter bank, 3) the rounding function used in the lifting steps, 4) the depth

of the image (in bpp) being compressed, and 5) the bit rate used for compression of the image. Each of these factors

is discussed in detail below.

5.5.1.1 Impact of IIR Filters

In the calculation of reversible ITI wavelet transforms, results are rounded to integer values in numerous places. If the

underlying filter bank has IIR filters, this rounding occurs inside feedback paths. Thus, rounding errors can accumulate

indefinitely1. For this reason, there is a much bigger difference between the reversible ITI and conventional versions

of a transform in the case where the transform is associated with a filter bank having IIR filters. In the case of the

transforms studied, the SPB and SPC transforms are associated with such filter banks. It is evident that these two

transforms suffer the greatest degradation in performance as a result of the reversible and ITI properties.

The impact of having IIR filters is illustrated by Figures 5.14 and 5.15. Figures 5.14(a) and 5.14(b) show typical

results in the case of transforms based on FIR filter banks. In this case, there is little perceptible difference between the

results obtained with the reversible ITI and conventional versions of the same transform. Figures 5.15(a) and 5.15(b)

demonstrate typical results obtained in the case of transforms based on filter banks with IIR filters. In this case, the

reversible ITI version of the transform yields much poorer results due to increased ringing.

5.5.1.2 Number of Lifting Steps

Clearly, the number of lifting steps also influences the compression performance. Since each lifting step further causes

the approximation error to increase, transforms with fewer lifting steps will tend to perform better, all other things

being equal. Consider, for example, the 5/3, 5/11-C, and 5/11-A transforms. All three transforms have the same first

two lifting steps. The 5/3 transform, however, has only two lifting steps, while the other two transforms have three. At

least in terms of PSNR performance, the 5/3 transform typically has less degradation in performance than the 5/11-C

and 5/11-A transforms.
1Moreover, it may even be difficult to show that the resulting nonlinear system is stable.
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(a) (b)

Figure 5.14: Part of the cafe image. Lossy reconstructed image at a bit rate of 0.25 bpp using the (a) conventional

and (b) reversible ITI versions of the 5/11-A transform.

(a) (b)

Figure 5.15: Part of the cafe image. Lossy reconstructed image at a bit rate of 0.25 bpp using the (a) conventional

and (b) reversible ITI versions of the SPC transform.

cafe
cafe
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5.5.1.3 Rounding Function

The function used to round results to integer values also affects the difference in performance between reversible ITI

transforms and their conventional counterparts. In this study, we chose to use a biased floor function (i.e., Q(x) =
⌊

x+ 1
2

⌋

) for this purpose. One could conceivably remove the bias of one-half, however. Such a change would reduce

computational complexity at the expense of introducing systematic error. The resulting performance degradation at

low bit rates is typically small. At higher bit rates, however, the degradation can be more significant, especially in the

case of lossless compression.

5.5.1.4 Depth of Image

As the dynamic range of the signal grows, the errors introduced by rounding various results to integer values are

relatively smaller. For 8-bpp images there is a clear difference in PSNR performance between the reversible ITI and

conventional versions of a transform, especially at higher bit rates. In the case of 12-bpp images (e.g., sar2), however,

there is little difference in performance provided that the transforms are based on FIR filter banks.

5.5.1.5 Bit Rate

As the bit rate is lowered, the difference in compression performance between reversible ITI and conventional versions

of a transform decreases. At a sufficiently low bit rate, the quantization of transform coefficients becomes so coarse

that any errors introduced by rounding intermediate results to integers are masked by quantization of the coefficients

themselves.

5.5.2 Factors Affecting Compression Performance

In our study, three factors were found to affect the compression performance of a reversible ITI wavelet transform:

1) the performance characteristics of its parent linear transform, 2) how closely it is able to approximate its parent

linear transform, and 3) the dynamic range of the coefficients produced by the transform. The first two factors affect

both lossy and lossless compression performance. The last factor is typically only important in the case of lossless

compression performance. Each of these factors will be discussed in turn in the remainder of this section. Table 5.14

lists several parameters for each transform relevant to compression performance. Comments about these parameters

will also be made at the appropriate point in the paragraphs that follow.

5.5.2.1 Parent Linear Transform

The first point above has been covered in depth by many researchers, and techniques for the design of linear wavelet

transforms are plentiful in the literature. Some design considerations include: time and frequency resolution, number

of vanishing moments, regularity, and coding gain. The effectiveness of a particular transform is also to some extent

signal dependent.

Section 5.4.3 presented the PSNR lossy compression performance results for the various transforms. The 9/7-F,

6/14, 13/7-C, and 13/7-T transforms were found to be most effective. Looking at parameter G6 in Table 5.3, we can

see that these four transforms also have the parent linear transforms with the highest coding gain. Thus, the coding

gain of the parent linear transform is of great importance, as one might suspect.

In Section 5.4.4, the subjective lossy compression performance results for the various transforms were presented.

To a large extent, the subjective performance of these transforms can be explained by examining the synthesizing

scaling and wavelet functions of their parent linear transforms as shown in Figures 5.1–5.12. From these plots, we can

see that the 9/7-F, 13/7-T, 13/7-C, 5/11-C, 5/11-A, and 9/7-M transforms have very smooth synthesizing scaling and

wavelet functions, leading to their favorable performance. In the case of the 5/3 transform, the scaling and wavelet

functions have discontinuities in their first derivatives. Since there are no oscillations or jump discontinuities in these

functions, however, the 5/3 transform is still able to perform very well. In fact, the 5/3 transform is especially attractive

as it often introduces less pronounced ringing artifacts than the other transforms due to its short filters. Although

sometimes very good at preserving high frequency textures, the SPB and SPC transforms perform worst, due largely

to their tendency to introduce ringing artifacts. This behavior can be attributed to the fact that both transforms are

associated with filter banks having IIR synthesis filters. The 6/14 transform often introduces more ringing artifacts

than some of the other transforms, leading to its relatively poor performance. This ringing is associated with the greater

oscillatory nature of the synthesizing wavelet and scaling functions. In the case of the 2/6 transform, blockiness often

results. This behavior can be attributed to the relatively rougher synthesizing scaling and wavelet functions associated

with this transform. Lastly, the 2/10 transform often results in more pronounced ringing artifacts, leading to its poorer

performance. This behavior can be attributed to the larger support of the synthesizing scaling and wavelet functions.

sar2
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Table 5.13: Influence of the number of lifting steps on lossless compression performance

2 lifting steps 4 lifting steps

Bit Rate Bit Rate

Image MAE† (bpp) MAE† (bpp)

gold 0.409 4.473 0.540 4.479

target 0.216 2.250 0.295 2.311

woman 0.415 4.362 0.536 4.373
†mean absolute error

5.5.2.2 Approximation Behavior

The approximation characteristics of reversible ITI wavelet transforms have not been given much serious attention to

date. This is, however, an important factor to consider. Clearly, even if a reversible ITI transform is derived from

a linear transform with desirable properties, the extent to which these properties are present in the reversible ITI

transform depends entirely on how well it approximates its parent transform. The predominant source of error is the

rounding of intermediate results to integers. This error depends on the rounding function employed, the number of

lifting steps in which this rounding is performed, and whether recursive filtering structures are used.

The number of lifting steps associated with each transform is given in Table 5.14. In the case of lossless com-

pression, most of the best transforms tend to have only two or three lifting steps. All other things being equal, as the

number of lifting steps increases so too does the approximation error. In the lossy case, the approximation error is less

critical. Unless the approximation error is very large, it is usually masked by the error introduced by transform coeffi-

cient quantization. Notice in particular that the 9/7-F transform has the most lifting steps of the transforms considered,

and it also has arguably the poorest lossless compression performance.

To further demonstrate the influence of the number of lifting steps on compression performance, we losslessly

compressed several images using two different versions of the 13/7-T transform. The first version of the transform

is the one given in Table 5.2 which has two lifting steps. The second version has four lifting steps. In each case,

we measured the lossless bit rate and average approximation error. As can be seen from the results in Table 5.13,

the lossless compression performance is better for the version of the transform with two lifting steps. Note that the

approximation error is also lower in this case as well. This observation suggests that, all other things being equal,

transforms with two lifting steps (i.e., interpolating transforms) may offer the most promise for lossless compression2.

5.5.2.3 Dynamic Range

In the case of lossless compression, all bits of the transform coefficients must be encoded. Thus, as the dynamic range

of the transform coefficients increases, so too does the number of bits required to encode these coefficients. For this

reason, dynamic range is an important factor affecting lossless compression performance. Typically, the coefficients

obtained by the application of a transform have a greater dynamic range than the original samples. This dynamic range

growth is, therefore, of concern. The worst-case dynamic range growth of a particular transform is an approximate

function of the 1-norm of its analysis filters. The 1-norms of the lowpass and highpass analysis filters determine

the worst-case growth in the lowpass and highpass channels, respectively. As the 1-norms increase, the worst-case

dynamic range growth also increases. For reference purposes in what follows, the analysis filter 1-norms for each

transform are given in Table 5.14.

Since, in the case of a wavelet transform, the lowpass subband signal is successively decomposed, the worst-

case dynamic range growth associated with the lowpass channel can potentially have the most effect on the dynamic

range of the transform coefficients. To date, much attention has been focused on worst-case lowpass-channel dynamic

range growth. For example, it is often cited that the 2/6 and 2/10 transforms are particularly well suited to lossless

compression as they have no dynamic range growth in the lowpass channel. While the no lowpass-channel growth

attribute can help contribute to good lossless compression performance, it is not good to place too much emphasis on

this property.

The first problem with the above philosophy is that it is based on a worst-case argument. The class of signals that

lead to transform coefficients having the maximum possible magnitudes are rarely encountered in practice. The worst

case and actual dynamic ranges are thus quite different. Therefore, one must instead consider the typical distribution

2 Incidentally, using similar reasoning, it would seem that reversible ITI M-band wavelet transforms (where M > 2) [1] are not likely to be as

effective for lossless coding as two-band transforms.
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Figure 5.16: Subband structure for the 2D wavelet transform formed by two 1D transforms (three-level decomposi-

tion).

of coefficient magnitudes as opposed to the worst-case scenario. There is, however, a more fundamental problem with

placing too much emphasis on lowpass-channel dynamic range growth. Namely, reduced growth in the lowpass chan-

nel often comes at the expense of increased growth in the highpass channel. For images, however, the 1D transform

is applied twice at each level of wavelet decomposition: once horizontally and once vertically. This yields a subband

structure like that shown in Figure 5.16. This means that one quarter of all transform coefficients (i.e., the HH0 band)

are the result of two highpass filtering stages. Similarly, three quarters of all coefficients have been obtained by high-

pass filtering in at least one direction. Thus, if the lowpass-channel growth is made smaller at the cost of increased

highpass-channel growth, this can, at some point, become counterproductive. Although the lower frequency bands

may have coefficients with a smaller dynamic range, the number of coefficients in these bands is relatively small, and

their influence is less significant.

Consider, for a moment, the 5/3 and 2/6 transforms, both being comparable in complexity. Unlike the 5/3 trans-

form, the 2/6 transform has no growth in the lowpass channel. The 5/3 transform, however, has a lower highpass-

channel growth. (See Table 5.14.) In Section 5.4.2, the 5/3 transform was shown to outperform the 2/6 transform for

lossless compression on the vast majority of the test images. In Table 5.15, for three of the test images, we show the

average coefficient magnitude for the HL0, LH0, and HH0 bands individually and all bands together, and the lossless

bit rate obtained with each transform. For the gold and target images, where the 5/3 transform yields a notably lower

bit rate, the HL0, LH0, and HH0 bands have coefficients with lower average magnitudes in the 5/3 case. The average

coefficient magnitude is also lower for both images with the 5/3 transform. In the case of the cmpnd1 image, where

both transforms yield approximately the same bit rate, the average coefficient magnitudes for the HL0, LH0, and HH0

bands are much closer. Since the coefficient magnitudes are closer in this instance, the lower average magnitudes for

the lower frequency bands in the 2/6 transform case become a dominating factor influencing performance.

From the above argument, we can conclude that the amount of growth in the lowpass channel is not necessarily

a good predictor of a transform’s effectiveness for lossless compression. In fact, in Section 5.4.2, we saw that the

best transforms for lossless compression all have worst-case growth in the lowpass channel. Clearly, one must also

consider the amount of growth in the highpass channel.

Examining the 13/7-T and 13/7-C transforms, we observe that they have very similar lifting filter coefficients.

The 13/7-T transform, however, has analysis filters with smaller 1-norms. In Section 5.4.2, the 13/7-T transform was

found to often outperform the 13/7-C transform for lossless compression. Again, this helps to illustrate that, all other

things being equal, the transform with analysis filters having smaller 1-norms will typically perform better for lossless

compression. In the case of the 9/7-F transform, another factor helps to contribute to its poor lossless compression

performance. This transform is the only transform of those considered with a lowpass analysis filter having a DC

gain greater than one. (See Table 5.14.) This larger gain contributes to increased growth in the dynamic range of the

transform coefficients.
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Table 5.14: Parameters of transforms affecting compression performance

# of

Lifting

Transform Steps ||h0||1 ||h1||1 |H0(e
j0)| |H1(e

jπ)|
5/3 2 1.500 2.000 1.000 2.000

2/6 3 1.000 2.500 1.000 2.000

SPB 3 1.000 2.750 1.000 2.500

9/7-M 2 1.500 2.250 1.000 2.000

2/10 3 1.000 2.781 1.000 2.000

5/11-C 3 1.500 2.219 1.000 2.000

5/11-A 3 1.500 2.109 1.000 2.000

6/14 3 1.250 2.797 1.000 2.000

SPC 3 1.000 3.125 1.000 2.750

13/7-T 2 1.625 2.250 1.000 2.000

13/7-C 2 1.750 2.250 1.000 2.000

9/7-F 4 1.698 2.109 1.230 1.625

Table 5.15: Average coefficient magnitudes and lossless bit rates for the 5/3 and 2/6 transforms in the case of the

(a) gold, (b) target, and (c) cmpnd1 images

(a)

Avg. Coef. Magnitude Bit Rate

Transform LH0 HL0 HH0 All (bpp)

5/3 4.489 4.259 3.785 5.056 4.476

2/6 4.841 4.796 5.488 5.287 4.502

(b)

Avg. Coef. Magnitude Bit Rate

Transform LH0 HL0 HH0 All (bpp)

5/3 15.951 15.874 12.165 15.030 2.129

2/6 18.073 18.206 19.705 17.312 2.231

(c)

Avg. Coef. Magnitude Bit Rate

Transform LH0 HL0 HH0 All (bpp)

5/3 8.834 7.695 7.218 8.887 2.142

2/6 8.610 7.788 9.836 8.641 2.143

gold
target
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5.6 Summary

Several reversible ITI wavelet transforms have been compared on the basis of their lossy compression performance,

lossless compression performance, and computational complexity. For lossless compression, image content is an

important factor influencing transform effectiveness. For smooth images, the 5/11-C, 5/11-A, and 13/7-T transforms

are most effective, while the 5/3 transform performs best for images with a greater amount of high frequency content.

In the case of lossy compression, both PSNR and subjective performance measures were employed. In terms of PSNR

performance, the 9/7-F, 6/14, 13/7-C, and 13/7-T transforms yield the best results. At the same time, the 9/7-F, 5/3,

9/7-M, 5/11-C, 5/11-A, 13/7-T, and 13/7-C transforms achieve the most favorable subjective ratings. Of the transforms

considered, the 5/3 and 2/6 transforms have the lowest computational complexity while the 9/7-F transform has the

highest. Unfortunately, the 9/7-F transform, although very good for lossy compression, is significantly higher in

complexity than all of the other transforms, and performs poorly for lossless compression.

Obviously, no one transform has superior lossy and lossless compression performance for all classes of images

in addition to low computational complexity. Therefore, tradeoffs are involved, and the most appropriate choice of

transform depends on the needs of the application at hand. For example, in the case of applications requiring low

computational complexity, the 5/3 transform is particularly attractive. It performs reasonably well for both lossy and

lossless compression, and has the lowest computational complexity of all of the transforms evaluated.

Reversible ITI and conventional versions of the same transforms were also compared. Using reversible ITI versions

of transforms instead of their conventional counterparts for lossy compression was found to only introduce a slight

degradation in subjective image quality in many cases. When transforms associated with FIR filter banks are employed,

the performance penalty is almost negligible. At low bit rates, the difference in PSNR performance is also small.

By examining the performance characteristics of the various reversible ITI wavelet transforms, we were also able

to determine several factors that affect the compression performance of such transforms. By considering these factors

in the future, we can hope to design new and more effective transforms.

Sit down before fact as a little child, be prepared to give up every preconceived

notion, follow humbly wherever and to whatever abysses nature leads, or you

shall learn nothing.

—Thomas H. Huxley (1825–1895)
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Chapter 6

Conclusions and Future Research

Time passes in moments, moments which, rushing past, define the path of a life just as surely as

they lead towards its end. How rarely do we stop to examine that path, to see the reasons why all

things happen, to consider whether the path we take in life is our own making or simply one into

which we drift with eyes closed? But what if we could stop, pause to take stock of each precious

moment before it passes? Might we then see the endless forks in the road that have shaped a life?

And, seeing those choices, choose another path?

—Dana Scully, The X-Files: All Things

6.1 Conclusions

In this thesis, we have studied reversible ITI wavelet transforms in the context of image coding. In so doing, we have

helped to advance existing knowledge in this area.

In our work, we proposed the GRITIT framework, a single unified framework for reversible ITI wavelet/block

transforms. This new framework was then used to study several previously developed frameworks and their inter-

relationships. In so doing, we were able to gain some interesting new insights into the various frameworks under

consideration. For example, the ORT framework was shown to be a special case of the lifting framework with only

trivial extensions.

Rounding operators were examined in some detail. Several common rounding operators were characterized in

terms of their approximation properties and computational complexity, and relationships between these rounding oper-

ators were also examined. We showed that, when one considers approximation error and/or computational complexity,

the floor, biased floor, and biased ceiling functions are arguably the most practically useful rounding operators of those

studied.

The GRITIT framework was demonstrated to be useful for the construction of reversible ITI block transforms.

The GST, a family of reversible ITI block transforms, was proposed. Then, the GST was studied in detail, leading to

a number of interesting insights about transforms in this family. Moreover, the GST framework was used as a means

to derive reduced complexity implementations of the S transform and RCT. A new transform belonging to the GST

family, called the MRCT, was introduced, and shown to be practically useful for image coding applications.

Strategies for handling the transformation of arbitrary-length signals in a nonexpansive manner were considered

(e.g., periodic extension, symmetric extension, and per-displace-step extension). Two families of symmetry-preserving

transforms (which are compatible with symmetric extension) were introduced and studied. We characterized the

transforms belonging to these families. Some new reversible ITI structures that are useful for constructing symmetry-

preserving transforms were also proposed. A simple search-based design technique was explored as means for finding

effective low-complexity transforms in the above-mentioned families, and shown to produce good results.

In the context of image coding, a number of reversible ITI wavelet transforms were compared on the basis of their

lossy compression performance, lossless compression performance, and computational complexity. Of the transforms

considered, several were found to perform particularly well, with the best choice for a given application depending on

the relative importance of the preceding criteria. Reversible ITI versions of numerous transforms are also compared to

their conventional (i.e., non-reversible real-to-real) counterparts for lossy compression. At low bit rates, reversible ITI

and conventional versions of transforms were found to often yield results of comparable quality. Factors affecting the

compression performance of reversible ITI wavelet transforms were also presented, supported by both experimental

data and theoretical arguments.
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6.2 Future Research

Although this thesis has made numerous contributions concerning reversible ITI wavelet transforms and their applica-

tion to image coding, further work in this area would still be beneficial. Some future research directions are discussed

briefly below.

As described in this thesis, the GRITIT framework can be used to construct (multidimensional) reversible ITI

wavelet transforms that are based on nonseparable sampling and filtering operations. This said, however, our work

has focused primarily on the separable case. Since there may be potential benefits offered by transforms based on

nonseparable operations, a more thorough consideration of the nonseparable case would certainly be a worthwhile

endeavor.

In this thesis, we have focused exclusively on non-adaptive transforms. Obviously, adaptive transforms have the

potential to be much more effective for signals with highly non-stationary statistics. Thus, work in the area of adaptive

transforms could have significant benefits. Obviously, much work could be done in devising good adaptation schemes.

Also, clever new techniques for handling the synchronization of the encoder and decoder adaptation algorithms would

be quite useful.

In our work, we have considered only reversible ITI transforms that approximate linear wavelet/block transforms.

One might want to further explore reversible ITI transforms that are based on operations other than linear filtering (e.g.,

median filtering, morphological operators). Such generalizations are easily accommodated by the GRITIT framework,

as discussed earlier.

The reversible ITI transform frameworks described in this thesis can be applied to both wavelet and more general

subband decompositions. In our work, we have not considered the general subband case explicitly. There may be

potential benefits from doing so. Thus, this presents is another possible direction for future research.

6.3 Closing Remarks

This thesis has studied reversible ITI wavelet/block transforms and their application to image coding. By exploiting

the research results presented herein, we can hope to find more effective reversible ITI wavelet/block transforms, and

build image compression systems with improved coding efficiency. Consequently, the research documented in this

thesis can benefit the many applications in which images are stored and communicated.

In this universe the night was falling; the shadows were lengthening towards an

east that would not know another dawn. But elsewhere the stars were still young

and the light of morning lingered; and along the path he once had followed, Man

would one day go again.

—Arthur C. Clarke, The City and the Stars, 1956
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I am enough of an artist to draw freely upon my imagination. Imagination is

more important than knowledge. Knowledge is limited. Imagination encircles

the world.

—Albert Einstein (1879–1955)
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Appendix A

JPEG 2000: An International Standard for

Still Image Compression

Many that live deserve death. And some that die deserve life. Can you give it to them? Then do not

be too eager to deal out death in judgement. For even the very wise cannot see all ends.

—J. R. R. Tolkein, The Fellowship of the Ring, 1954

Overview

The JPEG-2000 image compression standard is introduced, and the JPEG-2000 Part-1 codec is described, analyzed,

and evaluated. The JasPer software is also discussed briefly.

A.1 Introduction

Digital imagery is pervasive in our world today. Consequently, standards for the efficient representation and inter-

change of digital images are essential. To date, some of the most successful still image compression standards have

resulted from the ongoing work of the Joint Photographic Experts Group (JPEG). This group operates under the aus-

pices of Joint Technical Committee 1, Subcommittee 29, Working Group 1 (JTC 1/SC 29/WG 1), a collaborative

effort between the International Organization for Standardization (ISO) and International Telecommunication Union

Standardization Sector (ITU-T). Both the JPEG [69,144,107] and JPEG-LS [71,145,41] standards were born from the

work of the JPEG committee. For the last few years, the JPEG committee has been working towards the establishment

of a new standard known as JPEG 2000 (i.e., ISO/IEC 15444). The fruits of these labors are now coming to bear, as

JPEG-2000 Part 1 (i.e., ISO/IEC 15444-1 [72]) has recently been approved as a new international standard.

In this appendix, we provide a detailed technical description of the JPEG-2000 Part-1 codec, in addition to a brief

overview of the JPEG-2000 standard. (Some of the material in this appendix has also appeared in [4, 14].) This

exposition is intended to serve as a reader-friendly starting point for those interested in learning about JPEG 2000.

Although many details are included in our presentation, some details are necessarily omitted. The reader should,

therefore, refer to the standard [72] before attempting an implementation. The JPEG-2000 codec realization in the

JasPer software [2,14,3] may also serve as a practical guide for implementors. (See Section A.6 for more information

about JasPer.) The reader may also find [135,109,47] to be useful sources of information on the JPEG-2000 standard.

The remainder of this appendix is structured as follows. Section A.2 begins with a overview of the JPEG-2000

standard. This is followed, in Section A.3, by a detailed description of the JPEG-2000 Part-1 codec. In Section A.4, the

codec is evaluated. The complexity of its various components is analyzed, and its performance is compared to codecs

from other existing standards. Finally, we conclude this appendix with a brief summary of our results and some closing

remarks in Section A.5. Throughout our presentation, a basic understanding of image coding is assumed.
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Table A.1: Parts of the standard
Part Description

1 Core coding system [72]. Specifies the core (or minimum functionality) codec for the JPEG-

2000 family of standards.

2 Extensions [73]. Specifies additional functionalities that are useful in some applications but

need not be supported by all codecs.

3 Motion JPEG-2000 [74]. Specifies extensions to JPEG-2000 for intraframe-style video com-

pression.

4 Conformance testing [75]. Specifies the procedure to be employed for compliance testing.

5 Reference software [76]. Provides sample software implementations of the standard to serve

as a guide for implementors.

A.2 JPEG 2000

The JPEG-2000 standard supports lossy and lossless compression of single-component (e.g., grayscale) and multi-

component (e.g., color) imagery. In addition to this basic compression functionality, however, numerous other features

are provided, including: 1) progressive recovery of an image by fidelity or resolution; 2) region of interest coding,

whereby different parts of an image can be coded with differing fidelity; 3) random access to particular regions of an

image without needing to decode the entire code stream; 4) a flexible file format with provisions for specifying opacity

information and image sequences; and 5) good error resilience. Due to its excellent coding performance and many

attractive features, JPEG 2000 has a very large potential application base. Some possible application areas include:

image archiving, Internet, web browsing, document imaging, digital photography, medical imaging, remote sensing,

and desktop publishing.

A.2.1 Why JPEG 2000?

Work on the JPEG-2000 standard commenced with an initial call for contributions [67] in March 1997. The purpose

of having a new standard was twofold. First, it would address a number of weaknesses in the existing JPEG standard.

Second, it would provide a number of new features not available in the JPEG standard. The preceding points led to

several key objectives for the new standard, namely that it should: 1) allow efficient lossy and lossless compression

within a single unified coding framework, 2) provide superior image quality, both objectively and subjectively, at low

bit rates, 3) support additional features such as region of interest coding, and a more flexible file format, 4) avoid

excessive computational and memory complexity. Undoubtedly, much of the success of the original JPEG standard

can be attributed to its royalty-free nature. Consequently, considerable effort has been made to ensure that a minimally-

compliant JPEG-2000 codec can be implemented free of royalties1.

A.2.2 Structure of the Standard

The JPEG-2000 standard is comprised of numerous parts, several of which are listed in Table A.1. For convenience,

we will refer to the codec defined in Part 1 of the standard as the baseline codec. The baseline codec is simply the core

(or minimal functionality) coding system for the JPEG-2000 standard. Parts 2 and 3 describe extensions to the baseline

codec that are useful for certain specific applications such as intraframe-style video compression. In this appendix, we

will, for the most part, limit our discussion to the baseline codec. Some of the extensions proposed for inclusion in the

JPEG-2000 Part-2 standard (i.e., [73]) will be discussed briefly. Unless otherwise indicated, our exposition considers

only the baseline system.

For the most part, the JPEG-2000 standard is written from the point of view of the decoder. That is, the decoder

is defined quite precisely with many details being normative in nature (i.e., required for compliance), while many

parts of the encoder are less rigidly specified. Obviously, implementors must make a very clear distinction between

normative and informative clauses in the standard. For the purposes of our discussion, however, we will only make

such distinctions when absolutely necessary.

1Whether these efforts ultimately prove successful remains to be seen, however, as there are still some unresolved intellectual property issues at

the time of this writing.
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Figure A.1: Source image model. (a) An image with N components. (b) Individual component.

A.3 JPEG-2000 Codec

Having briefly introduced the JPEG-2000 standard, we are now in a position to begin examining the JPEG-2000

codec in detail. The codec is based on wavelet/subband coding techniques [92, 24]. It handles both lossy and lossless

compression using the same transform-based framework, and borrows heavily on ideas from the embedded block

coding with optimized truncation (EBCOT) scheme [132, 133, 134]. In order to facilitate both lossy and lossless

coding in an efficient manner, reversible ITI [40, 59] and nonreversible real-to-real transforms are employed. To code

transform data, the codec makes use of bit-plane coding techniques. For entropy coding, a context-based adaptive

binary arithmetic coder [147] is used—more specifically, the MQ coder from the JBIG2 standard (i.e., ISO/IEC 14492

[70]). Two levels of syntax are employed to represent the coded image: a code stream and file format syntax. The

code stream syntax is similar in spirit to that used in the JPEG standard.

The remainder of Section A.3 is structured as follows. First, Sections A.3.1 to A.3.3, discuss the source image

model and how an image is internally represented by the codec. Next, Section A.3.4 examines the basic structure

of the codec. This is followed, in Sections A.3.5 to A.3.13 by a detailed explanation of the coding engine itself.

Next, Sections A.3.14 and A.3.15 explain the syntax used to represent a coded image. Finally, Section A.3.16 briefly

describes some extensions proposed for inclusion in the JPEG-2000 Part-2 standard.

A.3.1 Source Image Model

Before examining the internals of the codec, it is important to understand the image model that it employs. From

the codec’s point of view, an image is comprised of one or more components (up to a limit of 214), as shown in

Figure A.1(a). As illustrated in Figure A.1(b), each component consists of a rectangular array of samples. The sample

values for each component are integer valued, and can be either signed or unsigned with a precision from 1 to 38

bits/sample. The signedness and precision of the sample data are specified on a per-component basis.

All of the components are associated with the same spatial extent in the source image, but represent different

spectral or auxiliary information. For example, a RGB color image has three components with one component rep-

resenting each of the red, green, and blue color planes. In the simple case of a grayscale image, there is only one

component, corresponding to the luminance plane. The various components of an image need not be sampled at the

same resolution. Consequently, the components themselves can have different sizes. For example, when color images

are represented in a luminance-chrominance color space, the luminance information is often more finely sampled than

the chrominance data.

A.3.2 Reference Grid

Given an image, the codec describes the geometry of the various components in terms of a rectangular grid called the

reference grid. The reference grid has the general form shown in Figure A.2. The grid is of size Xsiz×Ysiz with

the origin located at its top-left corner. The region with its top-left corner at (XOsiz,YOsiz) and bottom-right corner

at (Xsiz−1,Ysiz−1) is called the image area, and corresponds to the picture data to be represented. The width and

height of the reference grid cannot exceed 232 −1 units, imposing an upper bound on the size of an image that can be

handled by the codec.
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Figure A.2: Reference grid.

All of the components are mapped onto the image area of the reference grid. Since components need not be

sampled at the full resolution of the reference grid, additional information is required in order to establish this mapping.

For each component, we indicate the horizontal and vertical sampling period in units of the reference grid, denoted

as XRsiz and YRsiz, respectively. These two parameters uniquely specify a (rectangular) sampling grid consisting

of all points whose horizontal and vertical positions are integer multiples of XRsiz and YRsiz, respectively. All such

points that fall within the image area, constitute samples of the component in question. Thus, in terms of its own

coordinate system, a component will have the size
(⌈

Xsiz
XRsiz

⌉

−
⌈

XOsiz
XRsiz

⌉)

×
(⌈

Ysiz
YRsiz

⌉

−
⌈

YOsiz
YRsiz

⌉)

and its top-left sample

will correspond to the point
(⌈

XOsiz
XRsiz

⌉

,
⌈

YOsiz
YRsiz

⌉)

. Note that the reference grid also imposes a particular alignment of

samples from the various components relative to one another.

From the diagram, the size of the image area is (Xsiz−XOsiz)× (Ysiz−YOsiz). For a given image, many

combinations of the Xsiz, Ysiz, XOsiz, and YOsiz parameters can be chosen to obtain an image area with the same

size. Thus, one might wonder why the XOsiz and YOsiz parameters are not fixed at zero while the Xsiz and Ysiz

parameters are set to the size of the image. As it turns out, there are subtle implications to changing the XOsiz

and YOsiz parameters (while keeping the size of the image area constant). Such changes affect codec behavior in

several important ways, as will be described later. This behavior allows a number of basic operations to be performed

efficiently on coded images, such as cropping, horizontal/vertical flipping, and rotation by an integer multiple of 90

degrees.

A.3.3 Tiling

In some situations, an image may be quite large in comparison to the amount of memory available to the codec.

Consequently, it is not always feasible to code the entire image as a single atomic unit. To solve this problem, the

codec allows an image to be broken into smaller pieces, each of which is independently coded. More specifically, an

image is partitioned into one or more disjoint rectangular regions called tiles. As shown in Figure A.3, this partitioning

is performed with respect to the reference grid by overlaying the reference grid with a rectangular tiling grid having

horizontal and vertical spacings of XTsiz and YTsiz, respectively. The origin of the tiling grid is aligned with the point

(XTOsiz,YTOsiz). Tiles have a nominal size of XTsiz×YTsiz, but those bordering on the edges of the image area

may have a size which differs from the nominal size. The tiles are numbered in raster scan order (starting at zero).

By mapping the position of each tile from the reference grid to the coordinate systems of the individual compo-

nents, a partitioning of the components themselves is obtained. For example, suppose that a tile has an upper left

corner and lower right corner with coordinates (tx0, ty0) and (tx1 − 1, ty1 − 1), respectively. Then, in the coordinate

space of a particular component, the tile would have an upper left corner and lower right corner with coordinates

(tcx0, tcy0) and (tcx1 −1, tcy1 −1), respectively, where

(tcx0, tcy0) = (⌈tx0/XRsiz⌉ ,⌈ty0/YRsiz⌉) and (A.1a)

(tcx1, tcy1) = (⌈tx1/XRsiz⌉ ,⌈ty1/YRsiz⌉) . (A.1b)

These equations correspond to the illustration in Figure A.4. The portion of a component that corresponds to a

single tile is referred to as a tile-component. Although the tiling grid is regular with respect to the reference grid, it is

important to note that the grid may not necessarily be regular with respect to the coordinate systems of the components.
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Figure A.5: Codec structure. The structure of the (a) encoder and (b) decoder.

A.3.4 Codec Structure

The general structure of the codec is shown in Figure A.5 with the form of the encoder given by Figure A.5(a)

and the decoder given by Figure A.5(b). From these diagrams, the key processes associated with the codec can be

identified: 1) preprocessing/postprocessing, 2) intercomponent transform, 3) intracomponent transform, 4) quantiza-

tion/dequantization, 5) tier-1 coding, 6) tier-2 coding, and 7) rate control. The decoder structure essentially mirrors

that of the encoder. That is, with the exception of rate control, there is a one-to-one correspondence between functional

blocks in the encoder and decoder. Each functional block in the decoder either exactly or approximately inverts the

effects of its corresponding block in the encoder. Since tiles are coded independently of one another, the input image is

(conceptually, at least) processed one tile at a time. In the sections that follow, each of the above processes is examined

in more detail.

A.3.5 Preprocessing/Postprocessing

The codec expects its input sample data to have a nominal dynamic range that is approximately centered about zero.

The preprocessing stage of the encoder simply ensures that this expectation is met. Suppose that a particular com-

ponent has P bits/sample. The samples may be either signed or unsigned, leading to a nominal dynamic range of

[−2P−1,2P−1 −1] or [0,2P −1], respectively. If the sample values are unsigned, the nominal dynamic range is clearly

not centered about zero. Thus, the nominal dynamic range of the samples is adjusted by subtracting a bias of 2P−1

from each of the sample values. If the sample values for a component are signed, the nominal dynamic range is already

centered about zero, and no processing is required. By ensuring that the nominal dynamic range is centered about zero,

a number of simplifying assumptions could be made in the design of the codec (e.g., with respect to context modeling,

numerical overflow, etc.).

The postprocessing stage of the decoder essentially undoes the effects of preprocessing in the encoder. If the

sample values for a component are unsigned, the original nominal dynamic range is restored. Lastly, in the case of

lossy coding, clipping is performed to ensure that the sample values do not exceed the allowable range.

A.3.6 Intercomponent Transform

In the encoder, the preprocessing stage is followed by the forward intercomponent transform stage. Here, an inter-

component transform can be applied to the tile-component data. Such a transform operates on all of the components

together, and serves to reduce the correlation between components, leading to improved coding efficiency.

Only two intercomponent transforms are defined in the baseline JPEG-2000 codec: the irreversible color transform

(ICT) and reversible color transform (RCT). The ICT is nonreversible and real-to-real in nature, while the RCT is

reversible and ITI. Both of these transforms essentially map image data from the RGB to YCrCb color space. The

transforms are defined to operate on the first three components of an image, with the assumption that components 0,
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1, and 2 correspond to the red, green, and blue color planes. Due to the nature of these transforms, the components on

which they operate must be sampled at the same resolution (i.e., have the same size). As a consequence of the above

facts, the ICT and RCT can only be employed when the image being coded has at least three components, and the first

three components are sampled at the same resolution. The ICT may only be used in the case of lossy coding, while the

RCT can be used in either the lossy or lossless case. Even if a transform can be legally employed, it is not necessary

to do so. That is, the decision to use a multicomponent transform is left at the discretion of the encoder. After the

intercomponent transform stage in the encoder, data from each component is treated independently.

The ICT is nothing more than the classic RGB to YCrCb color space transform. The forward transform is defined

as




V0(x,y)
V1(x,y)
V2(x,y)



=





0.299 0.587 0.114

−0.16875 −0.33126 0.5
0.5 −0.41869 −0.08131









U0(x,y)
U1(x,y)
U2(x,y)



 (A.2)

where U0(x,y), U1(x,y), and U2(x,y) are the input components corresponding to the red, green, and blue color planes,

respectively, and V0(x,y), V1(x,y), and V2(x,y) are the output components corresponding to the Y, Cr, and Cb planes,

respectively. The inverse transform can be shown to be





U0(x,y)
U1(x,y)
U2(x,y)



=





1 0 1.402

1 −0.34413 −0.71414

1 −1.772 0









V0(x,y)
V1(x,y)
V2(x,y)



 . (A.3)

The RCT is simply a reversible ITI approximation to the ICT (similar to that proposed in [59]). The forward

transform is given by

V0(x,y) =
⌊

1
4
(U0(x,y)+2U1(x,y)+U2(x,y))

⌋

, (A.4a)

V1(x,y) = U2(x,y)−U1(x,y), and (A.4b)

V2(x,y) = U0(x,y)−U1(x,y), (A.4c)

where U0(x,y), U1(x,y), U2(x,y), V0(x,y), V1(x,y), and V2(x,y) are defined as above. The inverse transform can be

shown to be

U1(x,y) = V0(x,y)−
⌊

1
4
(V1(x,y)+V2(x,y))

⌋

, (A.5a)

U0(x,y) = V2(x,y)+U1(x,y), and (A.5b)

U2(x,y) = V1(x,y)+U1(x,y). (A.5c)

The inverse intercomponent transform stage in the decoder essentially undoes the effects of the forward intercom-

ponent transform stage in the encoder. If a multicomponent transform was applied during encoding, its inverse is

applied here. Unless the transform is reversible, however, the inversion may only be approximate due to the effects of

finite-precision arithmetic.

A.3.7 Intracomponent Transform

Following the intercomponent transform stage in the encoder is the intracomponent transform stage. In this stage,

transforms that operate on individual components can be applied. The particular type of operator employed for this

purpose is the wavelet transform. Through the application of the wavelet transform, a component is split into numerous

frequency bands (i.e., subbands). Due to the statistical properties of these subband signals, the transformed data can

usually be coded more efficiently than the original untransformed data.

Both reversible ITI [40, 44, 1, 16] and nonreversible real-to-real wavelet transforms are employed by the baseline

codec. The basic building block for such transforms is the one-dimensional (1D) two-channel perfect-reconstruction

(PR) uniformly maximally-decimated (UMD) filter bank which has the general form shown in Figure A.6. Here,

we focus on the lifting realization of the UMD filter bank [130, 131], as it can be used to implement the reversible

ITI and nonreversible real-to-real wavelet transforms employed by the baseline codec. In fact, for this reason, it is

likely that this realization strategy will be employed by many codec implementations. The analysis side of the UMD

filter bank, depicted in Figure A.6(a), is associated with the forward transform, while the synthesis side, depicted

in Figure A.6(b), is associated with the inverse transform. In the diagram, the {Ai(z)}λ−1
i=0 , {Qi(x)}λ−1

i=0 , and {si}1
i=0
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Figure A.6: Lifting realization of 1D two-channel UMD filter bank. (a) Analysis side. (b) Synthesis side.

denote filter transfer functions, quantization operators, and (scalar) gains, respectively. To obtain ITI mappings, the

{Qi(x)}λ−1
i=0 are selected such that they always yield integer values, and the {si}1

i=0 are chosen as integers. For real-to-

real mappings, the {Qi(x)}λ−1
i=0 are simply chosen as the identity, and the {si}1

i=0 are selected from the real numbers. To

facilitate filtering at signal boundaries, symmetric extension [33,34] is employed. Since an image is a two-dimensional

(2D) signal, clearly we need a 2D UMD filter bank. By applying the 1D UMD filter bank in both the horizontal

and vertical directions, a two-dimensional UMD filter bank is effectively obtained. The wavelet transform is then

calculated by recursively applying the 2D UMD filter bank to the lowpass subband signal obtained at each level in the

decomposition.

Suppose that a (R− 1)-level wavelet transform is to be employed. To compute the forward transform, we apply

the analysis side of the 2D UMD filter bank to the tile-component data in an iterative manner, resulting in a number of

subband signals being produced. Each application of the analysis side of the 2D UMD filter bank yields four subbands:

1) horizontally and vertically lowpass (LL), 2) horizontally lowpass and vertically highpass (LH), 3) horizontally

highpass and vertically lowpass (HL), and 4) horizontally and vertically highpass (HH). A (R − 1)-level wavelet

decomposition is associated with R resolution levels, numbered from 0 to R− 1, with 0 and R− 1 corresponding to

the coarsest and finest resolutions, respectively. Each subband of the decomposition is identified by its orientation

(e.g., LL, LH, HL, HH) and its corresponding resolution level (e.g., 0,1, . . . ,R−1). The input tile-component signal

is considered to be the LLR−1 band. At each resolution level (except the lowest) the LL band is further decomposed.

For example, the LLR−1 band is decomposed to yield the LLR−2, LHR−2, HLR−2, and HHR−2 bands. Then, at the next

level, the LLR−2 band is decomposed, and so on. This process repeats until the LL0 band is obtained, and results in

the subband structure illustrated in Figure A.7. In the degenerate case where no transform is applied, R = 1, and we

effectively have only one subband (i.e., the LL0 band).

As described above, the wavelet decomposition can be associated with data at R different resolutions. Suppose

that the top-left and bottom-right samples of a tile-component have coordinates (tcx0, tcy0) and (tcx1 − 1, tcy1 − 1),
respectively. This being the case, the top-left and bottom-right samples of the tile-component at resolution r have

coordinates (trx0, try0) and (trx1 −1, try1 −1), respectively, given by

(trx0, try0) =
(⌈

tcx0/2R−r−1
⌉

,
⌈

tcy0/2R−r−1
⌉)

and (A.6a)

(trx1, try1) =
(⌈

tcx1/2R−r−1
⌉

,
⌈

tcy1/2R−r−1
⌉)

(A.6b)

where r is the particular resolution of interest. Thus, the tile-component signal at a particular resolution has the size

(trx1 − trx0)× (try1 − try0).
Not only are the coordinate systems of the resolution levels important, but so too are the coordinate systems for

the various subbands. Suppose that we denote the coordinates of the upper left and lower right samples in a subband
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Figure A.7: Subband structure.

as (tbx0, tby0) and (tbx1 −1, tby1 −1), respectively. These quantities are computed as

(tbx0, tby0) =
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and (A.7a)
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(A.7b)

where r is the resolution level to which the band belongs, R is the number of resolution levels, and tcx0, tcy0, tcx1,

and tcy1 are as defined in (A.1). Thus, a particular band has the size (tbx1 − tbx0)× (tby1 − tby0). From the above

equations, we can also see that (tbx0, tby0) = (trx0, try0) and (tbx1, tby1) = (trx1, try1) for the LLr band, as one would

expect. (This should be the case since the LLr band is equivalent to a reduced resolution version of the original data.)

As will be seen, the coordinate systems for the various resolutions and subbands of a tile-component play an important

role in codec behavior.

By examining (A.1), (A.6), and (A.7), we observe that the coordinates of the top-left sample for a particular

subband, denoted (tbx0, tby0), are partially determined by the XOsiz and YOsiz parameters of the reference grid.

At each level of the decomposition, the parity (i.e., oddness/evenness) of tbx0 and tby0 affects the outcome of the

downsampling process (since downsampling is shift variant). In this way, the XOsiz and YOsiz parameters have a

subtle, yet important, effect on the transform calculation.

Having described the general transform framework, we now describe the two specific wavelet transforms supported

by the baseline codec: the 5/3 and 9/7 transforms. The 5/3 transform is reversible, ITI, and nonlinear. This transform

was proposed in [40], and is simply an approximation to a linear wavelet transform proposed in [55]. The 5/3 transform

has an underlying 1D UMD filter bank with the parameters:

λ = 2, A0(z) = − 1
2
(z+1), A1(z) = 1

4
(1+ z−1), (A.8)

Q0(x) = −⌊−x⌋ , Q1(x) =
⌊

x+ 1
2

⌋

, and s0 = s1 = 1.

The 9/7 transform is nonreversible and real-to-real. This transform, proposed in [24], is also employed in the FBI

fingerprint compression standard [35] (although the normalizations differ). The 9/7 transform has an underlying 1D
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UMD filter bank with the parameters:

λ = 4, A0(z) = α0(z+1), A1(z) = α1(1+ z−1), (A.9)

A2(z) = α2(z+1), A3(z) = α3(1+ z−1),

Qi(x) = x for i = 0,1,2,3,

α0 ≈−1.586134, α1 ≈−0.052980, α2 ≈ 0.882911,

α3 ≈ 0.443506, s0 ≈ 1.230174, and s1 = 1/s0.

Since the 5/3 transform is reversible, it can be employed for either lossy or lossless coding. The 9/7 transform,

lacking the reversible property, can only be used for lossy coding. The number of resolution levels is a parameter of

each transform. A typical value for this parameter is six (for a sufficiently large image). The encoder may transform

all, none, or a subset of the components. This choice is at the encoder’s discretion.

The inverse intracomponent transform stage in the decoder essentially undoes the effects of the forward intracom-

ponent transform stage in the encoder. If a transform was applied to a particular component during encoding, the

corresponding inverse transform is applied here. Due to the effects of finite-precision arithmetic, the inversion process

is not guaranteed to be exact unless reversible transforms are employed.

A.3.8 Quantization/Dequantization

In the encoder, after the tile-component data has been transformed (by intercomponent and/or intracomponent trans-

forms), the resulting coefficients are quantized. Quantization allows greater compression to be achieved, by repre-

senting transform coefficients with only the minimal precision required to obtain the desired level of image quality.

Quantization of transform coefficients is one of the two primary sources of information loss in the coding path (the

other source being the discarding of coding pass data as will be described later).

Transform coefficients are quantized using scalar quantization with a deadzone. A different quantizer is employed

for the coefficients of each subband, and each quantizer has only one parameter, its step size. Mathematically, the

quantization process is defined as

V (x,y) = ⌊|U(x,y)|/∆⌋sgnU(x,y) (A.10)

where ∆ is the quantizer step size, U(x,y) is the input subband signal, and V (x,y) denotes the output quantizer indices

for the subband. Since this equation is specified in an informative clause of the standard, encoders need not use this

precise formula. This said, however, it is likely that many encoders will, in fact, use the above equation.

The baseline codec has two distinct modes of operation, referred to herein as integer mode and real mode. In

integer mode, all transforms employed are ITI in nature (e.g., RCT, 5/3). In real mode, real-to-real transforms are

employed (e.g., ICT, 9/7). In integer mode, the quantizer step sizes are always fixed at one, effectively bypassing

quantization and forcing the quantizer indices and transform coefficients to be one and the same. In this case, lossy

coding is still possible, but rate control is achieved by another mechanism (to be discussed later). In the case of real

mode (which implies lossy coding), the quantizer step sizes are chosen in conjunction with rate control. Numerous

strategies are possible for the selection of the quantizer step sizes, as will be discussed later in Section A.3.12.

As one might expect, the quantizer step sizes used by the encoder are conveyed to the decoder via the code stream.

In passing, we note that the step sizes specified in the code stream are relative and not absolute quantities. That is, the

quantizer step size for each band is specified relative to the nominal dynamic range of the subband signal.

In the decoder, the dequantization stage tries to undo the effects of quantization. Unless all of the quantizer step

sizes are less than or equal to one, the quantization process will normally result in some information loss, and this

inversion process is only approximate. The quantized transform coefficient values are obtained from the quantizer

indices. Mathematically, the dequantization process is defined as

U(x,y) = (V (x,y)+ r sgnV (x,y))∆ (A.11)

where ∆ is the quantizer step size, r is a bias parameter, V (x,y) are the input quantizer indices for the subband, and

U(x,y) is the reconstructed subband signal. Although the value of r is not normatively specified in the standard, it is

likely that many decoders will use the value of one half.
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Figure A.8: Partitioning of a subband into code blocks.

A.3.9 Tier-1 Coding

After quantization is performed in the encoder, tier-1 coding takes place. This is the first of two coding stages. The

quantizer indices for each subband are partitioned into code blocks. Code blocks are rectangular in shape, and their

nominal size is a free parameter of the coding process, subject to certain constraints, most notably: 1) the nominal

width and height of a code block must be an integer power of two, and 2) the product of the nominal width and height

cannot exceed 4096.

Suppose that the nominal code block size is tentatively chosen to be 2xcb × 2ycb. In tier-2 coding, yet to be

discussed, code blocks are grouped into what are called precincts. Since code blocks are not permitted to cross

precinct boundaries, a reduction in the nominal code block size may be required if the precinct size is sufficiently

small. Suppose that the nominal code block size after any such adjustment is 2xcb’ × 2ycb’ where xcb’ ≤ xcb and

ycb’ ≤ ycb. The subband is partitioned into code blocks by overlaying the subband with a rectangular grid having

horizontal and vertical spacings of 2xcb’ and 2ycb’, respectively, as shown in Figure A.8. The origin of this grid is

anchored at (0,0) in the coordinate system of the subband. A typical choice for the nominal code block size is 64×64

(i.e., xcb = 6 and ycb = 6).

Let us, again, denote the coordinates of the top-left sample in a subband as (tbx0, tby0). As explained in Sec-

tion A.3.7, the quantity (tbx0, tby0) is partially determined by the reference grid parameters XOsiz and YOsiz. In turn,

the quantity (tbx0, tby0) affects the position of code block boundaries within a subband. In this way, the XOsiz and

YOsiz parameters have an important effect on the behavior of the tier-1 coding process (i.e., they affect the location of

code block boundaries).

After a subband has been partitioned into code blocks, each of the code blocks is independently coded. The coding

is performed using the bit-plane coder described later in Section A.3.10. For each code block, an embedded code is

produced, comprised of numerous coding passes. The output of the tier-1 encoding process is, therefore, a collection

of coding passes for the various code blocks.

On the decoder side, the bit-plane coding passes for the various code blocks are input to the tier-1 decoder, these

passes are decoded, and the resulting data is assembled into subbands. In this way, we obtain the reconstructed

quantizer indices for each subband. In the case of lossy coding, the reconstructed quantizer indices may only be

approximations to the quantizer indices originally available at the encoder. This is attributable to the fact that the code

stream may only include a subset of the coding passes generated by the tier-1 encoding process. In the lossless case,

the reconstructed quantizer indices must be same as the original indices on the encoder side, since all coding passes

must be included for lossless coding.
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Figure A.9: Templates for context selection. The (a) 4-connected and (b) 8-connected neighbors.

A.3.10 Bit-Plane Coding

The tier-1 coding process is essentially one of bit-plane coding. After all of the subbands have been partitioned

into code blocks, each of the resulting code blocks is independently coded using a bit-plane coder. Although the

bit-plane coding technique employed is similar to those used in the embedded zerotree wavelet (EZW) [119] and set

partitioning in hierarchical trees (SPIHT) [115] codecs, there are two notable differences: 1) no interband dependencies

are exploited, and 2) there are three coding passes per bit plane instead of two. The first difference follows from the

fact that each code block is completely contained within a single subband, and code blocks are coded independently

of one another. By not exploiting interband dependencies, improved error resilience can be achieved. The second

difference is arguably less fundamental. Using three passes per bit plane instead of two reduces the amount of data

associated with each coding pass, facilitating finer control over rate. Also, using an additional pass per bit plane allows

better prioritization of important data, leading to improved coding efficiency.

As noted above, there are three coding passes per bit plane. In order, these passes are as follows: 1) significance,

2) refinement, and 3) cleanup. All three types of coding passes scan the samples of a code block in the same fixed

order shown in Figure A.10. The code block is partitioned into horizontal stripes, each having a nominal height of

four samples. If the code block height is not a multiple of four, the height of the bottom stripe will be less than this

nominal value. As shown in the diagram, the stripes are scanned from top to bottom. Within a stripe, columns are

scanned from left to right. Within a column, samples are scanned from top to bottom.

The bit-plane encoding process generates a sequence of symbols for each coding pass. Some or all of these

symbols may be entropy coded. For the purposes of entropy coding, a context-based adaptive binary arithmetic coder

is used—more specifically, the MQ coder from the JBIG2 standard (i.e., ISO/IEC 14492 [70]). For each pass, all of

the symbols are either arithmetically coded or raw coded (i.e., the binary symbols are emitted as raw bits with simple

bit stuffing). The arithmetic and raw coding processes both ensure that certain bit patterns never occur in the output,

allowing such patterns to be used for error resilience purposes.

Cleanup passes always employ arithmetic coding. In the case of the significance and refinement passes, two

possibilities exist, depending on whether the so called arithmetic-coding bypass mode (also known as lazy mode) is

enabled. If lazy mode is enabled, only the significance and refinement passes for the four most significant bit planes use

arithmetic coding, while the remaining such passes are raw coded. Otherwise, all significance and refinement passes

are arithmetically coded. The lazy mode allows the computational complexity of bit-plane coding to be significantly

reduced, by decreasing the number of symbols that must be arithmetically coded. This comes, of course, at the cost of

reduced coding efficiency.

As indicated above, coding pass data can be encoded using one of two schemes (i.e., arithmetic or raw coding).

Consecutive coding passes that employ the same encoding scheme constitute what is known as a segment. All of the

coding passes in a segment can collectively form a single codeword or each coding pass can form a separate codeword.

Which of these is the case is determined by the termination mode in effect. Two termination modes are supported: per-

pass termination and per-segment termination. In the first case, only the last coding pass of a segment is terminated. In

the second case, all coding passes are terminated. Terminating all coding passes facilitates improved error resilience

at the expense of decreased coding efficiency.

Since context-based arithmetic coding is employed, a means for context selection is necessary. Generally speaking,

context selection is performed by examining state information for the 4-connected or 8-connected neighbors of a

sample as shown in Figure A.9.

In our explanation of the coding passes that follows, we focus on the encoder side as this facilitates easier under-

standing. The decoder algorithms follow directly from those employed on the encoder side.
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1: for each sample in code block do

2: if sample previously insignificant and predicted to become significant during current bit plane then

3: code significance of sample /* 1 binary symbol */

4: if sample significant then

5: code sign of sample /* 1 binary symbol */

6: endif

7: endif

8: endfor

Algorithm A.1: Significance pass algorithm.

1: for each sample in code block do

2: if sample found significant in previous bit plane then

3: code next most significant bit in sample /* 1 binary symbol */

4: endif

5: endfor

Algorithm A.2: Refinement pass algorithm.

A.3.10.1 Significance Pass

The first coding pass for each bit plane is the significance pass. This pass is used to convey significance and (as

necessary) sign information for samples that have not yet been found to be significant and are predicted to become

significant during the processing of the current bit plane. The samples in the code block are scanned in the order shown

previously in Figure A.10. If a sample has not yet been found to be significant, and is predicted to become significant,

the significance of the sample is coded with a single binary symbol. If the sample also happens to be significant, its

sign is coded using a single binary symbol. In pseudocode form, the significance pass is described by Algorithm A.1.

If the most significant bit plane is being processed, all samples are predicted to remain insignificant. Otherwise,

a sample is predicted to become significant if any 8-connected neighbor has already been found to be significant. As

a consequence of this prediction policy, the significance and refinement passes for the most significant bit plane are

always empty (and need not be explicitly coded).

The symbols generated during the significance pass may or may not be arithmetically coded. If arithmetic coding

is employed, the binary symbol conveying significance information is coded using one of nine contexts. The particular

context used is selected based on the significance of the sample’s 8-connected neighbors and the orientation of the

subband with which the sample is associated (e.g., LL, LH, HL, HH). In the case that arithmetic coding is used, the

sign of a sample is coded as the difference between the actual and predicted sign. Otherwise, the sign is coded directly.

Sign prediction is performed using the significance and sign information for 4-connected neighbors.

A.3.10.2 Refinement Pass

The second coding pass for each bit plane is the refinement pass. This pass signals subsequent bits after the most

significant bit for each sample. The samples of the code block are scanned using the order shown earlier in Figure A.10.

If a sample was found to be significant in a previous bit plane, the next most significant bit of that sample is conveyed

using a single binary symbol. This process is described in pseudocode form by Algorithm A.2.

Like the significance pass, the symbols of the refinement pass may or may not be arithmetically coded. If arithmetic

coding is employed, each refinement symbol is coded using one of three contexts. The particular context employed is

selected based on if the second MSB position is being refined and the significance of 8-connected neighbors.

A.3.10.3 Cleanup Pass

The third (and final) coding pass for each bit plane is the cleanup pass. This pass is used to convey significance and

(as necessary) sign information for those samples that have not yet been found to be significant and are predicted to

remain insignificant during the processing of the current bit plane.
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Figure A.10: Sample scan order within a code block.

1: for each vertical scan in code block do

2: if four samples in vertical scan and all previously insignificant and unvisited and none have significant 8-

connected neighbor then

3: code number of leading insignificant samples via aggregation

4: skip over any samples indicated as insignificant by aggregation

5: endif

6: while more samples to process in vertical scan do

7: if sample previously insignificant and unvisited then

8: code significance of sample if not already implied by run /* 1 binary symbol */

9: if sample significant then

10: code sign of sample /* 1 binary symbol */

11: endif

12: endif

13: endwhile

14: endfor

Algorithm A.3: Cleanup pass algorithm.

Conceptually, the cleanup pass is not much different from the significance pass. The key difference is that the

cleanup pass conveys information about samples that are predicted to remain insignificant, rather than those that are

predicted to become significant. Algorithmically, however, there is one important difference between the cleanup

and significance passes. In the case of the cleanup pass, samples are sometimes processed in groups, rather than

individually as with the significance pass.

Recall the scan pattern for samples in a code block, shown earlier in Figure A.10. A code block is partitioned into

stripes with a nominal height of four samples. Then, stripes are scanned from top to bottom, and the columns within a

stripe are scanned from left to right. For convenience, we will refer to each column within a stripe as a vertical scan.

That is, each vertical arrow in the diagram corresponds to a so called vertical scan. As will soon become evident, the

cleanup pass is best explained as operating on vertical scans (and not simply individual samples).

The cleanup pass simply processes each of the vertical scans in order, with each vertical scan being processed as

follows. If the vertical scan contains four samples (i.e., is a full scan), significance information is needed for all of

these samples, and all of the samples are predicted to remain insignificant, a special mode, called aggregation mode,

is entered. In this mode, the number of leading insignificant samples in the vertical scan is coded. Then, the samples

whose significance information is conveyed by aggregation are skipped, and processing continues with the remaining

samples of the vertical scan exactly as is done in the significance pass. In pseudocode form, this process is described

by Algorithm A.3.

When aggregation mode is entered, the four samples of the vertical scan are examined. If all four samples are

insignificant, an all-insignificant aggregation symbol is coded, and processing of the vertical scan is complete. Oth-

erwise, a some-significant aggregation symbol is coded, and two binary symbols are then used to code the number of

leading insignificant samples in the vertical scan.

The symbols generated during the cleanup pass are always arithmetically coded. In the aggregation mode, the

aggregation symbol is coded using a single context, and the two symbol run length is coded using a single context

with a fixed uniform probability distribution. When aggregation mode is not employed, significance and sign coding
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function just as in the case of the significance pass.

A.3.11 Tier-2 Coding

In the encoder, tier-1 encoding is followed by tier-2 encoding. The input to the tier-2 encoding process is the set of

bit-plane coding passes generated during tier-1 encoding. In tier-2 encoding, the coding pass information is packaged

into data units called packets, in a process referred to as packetization. The resulting packets are then output to the

final code stream. The packetization process imposes a particular organization on coding pass data in the output code

stream. This organization facilitates many of the desired codec features including rate scalability and progressive

recovery by fidelity or resolution.

A packet is nothing more than a collection of coding pass data. Each packet is comprised of two parts: a header

and body. The header indicates which coding passes are included in the packet, while the body contains the actual

coding pass data itself. In the code stream, the header and body may appear together or separately, depending on the

coding options in effect.

Rate scalability is achieved through (quality) layers. The coded data for each tile is organized into L layers, num-

bered from 0 to L−1, where L ≥ 1. Each coding pass is either assigned to one of the L layers or discarded. The coding

passes containing the most important data are included in the lower layers, while the coding passes associated with

finer details are included in higher layers. During decoding, the reconstructed image quality improves incrementally

with each successive layer processed. In the case of lossy compression, some coding passes may be discarded (i.e.,

not included in any layer) in which case rate control must decide which passes to include in the final code stream. In

the lossless case, all coding passes must be included. If multiple layers are employed (i.e., L > 1), rate control must

decide in which layer each coding pass is to be included. Since some coding passes may be discarded, tier-2 coding is

the second primary source of information loss in the coding path.

Recall, from Section A.3.9, that each coding pass is associated with a particular component, resolution level,

subband, and code block. In tier-2 coding, one packet is generated for each component, resolution level, layer, and

precinct 4-tuple. A packet need not contain any coding pass data at all. That is, a packet can be empty. Empty packets

are sometimes necessary since a packet must be generated for every component-resolution-layer-precinct combination

even if the resulting packet conveys no new information.

As mentioned briefly in Section A.3.7, a precinct is essentially a grouping of code blocks within a subband. The

precinct partitioning for a particular subband is derived from a partitioning of its parent LL band (i.e., the LL band

at the next higher resolution level). Each resolution level has a nominal precinct size. The nominal width and height

of a precinct must be a power of two, subject to certain constraints (e.g., the maximum width and height are both

215). The LL band associated with each resolution level is divided into precincts. This is accomplished by overlaying

the LL band with a regular grid having horizontal and vertical spacings of 2PPx and 2PPy, respectively, as shown in

Figure A.11, where the grid is aligned with the origin of the LL band’s coordinate system. The precincts bordering on

the edge of the subband may have dimensions smaller than the nominal size. Each of the resulting precinct regions

is then mapped into its child subbands (if any) at the next lower resolution level. This is accomplished by using

the coordinate transformation (u,v) = (⌈x/2⌉ ,⌈y/2⌉) where (x,y) and (u,v) are the coordinates of a point in the LL

band and child subband, respectively. Due to the manner in which the precinct partitioning is performed, precinct

boundaries always align with code block boundaries. Some precincts may also be empty. Suppose the nominal code

block size is 2xcb’ ×2ycb’. This results nominally in 2PPx’−xcb’ ×2PPy’−ycb’ groups of code blocks in a precinct, where

PPx’ =

{

PPx for r = 0

PPx−1 for r > 0,
(A.12)

PPy’ =

{

PPy for r = 0

PPy−1 for r > 0,
(A.13)

and r is the resolution level.

Since coding pass data from different precincts are coded in separate packets, using smaller precincts reduces the

amount of data contained in each packet. If less data is contained in a packet, a bit error is likely to result in less

information loss (since, to some extent, bit errors in one packet do not affect the decoding of other packets). Thus,

using a smaller precinct size leads to improved error resilience, while coding efficiency is degraded due to the increased

overhead of having a larger number of packets.
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Figure A.11: Partitioning of a resolution into precincts.

More than one ordering of packets in the code stream is supported. Such orderings are called progressions. There

are five builtin progressions defined: 1) layer-resolution-component-position ordering, 2) resolution-layer-component-

position ordering, 3) resolution-position-component-layer ordering, 4) position-component-resolution-layer ordering,

and 5) component-position-resolution-layer ordering. The sort order for the packets is given by the name of the

ordering, where position refers to precinct number, and the sorting keys are listed from most significant to least

significant. For example, in the case of the first ordering given above, packets are ordered first by layer, second by

resolution, third by component, and last by precinct. This corresponds to a progressive recovery by fidelity scenario.

The second ordering above is associated with progressive recovery by resolution. The three remaining orderings are

somewhat more esoteric. It is also possible to specify additional user-defined progressions at the expense of increased

coding overhead.

In the simplest scenario, all of the packets from a particular tile appear together in the code stream. Provisions

exist, however, for interleaving packets from different tiles, allowing further flexibility on the ordering of data. If, for

example, progressive recovery of a tiled image was desired, one would probably include all of the packets associated

with the first layer of the various tiles, followed by those packets associated with the second layer, and so on.

In the decoder, the tier-2 decoding process extracts the various coding passes from the code stream (i.e., depack-

etization) and associates each coding pass with its corresponding code block. In the lossy case, not all of the coding

passes are guaranteed to be present since some may have been discarded by the encoder. In the lossless case, all of the

coding passes must be present in the code stream.

In the sections that follow, we describe the packet coding process in more detail. For ease of understanding, we

choose to explain this process from the point of view of the encoder. The decoder algorithms, however, can be trivially

deduced from those of the encoder.

A.3.11.1 Packet Header Coding

The packet header corresponding to a particular component, resolution level, layer, and precinct, is encoded as follows.

First, a single binary symbol is encoded to indicate if any coding pass data is included in the packet (i.e., if the packet

is non-empty). If the packet is empty, no further processing is required and the algorithm terminates. Otherwise, we

proceed to examine each subband in the resolution level in a fixed order. For each subband, we visit the code blocks

belonging to the precinct of interest in raster scan order as shown in Figure A.12. To process a single code block, we

begin by determining if any new coding pass data is to be included. If no coding pass data has yet been included for

this code block, the inclusion information is conveyed via a quadtree-based coding procedure. Otherwise, a binary

symbol is emitted indicating the presence or absence of new coding pass data for the code block. If no new coding
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Figure A.12: Code block scan order with a precinct.

1: if packet not empty then

2: code non-empty packet indicator /* 1 binary symbol */

3: for each subband in resolution level do

4: for each code block in subband precinct do

5: code inclusion information /* 1 binary symbol or tag tree */

6: if no new coding passes included then

7: skip to next code block

8: endif

9: if first inclusion of code block then

10: code number of leading insignificant bit planes /* tag tree */

11: endif

12: code number of new coding passes

13: code length increment indicator

14: code length of coding pass data

15: endfor

16: endfor

17: else

18: code empty packet indicator /* 1 binary symbol */

19: endif

20: pad to byte boundary

Algorithm A.4: Packet header coding algorithm.

passes are included, we proceed to the processing of the next code block in the precinct. Assuming that new coding

pass data are to be included, we continue with our processing of the current code block. If this is the first time coding

pass data have been included for the code block, we encode the number of leading insignificant bit planes for the code

block using a quadtree-based coding algorithm. Then, the number of new coding passes, and the length of the data

associated with these passes is encoded. A bit stuffing algorithm is applied to all packet header data to ensure that

certain bit patterns never occur in the output, allowing such patterns to be used for error resilience purposes. The entire

packet header coding process is summarized by Algorithm A.4.

A.3.11.2 Packet Body Coding

The algorithm used to encode the packet body is relatively simple. The code blocks are examined in the same order

as in the case of the packet header. If any new passes were specified in the corresponding packet header, the data for

these coding passes are concatenated to the packet body. This process is summarized by Algorithm A.5.

A.3.12 Rate Control

In the encoder, rate control can be achieved through two distinct mechanisms: 1) the choice of quantizer step sizes,

and 2) the selection of the subset of coding passes to include in the code stream. When the integer coding mode is

used (i.e., when only ITI transforms are employed) only the first mechanism may be used, since the quantizer step

sizes must be fixed at one. When the real coding mode is used, then either or both of these rate control mechanisms

may be employed.

When the first mechanism is employed, quantizer step sizes are adjusted in order to control rate. As the step sizes
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1: for each subband in resolution level do

2: for each code block in subband precinct do

3: if (new coding passes included for code block) then

4: output coding pass data

5: endif

6: endfor

7: endfor

Algorithm A.5: Packet body coding algorithm.

are increased, the rate decreases, at the cost of greater distortion. Although this rate control mechanism is concep-

tually simple, it does have one potential drawback. Every time the quantizer step sizes are changed, the quantizer

indices change, and tier-1 encoding must be performed again. Since tier-1 coding requires a considerable amount of

computation, this approach to rate control may not be practical in computationally-constrained encoders.

When the second mechanism is used, the encoder can elect to discard coding passes in order to control the rate.

The encoder knows the contribution that each coding pass makes to rate, and can also calculate the distortion reduction

associated with each coding pass. Using this information, the encoder can then include the coding passes in order of

decreasing distortion reduction per unit rate until the bit budget has been exhausted. This approach is very flexible

in that different distortion metrics can be easily accommodated (e.g., mean squared error, visually weighted mean

squared error, etc.).

For a more detailed treatment of rate control, the reader is referred to [72] and [132].

A.3.13 Region of Interest Coding

The codec allows different regions of an image to be coded with differing fidelity. This feature is known as region-of-

interest (ROI) coding. In order to support ROI coding, a very simple yet flexible technique is employed as described

below.

When an image is synthesized from its transform coefficients, each coefficient contributes only to a specific region

in the reconstruction. Thus, one way to code a ROI with greater fidelity than the rest of the image would be to identify

the coefficients contributing to the ROI, and then to encode some or all of these coefficients with greater precision than

the others. This is, in fact, the basic premise behind the ROI coding technique employed in the JPEG-2000 codec.

When an image is to be coded with a ROI, some of the transform coefficients are identified as being more important

than the others. The coefficients of greater importance are referred to as ROI coefficients, while the remaining coef-

ficients are known as background coefficients. Noting that there is a one-to-one correspondence between transform

coefficients and quantizer indices, we further define the quantizer indices for the ROI and background coefficients as

the ROI and background quantizer indices, respectively. With this terminology introduced, we are now in a position

to describe how ROI coding fits into the rest of the coding framework.

The ROI coding functionality affects the tier-1 coding process. In the encoder, before the quantizer indices for

the various subbands are bit-plane coded, the ROI quantizer indices are scaled upwards by a power of two (i.e., by

a left bit shift). This scaling is performed in such a way as to ensure that all bits of the ROI quantizer indices lie in

more significant bit planes than the potentially nonzero bits of the background quantizer indices. As a consequence,

all information about ROI quantizer indices will be signalled before information about background ROI indices. In

this way, the ROI can be reconstructed at a higher fidelity than the background.

Before the quantizer indices are bit-plane coded, the encoder examines the background quantizer indices for all of

the subbands looking for the index with the largest magnitude. Suppose that this index has its most significant bit in

bit position N − 1. All of the ROI indices are then shifted N bits to the left, and bit-plane coding proceeds as in the

non-ROI case. The ROI shift value N is included in the code stream.

During decoding, any quantizer index with nonzero bits lying in bit plane N or above can be deduced to belong to

the ROI set. After the reconstructed quantizer indices are obtained from the bit-plane decoding process, all indices in

the ROI set are then scaled down by a right shift of N bits. This undoes the effect of the scaling on the encoder side.

The ROI set can be chosen to correspond to transform coefficients affecting a particular region in an image or

subset of those affecting the region. This ROI coding technique has a number of desirable properties. First, the ROI



Appendix A. JPEG 2000: An International Standard for Still Image Compression 136

Type Length
(if required)

Parameters
(if required)

16 bits 16 bits variable length

Figure A.13: Marker segment structure.
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Figure A.14: Code stream structure.

can have any arbitrary shape and be disjoint. Second, there is no need to explicitly signal the ROI set, since it can be

deduced by the decoder from the ROI shift value and the magnitude of the quantizer indices.

For more information on ROI coding, the reader is referred to [46, 25].

A.3.14 Code Stream

In order to specify the coded representation of an image, two different levels of syntax are employed by the codec. The

lowest level syntax is associated with what is referred to as the code stream. The code stream is essentially a sequence

of tagged records and their accompanying data.

The basic building block of the code stream is the marker segment. As shown in Figure A.13, a marker segment

is comprised of three fields: the type, length, and parameters fields. The type (or marker) field identifies the particular

kind of marker segment. The length field specifies the number of bytes in the marker segment. The parameters

field provides additional information specific to the marker type. Not all types of marker segments have length and

parameters fields. The presence (or absence) of these fields is determined by the marker segment type. Each type of

marker segment signals its own particular class of information.

A code stream is simply a sequence of marker segments and auxiliary data (i.e., packet data) organized as shown

in Figure A.14. The code stream consists of a main header, followed by tile-part header and body pairs, followed by

a main trailer. A list of some of the more important marker segments is given in Table A.2. Parameters specified in

marker segments in the main header serve as defaults for the entire code stream. These default settings, however, may

be overridden for a particular tile by specifying new values in a marker segment in the tile’s header.

All marker segments, packet headers, and packet bodies are a multiple of 8 bits in length. As a consequence, all

markers are byte-aligned, and the code stream itself is always an integral number of bytes.
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Table A.2: Types of marker segments

Type Description

Start of codestream (SOC) Signals the start of a code stream. Always the first marker segment in the

code stream (i.e., the first marker segment in the main header).

End of codestream (EOC) Signals the end of the code stream. Always the last marker segment in the

code stream.

Start of tile-part (SOT) Indicates the start of a tile-part header. Always the first marker segment in a

tile-part header.

Start of data (SOD) Signals the end of the tile-part header. Always the last marker segment in the

tile-part header. The tile body follows immediately after this marker segment.

Image and tile size (SIZ) Conveys basic image characteristics (e.g., image size, number of compo-

nents, precision of sample values), and tiling parameters. Always the second

marker segment in the code stream.

Coding style default (COD) Specifies coding parameters (e.g., multicomponent transform,

wavelet/subband transform, tier-1/tier-2 coding parameters, etc.).

Coding style component (COC) Specifies a subset of coding parameters for a single component.

Quantization default (QCD) Specifies quantization parameters (i.e., quantizer type, quantizer parameters).

Quantization component (QCC) Specifies quantization parameters for a single component.

Region of interest (RGN) Specifies region-of-interest coding parameters.

LBox TBox XLBox
(if required)

DBox

32 bits 32 bits 64 bits variable

Figure A.15: Box structure.

A.3.15 File Format

A code stream provides only the most basic information required to decode an image (i.e., sufficient information to

deduce the sample values of the decoded image). While in some simple applications this information is sufficient, in

other applications additional data is required. To display a decoded image, for example, it is often necessary to know

additional characteristics of an image, such as the color space of the image data and opacity attributes. Also, in some

situations, it is beneficial to know other information about an image (e.g., ownership, origin, etc.) In order to allow

the above types of data to be specified, an additional level of syntax is employed by the codec. This level of syntax

is referred to as the file format. The file format is used to convey both coded image data and auxiliary information

about the image. Although this file format is optional, it undoubtedly will be used extensively by many applications,

particularly computer-based software applications.

The basic building block of the file format is referred to as a box. As shown in Figure A.15, a box is nominally

comprised of four fields: the LBox, TBox, XLBox, and DBox fields. The LBox field specifies the length of the box in

bytes. The TBox field indicates the type of box (i.e., the nature of the information contained in the box). The XLBox

field is an extended length indicator which provides a mechanism for specifying the length of a box whose size is

too large to be encoded in the length field alone. If the LBox field is 1, then the XLBox field is present and contains

the true length of the box. Otherwise, the XLBox field is not present. The DBox field contains data specific to the

particular box type. Some types of boxes may contain other boxes as data. As a matter of terminology, a box that

contains other boxes in its DBox field is referred to as a superbox. Several of the more important types of boxes are

listed in Table A.3.

A file is a sequence of boxes. Since certain types of boxes are defined to contain others, there is a natural hierarchi-

cal structure to a file. The general structure of a file is shown in Figure A.16. The JPEG-2000 signature box is always

first, providing an indication that the byte stream is, in fact, correctly formatted. The file type box is always second,

indicating the version of the file format to which the byte stream conforms. Although some constraints exist on the

ordering of the remaining boxes, some flexibility is also permitted. The header box simply contains a number of other
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File Type Box

Image Header Box

Color Specification Box

JP2 Header Box

..
.

Contiguous Code Stream Box

JPEG−2000 Signature Box

..
.

Figure A.16: File format structure.

Table A.3: Box types

Type Description

JPEG-2000 Signature Identifies the file as being in the JP2 format. Always the first box in a

JP2 file.

File Type Specifies the version of the format to which the file conforms. Always

the second box in a JP2 file.

JP2 Header Specifies information about the image aside from the coded image data

itself. (A superbox.)

Image Header Specifies the size and other basic characteristics of the image.

Color Specification Specifies the colorspace to which the image sample data belongs.

Contiguous Code Stream Contains a code stream.

boxes. The image header box specifies several basic characteristics of the image (including image size, number of

components, etc.). The bits per component box indicates the precision and signedness of the component samples. The

color specification box identifies the color space of image data (for display purposes) and indicates which components

map to which type of spectral information (i.e., the correspondence between components and color/opacity planes).

Every file must contain at least one contiguous code stream box. (Multiple contiguous code stream boxes are permitted

in order to facilitate the specification of image sequences to support trivial animation effects.) Each contiguous code

stream box contains a code stream as data. In this way, coded image data is embedded into a file. In addition to the

types of boxes discussed so far, there are also box types for specifying the capture and display resolution for an image,

palette information, intellectual property information, and vendor/application-specific data.

Although some of the information stored at the file format level is redundant (i.e., it is also specified at the code

stream level), this redundancy allows trivial manipulation of files without any knowledge of the code stream syntax.

The file name extension “jp2” is to be used to identify files containing data in the JP2 file format. For more information

on the file format, the reader is referred to [66].

A.3.16 Extensions

Although the baseline codec is quite versatile, there may be some applications that could benefit from additional fea-

tures not present in the baseline system. To this end, Part 2 of the standard [73] is to define numerous extensions

to the baseline codec. Some of the extensions likely to be defined include the following: 1) independent regions, a

generalization of tiling whereby an image may be partitioned into arbitrarily-shaped and possibly overlapped regions;

2) additional intercomponent transforms (e.g., multidimensional wavelet/subband transforms); 3) additional intracom-

ponent transforms (e.g., subband transforms based on arbitrary filters and decomposition trees, different filters in the

horizontal and vertical directions); 4) overlapped transforms; 5) additional quantization methods such as trellis coded

quantization [84,97]; 6) enhanced ROI support (e.g., a mechanism for explicitly signalling the shape of the ROI and an
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Table A.4: Test images

Image Characteristics Description

bike grayscale, 2048×2560, 8

bpp/component

grayscale version of bike_rgb image

bike_rgb RGB color, 2048×2560, 8

bpp/component

collection of objects (e.g., bike, fruit,

newspaper, etc.)

gold grayscale, 720×576, 8

bpp/component

houses, road, and countryside

target grayscale, 512×512, 8

bpp/component

patterns and textures

woman grayscale, 2048×2560, 8

bpp/component

grayscale version of woman_rgb image

woman_rgb RGB color, 2048×2560, 8

bpp/component

lady (head and torso)

arbitrary shift value); and 7) extensions to the file format including support for additional color spaces and compound

documents.

A.4 Codec Evaluation

Having examined the details of the JPEG-2000 codec, we now evaluate the codec’s performance. We begin by studying

the computational complexity of the various operations in the encoder and decoder. Then, we compare JPEG-2000 to

several other well-known compression methods.

A.4.1 Evaluation Methodology

In the sections that follow, we present experimental results obtained with a number of software packages. Here, we

identify the particular software used, for the benefit of the reader. In the case of JPEG-2000, results were obtained

with two different implementations: JasPer (version 0.016) [14, 2, 3], and the JPEG-2000 verification model (VM)

software (version 7.1) [113]. For JPEG, the code from the Independent JPEG Group [61] (version 6b) was employed.

In the case of JPEG LS, the software from the University of British Columbia (version 2.2) [103] was used. Finally, in

the case of SPIHT, the software from the Rensselaer Polytechnic Institute was employed [124, 115]. All of the above

software are written in the C/C++ programming language.

The experimental results presented in the manuscript were gathered on a Sun UltraSPARC machine (with a clock

speed of 300 MHz and 512 MB of memory) running Solaris 5.6. The GNU C/C++ compiler (version 2.7.2) was used.

For evaluation purposes, a suite of six test images were used, as listed in Table A.4. All of these images are taken from

the JPEG-2000 test set [68].

A.4.2 Code Execution Profiling

When implementing a complex algorithm in software, it is often beneficial to know which parts of the algorithm are

likely to contribute the most to total execution time. With this as motivation, we have performed some basic profiling

of the codec software, the results of which are presented below.

For evaluation purposes, three of the test images listed in Table A.4 were employed: bike, bike_rgb, and target.

This test suite was chosen to include grayscale, color, natural, and synthetic imagery. Two typical coding scenarios

were considered: one lossless and one lossy. In each case, we measured the execution time associated with each of

the basic encoder/decoder operations (i.e., multicomponent transform, wavelet transform, quantization, tier-1 coding,

tier-2 coding, and rate control).

bike
bike_rgb
bike_rgb
gold
target
woman
woman_rgb
woman_rgb
bike
bike_rgb
target


Appendix A. JPEG 2000: An International Standard for Still Image Compression 140

A.4.2.1 Lossless Coding

In the first coding scenario, the three test images were encoded in a lossless manner, and then the resulting code

streams were decoded. In each case, the encoder and decoder execution was profiled, leading to the results shown in

Table A.5.

First, let us consider the case of the encoder. Examining Table A.5(a), we see that the encoder spends most of its

time on tier-1 coding and the wavelet transform. In fact, these two operations together account for the vast majority of

the encoder’s execution time (typically 85–95%). The amount of time consumed by the multicomponent transform and

tier-2 coding operations is much less significant. Examining tier-1 coding in more detail, we observe that for natural

imagery (e.g., bike, bike_rgb), significance coding usually requires the most time, followed by the cleanup coding,

and then refinement coding. For synthetic imagery, however, this trend is not necessarily observed, as evidenced by

the results for the target image. Thus, the execution time breakdown for tier-1 coding is somewhat sensitive to image

content.

Now, let us consider the case of the decoder. The execution profiling results for the decoder are given in Ta-

ble A.5(b). Again, we can see that the decoder usually spends most of its time on tier-1 coding (typically about 50%),

followed next by the wavelet transform. These two operations combined account for the vast majority of the decoder’s

execution time (typically 80–95%). The multicomponent transform and tier-2 coding operations consume relatively

little time. Examining the tier-1 coding process in more detail, we observe similar trends as in the encoder. That is, for

natural imagery, significance coding requires the most time, followed by cleanup coding, and then refinement coding,

while the breakdown is less predictable for synthetic imagery.

A.4.2.2 Lossy Coding

In the second coding scenario, the three test images were encoded in a lossy manner, and then the resulting code

streams were decoded. Again, in each case, the encoder and decoder execution was profiled. This led to the results

given in Table A.6.

First, let us study the results for the encoder, given in Table A.6(a). Clearly, the tier-1 coding and wavelet transform

operations require the most time. Together, these two operations account for the vast majority of the execution time

(typically 75–85%). The multicomponent transform is the next biggest consumer of time (typically, requiring 10–

15%). The quantization, tier-2 coding, and rate control operations require relatively little time. Looking at the tier-1

coding process in more detail, we observe that the most time is usually required by cleanup coding, followed by

significance coding, and then refinement coding.

Now, let us consider the case of the decoder. From the results in Table A.6(b), we can see that the wavelet transform

clearly requires the most time by far (typically 45–70%). Tier-1 coding is the next largest time consumer, but has

much more modest requirements (typically 15–25%). The multicomponent transform requires almost as much time

(typically 15–20%). The quantization, and tier-2 coding operations require relatively little time. Looking at the tier-1

coding process in more detail, we observe that, for natural imagery, the least time is required by refinement coding.

Generally speaking, the execution time breakdown for tier-1 coding depends, to a large extent, on the particular image

and bit rate employed.

In the case of both JPEG-2000 implementations considered in this study (i.e., JasPer and the VM software), rate

control is achieved through the selection of the coding passes to include in the final code stream. The quantizer step

sizes are fixed. To ensure optimal rate-distortion performance, the encoder generates all of the coding passes during

tier-1 coding (even though some coding passes may not be included in the final code stream). This leads to the large

amount of time consumed by tier-1 coding in the encoder. Since quantization takes place, however, the tier-1 coding

overhead is not as great (in absolute terms) as in the lossless case.

It is important to note that different multicomponent and wavelet transforms are employed in the lossy and lossless

cases. In the case of lossless coding, the multicomponent and wavelet transforms employed are the RCT and 5/3,

respectively. For lossy coding, the ICT and 9/7 transforms are employed, respectively. The ICT requires more compu-

tation than the RCT, and similarly the 9/7 transform requires more computation than the 5/3 transform. This explains

the larger amount of time spent on the multicomponent and wavelet transform operations relative to the lossless case.

A.4.3 JPEG 2000 vs. Other Methods

So far, we have examined the JPEG 2000 codec only in isolation. Of course, it is only natural to wonder how JPEG

2000 performs in comparison to other compression methods. With this as motivation, we compare the performance

bike
bike_rgb
target
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Table A.5: Codec execution profile for lossless coding (1 tile, SNR progressive, 1 layer, RCT for color images, 5/3

wavelet transform, 5 decomposition levels). (a) Encoder. (b) Decoder.

(a)

% of Execution Time

Operation bike bike_rgb target

intercomponent transform — 0.5 —

intracomponent transform 40.4 42.9 46.4

tier-1 coding 52.8 49.1 46.3

significance 22.0 21.5 12.9

refinement 13.1 10.5 9.5

cleanup 14.4 13.6 19.5

tier-2 coding 4.1 5.0 2.6

(b)

% of Execution Time

Operation bike bike_rgb target

intercomponent transform — 0.5 —

intracomponent transform 40.8 41.2 52.2

tier-1 coding 51.3 45.2 39.2

significance 19.9 18.3 8.9

refinement 9.5 8.3 11.2

cleanup 11.3 8.7 6.6

tier-2 coding 3.1 8.1 1.6

Table A.6: Codec execution profile for lossy coding (32:1 compression for grayscale images and 64:1 compression for

color images, 1 tile, SNR progressive, 1 layer, ICT for color images, 9/7 wavelet transform, 5 decomposition levels).

(a) Encoder. (b) Decoder.

(a)

% of Execution Time

Operation bike bike_rgb target

intercomponent transform — 12.7 —

intracomponent transform 31.7 29.9 35.9

quantization 3.1 2.8 3.4

tier-1 coding 60.7 49.7 54.1

significance 22.5 17.8 16.6

refinement 12.5 8.6 13.5

cleanup 19.9 16.8 19.6

tier-2 coding 1.3 1.1 0.7

(b)

% of Execution Time

Operation bike bike_rgb target

intercomponent transform — 18.5 —

intracomponent transform 63.3 48.6 58.9

quantization 6.3 4.8 5.4

tier-1 coding 19.6 17.4 20.2

significance 3.7 2.4 3.6

refinement 1.1 0.6 1.5

cleanup 3.3 2.2 6.0

tier-2 coding 0.5 0.2 0.3

bike
bike_rgb
target
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bike_rgb
target
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target
bike
bike_rgb
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Table A.7: Comparison of JPEG 2000 and other methods for lossless coding

NBR† Encoder Time (s) Decoder Time (s)

JPEG JPEG JPEG JPEG JPEG JPEG

Image 2000 SPIHT LS 2000 SPIHT LS 2000 SPIHT LS

bike 0.556 0.560 0.544 16.19 30.27 4.45 14.70 30.84 3.70

bike_rgb 0.498 — 0.560 45.12 — 19.67 45.56 — 16.08

gold 0.575 0.577 0.560 1.26 2.28 0.37 1.16 2.33 0.31

target 0.266 0.331 0.273 0.63 1.12 0.16 0.55 1.15 0.13

woman 0.564 0.552 0.556 15.80 29.66 4.48 14.39 30.36 3.71

woman_rgb 0.479 — 0.572 43.25 — 19.75 43.95 — 16.08

Mean‡ 0.490 0.505 0.510
†The normalized bit rate (NBR) is defined as the reciprocal of the compression ratio.

‡The mean taken over all of the grayscale images.

of JPEG 2000 to several other well-known compression techniques, namely JPEG, JPEG LS, and SPIHT. JPEG,

of course, is the well-known international standard most frequently employed for lossy compression. JPEG LS is

a relatively new international standard for lossless (and near-lossless) compression. And lastly, SPIHT is a de facto

benchmark used within the academic community. For lossless coding, we compare JPEG 2000 to SPIHT and JPEG LS,

while for lossy coding, we compare JPEG 2000 to SPIHT and JPEG.

Each of the test images listed in Table A.4 was compressed in a lossless manner and then decompressed using the

JPEG-2000, SPIHT, and JPEG LS codecs. In each case, the bit rate, encoder execution time, and decoder execution

time was measured, yielding the results in Table A.7. Three of the test images from Table A.4 (i.e. bike, bike_rgb,

and target) were compressed in a lossy manner at several bit rates, and then decompressed using the JPEG-2000,

SPIHT, and JPEG codecs. In each case, the distortion, encoder execution time, and decoder execution time was

measured, yielding the results in Table A.8. In the sections that follow, we examine the above results in detail.

A.4.3.1 JPEG 2000 vs. JPEG LS

We begin by comparing the lossless coding results for JPEG 2000 and JPEG LS in Table A.7. For RGB images,

JPEG 2000 achieves significantly higher compression (typically 10–15% better). For other types of imagery, JPEG LS

usually fares better, although the performance gain is frequently marginal (typically 1–2%). Examining the timing

results, we see that the JPEG-2000 encoder is slower than the JPEG-LS encoder by a factor of about 2.25–4.0, with

the factor tending to be smaller for RGB images. The JPEG-2000 decoder is slower than the JPEG-LS decoder by

factor of approximately 2.5–4.5, again, with the factor normally being smaller for RGB images.

JPEG 2000 utilizes a multicomponent transform to reduce intercomponent redundancies, while JPEG-LS does not.

This is, no doubt, a contributing factor to the significantly better compression efficiency achieved by JPEG 2000 on

RGB imagery. In the case of both encoding and decoding, the relative difference in execution time between JPEG

2000 and JPEG LS is smaller for RGB imagery. This behavior can be attributed to the higher compression efficiency

obtained by JPEG 2000 which results in less I/O overhead and a relative decrease in execution time.

Clearly, the main advantage that JPEG LS has over JPEG 2000 is execution speed. This is to be expected, however.

With JPEG LS, no transform is used, and a relatively simple entropy coding technique is employed (i.e., run-length and

Golomb coding). On the other hand, JPEG 2000 employs multicomponent/wavelet transforms and complex bit-plane

and entropy coding techniques (i.e., context-based adaptive arithmetic coding). In terms of compression efficiency,

there is no clear winner. For some classes of imagery, JPEG 2000 yields superior results, while for others JPEG LS

fares better. Computational complexity aside, JPEG 2000 has a number of important advantages over JPEG LS:

1) JPEG 2000 provides an efficient framework for both lossy and lossless compression, whereas JPEG LS only sup-

ports lossless (or near-lossless) compression; 2) JPEG 2000 is both rate and resolution scalable, while JPEG LS is

neither. 3) For RGB imagery, JPEG 2000 has significantly better compression efficiency.
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Table A.8: Comparison of JPEG 2000 and other methods for lossy coding. Lossy coding results for the (a) bike,

(b) bike_rgb, and (c) target images.
(a)

PSNR (dB) Encoder Time (s) Decoder Time (s)
JPEG JPEG JPEG

NBR† 2000 SPIHT JPEG 2000 SPIHT JPEG 2000 SPIHT JPEG
1

128
23.81 23.44 20.61 12.51 8.44 1.79 5.85 8.69 0.56

1
64

26.38 25.89 24.67 12.52 8.90 1.83 6.04 9.17 0.63
1

32
29.65 29.12 27.21 12.57 9.92 1.88 6.20 10.07 0.75

1
16

33.55 33.00 30.59 12.64 11.87 2.00 6.60 11.89 0.97

(b)

PSNR (dB) Encoder Time (s) Decoder Time (s)
JPEG JPEG JPEG

NBR† 2000 SPIHT JPEG 2000 SPIHT JPEG 2000 SPIHT JPEG
1

256
24.87,24.39,23.91 24.10,23.75,23.70 — 39.74 34.18 — 23.26 26.31 —

1
128

27.69,27.08,26.39 26.83,26.44,26.34 24.75,23.22,24.37 39.94 34.93 3.37 23.47 26.86 1.85
1
64

30.93,30.35,29.14 30.09,29.61,29.23 28.04,26.54,27.94 40.00 36.49 3.47 23.84 28.26 2.02
1
32

34.33,34.20,32.05 33.69,33.25,32.35 31.59,29.52,31.37 40.06 39.50 3.66 24.73 31.03 2.34

(c)

PSNR (dB) Encoder Time (s) Decoder Time (s)
JPEG JPEG JPEG

NBR† 2000 SPIHT JPEG 2000 SPIHT JPEG 2000 SPIHT JPEG
1

128
20.45 16.62 — 0.56 0.34 — 0.37 0.35 —

1
64

23.78 20.40 18.16 0.55 0.37 0.11 0.34 0.37 0.04
1

32
27.99 24.27 20.50 0.56 0.42 0.11 0.34 0.41 0.06

1
16

34.90 29.90 26.15 0.56 0.51 0.11 0.33 0.49 0.06
†The normalized bit rate (NBR) is defined as the reciprocal of the compression ratio.

A.4.3.2 JPEG 2000 vs. JPEG

Next, we compare the lossy coding results for JPEG 2000 and JPEG in Table A.8. As these results indicate, at low to

medium bit rates, JPEG 2000 clearly outperforms JPEG in terms of PSNR. Subjectively, the distortion is also much

less in the JPEG 2000 case, as evidenced by the example in Figure A.17. The improvement in coding efficiency offered

by JPEG 2000 does not come without a cost, however. Over the range of compression considered in our study, the

JPEG-2000 encoder is slower than the JPEG encoder by a factor of approximately 5.0–12.0, while the JPEG-2000

decoder is slower than the JPEG decoder by a factor of about 5.0–12.75. The particular factors depend on the bit

rate considered and the type of imagery involved. As the bit rate decreases, the speed of JPEG-2000 relative to JPEG

decreases.

It should not be surprising that the JPEG-2000 codec is slower than the JPEG codec. JPEG-2000 requires more

computation due to its use of bit-plane coding and more complex entropy coding (i.e., context-based adaptive arith-

metic coding).

As demonstrated above, JPEG 2000 offers vastly superior image quality at high compression, compared to JPEG.

Although an important advantage, this is not the only one, however. JPEG 2000 also offers several other key advantages

over JPEG. That is, JPEG 2000: 1) provides efficient lossless compression, unlike the lossless mode of JPEG; 2) offers

better rate scalability, and 3) supports additional features/functionalities, such as region of interest coding, and a more

flexible file format.

A.4.3.3 JPEG 2000 vs. SPIHT

Finally, we compare JPEG-2000 to SPIHT for both lossless and lossy compression. First, let us compare the lossless

coding results for JPEG 2000 and SPIHT given in Table A.7. Since the SPIHT codec software does not support the

lossless coding of multicomponent images, we only consider the single-component imagery here. In terms of coding

efficiency, JPEG 2000 and SPIHT are roughly comparable, with JPEG 2000 perhaps having a slight edge. The JPEG-

2000 encoder is faster than the SPIHT encoder by a factor of approximately 1.75–2.0, while the JPEG-2000 decoder

is faster than the SPIHT decoder by a factor of about 2.0–2.25.

Let us now compare the lossy coding results for JPEG 2000 and SPIHT given in Table A.8. From these numbers,
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(a) (b)

Figure A.17: Lossy compression example comparing JPEG 2000 and JPEG. The target image after 43:1 compression

with (a) JPEG 2000 (PSNR of 26.10 dB) and (b) JPEG (PSNR of 18.91 dB) .

we can see that JPEG 2000 offers better PSNR performance than SPIHT. In terms of execution speed, the JPEG-2000

encoder is slower than the SPIHT encoder by a factor of about 1.0–1.75, while the JPEG-2000 decoder is faster than

the SPIHT decoder by a factor of approximately 1.0–2.0. As the bit rate decreases, the speed of the JPEG-2000

encoder and decoder decrease relative to SPIHT.

For lossless coding, the JPEG-2000 codec is faster than the SPIHT codec. This speed difference can be attributed

to at least two factors. First, the JPEG-2000 codec utilizes a very fast multiplication-free arithmetic coder, while the

SPIHT codec employs an arithmetic coder similar to the classic example given in [147]. Also, JPEG-2000 exploits

symbol aggregation (in cleanup passes) to reduce the number of symbols that need to be arithmetically coded, while

SPIHT does not utilize this type of strategy.

For lossy coding, the JPEG-2000 decoder is faster than the SPIHT decoder. Again, this can be attributed to the

faster entropy coding employed by JPEG 2000. The JPEG-2000 encoder tends to be slower than the SPIHT encoder,

in spite of the fact that JPEG 2000 employs an inherently faster entropy coder. This is due to fact that JPEG 2000

incurs the expense of losslessly coding the quantized transform coefficients regardless of the target bit rate.

A.5 Summary

In this appendix, we commenced with a high-level introduction to the JPEG-2000 standard, and proceeded to study the

JPEG-2000 codec in detail. We then studied the codec’s computational complexity. As our code execution profiling

results demonstrate, efficient wavelet transform and tier-1 coding engines are essential for a fast JPEG-2000 codec im-

plementation. Lastly, we compared JPEG 2000 to various other well-known methods for compression (i.e., JPEG LS,

JPEG, and SPIHT). Although requiring more CPU time than some methods, the JPEG-2000 offers superior coding ef-

ficiency, and provides many new features/functionalities not available in existing standards. With its excellent coding

performance and many attractive features, JPEG-2000 will no doubt become a widely used standard in the years to

come.

target
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A.6 JasPer

The JasPer software is available from the JasPer Project web site (i.e., http://ece.ubc.ca/˜mdadams/jasper).

This software has also been published by the ISO in the JPEG-2000 Part-5 standard as a reference implementation of

the JPEG-2000 Part-1 codec. For more information about the JasPer software, the reader is referred to [2, 14].
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