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Abstract In this paper, a nonlinear model for the interpo-

lation of vector-valued images is proposed. This model is

based on an anisotropic diffusion PDE and performs an in-

terpolation that is reversible. The interpolation solution is

restricted to the subspace of functions that can recover the

discrete input image, after an appropriate smoothing and

sampling. The proposed nonlinear diffusion flow lies on this

subspace while its strength and anisotropy adapt to the lo-

cal variations and geometry of image structures. The derived

method effectively reconstructs the real image structures and

yields a satisfactory interpolation result. Compared to clas-

sic and other existing PDE-based interpolation methods, our

proposed method seems to increase the accuracy of the re-

sult and to reduce the undesirable artifacts, such as blurring,

ringing, block effects and edge distortion. We present exten-

sive experimental results that demonstrate the potential of

the method as applied to graylevel and color images.
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1 Introduction

Image interpolation is among the fundamental image

processing problems and is often required for various image

analysis operations. It is therefore of interest for many ap-

plications such as biomedical image processing, aerial and

satellite imaging, text recognition, high definition video and

high quality image display and printing. In this paper, the

term image interpolation is used in the sense of the oper-

ation that takes as input a discrete image and recovers a

continuous image or a discrete one with higher resolution.

The case where the output image is discrete appears in the

literature with several other names: digital zooming, image

magnification, upsampling, resolution enhancement.

There exists a large variety of image interpolation meth-

ods, which can be classified in two main classes, linear

and nonlinear methods (see Meijering 2002 for a detailed

review). The linear methods (e.g. bicubic, quadratic and

spline interpolations) perform convolution of the image

samples with a single kernel, equivalent to a lowpass fil-

tering. These methods yield fast algorithms, but they can-

not effectively reconstruct the high-frequency part of im-

ages and inevitably introduce artifacts. Nonlinear methods

perform a processing adapted to the local geometric struc-

ture of the image, with main goal to accurately reconstruct

image edges. This class includes variational (e.g. Guichard

and Malgouyres 1998; Malgouyres and Guichard 2001;

Aly and Dubois 2005) and PDE-based (e.g. Belahmidi and

Guichard 2004; Tschumperlé and Deriche 2005) methods,

some of which will be presented in the following sections.

Such methods have also been developed for two closely

related problems, image inpainting (Bertalmio et al. 2000;

Caselles et al. 1998; Chan and Shen 2002) and scattered data

interpolation (Weickert and Welk 2006).
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Fig. 1 Reversibility condition

for the unknown interpolation

solution u(x)

In this paper a novel nonlinear method for the interpo-

lation of vector-valued images is proposed. We pose a con-

straint, which effectively exploits the available information

of the input image. Then, we design a nonlinear anisotropic

diffusion PDE, which performs adaptive smoothing but also

complies with this constraint, thanks to an appropriate pro-

jection operation. The diffusion strength and anisotropy

adapt to the local variations and geometry of image struc-

tures. This method yields a plausible result even when the

resolution of the input image is relatively low and reduces

the artifacts that usually appear in image interpolation. The

paper is organized as follows: In Sect. 2, some interpola-

tion models related to the proposed method are discussed.

Section 3 presents our novel interpolation PDE model. In

Sect. 4, we demonstrate and comment the results from vari-

ous interpolation experiments, that show the efficacy of the

new method.

2 Preliminaries and Background

2.1 Reversibility Condition for Interpolation

The problem of image interpolation is viewed here in a way

similar to (Guichard and Malgouyres 1998; Malgouyres and

Guichard 2001). The continuous solution of the interpola-

tion u(x, y) should yield the known, low resolution discrete

image z[i1, i2], after an anti-aliasing lowpass filtering fol-

lowed by sampling. Namely, it is required that the operation

of interpolation is reversible.

To pose this reversibility condition formally, let us con-

sider that z[i1, i2] takes real values and is defined on an or-

thogonal grid of Nx × Ny points with vertical and horizon-

tal steps hx and hy respectively. Also let u(x), where x =
(x, y), be defined in the orthogonal domain Ω = hx[ 1

2
,Nx +

1
2
] × hy[ 1

2
,Ny + 1

2
], which contains the grid points.

Then, the reversibility condition for the solution u(x) can

be written as (see also Fig. 1):

(S ∗ u)(i1hx, i2hy) = z[i1, i2],
∀(i1, i2) ∈ {1, . . . ,Nx} × {1, . . . ,Ny}, (1)

where “∗” denotes continuous 2D convolution and hereafter
we set hx = hy = 1. Also, S(x) : R

2 → R is a smoothing

kernel that performs the lowpass filtering. Let Ŝ(ω1,ω2) :
R2 → C be the 2D Fourier transform of S(x). We assume

that Ŝ(ω1,ω2) takes nonzero values for all the baseband fre-

quencies, i.e.:

Ŝ(ω1,ω2) �= 0, ∀(ω1,ω2) ∈ [−π,π]2. (2)

For example, S(x) could be the mean kernel, i.e. S(x) =
1[− 1

2 , 1
2 ]2(x), where 1B(x) denotes the indicator function for

any set B ⊂ R
2, or an isotropic Gaussian kernel with appro-

priate variance.

Although the convolution values in (1) are mainly influ-

enced from the values of u(x) inside Ω , an extension of

u(x) to all R
2 must be assumed, in order that S ∗ u is well-

defined. In the subsequent presentation, we consider two al-

ternatives for this extension:

Extension 1 (Simple Periodization) This is the straightfor-

ward choice that is made implicitly when Fourier analy-

sis of such signals is applied (Oppenheim et al. 1984;

Dudgeon and Mersereau 1984), but unfortunately it brings

close image values from distant regions of Ω .

Extension 2 (Reflection and then Periodization)1 This is

a standard choice in image analysis that avoids the dis-

1First, u(x) is extended to Ω̃ = [−Nx + 1
2
,Nx + 1

2
]×[−Ny + 1

2
,Ny +

1
2
] by reflection across the lines of image borders {(x, y) : x = 0.5} and

{(x, y) : y = 0.5}:
u(0.5 ± x,0.5 ± y) = u(0.5 + x,0.5 + y), ∀x ∈ [0,Nx ] × [0,Ny ].

Then, u(x) is extended to R2 by periodization:

u(x + k1 · 2Nx , y + k2 · 2Ny) = u(x), for all (k1, k2) ∈ Z
2.
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advantage of simple periodization, as u(x) is continuous

in image borders. When used for the solution of a PDE,

this is equivalent to imposing zero Neumann boundary

conditions. This extension will be used in our proposed

method.

Therefore, the extended u(x) is (Ñx, Ñy)-periodic, where

(Ñx, Ñy) = (Nx,Ny) for Extension 1, whereas (Ñx, Ñy) =
(2Nx,2Ny) for Extension 2. In addition, we consider that

the discrete input z[i1, i2] is also extended to all Z
2, using

the same type of extension as in u(x). Thus, (1) becomes

valid for all (i1, i2) ∈ Z
2.

Note that (1) degenerates to the exact interpolation con-

dition when S(x) = δ(x) (2D unit impulse). However, con-

dition (1) with an appropriate smoothing kernel, such as

Gaussian, can be more realistic, as it can better model the

digitization process, which is the final step of image acqui-

sition systems (Aly and Dubois 2005). In addition, such a

lowpass filtering is desirable, as it reduces the aliasing ef-

fects in the acquired image.

2.2 Reversibility Condition in Frequency Domain

We can derive a simple expression of the reversibility con-

dition in the frequency domain, useful for the subsequent

analysis. So, let: (i) ûm1,m2
: Z

2 → C be the 2D Fourier se-

ries coefficients of the (Ñx, Ñy)-periodic extension of u(x)

(using either Extension 1 or Extension 2) and (ii) ẑn1,n2
:

Z
2 → C be the discrete-space 2D Fourier series coefficients

of the extended z[i1, i2], using the same method of exten-

sion as in u(x). Note that, since z[i1, i2] is discrete, ẑn1,n2
is

(Ñx, Ñy)-periodic.

Using the convolution property of the 2D Fourier trans-

form (Oppenheim et al. 1984; Dudgeon and Mersereau

1984), it can be shown that S ∗ u(x) is also (Ñx, Ñy)-

periodic and its Fourier series coefficients are

Ŝ(
2πm1

Ñx
,

2πm2

Ñy
) · ûm1,m2

. The extended z[i1, i2] is derived

from sampling S ∗ u(x), therefore we can conclude (Op-

penheim et al. 1984; Dudgeon and Mersereau 1984) that

the reversibility condition (1) is equivalent to the follow-

ing:

∑

(k1,k2)∈Z2

{
Ŝ

(
2π

Ñx

(n1 + k1Ñx),
2π

Ñy

(n2 + k2Ñy)

)

· ûn1+k1Ñx ,n2+k2Ñy

}
= ẑn1,n2

, ∀(n1, n2) ∈ Z
2. (3)

Note that, because of the periodicity of both sides of con-

dition (3), it is sufficient for ûm1,m2
to satisfy this condi-

tion only for (n1, n2) that belong to any Ñx × Ñy rectangu-

lar grid. Additionally, if the unknown image u(x) in condi-

tion (1) is considered to be real, which is a desirable con-

straint for the interpolation solution, then ûm1,m2
must also

satisfy:

û−m1,−m2
= ûm1,m2

, ∀(m1,m2) ∈ Z
2,

where (·) denotes complex conjugation.

The problem of finding u(x) in (1) or equivalently (3) is

ill-posed, as the reversibility condition is satisfied by infi-

nitely many functions. Let Uz,S be the set of these functions.

It is clear that some extra criterion must be posed to choose

among the functions of Uz,S .

2.3 Frequency Zero-Padding Interpolation

A simple linear interpolation method arises by imposing

the additional constraint that u(x) is a bandpass 2D sig-

nal, similarly to Shannon’s theory. Then, the solution of

(1), which we refer to as frequency zero-padding interpo-

lation, is unique and can be easily derived using the expres-

sion (3).

Let us consider only the case that u(x) is extended to

R2 using Extension 2. Then, the bandpass constraint can be

written as:

ûm1,m2
= 0,

∀(m1,m2) /∈ {−Nx, . . . ,Nx} × {−Ny, . . . ,Ny} (4)

In addition, because of the reflection applied to z[i1, i2],
it follows that ẑ±Nx ,n2

= 0, ∀n2 and ẑn1,±Ny = 0, ∀n1.

Therefore, we can also state that û±Nx ,m2
= 0, ∀m2 and

ûm1,±Ny = 0, ∀m1. Consequently, ûm1,m2
is finally con-

strained to take nonzero values only in B1 = {−Nx +
1, . . . ,Nx − 1} × {−Ny + 1, . . . ,Ny − 1}.

Thus, if we evaluate the condition (3) at the values

(n1, n2) ∈ B1, only the term of the sum that corresponds to

(k1, k2) = (0,0) is nonzero. In conclusion, the Fourier series

of frequency zero-padding are given by:

ûm1,m2
=

⎧
⎪⎪⎨
⎪⎪⎩

ẑm1,m2

Ŝ(
2πm1

Ñx
,

2πm2

Ñy
)
, if (m1,m2) ∈ B1,

0, if (m1,m2) ∈ Z2 \ B1,

(5)

since the values in the denominator Ŝ(
2πm1

Ñx
,

2πm2

Ñy
) �= 0, be-

cause of (2).

In the case of Extension 1, an expression very sim-

ilar to (5) can be derived. The only difference in this

case is that, if Nx or Ny is even, the definition of values

ûm1,m2
at the borders of bandpass zone is more compli-

cated.

The frequency zero-padding interpolation reconstructs

image edges without significantly blurring or distorting
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them, but usually introduces strong oscillations around

edges (Malgouyres and Guichard 2001). The cutoff of high

frequencies that it performs is undesirable, as the bandlim-

ited assumption is not true for most real-world images. Con-

sequently, a more appropriate method of selection among

the functions of Uz,S is needed. Such methods will be pre-

sented in the following sections.

2.4 Total Variation Based Interpolation

The authors of (Guichard and Malgouyres 1998; Malgo-

uyres and Guichard 2001) proposed to choose as solution of

the interpolation the image that minimizes the Total Varia-

tion (TV), E[u] =
∫∫

Ω
‖∇u(x)‖dx, under the constraint that

u ∈ Uz,S . This minimization problem is solved in (Guichard

and Malgouyres 1998) by applying a constrained gradient

descent flow, described by the following PDE:

∂u(x, t)

∂t
= PU0,S

{
div

( ∇u

‖∇u‖

)}
, (6)

supplemented with the initial condition that u(x,0) is the

frequency zero-padding interpolation of z[i1, i2]. We note

that, in order to use the reversibility condition, this method

makes the implicit assumption that u(x) is extended to R2

using Extension 1. PU0,S
{·} denotes the operator of orthog-

onal projection on the subspace U0,S , which corresponds to

the condition (1) with z[i1, i2] = 0 for all (i1, i2). This pro-

jection ensures that u(x, t) ∈ Uz,S,∀t > 0, since u(x,0) ∈
Uz,S . The authors propose two options for the smoothing

kernel of condition (1): (i) the mean kernel 1[− 1
2 , 1

2 ]2(x) or

(ii) the sinc kernel, which provides an ideal lowpass filter as

its Fourier transform is 1[−π,π]2(ω1,ω2).

This method leads to reconstructed images without no-

table blurring effects, as it allows discontinuities and pre-

serves 1D image structures. However, TV minimization is

based on the assumption that the desirable image is al-

most piecewise constant, which yields a result with over-

smoothed homogeneous regions. In addition, the diffusion

in (6) is controlled by the simple coefficient 1/‖∇u‖, there-

fore it cannot remove block effects, especially in the regions

with high image variations. Further, the mean kernel van-

ishes too sharply, so the corresponding projection PU0,S
{·}

reintroduces block effects and the sinc kernel is badly local-

ized in space and oscillates, so PU0,S
{·} causes formation of

oscillations in reconstructed edges.

2.5 Belahmidi-Guichard (BG) Method

Belahmidi and Guichard (2004) have tried to improve the

TV-based interpolation by developing a nonlinear anisotrop-

ic PDE, hereafter referred as BG interpolation method. In

order to enhance edge preservation, this PDE performs a dif-

fusion with strength and orientation adapted to image struc-

tures. The PDE is initialized by the simple zero order hold

(ZOH), which yields strong block effects. The reversibil-

ity condition (1) is taken into account (with the choice of

mean kernel for S(x)) by adding to the PDE an appropri-

ate fidelity term, so that the flow u(x, t) stays close to the

subspace Uz,S (see Belahmidi and Guichard 2004 for de-

tails). This method balances linear zooming on homoge-

neous regions and anisotropic diffusion near edges, trying

to combine the advantages of these two processes. Never-

theless, the diffusion is not always desirably adapted to real

image structures and the fact that the PDE flow is not con-

strained to lie inside Uz,S may decrease the accuracy of the

result.

2.6 PDE Model of Tschumperlé and Deriche (TD)

In (Tschumperlé 2002; Tschumperlé and Deriche 2005),

the authors propose an effective PDE method for vector-

valued image regularization. This PDE scheme, which we

refer to as TD PDE, is mainly designed for image restora-

tion applications, but it is presented here because we uti-

lize it to the design of the new interpolation PDE (Sect. 3).

This model is an anisotropic diffusion flow, which uses

tensors to adapt the diffusion to the image structure. Let

u(x, t) = [u1, . . . , uM ]T be the output vector-valued image

at (artificial) time t and M be the number of vector com-

ponents. Then, the TD PDE model can be described by the

following set of coupled PDEs:

∂um(x, t)

∂t
= trace

(
T (Jρ(∇uσ ))D2um

)
,

m = 1, . . . ,M, (7)

with initial condition that u(x,0) is the input vector-valued

image. D2um denotes the spatial Hessian matrix of the com-

ponent um(x, t) and T is the 2 × 2 diffusion tensor:

T (Jρ(∇uσ )) =
[
1 + (N /K)2

]− 1
2
w−w

T
−

+
[
1 + (N /K)2

]−1
w+w

T
+, (8)

where N = √
λ+ + λ− and K is a threshold constant sim-

ilar to the constant in the diffusivity of (Perona and Malik

1990).2 Also, λ− ≤ λ+ and w−,w+ are the eigenvalues and

unit eigenvectors of the 2 × 2 structure tensor:

Jρ(∇uσ ) = Gρ ∗
M∑

m=1

∇(Gσ ∗ um) (∇(Gσ ∗ um))T. (9)

2This is a slightly more general version of the original model

(Tschumperlé 2002; Tschumperlé and Deriche 2005), where K = 1.
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The 2D isotropic Gaussian kernels Gσ (x) and Gρ(x) are of

standard deviation σ and ρ respectively:3

Gσ (x) �
1

2πσ 2
exp

(
−x2 + y2

2σ 2

)
.

The structure tensor Jρ(∇uσ ) measures the local geome-

try of image structures (Weickert 1998). Due to the convo-

lutions with Gσ and Gρ , Jρ(∇uσ ) is insensitive to image

details smaller than O(σ) and is affected by the image vari-

ation within a neighborhood of size O(ρ). The eigenvectors

w− and w+ describe the orientation of minimum and maxi-

mum vectorial variation of u and the eigenvalues λ− and λ+
describe measures of these variations. The term N derived

from these eigenvalues is an edge-strength predictor that ef-

fectively generalizes the gradient magnitude ‖∇u‖. Thus,

the diffusion is strong and isotropic in homogeneous regions

(small N ), but weak and mainly oriented by image struc-

tures near the edges (big N ). Consequently, this method of-

fers a flexible and effective control on the diffusion process

(see Tschumperlé and Deriche 2005 for more details).

Among various applications, the authors of (Tschumperlé

2002; Tschumperlé and Deriche 2005) also apply their

generic PDE model to image interpolation (we refer to the

derived method as TD interpolation method). This method

casts image interpolation as a special case of the image in-

painting problem (Bertalmio et al. 2000). It imposes the

constraint that the solution must coincide with the input

at the appropriate pixels in the new finer grid (exact inter-

polation condition). Thus, the inpainting domain (i.e. the

domain where the image values are unknown) consists of

the remaining pixels. The image values in this domain are

processed according to PDE (7), with a modified diffusion

tensor (Tschumperlé 2002):

T (Jρ(∇uσ )) =
[
1 + (N /K)2

]− 1
2
w−w

T
−. (10)

The bilinear interpolation of the input image is chosen as

initial condition u(x,0) and the interpolation solution is de-

rived from the equilibrium state. Contrary to the effective-

ness of the TD PDE model for image restoration, the derived

interpolation method suffers from some inefficiencies. The

initialization by the bilinear interpolation contains edges

with significant blurring. Also, the information of each input

value z[i1, i2] is not spread to all the corresponding pixels of

the finer grid: During the PDE evolution, the values of u are

fixed at the pixels of the initial coarser grid but vary without

any constraint at the rest pixels. Furthermore, the diffusion

tensor (10) is fully anisotropic even in regions with small

image variations, therefore it may distort image structures

and create false edges.

3The original model corresponds to σ = 0, but we use the more general

version of (Weickert 1998).

3 Proposed Anisotropic Diffusion-Projection PDE

The aforementioned PDE interpolation methods usually per-

form better than classic linear methods, as they reconstruct

the edges without significantly blurring them. In some cases

though, they yield artifacts such as over-smoothing of ho-

mogeneous regions, block effects or edge distortion. In or-

der to improve the effectiveness of these methods, we pro-

pose a novel PDE model that performs a nonlinear interpo-

lation based on a combination of the reversibility condition

approach and nonlinear anisotropic diffusion. The model is

designed to deal with vector-valued images in general and

processes the different channels in a coupled manner.

More precisely, the design of our model has been based

on the observation that the TV-based interpolation PDE (6)

can be derived from a non-minimization point of view: it is

in fact a modification of the zero-fidelity (λ = 0) TV PDE

(Rudin et al. 1992):

∂u(x, t)

∂t
= div

( ∇u

‖∇u‖

)
, (11)

which can be viewed as a special case of the general non-

linear diffusion of (Perona and Malik 1990). This modifica-

tion is done by replacing the right hand side (RHS) of the

PDE with its projection to U0,S . Thanks to this projection,

the whole flow remains into the subspace Uz,S , provided that

u(x,0) ∈ Uz,S .

We propose to follow a similar approach, using the RHS

of some other, more effective for this application, PDE in-

stead of the TV PDE (11). In (Roussos and Maragos 2007),

we have used the RHS of the TD PDE (7), which performs

a more flexible regularization. In this paper though, we use

the RHS of a modified version of the TD PDE, namely:

∂um(x, t)

∂t
= div

(
T (Jρ(∇uσ ))∇um

)
, m = 1, . . . ,M,

(12)

with the tensor T (Jρ(∇uσ )) given again by (8). This modifi-

cation is based on the general anisotropic diffusion model of

(Weickert 1998). As our experiments revealed (c.f. Sect. 4),

using this divergence-based expression of anisotropic dif-

fusion instead of the trace-based version (7), the interpo-

lation result is slightly improved, mainly in small regions

where the tensor T has a strong spatial variation. Thus,

in the divergence-based expression, the adaptation of the

anisotropic diffusion to the image structures seems to be

more desirable.

At this point, we must note that the PDE (12), whose

RHS we use in the design of our proposed method, is only

one possible choice. Any other regularization PDE could be

used and the subsequent analysis of the method would be

very similar.
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3.1 Reversibility Condition for the Proposed Model

We use a straightforward generalization of condition (1) to

vector-valued images: Every channel of the interpolation so-

lution u(x) is constrained to satisfy (1) independently. This

generalized reversibility condition can thus be written as:

(S ∗ um)(i1, i2) = zm[i1, i2], (13)

for all points (i1, i2) ∈ {1, . . . ,Nx} × {1, . . . ,Ny} and chan-

nels m ∈ {1, . . . ,M}. zm[i1, i2] and um(x) are the m-th of

M components of the discrete input and interpolated im-

age respectively. Let U z,S be the set of vector-valued im-

ages u(x) that satisfy the generalized reversibility condition

(13).

Note that we consider that u(x) is extended to R
2 using

Extension 2 (see Sect. 2.1). Also, in the reversibility condi-

tion (13) we use a Gaussian smoothing kernel S(x) = Gr(x)

of standard deviation r . With this choice, the digitization

process during the image acquisition can be reliably mod-

eled. The standard deviation r must be neither too small

nor too big. If r is too small, S(x) is too localized in

space and the information of each input value z[i1, i2] is

not spread properly to the neighborhood of the point (i1, i2).

On the other hand, if r is too big, S(x) is too extended

in space and performs a lowpass filtering with very small

bandwidth, therefore the reversibility condition is not realis-

tic.

Compared to the mean and sinc kernel of TV based and

BG methods (see Sects. 2.4 and 2.5), the Gaussian kernel

Gr(x) leads to a more efficient version of the reversibility

condition, when an appropriate r is chosen. More precisely,

it avoids the sharp cutoff either in space domain (encoun-

tered by the mean kernel) or frequency domain (encountered

by the sinc kernel), therefore it vanishes smoothly and is

well localized in space.

The use of the Gaussian smoothing kernel is a slight dif-

ference from the previous version of our work: In (Roussos

and Maragos 2007), we had used a truncated Gaussian ker-

nel, which has support of size hx × hy = 1 × 1 in the con-

tinuous space (same as the size of discrete input’s pixels). In

fact, the use of Gaussian without truncation is an improve-

ment, as the truncation may introduce a rather sudden cutoff

in the kernel (although the mean kernel is much more sud-

den). This truncation was done in (Roussos and Maragos

2007) in order to derive a simple expression for the projec-

tion operator in the space domain. Here though, we derive a

generic expression for the projection (without need to make

any assumption about the kernel’s support), using a more so-

phisticated analysis in frequency domain (see Sect. 3.3 and

Appendix).

3.2 PDE Scheme of the Proposed Model

We derive the interpolated image from the equilibrium so-

lution of the following system of coupled PDEs (which we

name Anisotropic Diffusion-Projection PDE):

∂um(x, t)

∂t
= PU0,S

{
div

(
T (Jρ(∇uσ ))∇um

)}
,

m = 1, . . . ,M, (14)

where PU0,S
{·} denotes the operator of orthogonal projec-

tion on the subspace U0,S and the tensors T (Jρ(∇uσ )) and

Jρ(∇uσ ) are again given by (8) and (9) respectively. We

have chosen the following initial conditions for (14): every

um(x,0) is derived from the frequency zero-padding in-

terpolation of zm[i1, i2] (5). Note that u(x,0) ∈ Uz,S , so

PU0,S
{·} ensures that u(x, t) ∈ U z,S , ∀t > 0.

The above initialization, which is similar to the one of

PDE (6) proposed in (Guichard and Malgouyres 1998), can

be easily computed numerically and contains quite effi-

cient reconstructions of image edges (see also the discus-

sion in Sect. 3.4). As mentioned above, we assume that

u(x) is extended to R
2 using the Extension 2 instead of

the Extension 1. The reflection that is added to the Exten-

sion 2 offers a slight improvement to the frequency zero-

padding, as it eliminates the ringing effects near the image

borders.

3.3 Expression for the Projection Operator

It is clear that an expression for the projection operator in

(14) is needed. As we show in the Appendix, the projection

PU0,S
{v} of an (Ñx, Ñy)-periodic function v(x) on the sub-

space U0,S can be derived from the following equations:

PU0,S
{v} = v(x) − w(x), (15)

where w(x) is also an (Ñx, Ñy)-periodic function with 2D

Fourier series coefficients:

ŵm1,m2
=

{ ∑

(k1,k2)∈Z2

φ̂

(
2πm1

Ñx

+ k12π,
2πm2

Ñy

+ k2π

)

· v̂m1+k1Ñx ,m2+k2Ñy

}
· φ̂

(
2πm1

Ñx

,
2πm2

Ñy

)
, (16)

and φ(x) is a function with Fourier transform:

φ̂(ω1,ω2) =
{ ∑

(k1,k2)∈Z2

∣∣Ŝ(ω1 + k12π,ω2 + k22π)
∣∣2

}− 1
2

· Ŝ(ω1,ω2). (17)

Note that most of the spectral energy of φ(x) is concen-

trated in low frequencies. In practice, the definition (16) of
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w(x) in the frequency domain is more suitable for the im-

plementation of the projection. But we can also define it in

the space domain, in order to obtain more intuition. Thus,

using the convolution property of the 2D Fourier transform

and the relation between the 2D Fourier transforms of a sig-

nal and its sampled version (Oppenheim et al. 1984; Dud-

geon and Mersereau 1984), it can be shown that (16) can be

equivalently expressed as:

w(x) =
(
III · (φ ∗ v)

)
∗ φ(x), (18)

where III(x, y) =
∑

(i,j) δ(x − i, y −j) is a 2D impulse train

for sampling on a rectangular grid with unit horizontal and

vertical sampling periods. As a simple example, if S(x) is

the sinc kernel, then φ(x) = S(x) and the above equation

reduces to w = φ ∗ v; i.e. w becomes a bandlimited version

of v and PU0,S
{v} contains only the highpass part of v.

It follows from (17) that φ is real. Therefore, if v is real,

then w(x) and PU0,S
{v} are also real, because of (18) and

(15). This is the desirable property for the application stud-

ied in this paper, as we deal with images that take real values

and we want the interpolation result to take also real values.

In the special case where the smoothing kernel S(x) is the

Gaussian kernel Gr(x), as we have chosen in our method,

then Ŝ(ω1,ω2) = 2π

r2 G1/r(ω1,ω2). From this, one can com-

pute an analytic expression for φ̂(ω1,ω2) and then use it

in (16).

3.4 Properties of the Model

As already mentioned, the frequency zero-padding inter-

polation, which we use as initial condition of (14), recon-

structs image edges without significantly blurring or dis-

torting them, but also introduces strong oscillations around

edges (c.f. Malgouyres and Guichard 2001). It can thus be

viewed as a desirable interpolation result degraded by a sig-

nificant amount of noise. The scope of the proposed PDE

(14) is to effectively regularize the image u(x,0) by remov-

ing these oscillations.

Also note that (15) shows that the projection PU0,S
{v}

subtracts the component of v that does not comply with

the reversibility condition. This subtraction does not affect

the basic characteristics of the regularization that the veloc-

ity vm = div(T ∇um) tends to apply to the image. There-

fore, similarly to the TD PDE (7), the anisotropic tensor T

forces the diffusion to be strong and isotropic in homoge-

neous regions, but relatively weak and oriented by image

structures, near the edges. In this way, the proposed PDE re-

moves the undesirable oscillations and simultaneously pre-

serves the important image structures. Namely, the proposed

PDE can be considered as a diffusion flow towards elements

of U z,S with “better” visual quality.

Additionally, we have experimentally observed that the

best regularized image is usually reached at a finite time,

where practically the flow reaches an equilibrium (see

Fig. 8(a) for an example), thanks to the term that PU0,S
{v}

subtracts from the velocity v. Therefore, there is no need to

specify the stopping time as an additional parameter.

3.5 Numerical Implementation

In the numerical implementation, the continuous result u(x)

of the proposed model is approximated by a discrete im-

age u[i′1, i′2], defined to a finer grid than the input image

z[i1, i2]. Thus, u[i′1, i′2] provides a discrete interpolation

(upsampling) of the input z[i1, i2]. We consider only the

case where the vertical and horizontal grid steps of z[i1, i2]
are multiples of the grid steps of u[i′1, i′2] by an integer fac-

tor d , which we call zoom factor. Namely, the input image is

magnified d × d times. For the sake of simplicity, we here-

after assume that the finer grid of u[i′1, i′2] has unit steps,

hence the grid of input z[i1, i2] has steps d .

To discretize the PDE (14), we use an explicit numeri-

cal scheme with finite differences, similar to (Tschumperlé

2002). The discrete time step δt is chosen sufficiently small

for stability purposes (the typical value of δt = 0.2 is used).

Due to the fact that the output image is given at the equilib-

rium, we stop the iterative process when u
n+1 differs from

u
n by a small constant, with respect to an appropriate norm,

such as the root mean square (RMS) value over all the grid

points and image channels.

Note that, since during the numerical implementation of

the proposed PDE the derived interpolation solution is dis-

crete instead of continuous, we can develop a totally discrete

framework for the reversibility condition, the frequency

zero-padding and the projection operator, very similar to

the continuous framework presented in Sects. 2.1, 2.3 and

3.3. The discrete expressions derived from this framework

have an exact correspondence to their continuous counter-

parts that we have presented. Therefore, in our experiments

we implement the frequency zero-padding interpolation and

the projection operator based on this discrete framework and

using the 2D Fast Fourier Transform.

4 Experimental Results and Comparisons

4.1 Framework for the Experiments

In order to compare the interpolation methods and extract

performance measures, we use the following framework: We

choose a reference image with a relatively good resolution

and negligible noise. We reduce the dimensions of this im-

age by an integer factor d (i.e. the image is reduced to 1
d

× 1
d

of its size), using a decimation process, i.e. (anti-aliasing)

lowpass filtering followed by discrete sampling. We imple-

ment the lowpass filtering by a convolution with a bicubic
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Fig. 2 Color versions of 8 out of 23 reference images from the dataset used (768 × 512 pixels per image)

Fig. 3 Details of reference

images used in the

demonstrations of next figures.

(a) Detail of image #7

(graylevel version). (b) Detail of

image #5 (color version)

spline, which results to a reliable decimation process. Fi-

nally, we apply the interpolation methods to enlarge the dec-

imated image by the zoom factor d , so that the output images

have the same size as the reference image. Note that we used

the range [0,255] for image values and in the case of color,

we applied the methods representing the images in the RGB

color space. The reference image can be considered as the

ideal output of the interpolation, as it is noiseless. Therefore

the difference between the reference image r[i1, i2] and the

output of a method u[i1, i2] can be viewed as reconstruc-

tion error and is quite representable of the method’s perfor-

mance.

We use two measures for this error, the classic peak

signal-to-noise-ratio (PSNR)4 and the mean structural sim-

ilarity (MSSIM) index (Wang et al. 2004), which seems to

better approximate the perceived visual quality of an image

than PSNR or various other measures. MSSIM index takes

4We use the definition PSNR = 10 log10(2552M/var{‖u[i1, i2] −
r[i1, i2]‖}), where ‖ · ‖ denotes here the Euclidean norm of vectors

with M components.

values in [0,1] and increases as the quality increases.5 In the

case of color images, we extend MSSIM with the simplest

way: we calculate the MSSIM index of each RGB channel

and then take the average.

We repeat the above procedure for different reference im-

ages from a dataset and for zoom factors d = 2,3 and 4. For

every zoom factor and interpolation method, we compute the

averages of PSNR and MSSIM for all the images in the set,

which we consider as final measures of performance.

We followed the above experimental framework using a

dataset of 23 natural images of size 768 × 512 pixels6 (see

Figs. 2 and 3). We run two series of experiments: (i) for the

graylevel versions of images, where we applied the bicubic,

the TV-based, the BG method, the previous (Roussos and

Maragos 2007) and the current version of our method7 and

5We calculate the MSSIM index based on the code available at

http://www.cns.nyu.edu/~lcv/ssim/, using the default parameters.

6We took this dataset from http://www.cipr.rpi.edu/resource/stills/

kodak.html.

7Recall that the current version has two slight differences from the ver-

sion of (Roussos and Maragos 2007) (see Sect. 3): (i) it uses a Gaussian

http://www.cns.nyu.edu/~lcv/ssim/
http://www.cipr.rpi.edu/resource/stills/kodak.html
http://www.cipr.rpi.edu/resource/stills/kodak.html
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Fig. 4 Visual details and error

measures of 4 × 4 graylevel

interpolation results using image

#7 as reference (see Fig. 3(a))

(ii) for their color counterparts, where we applied the bicu-

bic, the TD method and again the previous and current ver-

sion of our method. In the second series, we did not apply

the TV-based and BG methods because they are designed

for the interpolation of graylevel images only.

Note that we implemented the other PDE-based interpo-

lation methods with a way similar to the implementation of

the proposed method, as briefly described in Sect. 3. For the

methods that needed specification of parameter(s), we uti-

lized fixed values in all the dataset, which we empirically

smoothing kernel instead of truncated Gaussian and (ii) the PDE of the

model contains a divergence-based diffusion term instead of a trace-

based one.

derived based on the quality of the results, as perceived by

a human observer. We have hence chosen the parameters

σ = 0.3d , ρ = 0.4d , r = 0.35d and K = 1 for both ver-

sions of our method. Also, in the TD method we used the

same values ρ = 0.4d , K = 1 and in the BG method we

used K = 3 for the corresponding threshold constant.

A complete demonstration of the experimental results us-

ing the above dataset can be found at: http://cvsp.cs.ntua.

gr/~tassos/PDEinterp/ssvm07res.

4.2 Examples from the Experimental Results

Figure 4 is an example of the results for graylevel image

interpolation. The input image, which is a 4 × 4 decima-

http://cvsp.cs.ntua.gr/~tassos/PDEinterp/ssvm07res
http://cvsp.cs.ntua.gr/~tassos/PDEinterp/ssvm07res
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Fig. 5 Comparison of the two

versions of our method, for the

interpolation example of Fig. 4

(small details of 95 × 70 pixels)

tion of the reference of Fig. 3(a), is shown in Fig. 4(a). For

the sake of demonstration, it has been enlarged by the sim-

ple zero order hold (ZOH), whose error measures are dis-

played below this image. It can be observed that the bicu-

bic interpolation significantly blurs the edges (e.g. note the

flower boundary in Fig. 4(b)). The TV-based interpolation

over-smooths some homogeneous areas (e.g. the interior of

the flower in Fig. 4(c)), creates block effects (e.g. the thin

black branch at the upper right of Fig. 4(d)) and oscillations

in reconstructed edges (e.g. the shutter behind the flower in

Fig. 4(c)). In the result of BG interpolation, the block effects

are reduced, but they are still present in some regions (e.g.

the branch at the upper right of Fig. 4(e)). In addition, this

result is more blurred than the results of TV-based method.

Finally, Fig. 4(f) shows that our proposed method yields the

most effective reconstruction of image structures, with the

less intense block and blurring effects. For example, observe

in Fig. 4 how the shutter is most desirably reconstructed by

our method. Also, quantitatively, our method performs the

best PSNR and MSSSIM measures.

Note that, if we had also demonstrated the previous ver-

sion (Roussos and Maragos 2007) of our method in the ex-

ample of Fig. 4, then the result would have looked almost

identical with the result of the current version (Fig. 4(f)),

as these two results exhibit slight differences only. But in

Fig. 5, which shows an even smaller detail of these results,

the differences become clearer. More precisely, we see that

in the current version of our method, the reconstructed edges

are even sharper and better localized (compare e.g. the re-

constructions of the shutter’s parallel line segments). This

improvement is due to the different smoothing kernel used,

as in the current version this kernel vanishes more smoothly,

but also due to the fact that the divergence-based operator

makes the diffusion term to adapt more effectively to image

structures than the trace-based operator.

Figure 6 demonstrates an example of the results for color

image interpolation. We observe that the bicubic interpo-

lation gives again a result with blurring but also signifi-

cant staircase effects. Figure 6(c) shows that TD interpo-

lation yields an excessively synthetic aspect to the result,

as it has distorted image edges and created false thin edges

around the real ones. Again, the result of the proposed

method (Fig. 6(d)) seems the most aesthetically satisfying

and has the highest performance measures. This result con-

tains sharper and better localized edges than the bicubic in-

terpolation (e.g. note the more effective reconstruction of

casques’ edges) and looks much more natural than the re-

sult of TD interpolation.

Let us now provide more details about the application of

the proposed method to the above experiment, which will

better explain how this method outputs an effective result.

Figure 7 shows the evolution of the proposed PDE flow

(14). In the frequency zero-padding interpolation (Fig. 7(b)),

which is used as initialization, the reconstructed edges are

fairly sharp and have plausible shapes. But there are also

strong oscillations, because all the high frequencies have

been set to zero. In the intermediate result of Fig. 7(c), the

oscillations have been removed from some parts of the im-

age, but they are still present near strong edges. In the final

result of Fig. 7(d), it seems that they have been totally re-

moved from the image. This is due to the anisotropic diffu-

sion term of our PDE. We also observe that the reconstructed

edges of frequency zero-padding are preserved during the

whole PDE evolution, without any undesirable distortion or

blurring (e.g. note the similarity between the casque bound-

aries of Figs. 7(b), (c) and (d)). This is achieved thanks to

the effective adaptation of the anisotropic diffusion tensor to

the image structures, but also thanks to the projection opera-

tor of the proposed PDE (14), which increases the accuracy

of the result.

In Fig. 8, we can see the variations of 3 measurements

during the evolution of the proposed PDE, when applied

to the aforementioned example. In Fig. 8(a), the RMS of

PDE solution’s rate of change ∂u

∂t
(x, y,nδt) (computed from

the discretization of PDE’s RHS) is plotted. We observe

that this quantity is descending during the evolution and fi-

nally tends to zero, which indicates that the flow equilibrates

when t → ∞. This is a desirable property, as it provides an

evidence about the stability of the proposed PDE scheme
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Fig. 6 Visual details and error

measures of 4 × 4 color

interpolation results using image

#5 as reference (see Fig. 3(b))

Fig. 7 Details from the

evolution of the proposed PDE

flow (14) when applied to the

4 × 4 color interpolation using

image #5 as reference (the time

step δt = 0.2)

and its numerical implementation. Figures 8(b) and 8(c)

show that both PSNR and MSSIM measures are increas-

ing during the PDE evolution. This property is desirable

as well, since it means that the image with the best qual-

ity is derived from the equilibrium, which is the final re-

sult of our method. The improvement on the image quality

may be attributed to the fact that the PDE flow gradually

removes the oscillations without destroying the image struc-

tures, thus brings the image closer and closer to the refer-

ence.
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Fig. 8 Measurements during

the evolution of the proposed

PDE flow (14), for the example

of Figs. 6 and 7. (a) RMS of

PDE solution’s rate of change

∂u(x, y,nδt)/∂t . (b) PSNR and

(c) MSSIM error measures

Fig. 9 Average error measures

in all results using the 23

images, for different zoom

factors

4.3 Overall Performance Measures

Figure 9 contains the overall performance measures of the

interpolation methods, for the two series of experiments in

the dataset with the 23 images.

We observe in Fig. 9(a) that the worst error measures

in the experiments with graylevel images are provided by

the bicubic and the BG method. Bicubic interpolation yields

better error measures than the BG method when the zoom

factor d = 2, but this relation is inverted when d = 4. This is

due to the fact the bicubic method introduces blurring effects

which become more intense as d increases. On the other

hand, the BG method oversmooths the homogeneous areas

of the image even when d is small, but the corresponding er-

ror measures decrease slower as d increases, because it per-

forms an adaptive processing. Also, the BG method yields

worse error measures than the other PDE-based methods

because the PDE flow of this method is not constrained to

satisfy exactly the reversibility condition, thus it introduces

oversmoothing effects and reduces the result’s accuracy. In

addition, the TV-based interpolation accomplishes in all the

cases better error measures than the bicubic and BG meth-

ods. These measures are fairly similar for the two choices of

the smoothing kernel (sinc and mean kernel). Finally, we see
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Fig. 10 Interpolation (4 × 4) of

a biomedical vocal tract image

that both versions of the proposed method yield better aver-

age PSNR and MSSIM measures than all the other methods.

This improved performance may be attributed to the fact

that our method performs a more flexible adaptive smooth-

ing and reliably exploits the input image data to increase

the accuracy of the result. Also note that the current version

of our method has further improved the average PSNR and

MSSIM measures in almost all the cases. This further im-

provement is due to the two modifications made from the

current method.

Figure 9(b) shows that, in the experiments with color im-

ages, the proposed method scores again the best average

PSNR and MSSIM measures. In addition, we see that the

measures of the TD method are much worse even from bicu-

bic interpolation. This is due to the excessively synthetic as-

pect of this method’s results.

4.4 Interpolation of Biomedical Images

We have also applied our interpolation method to a special

class of biomedical data that are MRI images of a speaker’s

vocal tract. Image data of this type are important for the

analysis and modeling of the human speech production sys-

tem. Often, these images have low spatial resolution, be-

cause of limitations in the image acquisition system. Thus,

the application of an effective interpolation as a preprocess-

ing step could be crucial for the success of the subsequent

image analysis steps.

Figure 10 shows an example using an MRI midsagittal

vocal tract image.8 Figure 10(a) is a close-up of a denoised

(using anisotropic diffusion) version of this image. Similarly

to the above experiments, we used this image as reference

and we reduced it to 1
4

× 1
4

of its size (see Fig. 10(b)). Fi-

nally, we applied the bicubic, TV-based, BG and our method

to 4 × 4 interpolate the decimated image (Figs. 10(c)–(f)).

The observation of the results of the Fig. 10 leads to con-

clusions about the methods similar to the conclusions from

Fig. 4. The proposed method seems to yield again the most

satisfying result, with the best reconstruction of the vocal

tract shape. Note as well that the best PSNR and MSSIM

index is achieved by the result of our method. This simple

example reveals that the proposed model can be also used to

effectively enhance the resolution of medical image data of

the vocal tract.

5 Conclusions

In this paper, we have proposed a model for the interpola-

tion of vector-valued images, based on an anisotropic dif-

fusion PDE. Our main contribution is an efficient combina-

tion of the reversibility condition approach (Guichard and

Malgouyres 1998) with a nonlinear anisotropic diffusion

8We have taken this image from: http://www.speech.kth.se/~olov/.

http://www.speech.kth.se/~olov/
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Fig. 11 Derivation of p̂
(n1,n2)
m1,m2

(for the sake of demonstration,

m2 is constant to n2 + k2Ñy , for

some k2 ∈ Z)

(Tschumperlé and Deriche 2005; Weickert 1998). For this

purpose, we have introduced an appropriate projection op-

erator and we have derived an expression for it using the

Fourier transform. The proposed model reduces the undesir-

able effects of classic linear and similar PDE-based interpo-

lation methods. Thorough experimental results have demon-

strated the potential of the method as applied to graylevel

and color images.

Note that important theoretical issues, such as existence,

uniqueness and stability of the solution of the proposed

PDE, remain still open. On the other hand, the extensive

experiments that we performed indicate that the discretiza-

tion of the proposed PDE evolution is stable and practically

reaches an equilibrium after a finite time. Finally, it must be

noted that our proposed model assumes that the input im-

age is noise free. Thus, it could be modified to handle also

images with non-negligible noise.

Appendix

We show here the validity of the expressions (15), (16) and

(17), which describe the projection PU0,S
{·} on the subspace

U0,S . We assume that all the input functions of the projection

PU0,S
{·} in our proposed PDE (14) lie in a Hilbert space H .

The subspace U0,S can be defined as the set of functions

v(x) that satisfy (1) with z[i1, i2] = 0 everywhere, or equiv-

alently (3) with ẑn1,n2
= 0 everywhere, namely:

∑

(k1,k2)∈Z2

Ŝ

(
2π

Ñx

(n1 + k1Ñx),
2π

Ñy

(n2 + k2Ñy)

)

· v̂n1+k1Ñx ,n2+k2Ñy
= 0, (19)

for all (n1, n2) ∈ Z
2. As mentioned before, it is sufficient

for v̂m1,m2
to satisfy (19) only for (n1, n2) that belong to

any Ñx × Ñy rectangular grid. We choose the grid B2 =
{−Nx, . . . ,Nx − 1}× {−Ny, . . . ,Ny − 1} that surrounds the

origin.

Thus, for any (n1, n2) ∈ B2, let p(n1,n2)(x) be the

(Ñx, Ñy)-periodic complex function, whose Fourier series

coefficients are (see Fig. 11):

p̂(n1,n2)
m1,m2

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Ŝ
(

2πm1

Ñx
, 2πm2

Ñy

)
, if ∃(k1, k2) ∈ Z2 s.t.:

(m1,m2) = (n1 + k1Ñx, n2 + k2Ñy),

0, else

(20)

for all (m1,m2) ∈ Z
2. Then, condition (19) is equivalent to:

∀(n1, n2) ∈ B2:

〈v̂, p̂(n1,n2)〉ℓ2 = 0 ⇔ 〈v,p(n1,n2)〉L2 = 0, (21)
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where 〈·, ·〉ℓ2 and 〈·, ·〉L2 denote the inner products of ℓ2(Z2)

and L2(Ω̃) respectively.9 The equivalence in (21) is due to

the Parseval equality (Naylor and Sell 1982):

〈v̂, p̂(n1,n2)〉ℓ2 = (ÑxÑy)
−1〈v,p(n1,n2)〉L2 . (22)

Since (19), which defines the subspace U0,S , is equivalent

to (21), U0,S is in fact the set of functions that are orthogonal

to all p(n1,n2). Thus, it can be shown that the set {p(n1,n2) :
(n1, n2) ∈ B2} is a basis of U ⊥

0,S , which is the orthogonal

complement of U0,S . This basis is orthogonal, because:

〈p(n1,n2),p(n′
1,n

′
2)〉L2

= (ÑxÑy)〈p̂(n1,n2), p̂(n′
1,n

′
2)〉ℓ2

= ‖p(n1,n2)‖2
L2δn1−n′

1,n2−n′
2
,

∀(n1, n2) ∈ B2,∀(n′
1, n

′
2) ∈ B2, (23)

since, if (n′
1, n

′
2) �= (n1, n2), p̂(n′

1,n
′
2) takes nonzero values

for different (m1,m2) than p(n1,n2) (see (20) and Fig. 11).

The norm ‖p(n1,n2)‖L2 in (23) is given by:

‖p(n1,n2)‖L2 = (ÑxÑy)
1
2 · ‖p̂(n1,n2)‖ℓ2 = (ÑxÑy)

− 1
2

·
{ ∑

(k1,k2)∈Z2

∣∣∣∣Ŝ
(

2π

Ñx

(n1 + k1Ñx)
−1,

2π

Ñy

(n2 + k2Ñy)

)∣∣∣∣
2}− 1

2

.

(24)

We form the set {q(n1,n2) : (n1, n2) ∈ B2}, which is an ortho-

normal basis of U ⊥
0,S by normalizing each p(n1,n2): For every

(n1, n2) ∈ B2, q(n1,n2) is defined as:

q(n1,n2)(x) = 1

‖p(n1,n2)‖L2

· p(n1,n2)(x), ∀x ∈ R
2. (25)

Now, we can straightforwardly compute the projection in

U ⊥
0,S (Naylor and Sell 1982):

w(x) � P
U ⊥

0,S
{v}

=
∑

(n1,n2)∈B2

〈v, q(n1,n2)〉L2 · q(n1,n2)(x), ∀x ∈ R
2,

which is also (Ñx, Ñy)-periodic, like all q(n1,n2)(x) func-

tions. Thus, the Fourier series coefficients of w are given

by:

ŵm1,m2
= (ÑxÑy)

∑

(n1,n2)∈B2

〈v̂, q̂(n1,n2)〉ℓ2 · q̂(n1,n2)
m1,m2

, (26)

for all (m1,m2) ∈ Z
2.

9〈f,g〉ℓ2 =
∑

(m1,m2)∈Z2fm1,m2
gm1,m2

, 〈f,g〉L2 =
∫∫

Ω̃
f (x)g(x)dx.

As we said, the Fourier series of each element of

{p(n1,n2) : (n1, n2) ∈ B2} is nonzero at different points

(m1,m2) from all the other elements. The same property

holds also for the basis {q(n1,n2) : (n1, n2) ∈ B2}, due to

(25). This means that, for each (m1,m2) ∈ Z
2, only one

term is nonzero in the above sum of (26): the one that cor-

responds to the pair (n1, n2) ∈ B2 that can be written as

(n1, n2) = (m1 −k1Ñx,m2 −k2Ñy), for some (k1, k2) ∈ Z
2.

Using this statement and (20), (24), (25), we can write (26)

as:

ŵm1,m2
=

{ ∑

(k1,k2)∈Z2

φ̂

(
2πm1

Ñx

+ k12π,
2πm2

Ñy

+ k22π

)

· v̂m1+k1Ñx ,m2+k2Ñy

}
· φ̂

(
2πm1

Ñx

,
2πm2

Ñy

)
,

∀(m1,m2) ∈ Z
2,

where it has been introduced the function φ(x) whose

Fourier transform is:

φ̂(ω1,ω2) =
{ ∑

(k1,k2)∈Z2

|Ŝ(ω1 + k12π,ω2 + k22π)|2
}− 1

2

· Ŝ(ω1,ω2).

Finally, the projection PU0,S
{v} can be computed using

the expression of P
U ⊥

0,S
{v}: From the projection theorem

(Naylor and Sell 1982), it follows that:

PU0,S
{v} = v − P

U ⊥
0,S

{v} = v − w.
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