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Abstract

Background: 4-Hydroxy-tamoxifen (4OHT) triggers Cre-mediated K-Ras removal in [H-Ras−/−;N-Ras−/−;K-Raslox/lox;

RERTert/ert] fibroblasts, generating growth-arrested “Rasless” MEFs which are able to recover their proliferative ability

after ectopic expression of Ras oncoproteins or constitutively active BRAF or MEK1.

Results: Comparison of the transcriptional profiles of Rasless fibroblasts with those of MEFs lacking only H-Ras and

N-Ras identified a series of differentially expressed mRNAs and microRNAs specifically linked to the disappearance

of K-Ras from these cells. The rescue of cell cycle progression in Rasless cells by activated BRAF or MEK1 resulted in

the reversal of most such transcriptional mRNA and microRNA alterations.

Functional analysis of the differentially expressed mRNAs uncovered a significant enrichment in the components of

pathways regulating cell division, DNA/RNA processing and response to DNA damage. Consistent with G1/S

blockade, Rasless cells displayed repression of a series of cell cycle-related genes, including Cyclins, Cyclin-

dependent kinases, Myc and E2F transcription targets, and upregulation of Cyclin-dependent kinase inhibitors. The

profile of differentially expressed microRNAs included a specific set of oncomiR families and clusters (repressed miR-

17 ~ 92, miR-106a ~ 363, miR-106b ~ 25, miR-212 ~ 132, miR-183 ~ 182, and upregulated miR-335) known for their

ability to target a specific set of cellular regulators and checkpoint sensors (including Rb, E2F and Cdkns) able to

modulate the interplay between the pro- and anti-proliferative or stress-response pathways that are reversibly

altered in Rasless cells.

Conclusions: Our data suggest that the reversible proliferation phenotype of Rasless cells is the pleiotropic result of

interplay among distinct pro- and anti-proliferative, and stress-response pathways modulated by a regulatory

circuitry constituted by a specific set of differentially expressed mRNAs and microRNAs and preferentially targeting

two cross-talking signalling axes: Myc-Rb-E2F-dependent and Cdkns-p53-dependent pathways.
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Background
The 3 canonical members of the mammalian Ras gene

family (H-ras, N-ras, and K-ras) code for four distinct

protein isoforms (H-Ras, N-Ras, K-Ras4A and K-Ras4B)

which cycle continuously between active (GTP-bound)

and inactive (GDP-bound) conformations in a process

regulated by their functional interactions with negative

(GAP) and positive (GEF) cellular regulators. Mamma-

lian Ras genes and proteins are widely conserved across

species and are almost ubiquitously expressed in differ-

ent cell lineages and organs, and they play significant

roles in many cellular processes, including proliferation,

differentiation and cell death [1-6]. The wealth of Ras

activators and effectors identified in mammalian cells

places the Ras proteins at the center of multiple signal-

ing networks critical for normal cellular development

and homeostasis and for pathological processes such as

cancer [1-4,7-9].
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Despite earlier preconceived views of functional re-

dundancy, most of the experimental evidence supports

the notion of functional specificity for each Ras family

member. Indeed, the high conservation across mamma-

lian species of the specific amino acid sequence of each

Ras isoform at its C-terminal hypervariable (HVR) re-

gion, the distinctive patterns of expression, intracellular

processing and subcellular location displayed by the fully

processed protein products of the different ras gene iso-

forms, and the prevalent presence of specific ras onco-

genes in particular types of human tumors are indicative

of such functional specificity [1,2,7-12].

Genomic disruption of K-ras 4B causes embryonic le-

thality, whereas H-ras, N-ras and K-ras4A single-knockout

(KO) mice are perfectly viable and fertile, and simultaneous

removal of H-ras and N-ras also results in viable mice with

no evident phenotypic abnormalities [13-17]. Joint analysis

of the different Ras KO animal models available indicates

that only K-ras4B is necessary and sufficient for full embry-

onic development and suggests that K-Ras performs spe-

cific function(s) that cannot be carried out by either H-Ras

or N-Ras. An alternative explanation [18] suggests that the

mortality of K-Ras KO animals might not derive from the

intrinsic inability of the other isoforms to substitute

for K-Ras function but rather from their inability to be

expressed in the same cell types or developmental

stages as K-Ras. Further insight into the functional re-

lationships among the three different Ras isoforms is

now possible through the analysis of mouse strains

that can be rendered “Rasless” because they harbor

constitutive null H-ras and N-ras alleles together with

a conditionally floxed K-ras locus [19].

The functional specificity of individual Ras isoforms is

also supported by their demonstrated ability to drive spe-

cific transcriptional programs and generate distinct genomic

expression signatures in the particular cell lineages where

they are expressed [19-26]. Thus, our characterization of the

transcriptional networks of fibroblasts harboring single or

double null mutations in the H-ras and/or N-ras loci has

shown that these two isoforms control different, rather an-

tagonistic transcriptional profiles, supporting the notion of

different functional roles for H-Ras and N-Ras in these cells,

with a preferential involvement of H-Ras in processes of cell

growth and proliferation and N-Ras in control of immune

modulation/host defense and apoptotic responses [20,21].

The analysis of Ras KO cell lines has also contributed

to a better understanding of the participation of different

Ras isoforms in control of the cell cycle [27-29]. Our

study of the transcriptional profiles of cells lacking

H-ras and N-ras, either alone or in combination, dur-

ing the early stages of the cell cycle [21] suggested a

preferential involvement of N-Ras in immediate-early

cellular responses to serum stimulation, and of H-Ras in cel-

lular responses related to growth and proliferation during

mid-G1 progression [20,21]. Also, the characterization of

triple KO Rasless MEFs [19] has further confirmed the crit-

ical requirement of Ras proteins for cell cycle progression by

showing the inability of Rasless cells to inactivate Rb pocket

proteins [30], suggesting that in contrast to current hypoth-

eses Ras signaling does not induce proliferation by inducing

expression of D-type cyclins [19]. Since the exact mecha-

nisms underlying the participation of Ras proteins in cell

cycle activation and progression are still largely undefined,

further studies are needed to determine whether the differ-

ent Ras isoforms play specific or redundant functional roles

in those processes.

In this report, we describe a detailed characterization

of the transcriptional networks of mRNA and microRNA

that are specifically associated with the generation and

reversal of the Rasless phenotype. Our analysis shows

that the patterns of differential mRNA and miRNA expres-

sion in growth-arrested, Rasless cells are clearly interdepend-

ent and, in addition, that they can undergo specific reversal

after recovery of the proliferative ability of such cells through

the introduction of activated BRAF or MEK1 kinases. Func-

tional analysis of the reversible mRNA and miRNA profiles

identified a cell cycle regulatory circuitry focused on the pref-

erential targeting of Myc-Rb-E2F-dependent and Cdkns-

p53-dependent signalling pathways.

Results and discussion
Microarray analysis of transcriptomic profiles in Rasless

fibroblasts

“Rasless” cells lacking expression of the three canonical

ras genes can be generated by 4-hydroxy-tamoxifen

(4OHT) treatment of immortalized mouse embryo fibro-

blasts (MEF) derived from a mouse strain harboring

constitutive homozygous null mutations of the H-ras

and N-ras loci as well as an inducible null mutation of

the K-ras locus (H-ras−/−;N-ras−/−;K-raslox/lox;RERTert/ert)

[19]. Under our experimental conditions, treatment of

the MEF cultures with 4OHT for 6 days produced a

significant decrease in the amount of detectable K-Ras

protein, whereas a 12-day treatment resulted in complete

absence of any detectable Ras protein in the cells (Figure 1A).

The elimination of K-Ras expression was not a non-specific

off-target effect of the 4OHT treatment but rather a specific

result of the activation of the resident Cre-ERT2 recombin-

ase by this compound. Thus, 4OHT treatment of K-Ras-

expressing, constitutive double KO (H-ras−/−;N-ras−/−)

A624-8 cells [21] did not elicit any changes in the total

amount of Ras protein detectable with specific anti-

bodies (Figure 1A). As previously described [19], the

Rasless cells were unable to proliferate, but did recover

their proliferative ability after ectopic expression of

transfected constructs coding for constitutively active

downstream kinases of the Ras-MAPK pathway such

as BRAFCAAX and MEK1Q56P.
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Figure 1 Characterization and differential gene expression analysis of Rasless MEFs. (A) Ras protein expression levels in MEFs treated with

4-hydroxy-tamoxifen (4OHT). Western immunoblots showing Ras protein levels after treatment with 4-hydroxy-tamoxifen (4OHT). Pan-Ras

immunoblots showing the decrease in K-Ras protein expression after 4OHT treatment for 6 or 12 days of two different cell lines, DU315-6 and

DU244-1. As control, 4OHT had no effect on K-Ras protein level in a representative, constitutive double knockout (H-Ras−/−;N-Ras−/−) MEF cell line

A624-8 [21]. (B) Differential gene expression in Rasless MEFs as determined by microarray hybridizations. The Statistical Analysis of Microarray

(SAM) algorithm [109] was used to identify differentially expressed probesets by comparing the microarray-generated transcriptional profiles of K-

Raslox cell lines treated with 4OHT for 6 days (6-day 4OHT, upper left panel) or for 12 days (12-day 4OHT Rasless, upper right panel) with those of

control, untreated K-Raslox MEFs. Only 1 differentially expressed probeset could be identified in 6-day 4OHT samples using a lax False Discovery

Rate (FDR) value of 0.089 (upper left panel). In contrast, the SAM plot for the 12-day 4OHT Rasless samples allowed the identification of 3091

differentially expressed probesets using a highly stringent FDR value of 0.01 (upper right panel). Comparison of the transcriptional profile of

control K-Raslox MEFs with those of the BRAF-rescued (lower left panel) or the MEK1-rescued (lower right panel) cells using the same FDR value of

0.01 showed that the expression of transfected BRAF or MEK1 resulted in reversal of the majority of transcriptional alterations observed in Rasless

MEFs generated after 12-day 4OHT treatment since only 13 or 399 differentially expressed probesets could be identified respectively.
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To determine whether the Rasless status might be

linked to specific gene expression programs, we used

commercial oligonucleotide microarrays to compare the

transcriptional profiles of control, untreated immortal-

ized fibroblast cultures derived from the KO mice to

those of the same cells after 4OHT-induced removal of

the conditional K-Raslox alleles. In addition, the tran-

scriptomes of cells reversed to proliferate after the intro-

duction of either BRAFCAAX or MEK1Q56P constructs

[19] were also compared with that of growth-arrested,

Rasless cells generated after a 12-day treatment with

4OHT. For this purpose, RNA extracted from pre-confluent

cultures of the different sample groups was hybridized with

high-density oligonucleotide microarrays. Affymetrix Mouse

Genome 430 2.0 Arrays were used to analyze mRNA expres-

sion patterns associated with the different experimental con-

ditions analysed, whereas Mouse GeneChip miRNA arrays

were used to characterize the patterns of microRNA expres-

sion under the same conditions. The different sets of experi-

mental samples analyzed here included RNAs from (i)

control proliferating cells (H-Ras−/−; N-Ras−/−; K-Raslox/lox)

expressing only K-Ras (designated K-Raslox from here on);

(ii) the same cells after treatment with 4OHT for 6 days or

12 days to render them non-proliferating, Rasless fibroblasts

(henceforth designated 6-day 4OHTand 12-day 4OHT Ras-

less); and (iii) proliferating Rasless cells harboring trans-

fected, activated MEK1 or BRAF constructs after treatment

with 4OHT for 12 days (henceforth designated MEK1-

rescued or BRAF-rescued, respectively).

Differential gene expression patterns in Rasless and

BRAF- or MEK1-rescued MEFs

SAM pair-wise contrast analyses provided an initial overall

view of the global mRNA transcriptional changes occurring

in MEFs devoid of expression of the 3 canonical ras genes.

Figure 1B shows that a 6-day 4OHT treatment of K-Raslox

MEFs (devoid of H-Ras and N-Ras, but still keeping about

50% of the regular K-Ras dosage; Figure 1A) did not cause

any significant modification in the overall transcriptional

profile of these cells in comparison to untreated K-Raslox

cells, as determined by a SAM contrast performed at a

relatively high False Discovery Rate (FDR) value (0.089)

(Figure 1B, upper left panel). In contrast, in Rasless MEFs

resulting from treatment with 4OHT for 12 days, and

therefore completely devoid of Ras protein (Figure 1A), up

to 3091 differentially expressed probesets (corresponding

to 2239 distinct, differentially expressed genes) could

be identified, even using a much lower (0.01) FDR

value (Figure 1B, upper right panel). A complete list of

the differentially expressed probesets observed in the

12-day 4OHT Rasless cells is presented in Additional

file 1: Table S1, where the parameters of statistical sig-

nificance for the level of overexpression or repression

of each probeset are also shown.

Interestingly, rescue of the proliferative ability of the

Rasless cells by expressing activated BRAF or MEK1

[19] also reversed most of the transcriptional alterations

previously identified as being associated with the ab-

sence of K-Ras. Figure 1B shows that, using a similar

0.01 FDR value for the SAM contrasts, the BRAF-rescued

cells and the MEK1-rescued cells only show minor tran-

scriptional changes in comparison with the original un-

treated proliferating K-Raslox MEFs controls (Figure 1B,

lower panels).

These data indicate that the transcriptional networks

integrating the set of differentially expressed genes iden-

tified in 12-day 4OHT-treated Rasless cells (Figure 1B)

are specifically linked to the absence of K-Ras in those

cells, thus representing a specific transcriptional signa-

ture of the Rasless status.

Characterization and functional annotation of

transcriptional networks in Rasless cells

A detailed list of differentially expressed loci resulting

from a 12-day 4OHT treatment of K-Raslox MEFs to ren-

der them totally Rasless is shown in Additional file 1:

Table S1. At a highly stringent FDR value of 0.01, 1101

probesets (861 distinct genes) were overexpressed, whereas

1990 probesets (1381 genes) were repressed. The bulk of

overexpressed loci showed amplification levels lower than

5-fold, with about 27% of them included in the 2–5 fold

range and fewer than 5% showing amplification levels

higher than ten-fold (Additional file 1: Table S1). Among

the genes showing high levels of R-fold overexpression,

the extracellular matrix-related Prelp locus as well as

cytoskeleton-related loci such as Mfap5, Fbn2 or Afap1l2

or loci related to immunity or inflammatory responses

such as Wisp2, Vnn1 or Ly6a (= Sca1) and Ly6c1 can be

mentioned (Additional file 1: Table S1). On the other

hand, the majority of differentially expressed loci of

Rasless cells (about 65% of the total number of genes

listed in the table) showed reduced expression levels in

comparison with control fibroblasts. Notably, the high-

est level of transcriptional repression was detected in

Dusp6 (d-value = −16.4; R-fold = 0.09), a dual-specificity

phosphatase acting in Ras signaling pathways. Interest-

ingly, other members of the Dusp family (Dusp5, Dusp9

and Dusp4) were also significantly repressed in Rasless

cells (Additional file 1: Table S1). The clear prevalence of

transcriptional repression over induction in Rasless cells

suggests a predominant functional contribution of the

(missing) Ras proteins to mechanisms of positive modula-

tion of transcription. Furthermore, as discussed later, most

induced and repressed differentially expressed genes iden-

tified in Rasless cells showed an exactly opposite tran-

scriptional behavior when examined in BRAF-rescued

or MEK1-rescued cells (see Additional file 1: Table S1,

column “Expression reversed by”).
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Using Genecodis software, we searched for co-occurrence

of functional annotations corresponding to GO biological

processes or KEGG signaling pathways that could poten-

tially be ascribed to specific subsets of the induced or re-

pressed genes listed in Additional file 1: Table S1. This

search yielded the identification of specific groups of

downregulated (Additional file 2: Table S2) or upregu-

lated (Additional file 3: Table S3) loci of Rasless MEFs

that are related to specific biological processes at sig-

nificantly high values of statistical significance.

Regarding the pool of repressed genes in Rasless cells,

Additional file 2: Table S2, section S2-BP identified a

series of gene subsets that are functionally linked to sev-

eral GO categories of Biological Processes (BP) with high

statistical significance. Among these, those most signifi-

cantly affected by the transcriptional repression occur-

ring in Rasless cells were (ranked by p-value): (i) RNA

metabolism and processing (p-value 4.19E-80) and DNA

metabolism and processing (p-value 1.46E-71); (ii) cellular

protein metabolism (p-value 4.24E-18) and modification

(p-value 6.05E-11); (iii) mitotic cell cycle progression

(p-value 2.52E-68) and associated subcellular processes; (iv)

organization of the cytoskeleton and subcellular organelles

in relation to chromatin architecture (p-value 1.94E-19); (v)

DNA repair (p-value 6.54E-31), and (vi) intracellular trans-

port of RNA (p-value 2.66E-17) and protein (p-value

4.27E-06) (data summarized in Figure 2A-Biological

Process (GO). In addition, consistent with the above

GO BP categories, Genecodis analysis also identified a

series of KEGG signaling pathways that may potentially

be disturbed by the transcriptional repression changes

occurring in Rasless cells. Among others, the most sig-

nificant included the following: (i) spliceosome-related

signaling (p-value 1.24E-28); cell cycle control (p-value

1.52E-26); (iii) DNA replication (p-value 6.31E-26); (iv)

RNA transport (p-value 6.57E-21); (v) mismatch repair

(p-value 1.99E-14); and (vi) ribosome biogenesis (p-value

2.62E-14) (Additional file 2: Table S2 section S2-KEGG;

data summarized in Figure 2A-Signaling Pathways (KEGG).

On the other hand, specific subsets of the pool of

overexpressed loci in Rasless cells were functionally an-

notated with high statistical significance to a shorter list

of GO biological processes such as: (i) cellular protein

transport and ion transport (p-value 2.42E-29); (ii) cellu-

lar metabolic processes (p-value 3.06E-08) and small

GTPase-mediated signal transduction (p-value 1.73E-05)

(Additional file 3: Table S3 section S3-BP). GeneCodis

also identified a statistically significant accumulation of

induced overexpressed loci related to KEGG lysosomal

signalling pathways (p-value 1.74E-14) (Additional file 3:

Table S3, section S3-KEGG).

The bar plots in Figure 2A summarize and quantitate

the percentage distribution of induced or repressed

genes from Rasless fibroblasts that can be functionally

ascribed to the variety of GO Biological Processes or

KEGG signaling pathways identified by Genecodis. As

shown, a clear prevalence of repressed loci over induced

loci can be seen. Consistent with the phenotypic growth

arrest exhibited by Rasless cells in culture, a remarkable

over-representation of functional categories relevant to

growth arrest, such as metabolic processes, cell cycle

progression, cell proliferation and growth, DNA repair,

etc., was observed (Figure 2A).

Further support for the notion of a direct link between

the absence of the three canonical Ras proteins and cell

cycle arrest in Rasless cells was provided by studies

aimed at identifying possible transcription factors that

could account for the pattern of repressed genes listed

in Additional file 1: Table S1 (Figure 2A-Transcription

Factors (TransFac); Additional file 2: Table S2 section

S2-TF). Interestingly, GeneCodis analysis of the pool of

downregulated loci in Rasless cells identified several dis-

tinct groups of repressed genes (Additional file 2: Table

S2, section S2-TF) that are known targets for transcrip-

tional regulation by E2F or by SP1 at exceptionally high

levels of statistical significance (respective p-values 9.6E-

50 and 1.80E-49). In addition, several other subsets of

repressed loci were also identified as specific targets for

the Myc, Fox04 or Egr transcription factors at high

levels of significance (p-values: 1.14E-28, 3.54E-24 and

1.67E-12, respectively) (Additional file 2: Table S2 sec-

tion S2-TF). Consistent with this suggested pattern of

negative transcriptional regulation, the mRNA levels for

the transcription factors Myc, Fox and Egr were indeed

significantly reduced in the transcriptome of Rasless

cells (R-fold values in Additional file 1: Table S1: Myc:

0.4; Mycn: 0.17; Foxp1: 0.6; Foxm1: 0.4; Egr1: 0.09; Egr2:

0.16).

Reversal of the transcriptional signature of Rasless cells

by activated BRAF or MEK1

The SAM contrasts depicted in Figure 1B documented

that the bulk of differential gene expression changes as-

sociated with the growth-arrested Rasless status are ab-

sent from the transcriptional profiles of BRAF-rescued

and MEK1-rescued MEFs, which are otherwise charac-

terized by their recovered ability to proliferate after ex-

pression of either of these two activated downstream

components of the Ras signaling pathway [19]. Indeed,

the SAM contrasts comparing the transcriptome of

untransfected K-Raslox MEFs with those of either BRAF-

rescued or MEK1-rescued fibroblasts recognized only a

very short list of transcriptional changes, of which those

with the highest R-fold values (i.e., N-Myc) were not

significant since they were also detected in the control

K-Raslox MEFs transfected with the empty vectors used

to express the exogenous BRAF or MEK1 molecules

(not shown). A detailed comparison of the transcriptional
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Figure 2 Global functional annotation and multiclass comparisons of differentially expressed genes of Rasless MEFs. (A) The GeneCodis

functional annotation tool was used to identify subsets of the list of differentially expressed genes of Rasless MEFs (FDR=0.01; Additional file 1:

Table S1) sharing co-occurrent functional annotations linking them to specific Biological Processes (Gene Ontology (GO) database; p-values <
0.005), Transcription Factors (TransFac database; p-values < 10-16) or Signaling Pathways (KEGG pathway database; p-values < 10-10). Red:

induction. Green: repression. The complete functional annotation analyses are described in Additional file 2: Table S2 and Additional file 3: Table S3.

(B) Hierarchical cluster analysis of the absolute expression values of differentially expressed probesets in Additional file 1: Table S1 (FDR =

0.01). Lanes 1–7: Rasless cells. 12-d 4OHT-treated cell lines DU315-6 (1–3, 6, 7) and DU244-1 (4, 5). Lanes 8–21: K-Raslox cell lines. DU315-6 (8, 9, 11, 13,

14, 20), DU244-1 (17, 21), MCL23-1 (15, 16, 18, 19; puromycin-resistant controls of MEK-rescued lines) and JU10-2 (10, 12; hygromycin-resistant controls

for BRAF-rescued lines). Lanes 22–27: BRAF-rescued cell line LG7-6 (22, 23, 26) and MEK1-rescued cell line MCL1-6 (24, 25, 27). Red: overexpression. Blue:

repression. Black: unchanged expression. GO categories and associated p-values for horizontal clusters: Clusters 1 and 2: cell-cycle (1.14E-58 and

7.16E-48); cell-division (1.15E-41 and 1.08E-38); mitosis (2.33E-39 and 9.11E-37); DNA replication (6.43E-39 and 2.18E-19). Cluster 1: DNA-dependent

transcription (5.1E-26). Cluster 2: chromosome segregation (1.55E-19); DNA damage response (9.06E-19); DNA repair (6.06E-17). Cluster 3: inactivation of

MAPK activity (1.91E-04); negative regulation of ERK1/ERK2 cascade (1.79E-03); positive regulation of apoptosis (1.33E-03); negative regulation of cell

growth (1.98E-03). Clusters 4 and 6: mRNA processing (1.53E-20 and 1.26E-05); RNA splicing (1.25E-18 and 1.26E-06); transcription, DNA-dependent

(9.10E-13 and 1.02E-06). Cluster 7: cellular transport of ions and proteins (5.97E-16); metabolic processes (4.69E-06); small-GTPase-mediated signaling

(1.37E-05). Clusters 8 and 9: protein transport (cl.8: 5.99E-09).
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profile of Rasless cells with those of either BRAF-rescued

or MEK1-rescued MEFs showed that most transcriptional

alterations typical of Rasless cells (at FDR = 0.01) were re-

versed after expression of BRAF or MEK1. Specifically, a

total of 938 probesets (735 loci) overexpressed in Rasless

cells were repressed in both BRAF- and MEK1-rescued

cells, whereas 1679 probesets (1208 loci) repressed in Ras-

less cells showed overexpression in both the BRAF-and

MEK1-rescued cells (Additional file 1: Table S1).

Further visual evidence for the reversibility of the tran-

scriptomic profile of Rasless cells is provided by Figure 2B,

depicting a dendrogram generated by hierarchical cluster-

ing of microarray hybridization data sets corresponding to

the list of differentially expressed probesets in Rasless cells

at FDR = 0.01. This dendrogram allowed a clear discrimin-

ation of three main vertical branches corresponding to (i)

non-proliferating Rasless cells as well as proliferating (ii)

control K-Raslox MEFs and (iii) MEFs reverted to prolifer-

ate after transfection of Rasless cells with BRAF or MEK1

(Figure 2B). Interestingly, whereas the proliferating

K-Raslox MEFs showed an almost opposite, antagonis-

tic expression profile to that of the growth-arrested

Rasless MEFs, for the most part the transcriptome of

the BRAF- and MEK1-rescued MEFs regained an op-

posite, antagonistic expression profile to that of the

Rasless MEFs (Figure 2B). These observations indi-

cate that the transcriptional alterations caused by the

absence of the three canonical Ras proteins can be al-

most completely reversed in vivo through the expression

of activated components of downstream Ras signaling

pathways such as BRAF or MEK1.

Functional annotation analysis of the horizontal gene

clusters defined by the dendrogram (Figure 2B, blocks

1–9) highlighted the most significant functional categor-

ies accounting for the opposite transcriptional signature

patterns displayed by non-proliferating Rasless cells in

comparison with proliferating control K-Raslox or BRAF-

rescued or MEK1-rescued MEFs. Clusters 1–6 included

genes repressed in arrested Rasless cells and overex-

pressed in proliferating cells, whereas clusters 7–9 showed

completely opposite transcriptional behavior. Interestingly,

clusters 1–2 displayed a very marked statistically signifi-

cant enrichment in genes linked to GO BP categories

such as cell cycle, mitosis and DNA replication, DNA-

dependent transcription, and response to DNA damage

and DNA repair, whereas cluster 3 displayed a significant

accumulation of genes related to inactivation of MAPK

activity and regulation of apoptosis, and clusters 4–6

showed a special enrichment in genes related to RNA spli-

cing, processing and transcription. On the other hand,

clusters 7–9 were significantly enriched in genes involved

in cellular transport processes of ions and proteins, meta-

bolic processes or small GTPase-mediated signal trans-

duction (see Figure 2B for details).

In sum, analysis of the functional annotations of the

different gene blocks defined by the dendrogram in

Figure 2B focused our initial studies mainly on the

genes (repressed in the Rasless status) that are in-

volved in regulation of cell cycle progression and the

loci (overexpressed in Rasless cells) that are relevant

for regulation of growth, in particular in aspects of cel-

lular transport and metabolism.

Functional gene set enrichment analysis of the reversible

transcriptional signature of Rasless fibroblasts.

Identification of the most significant components

As mentioned in previous sections, more than 80% of the

transcriptional alterations occurring in Rasless cells are re-

versed by activated BRAF or MEK1 molecules. Indeed, 735

loci overexpressed in Rasless cells (FDR = 0.01) were re-

pressed in both BRAF- and MEK1-rescued cells (FDR= 0.1),

whereas 1208 genes repressed in Rasless cells (FDR= 0.01)

showed overexpression in both the BRAF- and MEK1-

rescued cells (FDR = 0.1) (Additional file 1: Table S1).

However, in order to identify the most relevant tran-

scriptional alterations associated with the Rasless sta-

tus, we focused our initial analysis on the loci identified

by means of Venn diagrams (Figure 3) depicting the inter-

sections occurring among the lists of differential gene

expression (identified at very restrictive FDR = 0.01) of

non-proliferating Rasless cells and proliferating, BRAF-

rescued and MEK1-rescued cells. Figure 3A depicts a

Venn diagram identifying 93 induced genes of the tran-

scriptome of Rasless cells that were also simultaneously

listed as repressed loci in the tables of differential expres-

sion resulting from comparing Rasless cells to the BRAF-

rescued or MEK1-rescued MEFs. Similarly, Figure 3B

identifies 339 repressed genes of Rasless cells that were

simultaneously identified as induced in both the BRAF-

and MEK1- rescued MEFs. A detailed description of this

restricted pool of induced and repressed loci of Rasless

cells showing exactly opposite expression pattern in both

the BRAF-rescued and MEK1-rescued MEFs is shown in

Additional file 4: Table S4. Although many more differen-

tially expressed genes are actually rescued by BRAF or

MEK1 (see Additional file 1: Table S1), this initial report

focuses mainly on studying the functional significance of

the loci listed in Additional file 4: Table S4, which poten-

tially represent the core of most significant loci regarding

the transcriptional changes relevant for the generation

and/or reversal of the Rasless status, since their high FDR

value (0.01) is indicative of very reproducible and/or high

R-fold transcriptional changes.

Additional file 5: Table S5 displays GeneCodis func-

tional analyses of the genes listed in Additional file 4:

Table S4. The results show that repressed loci linked to

the Rasless status are significantly associated to the regu-

lation of various cell division steps as well as DNA/RNA
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metabolic processes including -among other categories-

DNA replication, regulation of DNA-dependent tran-

scription, RNA splicing and processing and response to

DNA damage and DNA repair (Additional file 5: Table

S5, section S5A). On the other hand, the Rasless status

also appeared to be significantly associated to overex-

pression of loci related to cellular transport (Additional

file 5: Table S5, section S5B). A summary of the most

significant GO functional categories affected by the Ras-

less status is shown in panel 3C. This graph confirms

our previous functional analyses (Figure 2) and also indi-

cates that (i) cell cycle progression, (ii) DNA/RNA pro-

cessing and metabolism related to cellular growth, and

(iii) cellular responses to stress and DNA damage are

the most prominently targeted cellular biological

processes that may be altered under the Rasless status

(Figure 3C).

Diversity of cellular mechanisms responsible for the

reversible transcriptional changes of Rasless cells. Sca1

differential expression as a model

The wide variety of statistically significant transcriptional

alterations occurring in Rasless cells as regards the ex-

pression of components of signaling pathways (includ-

ing, among others, repression of components of

intracellular signaling cascades mediated by p53, MAPK

or Jak-STAT, and upregulation of components of small

GTPase-mediated signaling; see in Additional file 2:

Table S2 and Additional file 3: Table S3, for details)

documents the availability of a great diversity of

Figure 3 Differentially expressed genes of Rasless MEFs showing opposite patterns of expression in both BRAF- and MEK1-rescued

MEFs. (A) Venn diagram showing the number of shared differentially expressed genes that were simultaneously detected as upregulated in

Rasless MEFs (pair-wise comparison to control MEFs, FDR = 0.01) and as repressed in both BRAF- and MEK1-rescued MEFs (pair-wise comparisons

to Rasless MEFs, FDR = 0.01). (B) Venn diagram showing the number of shared differentially expressed genes that were simultaneously detected

as repressed in Rasless MEFs (pair-wise comparison to control MEFs, FDR = 0.01) and induced in both BRAF- and MEK1-rescued MEFs (pair-wise

comparisons to Rasless MEFs, FDR = 0.01). Diagrams A and B generated using the Venny web-based application as indicated in Methods. Red:

transcriptional induction and overexpression. Green: transcriptional repression. (C) Functional enrichment of GO Biological Process categories

linked to the list of induced and repressed genes identified in panels A and B. The GeneCodis (Gene Annotation Co-occurrence Discovery)

functional annotation tool (http://genecodis.dacya.ucm.es) was used to identify specific gene subsets within the list of 432 differentially expressed

induced or repressed genes (691 probesets) (panels 3A and 3B; Additional file 4: Table S4, FDR = 0.01) that shared co-occurrent functional

annotations linking them, with high statistical significance, to particular Biological Processes. Green bars: repressed loci. Red bars: induced loci.

Complete GeneCodis functional annotation analyses are described in detail in Additional file 5: Table S5. Specific p-values for the most significant

components of the two main categories depicted in this graph are as follows: Cell cycle: various cell division steps (p-value 2.20E-65). DNA/RNA

processing: DNA replication (p-value 7.49E-35); regulation of DNA dependent transcription (p-value 3.08E-14); RNA splicing (p-value 4.38E-14); RNA

processing (p-value 8.88E-13); DNA damage response (p-value 4.90E-29); DNA repair (p-value 9.92E-23).
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potential biochemical regulatory mechanisms able to

contribute, at the molecular level, to the generation of

their altered transcriptomic profiles. Thus, it is apparent

that the mechanistic details involved in the generation of

the transcriptional profile of each differentially expressed

gene of Rasless MEFs will ultimately have to be ascer-

tained on an individual basis.

As a representative example, here we report data rele-

vant to the generation of, and possible mechanisms in-

volved in, the patterns of differential expression of Sca1

(Stem cell antigen 1) in Rasless cells (Additional file 6:

Figure S1). Sca1 is associated with murine stem cell self-

renewal [31], and the modulation of its expression has

profound effects on cellular function and tumor devel-

opment [32]. Our initial microarray-based mRNA ex-

pression data showed that Sca1 (= Ly6a1) is one of the

most significantly upregulated loci in growth-arrested

Rasless cells (R-fold = 10.3) as compared to proliferating

K-Raslox control MEFs, and that its overexpression is

reversed in BRAF-rescued and MEK1-rescued MEFs

(Additional file 1: Table S1). Interestingly, related loci

such as Ly6c1 (R-fold = 7.22), Ly6/neurotoxin (R-fold =

3.03) and Slurp1 (secreted Ly6/Plaur domain containing,

R-fold = 12) follow similar patterns of upregulation and re-

versal in Rasless and rescued MEFs (Additional file 1:

Table S1). The mRNA transcriptional data were further

confirmed at the level of protein expression by means of

FACS analysis using specific antibodies (Additional file 6:

Figure S1A). Our data show that treatment of control,

K-Raslox cells with 4OHT for 6d or 12 days to render

them Rasless resulted in a significant enhancement (about

one order of magnitude) of the Sca1 protein levels detect-

able in these cells. Of note is that 6-day 4OHT-treated

and 12-day-treated Rasless cells showed similar Sca1

protein levels, suggesting that Sca1 upregulation is an

early effect linked mechanistically to the process of

disappearance of K-Ras from these cells (Additional

file 6: Figure S1A). In contrast, our FACS analysis of

the BRAF-rescued and MEK1-rescued MEFs also showed

a complete recovery of Sca1 protein expression to levels

similar to those measured in the control K-Raslox cells

(Additional file 6: Figure S1A). Consistent with previous

reports indicating that Sca1 acts downstream from Stat1

[33], a test of the effect of inhibitors of specific signaling

molecules on the patterns of expression of Sca1 in our

K-Raslox cells showed that specific Jak inhibitors produced

a progressive, time-dependent reversal of the elevated

levels of Sca1 expression associated with the disappear-

ance of K-Ras (Additional file 6: Figure S1B). These obser-

vations suggest that the Jak-Stat signaling pathway is a

significant component of the transcriptional regulatory

machinery of Sca1 in these MEFs.

We also tested the feasibility of modulating Sca1 protein

expression levels in our MEFs by means of specific shRNA

constructs. Thus, using non-targeting shRNA particles as

control, we observed that specific shRNA-Sca1 particles

produced a very significant reduction in Sca1 protein ex-

pression levels in both proliferating K-Raslox cells and in

growth-arrested Rasless cells generated after extended

treatment with 4OHT (Additional file 6: Figure S1C).

However, the significant reduction in Sca1 expression in

Rasless cells was not accompanied by recovery of their

proliferative ability, as determined by means of MTT pro-

liferation assays (Additional file 6: Figure S1D) and by WB

measurements of the levels of various specific cell pro-

gression markers (Additional file 6: Figure S1E). Interest-

ingly, the MTT assays revealed a slight increase of the rate

of proliferation of the K-Raslox cells transduced with

shRNA-Sca1 particles in comparison with the controls

(Additional file 6: Figure S1A), in agreement with previous

reports of hyperproliferation of Sca1 KO cell lineages [34].

These data show that the growth-arrested phenotype

of Rasless cells cannot be corrected by reversal of ex-

pression levels of Sca1 alone. This would be expected,

since the Rasless phenotype is linked to multiple tran-

scriptional alterations (Additional file 1: Table S1) and

hence its correction probably requires the reversal of the

expression patterns of many more loci than just Sca1, in

particular those with pivotal functional roles in signaling

networks involved in global pleitropic control of cell

cycle progression and arrest.

Transcriptional changes targeting regulators of early cell

cycle progression in Rasless cells

Our previous functional annotation analyses unveiled a

significant enrichment in cellcycle-related genes within

the content of several gene clusters defined by the den-

drogram comparing the profiles of differential expres-

sion of Rasless cells (Figure 2A, B). We also described

that expression of activated BRAF or MEK1 is sufficient

to reverse the growth arrest of Rasless cells, as well as

a large percentage of the associated transcriptional al-

terations (Additional file 1: Table S1). Searching for

mechanistic clues about the phenotypic growth arrest

exhibited by Rasless cells, we performed detailed cell

cycle FACS analyses of our 4OHT-treated Rasless cell

cultures (Figure 4A). Consistent with previous obser-

vations [19], our results revealed a predominant block-

ade in progression through the G1 phase of the cell

cycle (Figure 4). This effect was K-Ras-specific because

it was not observed in 4OHT-treated cultures of the

control constitutive N-Ras/H-Ras double KO cells not

harboring the 4OHT-sensitive Cre recombinase and

the floxed K-ras allele (not shown).

Analysis of the transcriptomic patterns exhibited by

Rasless cells offered further clues about their growth-

arrest phenotype, since a significant subset of the revers-

ible transcriptomic alterations described in Rasless cells
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Figure 4 Characterization of cell cycle-related parameters in Rasless cells. (A) FACS analysis of cell-cycle stages in cultures of proliferating

K-Raslox MEFs and derived growth-arrested cultures treated with 4OHT for 6-days or 12-days (Rasless). Barplot of a representative experiment

including untreated, control DU315-6 cells (K-Raslox) (empty bars) and the same cells after treatment with 4OHT for 6-days (grey bars) or 12-days

(black bars). (B, C) Hierarchical clustering of cell-cycle-related (panel B) and E2F-target (panel C) genes differentially expressed in Rasless MEFs.

Heatmaps analyzing absolute expression values of a group of 73 probesets relevant for cell cycle regulation (selecting genes annotated to cell-cycle

GO term 0007049 in our GeneCodis functional analyses), and a set of 30 probesets for E2F transcription factor targets (identified from available E2F

literature [35,36]) that were repressed in Rasless MEFs and rescued by BRAF and MEK1 expression (listed in Additional file 1: Table S1, FDR = 0.01). Red:

overexpression. Green: repression. Black: unchanged expression. (B) Lanes 1–7: Rasless cells. 12-d 4OHT-treated cell lines DU315-6 (1–3, 6,7)

and DU244-1 (4, 5). Lanes 14–20: K-Raslox cell lines DU315-6 (14, 16–20) and DU244-1 (15). Lanes 8–13: BRAF-rescued cell line LG7-6 (8, 9, 13)

and MEK1-rescued cell line MCL1-6 (10–12). (C) Lanes 1–7: Rasless cell lines 12-d 4OHT-treated cell lines DU315-6 (3–7) and DU244-1 (1, 2).

Lanes 8–14: K-Raslox cell lines DU315-6 (9, 10, 12–14) and DU244-1 (8, 11). Lanes 15–20: BRAF-rescued cell line LG7-6 (15–17) and MEK1-rescued

cell line MCL1-6 (18–20). (D) Immunoblot validation of transcriptional data confirming upregulation of Cdkns (p15INK4b, p16INK4a and p21CIP1)

and downregulation of cell-cycle-related proteins (Myc, Dusp6, Pcna and different cyclins and Cdks) after 6-days or 12-days 4OHT treatments

of two representative K-Raslox cell lines (DU315-6 and DU244-1) and a control double-knockout (H-Ras−/−; N-Ras−/−) MEF cell line (A624-8).
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are functionally related to control of early cell cycle pro-

gression and cell division (Additional file 1: Table S1,

Additional file 2: Table S2 and Additional file 3: Table S3;

Figure 4). In particular, panel 4B shows a heatmap describ-

ing the transcriptional behavior of a series of positive and

negative regulators of cell cycle progression in control,

Rasless, and BRAF- or MEK1-rescued fibroblasts. This

dendrogram defines two vertically defined branches that

discriminate absolutely between the non-proliferating

Rasless cells and proliferating, control K-Raslox and the

BRAF- or MEK1-rescued cells. In addition, the hori-

zontal branches identify two clearly distinct sets of re-

pressed and overexpressed genes, thus revealing a largely

opposite transcriptional behavior between the growth-

arrested, non-proliferating Rasless fibroblasts and the

proliferating, K-Raslox and BRAF- or MEK1-rescued fi-

broblasts (Figure 4B). Consistent with the phenotypic

G1 arrest observed in Rasless cells, Additional file 1:

Table S1 and the heatmap in Figure 4B identify in the

Rasless clones a large group of significantly repressed

genes coding for cyclins and cyclin-dependent kinases

(Ccna2, Ccnb1, Ccnb2, Ccne1, Ccne2, Ccnf, Ccng2,

Cdk2, Cdk5, etc.), Myc and Myc targets (Myc, Myct1,

Mycn, Ndrg4), and other positive regulators of early

cell cycle progression (such as Rbl1, Pttg1, Pcna, Top1,

Top2a, Skp2, Cdc25a and Cdc25c, Hdac2, Pak1, etc.).

In addition, a smaller group of overexpressed genes,

coding for negative/feedback regulators of cell cycle

progression such as Tgfb2, Smad6, Gadd45b, or the

cyclin-dependent kinase inhibitors Cdkn1a (p21),

Cdkn2b (p15) and Cdkn2a (p16), was also identified

(Additional file 1: Table S1; Figure 4B). In contrast, an

approximately opposite pattern of induction and re-

pression for all these loci was found in the dendrogram

branches corresponding to proliferating fibroblasts, in-

cluding control K-Raslox cells as well as BRAF- and

MEK1-rescued fibroblasts (Figure 4B, Additional file 1:

Table S1). In confirmation of a previous report [19],

Cyclin D1 levels did not change in Rasless cells (Add-

itional file 1: Table S1) but were highly overexpressed

in the BRAF- and MEK1-rescued cells in comparison

to Rasless cells (pair-wise SAM contrasts afforded R-

fold values of 4.5 and 3.5 in BRAF- or MEK1-rescued

cells, respectively). Also highly consistent with arrest

at an early stage of the cell cycle was the observation

of a significant downregulation of the expression of

multiple E2F-targets [35-37] including cyclins A2 and

F, cdc6 and cdc25a, several Mcm (2–7) proteins, and

other cycle regulators such as Myc, Rbl1, Dhfr or Dbf4,

in the non-proliferating Rasless cells. Such downregu-

lation disappeared, showing the opposite pattern of

expression (overexpression), in proliferating control

K-Raslox as well as in BRAF- and MEK1-rescued fibro-

blasts (Figure 4C; Additional file 1: Table S1).

Confirmation, at the level of protein expression, of

some of these transcriptional alterations was obtained by

means of Western immunoblots using available specific

antibodies, which documented the progressive reduction

or disappearance of different cyclins, Cdks and Pcna in

two independent representative clones of (K-Raslox/lox;

H-Ras−/−; N-Ras−/−) cells treated with 4OHT to remove

K-Ras expression (Figure 4D). As a control, treatment of

double KO (H-Ras−/−;N-Ras−/−) A624-8 cells, which still

express K-Ras constitutively [21], did not disclose any

change in the expression level of Cyclin B1 or Cdk1

(Figure 4D), indicating that the above changes are not

off-target effects of the 4OHT treatment.

The patterns of transcriptional downregulation of

Myc, E2F targets, Cyclins and Cdks are consistent with

the G1/S blockade observed experimentally by flow cy-

tometry in Rasless cells. Consistent with recent reports

demonstrating the essential role of Myc in K-Ras-

driven tumorigenesis [38], the strong Myc phenotype

displayed by Rasless cells is noteworthy, as seen from the

detection of direct transcriptional repression of the Myc

proteins (Additional file 1: Table S1) as well as of many

recognized Myc transcriptional targets (Additional file 2:

Table S2-TF). Furthermore, our additional observations in

Rasless cells of roughly unchanged levels of cyclin D1, to-

gether with the significant upregulation of Cdk inhibitors

such as Cdkn1a (p21), Cdkn2b (p15) and Cdkn2a (p16),

are consistent with a previous report challenging the pre-

viously accepted notion that Ras signalling initiates the

cell cycle by inducing expression of D-type cyclins [30,39]

and suggesting that p21 may be mechanistically involved

in preventing cell proliferation in the absence of Ras pro-

teins [19]. Indeed, since E2F proteins and targets are con-

trolled by Rb, and since Rb loss is known to override the

requirement for downstream ERK signalling for cell prolif-

eration [30,40,41], and p21 is a transcriptional target of

p53 [42,43], the previous hypothesis might be tested ex-

perimentally by checking whether or not the downregula-

tion of Rb, p53 or Cdkns (p21, p15, p16), individually or

in combination, could contribute to bypassing the prolifer-

ative defects of Rasless cells and restoring their prolifera-

tive ability in a manner similar to that observed with

activated BRAF or MEK1 molecules. Our analyses of

miRNA profiles in Rasless and rescued MEFs (see below)

are also consistent with these views.

Differential expression of microRNAs in Rasless MEFs

In order to uncover additional cellular mechanisms re-

sponsible for the reversible cell cycle arrest and altered

transcriptional pattern of Rasless cells, we performed

Genecodis analyses that identified –with very high levels

of statistical significance- a series of specific miRNAs

potentially capable of generating large blocks of the re-

pressed (Additional file 2: Table S2 section S2-miRNA)
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or induced (Additional file 3: Table S3 section S3-

miRNA) mRNAs of Rasless MEFs listed in Additional

file 1: Table S1. In order to test these predictions experi-

mentally and to identify specific miRNA alterations linked

to the Rasless status, we carried out specific microarray

hybridizations using miRNA preparations from defined

sample sets, including control, untreated K-Raslox MEFs

as well as 4OHT-treated cultures leading to the Rasless

status, or BRAF- and MEK1-rescued cell lines (Figure 5).

We observed that partial K-Ras removal achieved after

6 days of 4OHT treatment allowed detection of a reduced

number of differentially expressed miRNAs, but that total

elimination of Ras proteins after 12 days of 4OHT treat-

ment allowed the identification of at least 103 distinct

miRNAs that were differentially expressed in the Rasless

cells at the statistically significant FDR value of 0.1

(Figure 5A). A detailed description of the list of 103

miRNAs that were specifically induced or repressed in

MEFs after reaching the Rasless status is shown in

Table 1. As happened with the differentially expressed

mRNAs (Additional file 1: Table S1), the majority (~75%)

of the differentially expressed miRNAs of 12-day 4OHT-

treated Rasless cells were repressed (Table 1), indicating a

predominant functional role of the missing K-Ras as a

positive regulator of miRNA transcription. The relevance

of this group of differentially expressed miRNAs with

regards to the Rasless phenotype is further supported by

the observation that the majority (73 out of the 103) of

differentially expressed miRNAs listed in Table 1 were

predicted (with highly significant p-values ranging be-

tween 10E-06 and 10E-21) by Genecodis analyses

(Additional file 2: Table S2 section S2-miRNA and

Additional file 3: Table S3 section S3-miRNA) of the

list of differentially expressed mRNAs in Additional

file 1: Table S1 (Table 1, column Genecodis prediction).

Table 1 also shows that a small group of these differen-

tially expressed miRNAs were already present in 6-day

4OHT-treated cells. The rapid response and the sensitiv-

ity shown by the differential expression of this subgroup

of miRNAs to the partial disappearance of K-Ras in the

6-day 4OHT-treated MEFs (Figure 1) suggests the poten-

tial significance of their differential expression in relation

to the initial steps of generation of the Rasless phenotype.

The functional significance of our microarray-based

miRNA profile with regards to generation/maintenance

of the Rasless status was further supported by the observa-

tion of a remarkable accumulation of members of specific

miRNA families (sharing seed recognition sequence) and/

or clusters (sharing genomic location). In particular, this

differential miRNA expression profile identified at least 15

distinct miRNA families, including two or more individual

miRNA species (Table 1). In particular, the pool of re-

pressed miRNAs of Rasless cells included at least 10 dif-

ferent members of the mir-17 family, 6 members of the

mir-467 family, 3 members of the let-7 and mir-25 fam-

ilies, and 2 members each of a number of distinct miRNA

families such as mir-181, mir-125, mir-132, mir-214,

mir-221, mir-423, mir-877 and mir-99. Additionally, at

least 3 different miRNA families (mir-30, mir-368 and

mir-27) were also identified that included 2 or more of

their members in this list of upregulated Rasless miRNA

species (Table 1).

It is also noteworthy that a large percentage of the dif-

ferentially expressed miRNAs of Rasless cells were con-

centrated in specific genomic locations, frequently sharing

their physical location within the same miRNA cluster or

the same chromosome. Table 1 identifies at least 17 differ-

ent miRNA clusters holding two or more differentially

expressed miRNAs of Rasless cells. The physical proximity

shared by a large percentage of differentially expressed

miRNAs of Rasless cells, together with the fact that all

members of a given cluster often share common regula-

tory mechanisms, is also supportive of the notion that the

miRNA profile identified in Table 1 may be mechanistic-

ally and/or functionally relevant as regards the generation

or maintenance of the Rasless status.

Analysis of functional annotations available in the sci-

entific literature and miRNA databases indicated that

the majority of miRNAs listed in Table 1 can be classi-

fied as “oncomirs”, since they have previously been re-

ported to contribute to the development of tumorigenic

processes [44-46]. Among the repressed miRNAs, we

found 3 members of the let-7 family (involved in control

of cell proliferation and regulation of expression of Ras

oncogenes [47] and associated with the development of

lung tumors [48,49]) and, in particular, 10 different

members of the mir-17 family (miR-17, miR-18a, miR-

20a, miR-20b, miR-93, miR-106a and miR-106b) and 3

different members of the mir-25 family (miR-92a, miR-

25 and miR-92b) which are distributed among three

different clusters (miR-17 ~ 92, miR-106a ~ 363 and

miR-106b ~ 25) located, respectively, in mouse chro-

mosomes 14, X and 5 (Table 1).

The involvement of the miR-17 ~ 92 cluster in human

cancer has been known for a long time [50]. In particu-

lar, this cluster was proposed as a diagnostic tool in large

B-cell malignancies [51] and different reports have de-

scribed its overexpression or amplification in various cancer

types including B cell lymphomas, rhabdomyosarcomas,

lung cancer, and liposarcomas [49,52-56]. The oncogenic

potential of the components of the miR-106a ~ 20b ~ 363

cluster and their involvement in T-cell leukemia [57], breast

cancer [58] and gastrointestinal tumors [59,60] has also been

described. The involvement of members of miR-106b ~ 25

cluster in prostate [61], gastric [62], hepatic [63,64] and glio-

blastoma multiforme tumors is also documented [65]. The

members of the miR-212 ~ 132 cluster are among the most

strongly downregulated miRs in Rasless cells (Table 1) and
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Figure 5 Differential expression of microRNAs in Rasless cells. (A) Statistical identification of differentially expressed miRNAs in Rasless MEFs.

SAM contrasts [109] comparing the microarray-generated miRNA expression profiles of K-Raslox cell lines treated with 4OHT for 6-days (left panel)

or for 12-days (right panel) with those of control, untreated K-Raslox MEFs. The plots identified 11 differentially expressed miRNAs after 6-days of

4OHT treatment (left panel), and 103 differentially expressed miRNAs after the 12-day treatment (right panel) using similar FDR = 0.1values.

Differential expression for a given miRNA is calculated by the distance of the spot representing its expression value to the no-change diagonal.

Green dots depict differentially expressed miRNAs. Black dots remaining close to the diagonal represent miRNAs without significant expression

changes relative to the control samples. (B) Hierarchical clustering of differentially expressed microRNAs of Rasless MEFs. Heatmap generated by

cluster analysis of the absolute expression values of the group of 103 differentially expressed miRNAs listed in Table 1 (FDR = 0.1), obtained with

expression data from non-proliferating Rasless MEFs (lanes 17–24); proliferating control K-Raslox (H-Ras−/−; N-Ras−/−) cells expressing only K-Ras

and the same cells transfected with the empty vectors (lanes 1–8), or BRAF-rescued (lanes 9–12) and MEK1-rescued MEFs (lanes 13–16). The

intensity of color saturation in each miRNA box (ranging from 3 to 14 on a log2 scale) provides a quantitative estimation of its expression level.

Red: overexpression. Green: repression. Black:unchanged expression signals relative to controls. Lanes 1–4: K-Raslox cell lines DU315-6 (lanes 1, 2)

and DU244-1 (lanes 3, 4). Lanes 5–8: K-Raslox + empty puromoycin resistance vector cell line MCL23-1 (5–8). Lanes 9–16: BRAF-rescued cell line LG7-6

(lanes 9–12) and MEK1-rescued cell line MCL1-6 (lanes 13–16). Lanes 17–24: Rasless cell lines 6-d 4OHT-treated DU315-6 (lanes 21, 22), 12-d 4OHT-

treated DU315-6 (lanes 19, 20), 6-d 4OHT-treated DU244-1 (lanes 23, 24) and 12-d 4OHT-treated DU244-1 (lanes 17, 18).
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Table 1 Differential microRNA expression in Rasless MEFs

12-D 4OHT-TREATED MEFS (RASLESS) 6-D 4OHT-
TREATED

BRAF-
RESCUED

MEK1-
RESCUED

Pairwise comparison to control K-Raslox cells

miRNA probeset ID miRNA name family Chromosome, strand and cluster Genecodis
prediction

d-value p-value q-value R-fold vs.
Control

R-fold vs.
Control

R-fold vs.
Rasless

R-fold vs.
Rasless

mmu-let-7b_st mmu-let-7b let-7 Chrom 15 (+): let-7c-2 | let-7b 7.95E-06 -2.2 0.02 0.05 0.68 n.a. n.a. n.a.

mmu-let-7c_st mmu-let-7c let-7 Chrom 16 (+):mir-99a | let-7c-1 2.89E-06 -1.41 0.09 0.17 0.78 n.a. n.a. n.a.

mmu-let-7b-star_st mmu-let-7b* let-7 Chrom 15 (+): let-7c-2 | let-7b 1.86E-21 -1.36 0.1 0.15 0.63 n.a. n.a. n.a.

mmu-miR-206_st mmu-miR-206 mir-1 Chrom 1 (+):mir-206 |mir-133b 2.76 0.01 0.03 1.78 n.a. 0.05 0.13

mmu-miR-10b_st mmu-miR-10b mir-10 Chrom 2 (+) 2.17 0.02 0.05 2.26 n.a. n.a. n.a.

mmu-miR-125b-3p_st mmu-miR-125b-3p mir-125 Chrom 9 (+) 7.97E-06
(1.13E-07)

-3.91 0.00 0.03 0.32 n.a. 3.8 3.42

mmu-miR-125b-5p_st mmu-miR-125b-5p mir-125 Chrom 9 (+) -1.71 0.05 0.09 0.75 n.a. 2.18 2.29

mmu-miR-125a-3p_st mmu-miR-125a-3p mir-125 Chrom 17 (+):mir-99b | let-7e |mir-125a -1.67 0.05 0.09 0.45 n.a. n.a. n.a.

mmu-miR-129-3p_st mmu-miR-129-3p mir-129 Chrom 2 (-) 4.56E-06 5.63 0.00 0.02 6.02 n.a. n.a. n.a.

mmu-miR-130b_st mmu-miR-130b mir-130 Chrom 16 (-): mir-301b |mir-130b 6.71E-17 -3.2 0.01 0.03 0.45 n.a. n.a. 1.96

mmu-miR-132_st mmu-miR-132 mir-132 Chrom 11 (+):mir-212 |mir-132 6.39E-17 -2.45 0.01 0.04 0.11 n.a. 17.75 3.61

mmu-miR-212_st mmu-miR-212 mir-132 Chrom 11 (+):mir-212 |mir-132 1.05E-14 -1.95 0.03 0.07 0.21 n.a. 11.18 1.47

mmu-miR-487b_st mmu-miR-487b mir-154 Chrom 12 (+): mir-495 |mir-667 |mir-376c |
mir-654 |mir-376b |mir-376a |mir-300 |
mir-381 |mir-487b |mir-539 |mir-544 |
mir-382 |mir-134 |mir-668 |mir-485 |
mir-453

8.76E-11 3.25 0.01 0.03 3.45 n.a. n.a. n.a.

mmu-miR-155_st mmu-miR-155 mir-155 Chrom 16 (+) 2.44E-08 -3.11 0.01 0.03 0.16
# [0.47]

n.a.
# [1.1]

7.5
# [10.68]

4.38
# [6.26]

mmu-miR-17-star_st mmu-miR-17* mir-17 Chrom 14 (+):mir-17 |mir-18a |mir-19a |
mir-20a |mir-19b-1 |mir-92a-1

-5.05 0.00 0.02 0.32 n.a. 3.47 2.69

mmu-miR-18a_st mmu-miR-18a mir-17 Chrom 14 (+):mir-17 |mir-18a |mir-19a |
mir-20a |mir-19b-1 |mir-92a-1

(5.42E-08) -4.84 0.00 0.03 0.38 n.a. 4.0 2.46

mmu-miR-20b_st mmu-miR-20b mir-17 Chrom X (-):mir-106a |mir-18b |mir-20b |
mir-19b-2 |mir-92a-2 |mir-363

7.42E-17 -4.22 0.00 0.03 0.21 0.29 9.88 5.93

mmu-miR-106a_st mmu-miR-106a mir-17 Chrom X (-):mir-106a |mir-18b |mir-20b |
mir-19b-2 |mir-92a-2 |mir-363

8.87E-14
(1.25E-06)

-3.38 0.01 0.03 0.19
# [0.15]

n.a.
# [0.86]

6.84
# [7.75]

6.07
# [13.58]

mmu-miR-106b-star_st mmu-miR-106b* mir-17 Chrom 5 (-):mir-106b |mir-93 |mir-25 -2.99 0.01 0.03 0.29 n.a. 4.92 5.28

mmu-miR-17_st mmu-miR-17 mir-17 Chrom 14 (+):mir-17 |mir-18a |mir-19a |
mir-20a |mir-19b-1 |mir-92a-1

1.08E-15
(3.84E-07)

-2.87 0.01 0.03 0.37
# [0.27]

n.a.
# [0.58]

5.74
# [6.1]

3.48
# [9.01]

mmu-miR-20a_st mmu-miR-20a mir-17 Chrom 14 (+):mir-17 |mir-18a |mir-19a |
mir-20a |mir-19b-1 |mir-92a-1

(7.38E-07) -2.58 0.01 0.04 0.37
# [0.24]

n.a.
# [0.55]

5.13
# [5.8]

3.57
# [7.85]
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Table 1 Differential microRNA expression in Rasless MEFs (Continued)

mmu-miR-93-star_st mmu-miR-93* mir-17 Chrom 5 (-):mir-106b |mir-93 |mir-25 -2.44 0.01 0.04 0.42 0.33 2.58 2.15

mmu-miR-106b_st mmu-miR-106b mir-17 Chrom 5 (-):mir-106b |mir-93 |mir-25 2.82E-11 -2.25 0.02 0.05 0.46 n.a. 2.17 3.07

mmu-miR-93_st mmu-miR-93 mir-17 Chrom 5 (-):mir-106b |mir-93 |mir-25 4.77E-14
(4.35E-06)

-1.84 0.04 0.08 0.64 n.a. 2.19 2.4

mmu-miR-181d_st mmu-miR-181d mir-181 Chrom 8 (-): mir-181c |mir-181d 7.13E-10 -3.24 0.01 0.03 0.23 n.a. 5.63 4.29

mmu-miR-181b_st mmu-miR-181b mir-181 Chrom 1 (+):mir-181a-1 |mir-181b-1 1.40E-09 -1.43 0.09 0.13 0.68 n.a. n.a. n.a.

mmu-miR-181a-1-star_st mmu-miR-181a-1* mir-181 Chrom 1 (+):mir-181a-1 |mir-181b-1 1.37E-08 5.4 0.00 0.02 8.55 5.5 n.a. 1.68

mmu-miR-182_st mmu-miR-182 mir-182 Chrom 6 (-):mir-183 |mir-96 |mir-182 4.24E-11 -2.21 0.02 0.05 0.52 n.a. 22.16 13.95

mmu-miR-183_st mmu-miR-183 mir-183 Chrom 6 (-):mir-183 |mir-96 |mir-182 2.68E-07 -2.26 0.02 0.05 0.62 n.a. 28.07 18.61

mmu-miR-185_st mmu-miR-185 mir-185 Chrom 16 (-) 2.38 0.02 0.04 1.39 n.a. 0.23 0.25

mmu-miR-215_st mmu-miR-215 mir-192 Chrom 1 (+): mir-194-1 |mir-215 5.61E-10 2.89 0.01 0.03 4.3 n.a. 6.23 5.21

mmu-miR-193_st mmu-miR-193 mir-193 Chrom 11 (+) 4.31E-08 -1.73 0.05 0.09 0.47 0.3 2.33 2.36

mmu-miR-207_st mmu-miR-207 mir-207 Chrom 4 (+) -1.44 0.08 0.13 0.61 n.a. n.a. 1.69

mmu-miR-21_st mmu-miR-21 mir-21 Chrom 11 (-) 6.39E-09 -1.74 0.05 0.09 0.31 n.a. n.a. 2.53

mmu-miR-214_st mmu-miR-214 mir-214 Chrom 1 (+): mir-199a-2 |mir-214 1.58E-08
(1.13E-07)

-3.02 0.01 0.03 0.54 n.a. n.a. n.a.

mmu-miR-214-star_st mmu-miR-214* mir-214 Chrom 1 (+): mir-199a-2 |mir-214 -2.59 0.01 0.05 0.26 n.a. n.a. 3.02

mmu-miR-222_st mmu-miR-222 mir-221 Chrom X (-):mir-222 |mir-221 6.41E-08 -5.43 0.00 0.02 0.47 n.a. 5.76 7.49

mmu-miR-221_st mmu-miR-221 mir-221 Chrom X (-):mir-222 |mir-221 1.64E-15 -3.04 0.01 0.03 0.54 n.a. 5.21 6.11

mmu-miR-23b_st mmu-miR-23b mir-23 Chrom 13 (+):mir-23b |mir-27b |
mir-3074-1 |mir-24-1

1.92E-07 2.24 0.02 0.05 1.43 n.a. 0.17 0.43

mmu-miR-92a_st mmu-miR-92a mir-25 Chrom 14 (+):mir-17 |mir-18a |
mir-19a |mir-20a |mir-19b-1 |
mir-92a-1

3.92E-10 -7.12 0.00 0.02 0.24 n.a. 6.59 4.41

mmu-miR-25_st mmu-miR-25 mir-25 Chrom5(-):mir-106b |mir-93 |mir-25 1.03E-10 -2.68 0.01 0.03 0.38
# [0.51]

n.a.
# [0.62]

2.76
# [2.9]

4.96
# [5.08]

mmu-miR-92b_st mmu-miR-92b mir-25 Chrom 3 (-) 1.67E-09 -1.69 0.05 0.09 0.61 n.a. 2.2 2.35

mmu-miR-27a_st mmu-miR-27a mir-27 Chrom 8 (+): mir-23a |mir-27a |
mir-24-2 |mir-3074-2

6.34E-07 2.89 0.01 0.03 1.57 n.a. n.a. 0.54

mmu-miR-27b_st mmu-miR-27b mir-27 Chrom 13 (+):mir-23b |mir-27b |
mir-3074-1 |mir-24-1

5.98E-07 3.86 0.00 0.03 1.93 n.a. 0.07 0.23

mmu-miR-28-star_st mmu-miR-28* mir-28 Chrom 16 (+) 6.88E-07 -1.36 0.10 0.15 0.63 n.a. n.a. n.a.

mmu-miR-29a_st mmu-miR-29a mir-29 Chrom 6 (-): mir-29b-1 |mir-29a 8.04E-10
(5.02E-07)

-4.57 0.00 0.03 0.28 n.a. 8.13 12.61
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Table 1 Differential microRNA expression in Rasless MEFs (Continued)

mmu-miR-294-star_st mmu-miR-294* mir-290 Chrom 7 (+): mir-290 |mir-291a |
mir-292 |mir-291b |mir-293 |
mir-294 |mir-295

4.58E-08 2.41 0.01 0.04 3.19 n.a. n.a. 2.81

mmu-miR-296-3p_st mmu-miR-296-3p mir-296 Chrom 2 (-): mir-298 |mir-296 -3.21 0.01 0.03 0.42 n.a. n.a. 2.1

mmu-miR-30c-2-star_st mmu-miR-30c-2* mir-30 Chrom 1 (+) -2.18 0.02 0.05 0.43 n.a. n.a. n.a.

mmu-miR-30c_st mmu-miR-30c mir-30 Chrom 4 (-): mir-30f |mir-30e |
mir-30c-1

2.40E-15 2.06 0.03 0.06 2.05 n.a. n.a. n.a.

mmu-miR-30a_st mmu-miR-30a mir-30 Chrom 1 (+) 2.41E-14 2.77 0.01 0.03 1.69 n.a. n.a. 0.39

mmu-miR-30b_st mmu-miR-30b mir-30 Chrom 15 (-): mir-30d |mir-30b 6.64E-17 3.88 0.00 0.03 2.67 n.a. n.a. n.a.

mmu-miR-31_st mmu-miR-31 mir-31 Chrom 4 (-) (3.84E-07) -2.87 0.01 0.03 0.64 n.a. 2.12 1.88

mmu-miR-320_st mmu-miR-320 mir-320 Chrom 14 (+) 7.97E-07 -1.39 0.09 0.14 0.73 n.a. n.a. n.a.

mmu-miR-322-star_st mmu-miR-322* mir-322 Chrom X (-):mir-322 |mir-503 |
mir-351 |mir-542 |mir-450a-2 |
mir-450a-1 |mir-450b

6.72E-13 -1.72 0.05 0.09 0.37 n.a. n.a. 1.77

mmu-miR-328_st mmu-miR-328 mir-328 Chrom 8 (-) -1.98 0.03 0.07 0.39 n.a. n.a. n.a.

mmu-miR-335-5p_st mmu-miR-335-5p mir-335 Chrom 6 (+) 5.76E-06 4.65 0.00 0.03 9.44
# [3.88]

n.a.
# [0.47]

n.a.
# [0.01]

n.a
# [0.16]

mmu-miR-34c-star_st mmu-miR-34c* mir-34 Chrom 9 (-): mir-34b |mir-34c 9.47E-11 -1.39 0.09 0.14 0.46 n.a. n.a. 0.28

mmu-miR-342-5p_st mmu-miR-342-5p mir-342 Chrom 12 (+) -1.83 0.04 0.08 0.58 0.47 n.a. n.a.

mmu-miR-351_st mmu-miR-351 mir-351 Chrom X (-):mir-322 |mir-503 |
mir-351 |mir-542 |mir-450a-2 |
mir-450a-1 |mir-450b

(2.36E-06) -2.01 0.03 0.06 0.22 n.a. n.a. 3.61

mmu-miR-365_st mmu-miR-365 mir-365 Chrom 16 (+): mir-193b |
mir-365-1

4.32 0.00 0.03 4.75 n.a. 0.21 0.32

mmu-miR-376a_st mmu-miR-376a mir-368 Chrom 12 (+): mir-494 |mir-679 |
mir-1193 |mir-666 |mir-543 |
mir-495 |mir-667 |mir-376c |
mir-654 |mir-376b |mir-376a |
mir-300 |mir-381 |mir-487b |
mir-539 |mir-544 |mir-382

1.84E-10 2.17 0.02 0.05 2.31 n.a. n.a. n.a.

mmu-miR-376b_st mmu-miR-376b mir-368 Chrom 12 (+): mir-329 |mir-494 |
mir-679 |mir-1193 |mir-666 |
mir-543 |mir-495 |mir-667 |
mir-376c |mir-654 |mir-376b |
mir-376a |mir-300 |mir-381 |
mir-487b |mir-539 |mir-544

1.89E-09 4.35 0.00 0.03 3.24 2.05 n.a. n.a.

mmu-miR-378_st mmu-miR-378 mir-378 Chrom 18 (-) -2.92 0.01 0.03 0.27 n.a. 0.24 1.91
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Table 1 Differential microRNA expression in Rasless MEFs (Continued)

mmu-miR-411_st mmu-miR-411 mir-379 Chrom 12 (+): mir-379 |mir-411 |
mir-299a |mir-299b |mir-380 |
mir-1197 |mir-323 |mir-758 |
mir-329 |mir-494 |mir-679 |mir-1193 |
mir-666 |mir-543 |mir-495 |mir-667

2.81E-10 2.26 0.02 0.05 2.72 n.a. n.a. n.a.

mmu-miR-423-5p_st mmu-miR-423-5p mir-423 Chrom 11 (-) (2.68E-09) -2.41 0.01 0.04 0.41 n.a. n.a. n.a.

mmu-miR-423-3p_st mmu-miR-423-3p mir-423 Chrom 11 (-) (7.44E-08) -1.89 0.03 0.07 0.49 n.a. 2.22 1.9

mmu-miR-433-star_st mmu-miR-433* mir-433 Chrom 12 (+): mir-337 |mir-3544 |
mir-540 |mir-665 |mir-3070a |
mir-3070b |mir-431 |mir-433 |
mir-127 |mir-434 |mir-432 |
mir-3071 |mir-136

-2.25 0.02 0.05 0.59 n.a. n.a. n.a.

mmu-miR-455_st mmu-miR-455 mir-455 Chrom 4 (+) 9.31E-07 -2.88 0.01 0.03 0.23 n.a. n.a. n.a.

mmu-miR-466f_st mmu-miR-466f mir-467 Chrom 2 (+): mir-466m |mir-466f-1 |
mir-669f |mir-669e |mir-669b |
mir-669d |mir-466f-2 |mir-669l |
mir-669d-2 |mir-466f-3 |mir-297a-2 |
mir-466o |mir-467c |mir-466b-1 |
mir-669a-3 |mir-669k |mir-467a-1 |
mir-466b-8 |mir-669a-1

-3.48 0.00 0.03 0.25 n.a. n.a. n.a.

mmu-miR-467a_st mmu-miR-467a mir-467 Chrom 2 (+): mir-466m |mir-466f-1 |
mir-669f |mir-669e |mir-669b |
mir-669d |mir-466f-2 |mir-669l |
mir-669d-2 |mir-466f-3 |mir-297a-2 |
mir-466o |mir-467c |mir-466b-1 |
mir-669a-3 |mir-669k |mir-467a-1 |
mir-466b-8 |mir-669a-1 |mir-669g |
mir-669j |mir-467a-2 |mir-466e |
mir-669a-4 |mir-467b |mir-466c-1 |
mir-669a-5 |mir-467a-3 |mir-466c-2 |
mir-669a-6 |mir-467a-4

7.61E-08 -3.38 0.01 0.03 0.52 0.46 n.a. n.a.

mmu-miR-466f-5p_st mmu-miR-466f-5p mir-467 Chrom 2 (+): mir-466m |mir-466f-1 |
mir-669f |mir-669e |mir-669b |
mir-669d |mir-466f-2 |mir-669l |
mir-669d-2 |mir-466f-3 |mir-297a-2 |
mir-466o |mir-467c |mir-466b-1 |
mir-669a-3 |mir-669k |mir-467a-1 |
mir-466b-8 |mir-669a-1

1.86E-07 -2.8 0.01 0.03 0.32 n.a. n.a. n.a.

mmu-miR-466f-3p_st mmu-miR-466f-3p mir-467 Chrom 2 (+): mir-466m |mir-466f-1 |
mir-669f |mir-669e |mir-669b |
mir-669d |mir-466f-2 |mir-669l |
mir-669d-2 |mir-466f-3 |mir-297a-2 |
mir-466o |mir-467c |mir-466b-1 |
mir-669a-3 |mir-669k |mir-467a-1 |
mir-466b-8 |mir-669a-1

2.94E-17 -1.99 0.03 0.07 0.54 n.a. 3.54 2.36

mmu-miR-466j_st mmu-miR-466j mir-467 Chrom 10 (+) -1.56 0.07 0.11 0.48 n.a. n.a. n.a.

A
zra

k
et

a
l.
B
M
C
G
en
o
m
ics

2
0
1
3
,
1
4
:7
3
1

P
a
g
e
1
7
o
f
3
0

h
ttp

://w
w
w
.b
io
m
e
d
ce
n
tra

l.co
m
/1
4
7
1
-2
1
6
4
/1
4
/7
3
1



Table 1 Differential microRNA expression in Rasless MEFs (Continued)

mmu-miR-669c_st mmu-miR-669c mir-467 Chrom 2 (+): mir-669a-11 |mir-467a-10 |
mir-466b-3 |mir-669a-12 |mir-467e |
mir-466p |mir-467d |mir-466a |
mir-297c |mir-669c |mir-669a-2 |
mir-297b |mir-466d |mir-669m-1 |
mir-669m-2 |mir-466n |mir-669o |
mir-466g |mir-466h |mir-297a-3 |
mir-466l |mir-297a-4 |mir-669i |
mir-669h

8.81E-11 -1.34 0.11 0.15 0.48 n.a. n.a. n.a.

mmu-miR-467e-star_st mmu-miR-467e* mir-467 Chrom 2 (+): mir-467a-8 |mir-466b-7 |
mir-669p-2 |mir-467a-9 |mir-466b-2 |
mir-669a-10 |mir-669a-11 |mir-467a-10 |
mir-466b-3 |mir-669a-12 |mir-467e |
mir-466p |mir-467d |mir-466a |
mir-297c |mir-669c |mir-669a-2 |
mir-297b |mir-466d |mir-669m-1 |
mir-669m-2 |mir-466n |mir-669o |
mmir-466g |mir-466h

4.32E-09 3.57 0.00 0.03 3.2 n.a. 3.88 1.57

mmu-miR-493_st mmu-miR-493 mir-493 Chrom 12 (+): mir-673 |mir-493 |
mir-337 |mir-3544 |mir-540 |mir-665 |
mir-3070a |mir-3070b

-1.59 0.06 0.11 0.52 n.a. 3.02 n.a.

mmu-miR-503_st mmu-miR-503 mir-503 Chrom X (-):mir-322 |mir-503 |
mir-351 |mir-542 |mir-450a-2 |
mir-450a-1 |mir-450b

2.84E-06 -2.58 0.01 0.04 0.25 0.23 2.75 2.95

mmu-miR-574-5p_st mmu-miR-574-5p mir-574 Chrom 5 (+) (5.07E-06) -3.32 0.01 0.03 0.43 n.a. n.a. n.a.

mmu-miR-652_st mmu-miR-652 mir-652 Chrom X (+) 1.72E-07 -1.59 0.06 0.11 0.67 n.a. n.a. 1.48

mmu-miR-665_st mmu-miR-665 mir-665 Chrom 12 (+):mir-493 |mir-337 |
mir-3544 |mir-540 |mir-665 |
mir-3070a |mir-3070b |mir-431 |
mir-433 |mir-127 |mir-434 |
mir-432 |mir-3071 |mir-136

(2.89E-06) -1.72 0.05 0.09 0.32 n.a. 4.99 2.88

mmu-miR-670_st mmu-miR-670 mir-670 Chrom 2 (-) 2.11 0.02 0.06 3.48 n.a. n.a. n.a.

mmu-miR-672_st mmu-miR-672 mir-672 Chrom X (-): -1.47 0.08 0.13 0.22 n.a. n.a. 1.48

mmu-miR-674_st mmu-miR-674 mir-674 Chrom 2 (+) -2.21 0.02 0.05 0.68 n.a. n.a. 2.76

mmu-miR-675-3p_st mmu-miR-675-3p mir-675 Chrom 7 (-) 2.79E-07 3.48 0.00 0.03 3.3 n.a. n.a. n.a.

mmu-miR-708_st mmu-miR-708 mir-708 Chrom 7 (+) 6.41E-06 -1.74 0.05 0.09 0.47 n.a. 0.27 0.35

mmu-miR-744_st mmu-miR-744 mir-744 Chrom 11 (-) (1.89E-07) -1.69 0.05 0.09 0.68 n.a. n.a. n.a.

mmu-miR-877-star_st mmu-miR-877* mir-877 Chrom 17 (-) -2.8 0.01 0.03 0.47 n.a. n.a. n.a.

mmu-miR-877_st mmu-miR-877 mir-877 Chrom 17 (-) (2.52E-07) -1.36 0.1 0.15 0.5 n.a. n.a. 1.68

mmu-miR-883b-3p_st mmu-miR-883b-3p mir-883 Chrom X (-): mir-463 |mir-741 |
mir-471 |mir-883b |mir-883a |
mir-742

6.72E-11 4.13 0.00 0.03 6.57 n.a. 3.15 1.94
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Table 1 Differential microRNA expression in Rasless MEFs (Continued)

mmu-miR-99b-star_st mmu-miR-99b* mir-99 Chrom 17 (+):mir-99b | let-7e |
mir-125a

-3.6 0.00 0.03 0.38 n.a. 2.33 2.03

mmu-miR-100_st mmu-miR-100 mir-99 Chrom 9 (+):mir-100 | let-7a-2 (1.13E-07) -1.97 0.03 0.07 0.56 n.a. n.a. 1.68

mmu-miR-1196_st mmu-miR-1196 Chrom 14 (-) -3.74 0.00 0.03 0.27 n.a. n.a. n.a.

mmu-miR-714_st mmu-miR-714 2.06E-06 -2.29 0.02 0.05 0.35 n.a. 9.4 6.12

mmu-miR-805_st mmu-miR-805 Death miR entry: maps to the
Mt genome and overlaps a
Mt tRNA sequence.

2.75E-06 -2.26 0.02 0.05 0.58 n.a. n.a. 2.04

mmu-miR-709_st mmu-miR-709 Chrom 18 (+) 2.87E-08 -1.85 0.04 0.08 0.58 n.a. n.a. 1.72

mmu-miR-705_st mmu-miR-705 Chrom 6 (-) -1.8 0.04 0.08 0.4 n.a. 2.35 n.a.

mmu-miR-1187_st mmu-miR-1187 Chrom 5 (-) -1.76 0.05 0.09 0.38 n.a. n.a. n.a.

mmu-miR-699_st mmu-miR-699 Death miR entry: appears to be
a fragment of RNase MRP RNA
(Paul Gardner pers comm)

-1.58 0.07 0.11 0.52 n.a. 2.75 1.57

mmu-miR-712_st mmu-miR-712 mir-712a and mir-712b sequences
map to the same genomic
locus in mouse genome assembly
NCBI36

-1.38 0.1 0.14 0.41 n.a. 8.61 2.91

mmu-miR-1192_st mmu-miR-1192 Chrom 19 (+) 3.55 0.00 0.03 5.61 4.17 2.85 n.a.

mmu-miR-719_st mmu-miR-719 Chrom 14 (-) 9.32E-08 4.51 0.00 0.03 5.79 n.a. n.a. n.a.

mmu-miR-706_st mmu-miR-706 Chrom 6 (-) 1.79E-08 5.19 0.00 0.02 4.98 2.66 n.a. n.a.

List of 103 differentially expressed microRNAs (77 repressed and 26 induced) identified by means of pair-wise SAM contrasts (FDR = 0.1) comparing the microarray-generated miRNA transcriptional profile of 12-day 4OHT Rasless MEFs

with that of control untreated K-Raslox MEFs. The last three columns on the right show data corresponding to independent pair-wise comparisons between 6-day 4OHT-treated MEFs and untreated K-Raslox control MEFs, and

comparisons between BRAF-rescued or MEK1-rescued cells and Rasless MEFs (all three also at the same FDR = 0.1). The differentially expressed miRNAs are identified by the AffymetrixmiRNA probeset ID,miRNA name,miRNA family,

Chromosome location andmiRNA cluster to which they belong (using updated data from the miRBase database (http://www.mirbase.org/). All miRNA members of the same cluster that show concomitant differential expression in Rasless

cells are written in bold. The Genecodis prediction column shows the p-values of statistical significance for predictions of the indicated miRNAs made by Genecodis analysis of the list of repressed or induced (in parenthesis) mRNAs of

Rasless cells (Additional file 1: Table S1). d-value quantifies the degree of overexpression (positive values) or repression (negative values) and is a parameter measuring the statistical distance separating the calculated expression value of

each gene probeset from the null hypothesis (no-change). p-value is a statistical measurement indicating the probability of random expression for that probeset. q-value is the estimated FDR at the highest p-value for which the probeset

would be statistically significant. R-fold is a measurement of the fold-change of a probeset in the collection of the microarrays provided by the SAM algorithm. Independent confirmation of the microarray-generated R-fold values of

differential expression for several randomly selected miRNAs was obtained by means of qRT-PCR using specific primers which generated the data indicated by the # symbols and the actual fold values included in the square

[parenthesis]. “n.a.”: not applicable at FDR = 0.1. In some cases, the BRAF- and MEK1-rescued samples showed the opposite transcriptional behavior (reversion) in comparison with the Rasless samples but their respective R-fold

parameters are still shown here as “n.a.” because the corresponding FDR value of the overall contrasts was higher than 0.1 under the experimental conditions used.
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previous reports have described their functional contribu-

tion to pancreatic [66] and non-small cell lung cancer [67].

The downregulated miR-155 (Table 1) has also been previ-

ously linked to B-cell-related cancers and shown to be up-

regulated in pediatric Burkitt’s and Hodgkin lymphomas

[44,68]. Finally, the downregulated components of the miR-

222 ~ 221 cluster (Table 1) are amplified in papillary thyroid

carcinomas [69] and the components of the miR-183 ~ 182

cluster (Table 1) have been linked to development of medul-

loblastomas [70], lung cancer [71] and gliomas [72].

The pool of upregulated miRNAs identified in Rasless

cells is less extensive and is limited to components of

the mir-27 and mir-30 families and, in particular, the in-

dividual miR-355 and miR-181a which show the highest

R-fold overexpression values in Rasless cells (Table 1).

Different reports have identified miR-335 as a prognostic in-

dicator in gastric cancer [73] and gliomas [74], whereas the

overexpressed miR-181a has been reported to modulate T

cell sensitivity and selection [75] and to contribute to human

myeloid leukemia [76]. Additionally, the members of the

mir-27 and mir-30 families have been shown to play pro-

angiogenic roles in tumors [77,78] and, in particular, the in-

dividual miR-30c has been reported to directly target the 3′

UTR region of K-RAS in hereditary breast cancers [79].

All in all, the list of related tumors and canonical tar-

gets identified in the scientific literature for each differ-

entially expressed miRNA listed in Table 1 may provide

significant functional clues regarding the specific mecha-

nisms and causal relationships linking the miRNA profile of

Rasless cells (Table 1) to the generation/maintenance of the

transcriptomic mRNA profile and phenotype of Rasless cells.

Reversibility of the microRNA expression profile of

Rasless cells and inferred mechanistic implications

Further confirmation of the functional significance of

our microarray-generated profile of differential miRNA

expression is provided by the observation that most al-

terations of miRNA expression identified in the growth-

arrested Rasless cells were fully reversed, in exactly the

opposite direction of induction or repression, in the prolif-

erating, BRAF-rescued and MEK1-rescued MEFs (Table 1).

Interestingly, the differential expression of most of these

“reversible” miRs was predicted by Genecodis with very

high statistical significance from the profile of induced

and repressed mRNAs occurring in Rasless cells (see

“Genecodis prediction” column, Table 1). Indeed, those

reversals affected more than 55% of all differentially

expressed miRNAs in Rasless cells, and frequently af-

fected all members of specific miRs families or clusters

(Table 1). Thus, it was particularly noticeable that all

members of the mir-17 and mir-25 families (involving

the 3 separate clusters miR-17 ~ 92, miR-106a ~ 363

and miR-106b ~ 25) showed opposite transcriptional

behavior between the proliferating, BRAF- or MEK1-

rescued cells (upregulated) and the growth-arrested

Rasless cells (repressed) (Table 1). A similar reversal

was also observed with all miRs located in specific

clusters, such as miR-212 ~ 132 (mir-132 family), miR-

183 ~ 182 or miR-222 ~ 221 (mir-221 family). Reversal

from downregulated (in Rasless cells) to upregulated

(in both BRAF- and MEK1-rescued cells) was also ob-

served in a number of individual miRs, including miR-

155, miR-29a, miR-31, miR-193, miR-503, miR-714

and miR-712. Quantitatively, the miRNAs of the miR-

183 ~ 182, miR-222 ~ 132, miR-17 ~ 92 and miR-106a ~

363 clusters, as well as in the individual miR-155 and

miR-29a, showed the highest rebound from downregula-

tion to upregulation (Table 1). In contrast, miR-23b and

miR-27b (belonging to the same cluster) were upregulated

in Rasless cells and clearly downregulated in both BRAF-

and MEK1-rescued MEFs (Table 1). In particular, miR-335

and miR-365 were the most highly upregulated individual

miRs identified in Rasless cells that were also simultan-

eously detected as being downregulated in both BRAF-

and MEK1-rescued MEFs (Table 1). Additionally, miR-27a

and the miR-30a, miR-30b and miR-30c (components of

the mir-30 family) were also upregulated in Rasless cells

but transcriptional reversal was only detectable for miR-

27a and miR-30a in MEK1-rescued cells. In other cases,

such as the downregulated let-7 family members or the

upregulated miR-10b, miR-129, miR-215, miR-487b and

miR-883, no reversal of their transcriptional pattern was

detected (Table 1).

Direct visual evidence of the reversibility of the miRNA

profile of Rasless cells is provided by the heatmap in

Figure 5B, depicting a multiclass comparison resulting

from hierarchical clustering of the microarray-based

miRNA profiles of control, Rasless, and BRAF- or

MEK1-rescued MEF clones. This dendrogram shows a

clear discrimination among three main vertical branches

corresponding to (i) Control, proliferating K-Raslox MEFs,

(ii) the BRAF- or MEK1-rescued MEFs and (iii) the non-

proliferating, Rasless cells (Figure 5B). Remarkably, the

profiles of the BRAF- and MEK1-rescued MEFs showed

an expression pattern that was antagonistic to that of

Rasless cells, thus regaining a miRNA profile that

approached that of the original proliferating control K-

Raslox MEFs (Figure 5B).

Mechanistic implications inferred from the reversible

miRNA expression patterns of Rasless cells

We attempted to identify the most salient reversible

miRNA alterations with regards to the generation and/

or maintenance of the Rasless status by means of Venn

diagrams identifying miRs from Table 1 that showed an

exactly opposite pattern of differential expression (re-

pression and induction, respectively) between Rasless

cells and both the BRAF-rescued and MEK1-rescued
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Figure 6 Reversibility of the microRNA expression profile of Rasless cells and inferred mechanistic implications. (A, B) Overlap of

opposing differential miRNA expression profiles between Rasless MEFs and BRAF- and MEK1-rescued MEFs. (A) Venn diagram showing numbers

of shared differentially expressed miRNAs (FDR = 0.1) that were simultaneously detected as induced in Rasless MEFs (pair-wise comparison with

control MEFs, FDR = 0.1) and as repressed in both BRAF- and MEK1-rescued MEFs (pair-wise comparisons to Rasless MEFs, FDR ≤ 0.19). (B) Venn

diagram showing numbers of shared differentially expressed miRNAs that were simultaneously repressed in Rasless MEFs (pair-wise comparison

with control MEFs, FDR = 0.1) and induced in BRAF- and MEK1-rescued MEFs (pair-wise comparisons with Rasless MEFs, FDR ≤ 0.19). Red:

transcriptional induction. Green: transcriptional repression. Different families and clusters encompassing the 6 upregulated and 34 downregulated

miRs identified are highlighted in separate colors. (C) GO Biological Process categories assigned (p-value < 10-4) by the StarBase (sRNA Target

Base) functional annotation tool to the panel of 40 differentially expressed miRNAs identified in panels A and B. Bar length quantifies degree of

statistical significance for each functional category. (D) Ingenuity Pathways (IPA) software analysis identifying networks of biologically significant

functional interactions among the 40 differentially-expressed miRNAs identified in panels A and B and a variety of checkpoint sensors and cell-

cycle regulators including Myc, Pten, Rb, Tp53 and Cdkns. Graphic outcome adapted to highlight the most relevant individual miRs or miR

families and the key regulators involved in the interactions. mir-17 fam (miR-17, miR-18a, miR-20a, miR-20b, miR-106a, miR-106b, miR-93), mir-27

fam (miR-27a, miR-27b) and mir-221 fam (miR-221, miR-222) designate those cases where multiple members of the same mir family participate

in the indicated regulatory interaction. Green: downregulation; Red: upregulation. Color intensity graded according to d-value of each miRNA

entry in Table 1.
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proliferating MEFs (Figure 6A, B). This approach identi-

fied at least 34 distinct repressed miRs and 6 overex-

pressed miRs of Rasless cells fulfilling that condition

(Figure 6A, B; Table 1; Figure 5B). This particular group

of 40 miRs potentially represents the core of most func-

tionally relevant miRs with regards to the mechanisms

involved in the generation and/or reversal of the Rasless

phenotype.

An overall view of the most significant cellular func-

tional categories predicted [80] to be affected by this pool

of Rasless miRNAs is represented in Figure 6C. Interest-

ingly, this analysis recognized a set of general GO func-

tional categories that are highly coincident with those

previously identified in a similar analysis of the pool of re-

versible mRNAs of Rasless cells (Figure 3C). Among

others, these included the following: Transport (p-value

3.42E-16), Protein phosphorylation (p-value 3.49E-13),

Small GTPase-mediated signalling (p-value 1.94E-12) and

DNA/RNA processing (in particular, regulation of tran-

scription, DNA-dependent, p-value 3.51E-08) (Figure 6C).

Focusing on the identity of the individual miRs in this

group, it was striking to observe a significant enrichment

in miRs belonging to a short list of specific miR clusters

and families (Figure 6A, B and D) characterized by their

shared ability to target several specific cellular regulators

participating in modulation of cell cycle progression/ar-

rest checkpoints, response to DNA damage stress and

apoptosis. It is likely that the pleiotropic sum of all these

different, miR-based modulatory interactions (going in

opposite directions in Rasless cells as compared to BRAF-

or MEK1-rescued cells) may contribute, at least in part, to

the growth arrest/proliferation processes involved in gen-

eration and/or reversal of the Rasless phenotype. In this

regard, the reversal of the expression patterns of all mem-

bers of the highly related mir-17 and mir-25 families (re-

pressed in Rasless cells and distributed among 3 defined

clusters miR-106a ~ 363, miR-17 ~ 92 and miR-106b ~ 25)

is particularly striking (Table 1, Figure 6). Although some

have been cited as being involved in aging processes [81],

most members of the mir-17 and mir-25 families have

been implicated in cell cycle control and regulation of

tumor development through a variety of mechanisms in-

volving the specific targeting of modulators and check-

point sensors for processes of cell cycle progression/

arrest, DNA damage stress response and apoptosis, in-

cluding in particular Rb, E2F, p21 and p53. Thus, a defined

set of 3 miRs, including miR-17 and the miR-106a ~ 20b

cluster components has been identified as a regulatory

intermediate for coordinating p63 with MAPK signaling

through the targeting of different signaling molecules in-

cluding Rb, p21 and multiple MAPKs [82]. Overexpressed

miR-106a alone has been shown to downregulate RB in

colorectal cancer [59] and T cell leukemia [57] as well as

to inhibit apoptosis by targeting FAS in gastric cancer

[60], whereas miR-20b has been reported to target pro-

angiogenic modulators in breast cancer cells [58].

The mechanistic relevance of the miR-17 ~ 92 cluster

with regards to cell cycle regulation is also clearly estab-

lished [44,49,50] since this cluster is recognized as the cen-

tral element of a complex regulatory network that tightly

controls proliferative signals in a variety of biological con-

texts. Specifically, this polycistronic miR-17 ~ 92 cluster is

known to carry out pleiotropic functions modulating

proliferation, apoptosis and survival in different cellular

contexts via its participation in a complex networked Myc-

miR-17 ~ 92-E2F genetic circuit in which Myc regulates ex-

pression of the miR-17 ~ 92 cluster components and, in

turn, these components of the cluster negatively target and

regulate expression of E2F family members [50,83,84]. This

miR-17 ~ 92-mediated regulatory circuitry [85-88], which

targets the Rb pathway [49,89] through modulation of E2F

factors [84-87], is highly consistent with our experimental

observation of miR-17 ~ 92 downregulation in growth-

arrested Rasless cells and upregulation in BRAF or MEK1-

rescued MEFs (Table 1, Figure 6A, B), as well as with the

detection of disappearance of a number of E2F targets in

Rasless cells and their re-appearance in BRAF- and MEK1-

rescued cells (Figure 4B, C). Whereas the Rb-E2F pathway

appears to be the primary target of miR-17 ~ 92, this clus-

ter has also been reported to modulate other targets

capable of modulating cell cycle progression or arrest

through other pathways. Of particular interest in this re-

gard is a report showing that synthetic lethality between

Rb, p53 and Dicer or miR17 ~ 92 in retinal progenitors

suppresses retinoblastoma [90], thus adding another mech-

anistic connection between Rb-dependent pathways and

p53-dependent pathways to the variety of pleiotropic ef-

fects of this cluster with respect to the control of cell cycle

progression and arrest. Such pleiotropic mode of action is

also supported by a report indicating that this cluster acts

by upregulating p21Cip1 in retinoblastomas [89], and by

our experimental detection of enhanced levels of p21 in

Rasless cells (Figure 4; Additional file 1: Table S1).

The overlapping members of the miR-106b ~ 25 clus-

ter and the mir-25 family also display opposite patterns

of expression in Rasless cells and in BRAF- and MEK1-

rescued cells (Table 1, Figure 6A, B), and analysis of

their canonical targets and biological effects offers

additional mechanistic explanations for the reversible

proliferative phenotypes of Rasless MEFs. In particular,

the members of the miR-106b ~ 25 cluster have been

shown to interfere with cell survival and apoptosis in

different tumor systems [61,63,91] via targeting of a

variety of modulators of cell cycle progression or check-

point functions, thus providing a mechanistic basis for

cross-talk between Rb- and p21- and PTEN-dependent

pathways [92]. Thus, the miR-106b ~ 25 cluster has been

shown to target PTEN in prostate tumors [61] or E2F1 in
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hepatocellular carcinoma [63] and gastric tumors, where

it impairs TGFβ-dependent cell cycle arrest and apoptosis

[62,91]. In particular, the members of this cluster have

been reported to target and downregulate p21/Cdkn1a

levels in multiple tumour systems [93-95], an observation

highly consistent with our experimental observation of in-

creased levels of Cdkns (p21, p15, p16) in Rasless cells

(Additional file 1: Table S1, Figure 4B-D). In addition,

miR-25 alone has also been reported to target apoptotic

modulators in different tumor types [64,65,96]. Of interest

in this regard is the recent identification, in glioblastoma

multiforme, of a miR/TP53 feedback autoregulatory cir-

cuit involving expression of p53, E2F1 and Myc to regu-

late expression of miR-25, which in turn controls p53

accumulation [65], most likely via direct targeting of the

3′UTR region of TP53 [97].

The parallel transcriptional behavior of the components

of clusters miR-212 ~ 132, miR-222 ~ 221 and miR-183 ~

182 (Table 1) adds further support to the notion of a

miR-based, coordinated regulatory circuitry involved in

cross-talk between pro- and anti-proliferative and apop-

totic/survival or DNA damage response pathways that

may be responsible, at least in part, for the arrested or

proliferative phenotypes of Rasless cells and the BRAF- or

MEK1-rescued cells. Accordingly, recent reports have

shown the ability of the two miR-212/miR-132 family

members to directly target Rb in pancreatic tumors [66]

and of miR-221/miR-222 to favor tumor progression

through targeting of the pro-apoptotic PUMA [98] or the

tumor supressor PTEN, thus activating the Akt pathway

[99,100]. The known cellular targets of the miR-183/miR-

182 cluster also establish a potential functional connection

with DNA damage response pathways in our Rasless/res-

cued MEFs, since both components of the cluster have

been linked to stress-induced premature cellular senes-

cence (SIPS) responses in primary fibroblasts [101] and

miR-182 alone has also been described to target BRCA1

in breast cancer cells [102]. Interestingly, miR-181d ex-

hibits a parallel transcriptional pattern to that of the three

clusters mentioned above and is known to directly target

K-Ras and Blc-2 in gliomas, an observation suggesting add-

itional functional links between the K-Ras-related PI3K/Akt

and MAPK/ERK pathways that would be consistent with

the disappearance of K-Ras in Rasless cells [103].

miR-335 is the most highly overexpressed miR in Ras-

less cells and its transcriptional pattern is also com-

pletely reversed in both the BRAF- and MEK1-rescued

MEFs (Table 1). Recent reports have demonstrated that

miR-335 directly targets Rb in meningiomas [104] as

well as different genes of the non-canonical TGFβ sig-

nalling pathway in neuroblastomas [105]. Interestingly,

mechanistic analysis of cancer cell lines has shown that

direct targeting of Rb by miR-335 also establishes a

proximal connection to the p53-dependent stress

response since, by altering the Rb levels, miR-335 acti-

vates the p53 pathway to limit cell proliferation after

DNA damage [106]. Consistent with this, miR-335 has

also been reported to be crucial for the BRCA1 regulatory

cascade by targeting upstream components of the BRCA1

regulatory cascade with impact on key cellular functions

such as proliferation and apoptosis [107]. These observa-

tions strongly suggest that miR-335 may play a significant

role in controlling proliferation by balancing the activities

of the Rb and p53 tumor suppressor pathways.

Our observations suggest that this defined set of 40

“reversible”, differentially expressed miRNAs (Table 1,

Figure 6) is mechanistically relevant for the generation/

maintenance and reversal of the Rasless phenotype. It is

remarkable in this regard that the functional targets of

this particular core of reversible miRs usually include a

short list of specific targets such as Rb, E2F, p53, Cdkns

(1a, 2a, 2b) or a few other apoptotic or checkpoint mod-

ulators (Figure 6D) known to act in a defined group of

cross-talking cellular pathways with impact on processes

of cell cycle progression/arrest, apoptosis/survival, or

DNA damage stress responses. The notion of inter-

dependent mRNA-miRNA transcriptional profiles con-

trolling the Rasless phenotype is also supported by the

observation that most transcriptional alterations of these

miRs were predicted, with highly significant p-values

(Table 1), by Genecodis analysis of the list of differentially

expressed mRNAs of Rasless cells (Additional file 1:

Table S1). The disappearance of many E2F targets, or the

somewhat unexpected upregulation of Cdkns (p21, p16,

p15) in Rasless cells [19] (Additional file 1: Table S1;

Figure 4), are also highly consistent experimental ob-

servations supporting such a notion.

All these considerations raise the interesting hypothesis

that the set of transcriptionally reversible miRs identified in

this report may constitute the core of a miR-based regula-

tory circuitry focused around a few specific targets such as

Rb, E2F or p53 and Cdkns (p21, p16, p15) capable of

modulating interplay among pathways controlling prolifera-

tion, survival and DNA damage stress responses that may

account for the mechanisms responsible of the growth/ar-

rest phenotype exhibited by Rassles or rescued MEFs. Inter-

estingly, our data uncovered specifically the Myc/Rb/E2F

axis and the Cdkns/p53 axis as the two main signaling con-

tributors to this regulatory circuitry. Regarding the first

axis, E2F proteins and targets are controlled by Rb, and Rb

loss is known to override the requirement for downstream

ERK signalling for cell proliferation [30,40,41]. In the sec-

ond axis, p21 is known to be a transcriptional target of p53

[42,43]. Therefore, a prediction directly derived from such

hypothesis would be that reversion of the transcriptional

patterns of downregulation or upregulation of mRNA and

miRNA identified in Rasless cells may lead to a similar re-

versal of the growth-arrest phenotype, as observed in
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BRAF- or MEK1-rescued MEFs. Such a reversal could be

tested experimentally in Rasless cells either by the introduc-

tion of specific antagomIrs or, more directly, through direct

knockout or the knockdown of some of the critical core

modulator targets identified in this study, such as Rb, p53

or the Cdkns (p21, p16, p15). Our preliminary analysis of

the transcriptome of Rasless MEFs that recovered their pro-

liferative ability after silencing of Rb via the introduction of

specific shRNA constructs [19] appears to support this hy-

pothesis (Additional file 7: Figure S2). Indeed, the patterns

of differential expression of mRNAs and miRNAs in these

shRb-rescued cells were highly reminiscent of those of

BRAF- and MEK1-rescued cells, with the most significant

components of their mRNA and miRNA compartments

showing transcriptional behavior opposite to that seen in

Rasless cells (compare panels A and B of Additional file 7:

Figure S2 to Figure 3 and Figure 6, respectively).

Conclusions
In this report we characterized the transcriptional profiles

of the populations of messenger RNA and microRNA that

are differentially expressed in growth-arrested Rasless fi-

broblasts lacking the three canonical Ras family members.

Restoring the proliferative ability of those cells after ec-

topic expression of activated BRAF or MEK1 resulted in

the reversal of a large proportion of the transcriptional

mRNA and miRNA alterations identified, indicating

that the altered mRNA and miRNA expression patterns

are functionally interrelated and specifically associated

with the disappearance of the Ras proteins in Rasless cells.

Classification into functional categories of the lists of dif-

ferentially expressed mRNAs and miRNAs supported the

functional relevance of the (absent) canonical ras genes for

a number of cellular functions, including DNA/RNA pro-

cessing and metabolism, cellular transport processes, me-

tabolite processing and, in particular, positive and negative

control of cell cycle progression, programmed cell death

and DNA damage response. Specifically, the list of differ-

entially expressed mRNAs of Rasless cells involved repres-

sion of a large number of cell cycle-related genes,

including cyclins, cyclin-dependent kinases, and E2F tran-

scription targets, as well as induction of cyclin-dependent

kinase inhibitors (Cdkns). Consistent with this, flow cyto-

metric analysis of Rasless cultures identified a predominant

blockade at the G1 phase of the cell cycle.

Analysis of the profile of differential miRNA expres-

sion in Rasless cells identified the reversible, altered

expression of a distinct list of interrelated oncomiR

families and clusters including, among others, down-

regulation of all members of the mir-17 and mir-25

families and upregulation of miR-335. Remarkably, the

gene targets for most of those miRs are concentrated

around a short list of signaling modulators, including

in particular, Rb, E2F, p53, several Cdkns and a few

other apoptotic modulators. Since these targets are known

modulators of cross-talk signaling pathways regulating cell

cycle progression/arrest, apoptosis/survival or response to

cellular stress such as DNA damage, our observations sug-

gest that the reversible Rasless phenotype may be a pleio-

tropic result of the interplay among several, distinct

pro-and antiproliferative signaling and stress response

pathways regulated by the differentially expressed mRNAs

and miRNAs identified. This hypothesis is based on the

observation of preferential targeting of Myc-Rb-E2F and

Cdkns (p21, p16, p15)-Tp53 dependent pathways by the

differentially expressed mRNAs and miRNAs identified in

Rasless cells, and it challenges current hypotheses for Ras-

driven cell cycle progression based exclusively on induc-

tion of CcnD synthesis. This hypothesis would also predict

that reversing the transcriptional patterns of mRNA and

miRNA differential expression of Rasless cells may lead to

a parallel restoration of their proliferative abilities, similar

to what happens in BRAF- or MEK1-rescued MEFs. We

suggest that the introduction of specific antagomIrs or dir-

ect silencing of some or all of the critical miR target pro-

tein modulators identified in this study, such as Rb, E2F,

Cdkns (p21, p16, p15) or p53, may be an adequate experi-

mental approach to directly test such a possibility. Prelim-

inary work introducing specific shRNA constructs for Rb

into Rasless cells has indicated that silencing Rb expres-

sion rescues their proliferative ability [19] and significantly

restores the normal mRNA and miRNA transcriptional

profiles (Additional file 7: Figure S2) in those cells.

Methods
Cell culture

All cell lines used here were mouse embryonic fibroblasts

(MEFs) harboring the same basic genotype (H-Ras−/−;N-

Ras−/−;K-Raslox/lox;RERTert/ert) [19]. Cell lines designated

DU315-6 and DU244-1 were used as K-Raslox controls for

experiments involving the induction of the Rasless pheno-

type under 4OHT treatment. The cell clones designated

LG7-6 had the same genotype and carried a hygromycin-

resistance vector expressing a BRAFCAAX construct. The

cell lines designated JU10-2 served as control for experi-

ments with LG7-6 lines since they carried the same empty

hygromycin resistance vector. The cell lines designated

MCL1-6 harbored a puromycin resistance vector express-

ing an MEK1Q56P construct and cell lines MCL23-1 served

as controls since they bore the same puromycin resistance

empty vector. Cultures were grown in a humidified

CO2 (5%) atmosphere at 37°C, in Dulbecco’s modified

Eagle’s medium (DMEM; Gibco) supplemented with

fetal bovine serum (10% FBS; Hyclone, Logan, Utah,

USA), glutamine (2 mM), penicillin (100 U/ml) and

streptomycin (100 mg/ml). Hygromycin (200 μg/ml,

Sigma-Aldrich) or puromycin (2 g/ml, Sigma-Aldrich)

was also added as appropriate to MEF cultures expressing
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BRAFCAAX or MEK1Q56P, respectively. For tamoxifen

induction, cultures were treated as appropriate with

4-hydroxy-tamoxifen (4OHT, H7904, Sigma-Aldrich)

for 6 or 12 days at final concentration 0.6 μM to promote

Cre-induced disruption of the K-Ras locus. Subconfluent

cultures of untreated or 4OHT-treated cell lines were used

for total RNA, miRNA and protein extractions.

Cell-proliferation assays were performed using MTT [3-

(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide,

Sigma-Aldrich, 5 μg/μl]. The absorbance (at 570 nm wave-

length) of quadruplicate samples for each experimental

condition was measured every 24 hours for 3 days using an

Ultra Evolution Microplate Reader (TECAN).

Sca1 downregulation studies were performed by trans-

ducing control MEFs with lentiviral particles (MISSION®

Lentiviral Transduction Particles, SHCLNV, Sigma-Aldrich)

harboring either specific Sca1 shRNA constructs (shRNA-

Sca1 cell line), or non-targeting shRNA control constructs

(shRNA-NTcell line) to rule out any off-target effects. Puro-

mycin (1.5 μg/ml) was used to select the infected cells and

the TCRN0000100120 construct was found to be the most

effective Sca1 shRNA. For Sca1 expression studies, cells

were incubated with JAK inhibitor I (420099, Millipore)

(3 μM) for 6, 24 or 48 hours.

RNA isolation and microarray hybridization

For mRNA expression analyses, total RNA was isolated

using the TRIzol® reagent and protocol as described by

the manufacturer (Ambion, Life Technologies). RNA sam-

ples were purified using the RNeasy® Mini Kit (Qiagen)

and their concentration, purity and integrity were mea-

sured on an Agilent 2100 Bioanalyzer (Agilent Technolo-

gies). RNA was then used to synthesize complementary

RNA (cRNA) probes for hybridization to the Affymetrix

GeneChip® Mouse Genome 430 2.0 Array that was carried

out as described previously [20,21].

For miRNA studies, total RNA was extracted from two

10-cm culture dishes per individual sample using the mir-

Vana™ miRNA isolation kit (Ambion) according to the

manufacturer’s protocol. RNA integrity was assessed using

an Agilent 2100 Bioanalyzer (Agilent Technologies). Briefly,

1000 ng of total RNA were labeled using the Flash Tag Bio-

tin HSR Labeling kit (Genisphere, P/N HSR10FTA) accord-

ing to the manufacturer’s instructions. Hybridizations were

performed using the GeneChip miRNA Array (Affymetrix)

according to protocols from Affymetrix. Washing and

scanning were performed using the Affymetrix GeneChip

System (GeneChip Hybridization Oven 640, GeneChip Flu-

idics Station 450 and GeneChip Scanner 7G).

Microarray data analysis: normalization, differential

expression and clustering

To ensure statistical significance, several separate micro-

array hybridizations and independently extracted mRNA

or miRNA samples were used in all cases for the

characterization of each genotype and/or experimental

condition under study. The sample set used in this report

for mRNA expression studies included 27 independent

hybridizations corresponding to 14 controls, 7 Rasless,

3 BRAF-rescued and 3 MEK1-rescued samples. The

sample set for miRNA expression analysis included 24

independent hybridizations corresponding to 8 con-

trols, 8 Rasless, 4 BRAF-rescued and 4 MEK1-rescued

cell lines.

Data analysis was carried out using the RMA [108]

and SAM [109] algorithms, as previously described [20,21].

For analyses of mRNA differential expression, a FDR value

of 0.01 was applied, whereas in the studies of differential

expression of miRNA, generally an FDR value of 0.1 was

used. Following the identification of the differentially

expressed probesets (corresponding to mRNAs or miR-

NAs), the corresponding matrix of expression values for all

the microarray hybridizations performed were analysed

using the hclust clustering algorithm, implemented in R

[110]. This algorithm performs hierarchical cluster analysis

with complete linkage to find similarities between probe-

sets based on their expression values in the different chip

microarrays analyzed. The algorithm classifies the probe-

sets in correlated groups showing similar expression pro-

files or expression signatures.

Functional analysis of microarray data

For functional analysis of the lists of differentially expressed

genes identified in our studies, we used the GeneCodis

(Gene Annotation Co-occurrence Discovery) software tools

(http://genecodis.dacya.ucm.es) to find combinations of co-

occurrent functional annotations within the components of

a given gene list with respect to a reference list [111,112].

The significance of the annotations was calculated using a

hypergeometric statistical test with FDR p-value correction

[113], using the mouse genome as reference. Func-

tional annotations were obtained, as indicated in each

case, by referral to either the Gene Ontology (GO)

(http://www.geneontology.org), KEGG pathways (http://

www.genome.ad.jp/kegg/pathway.html), TRANSFAC® (vers.

7.4, http://www.gene-regulation.com/), or miRBase (http://

www.mirbase.org/, Source-version miRanda 3.0) databases.

Redundancies in the lists of GO categories generated by the

software were submitted to further manual curation in order

to focus on the most general biological functions and cellu-

lar processes, as seen in Additional file 2: Table S2,

Additional file 3: Table S3 and Additional file 5: Table S5).

Functional analysis of the lists of differentially expressed

miRNAs was performed using the StarBase public plat-

form (http://starbase.sysu.edu.cn/) and web-based func-

tional annotation tools such as miRGO or miRPathway,

which respectively identify enriched GO terms and KEGG

pathways associated with the predicted miRNA target
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genes by overlapping with the experimental CLIP-Seq data

[80]. Statistical significance of the enrichment data was es-

timated by means of confidence p-values calculated by ap-

plying the hypergeometric test and Bonferroni correction.

Only corrected p-values < 10-4 were taken into consideration

in this work. The Ingenuity Pathway Analysis (IPA) com-

mercial software (Ingenuity® System, www.ingenuity.com)

was also used to explore miRNA regulatory connections

and identify potential networks of genes and miRNAs (tar-

gets and regulators) in a context of biological significance

within the set of differentially expressed miRNAs shared

by both the BRAF and MEK1-rescued cells.

When required, overlapping among the various sets of

differentially expressed elements identified in our studies

was characterized by means of Venn diagrams generated

with the Venny web-based application (http://bioinfogp.

cnb.csic.es/tools/venny/index.html) [114].

Real-time PCR

Total RNA was extracted from either untreated or

4OHT-treated (6 and 12 days) K-Raslox cells, as well as

BRAF- and MEK1-rescued cell lines using the mir-

Vana™ miRNA isolation kit (Ambion) according to the

manufacturer’s protocol. RNA integrity was also evaluated

with an Agilent 2100 Bioanalyzer (Agilent Technologies).

Quantitative RT-PCR (qRT-PCR) analyses were performed

using the miRCURY LNA™ Universal RT microRNA PCR

System (Exiqon) following the supplier’s intrstructions.

Briefly, 5.5 ng of total RNA was reverse-transcribed with

miRNA specific primers and Transcriptor Reverse Tran-

scriptase. Then, cDNA from each sample was used as

a template for the qPCR reaction (in triplicate, per

sample and miRNA) using SYBR Green master mix,

miRNA specific LNA™ PCR primer, and Universal PCR

primer (Exiqon). The primer sequences are available at

www.exiqon.com/mirna-pcr. miRNA expression levels

were measured using the iCycler termociclator (Bio-Rad)

and analyzed with the iQ5 2.1 Standard Edition Optical

System Software (Bio-Rad). miR-103 was chosen for refer-

ence miRNA. Relative expression was calculated using the

comparative Ct (Cycle threshold) method [115].

Flow cytometry

Cell cycle distribution and Sca1 protein expression in

cell cultures were analyzed by means of flow cytometry.

Briefly, subconfluent cultures of untreated or 4OHT-

treated (for 6 and 12 days) cell cultures were trypsinized

and fixed in 70% cold ethanol for 2 hours. After washing

with cold PBS, the cells were incubated with propidium

iodide (PI) (1 μg/μl, Sigma-Aldrich) and DNase-free

Ribonuclease A (25 μg/μl, Sigma-Aldrich) in the dark at

room temperature with shaking for 1 hour. Fluorescence

from PI-stained DNA was analyzed with a FACSCalibur

Flow Cytometer (Becton Dickinson). The proportions of

cells in the different cell cycle phases were quantified

using the WinMDI® software (version 2.9). For Sca1 pro-

tein expression, the cells were collected by trypsiniza-

tion, washed with PBS and then blocked for 10 minutes

with 0.5% bovine serum albumin (BSA). Subsequently,

Sca1 antibody (1:200) Sca1/Ly6A/E (PE/Cy5) (ab24880,

Abcam) was added to the cell suspension and main-

tained in the dark for 20 minutes on ice before quantita-

tion of the specific Sca1 fluorescence.

Western immunoblots

Protein lysates (30–40 μg/lane) obtained and quantified as

previously described [20,21] were loaded onto SDS poly-

acrylamide gels and the electrophoresed proteins trans-

ferred to polyvinylidene difluoride membranes (Millipore

Immobilon-P) by electroblotting. Membranes blocked in

Tween 20-tris-buffered saline (TTBS) (10 mM Tris–HCl

(pH 8.0), 150 mM NaCl, 0.05% Tween 20) plus 2% (BSA)

were incubated, as appropriate, with commercial primary

antibodies diluted in 2% BSA. Antibodies from Santa

Cruz Biotechnologies recognized: K-Ras (sc-30; 1:1000),

Cdk1 (sc-054; 1:500), Cyclin A (sc-596; 1:1000), Cyclin E

(sc-481; 1:1000), Cyclin B1 (sc-752; 1:1000), p16INK4a

(sc-1207; 1:1000), p21CIP1 (sc-397; 1:250). Antibodies

from other companies reacted with: Pan-Ras (05–516,

Upstate, Millipore; 1:1000 in 5% milk), β-tubulin (T5293,

Sigma; 1:2000), Pcna (1170–406, Boehring; 1:500), Cdk2

(ms-459-po, NeoMarkers; 1:500), Dusp6 (ab76310, abcam;

1:500), c-Myc (#5605, Cell Signaling; 1:1000) and p15INK4b

(#05-430, Upstate, Millipore; 1:500). Secondary horseradish

peroxidase-conjugated antibodies (Amersham Bioscience)

were used throughout. Immunoblots were developed

using the Enhanced chemiluminescence (ECL) and ECL

plus commercial kits (Amershan Pharmacia Biotech,

Piscataway) following the supplier’s recommendations.

Availability of supporting data
All microarray hybridization data have been deposited

and are available at the NCBI, Gene Expression Omnibus

database (GEO accession series GSE45222, http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45222).

Additional files

Additional file 1: Table S1. Differential gene expression in Rasless

MEFs. List of 3091 differentially expressed probesets (2239 different

genes) identified by means of SAM contrasts (FDR = 0.01) comparing the

microarray-generated transcriptional profile of Rasless MEFs to that of

control, K-Raslox MEFs (already H-Ras/N-Ras double KO).

Additional file 2: Table S2. Functional annotation of the

downregulated differentially expressed genes of Rasless MEFs. The

GeneCodis functional annotation tool was used on the list of

downregulated genes included in Additional file 1: Table S1. Statistically

significant associations of particular gene subsets to specific Gene
Ontology (GO) functional categories designated as Biological Processes

(section S2-BP), KEGG signaling pathways (section S2-KEGG), transcription
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factors (section S2-TF) and miRNAs prediction (section S2-miRNAs) are

presented in this table.

Additional file 3: Table S3. Functional annotation of the upregulated

differentially expressed genes of Rasless MEFs. The GeneCodis functional

annotation tool was used on the list of upregulated genes included in

Additional file 1: Table S1. Statistical associations of particular gene

subsets to specific Gene Ontology (GO) functional categories designated
as Biological Processes (section S3-BP), KEGG signaling pathways (section

S3-KEGG), transcription factors (section S3-TF) and miRNAs prediction

(section S3-miRNAs) are presented in this table.

Additional file 4: Table S4. Differentially expressed genes of Rasless cells

showing reversed, opposite transcriptional pattern in both BRAF- and

MEK1-rescued MEFs. List of differentially expressed genes in Rasless

MEFs (93 induced and 339 repressed) that show opposite expression

pattern in the transcriptional profiles of both BRAF-rescued and MEK1-rescued

MEFs (generated by SAM comparison to Rasless cells at FDR = 0.01).

Additional file 5: Table S5. Functional annotation of differentially

expressed repressed and induced genes of Rasless MEFs whose

transcriptional pattern is reversed in both BRAF- and MEK1-rescued MEFs.

The GeneCodis functional annotation tool was used on the list of genes

included in Additional file 4: Table S4. Section S5A shows the results for

the repressed genes while Section S5B shows the results from the

induced genes.

Additional file 6: Figure S1. Alterations of Sca1 expression in Rasless

fibroblasts. (A) Flow cytometric analysis of Sca1 (Ly6A) protein expression

using specific antibodies in K-Raslox MEFs before (solid grey profile) and

after 6 days or 12 days of 4OHT treatment to render them Rasless, as well

as in BRAF-rescued and MEK1-rescued MEFs. As a control, Sca1 protein

expression in two constitutive double-knockout (H-Ras−/−; N-Ras−/−) MEF

cell lines (A624-6 and A624-8) did not show any change after similar

treatment with 4OHT for 9 or 16 days, indicating that increased Sca1

expression is not an off-target effect of 4OHT treatment (not shown). (B)

Reduced Sca1 protein expression as a result of incubating 6-day 4OHT-

treated K-Raslox MEFs with Jak inhibitor I (420099, Millipore) for the times

indicated (6, 24 and 48 hours). K-Raslox MEFs treated with either DMSO or

Jak inhibitor I showed a similar Sca1 expression to the control untreated

K-Raslox MEFs (not shown). (C) Stable knockdown of Sca1 expression by

specific shRNA-Sca1 constructs introduced into K-Raslox MEFs and Rasless

cells (generated after 16- and 22-day 4OHT–treatment). As a control,

stable integration of a non-targeting shRNA construct (shRNA-NT) did not

cause any detectable changes in Sca1 expression in the same cell lines.

(D) MTT proliferation assays of cultures of control K-Raslox and Rasless

MEFs transduced with shRNA-NT and shRNA-Sca1 constructs. * p < 0.05

(shRNA-Sca1 vs K-Raslox). (E) Immunoblot assays of several cell cycle-

related proteins in control, untreated K-Raslox MEFs and the same K-Raslox

cells knocked down by means of a shRNA-Sca1 construct, before or after

a 12-day 4OHT treatment to render them Rasless.

Additional file 7: Figure S2. Reversal of the mRNA and microRNA

expression profiles of Rasless cells by RB silencing. (A) Differentially

expressed mRNAs in Rasless MEFs showing the opposite pattern of

expression in shRB-rescued cells. Venn diagrams showing numbers of

shared, differentially expressed mRNAs that were simultaneously detected

as induced (54 genes, left panel) or repressed (215 genes, right panel) in

Rasless MEFs (pair-wise comparison with control MEFs, FDR = 0.01) and as

repressed (left panel) or induced (right panel), respectively, in shRB-

rescued MEFs (pair-wise comparisons with Rasless MEFs, FDR = 0.03);

Diagrams generated using the Venny application. Red: transcriptional

induction. Green: transcriptional repression. Histogram bars represent the

functional enrichment of GO Biological Process categories linked to the

list of induced (54) and repressed (215) genes identified in the upper

Venn diagrams. The GeneCodis (Gene Annotation Co-occurrence

Discovery) functional annotation tool was used to identify specific gene

subsets within the list of 269 differentially expressed, induced or

repressed genes that shared co-occurrent functional annotations linking

them, with high statistical significance, to particular Biological Procesess.

Green bars: repressed loci. Red bars: induced loci. (B) Differentially

expressed microRNAs in Rasless MEFs showing the opposite pattern of

expression in shRB-rescued cells. Venn diagrams showing the numbers of

shared, differentially expressed miRNAs that were simultaneously

detected as induced (12 miRNAs, left panel) or repressed (28 miRNAs,

right panel) in Rasless MEFs (pair-wise comparison with control K-Raslox

MEFs, FDR = 0.1) and as repressed (left panel) or induced (right panel),

respectively, in shRB-rescued MEFs (pair-wise comparisons with Rasless

MEFs, FDR ≤ 0,17); Diagrams generated using the Venny application

software as indicated. Red: transcriptional induction. Green: transcriptional

repression. Functional enrichment analysis of the list of 40 differentially

expressed miRNAs identified in the Venn diagrams showing the opposite

transcriptional behaviour between Rasless and shRB-rescued MEFs. The

StarBase (sRNA Target Base) functional annotation tool was used to

detect enriched GO Biological Process terms identified with high

statistical significance (p-value < 10-4). Bars depict the degree of statistical

significance for each functional category, represented as the -log of the

corrected p-value of significance.
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