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Summary. At present, reversible jump methods are the most common tool for exploring variable di-

mension statistical models. Recently however, an alternative approach based on birth-and-death pro-

cesses has been proposed by Stephens (2000)in the case of mixtures of distributions. We address the

comparison of both methods by demonstrating that upon appropriate rescaling of time, the reversible

jump chain converges to a limiting continuous time birth-and-death chain. We show in addition that the

birth-and-death setting can be generalised to include other types of jumps like split/combine jumps in

the spirit of Richardson and Green (1997). We illustrate these extensions in the case of hidden Markov

models.

AMS 1991 classification. Primary 62C05. Secondary 60J05, 62F15, 65D30, 65C60.

Keywords: Bayesian inference, birth-and-death process, completion, hidden Markov model, Jacobian,

label switching, MCMC algorithms, mixture distribution, rescaling

1. IntroductionMarkov Chain Monte Carlo [MCMC℄ methods for statistial inferene, in partiular Bayesianinferene, have undoubtedly beome standard during the past ten years (Capp�e and Robert, 2000).For variable dimension problems, often arising through model seletion, a popular approah isGreen's (1995) reversible jump MCMC [RJMCMC℄ methodology. Reently however, in the ontextof mixtures of distributions, Stephens (2000a,b) rekindled interest in a di�erent method based onontinuous time birth-and-death proesses for estimating the number of omponents of the mixture,following earlier proposals by Geyer and M�ller (1994), Grenander and Miller (1994) and Phillipsand Smith (1996). We will all this approah birth-and-death MCMC [BDMCMC℄.A main question addressed in the present paper is as follows: is there a fundamental di�erenebetween the reversible jump and birth-and-death MCMC methodologies, or are these approahessimilar? As an answer to this question we show in Setion 3 that for any BDMCMC proesssatisfying some weak regularity onditions there exists a sequene of RJMCMC proesses thatonverges, in a sense to be preised below, to the BDMCMC proess.In their appliation of reversible jump MCMC to mixtures of distributions, Rihardson andGreen (1997) involved two types of moves that ould hange the number of omponents of themixture: one was birth/death, in whih a new omponent is reated or an existing one is deleted,and the other was split/ombine, in whih one omponent is split in two, or two omponents areombined in one. On the opposite, Stephens (2000a) only deals with birth/death moves in orderto keep the algorithm within the theory of (marked) point and death proesses on general spaes.We show that onvergene of reversible jump to birth-and-death MCMC is not limited to moves ofyWork partially supported by EU TMR network ERB{FMRX{CT96{0095 on "Computational and Sta-tistial Methods for the Analysis of Spatial Data". The authors are grateful to Gareth Roberts for helpfulomments on the Rao-Blakwellisation improvement.zPartially supported by CREST, INSEE, and by CNRS (URA 820, ENST) during a visit to Paris inautumn of 2000.



2 Cappé et al.this kind however, but is muh more general. For example, the above split/ombine moves ould beinorporated. The approah so obtained ould be named ontinuous time reversible jump MCMCand the appropriate theoretial framework is that of Markov jump proesses.The paper is organised as follows: in Setion 2, we provide a review of the main featuresof reversible jump and birth-and-death MCMC methodologies. The onvergene of RJMCMCto BDMCMC is established in Setion 3. In Setion 4, we disuss the generalisation of movesfor BDMCMC besides birth/death moves, while in Setion 5, we show how sampling an bemade more eÆient in this approah, introduing a ontinuous-time Rao-Blakwellisation sheme.Setion 6 illustrates the general BDMCMC methodology for hidden Markov models, in parallelwith the RJMCMC approah of Robert, Ryd�en and Titterington (2000). Setion 7 onludes witha disussion of the pros and ons of eah method.
2. A quick review of reversible jump and birth-and-death MCMC methodologiesIn this setion we give a quik review of RJMCMC and BDMCMC in the mixture ase onsideredby Stephens (2000a). We will onsider the extension of BDMCMC to hidden Markov modelsin Setion 6. Further reading is provided by Rihardson and Green (1997, 1998) and Stephens(2000a,b).
2.1. Mixture modelsThe model we work with thus has a probability density funtion of the formp(yjk;w; �) = kXi=1 wif(yj�i);where k is the number of omponents,w = (w1; : : : ; wk) are the omponent weights, � = (�1; : : : ; �k)are the omponent parameters and f(�;�) is some parametri lass of densities indexed by a pa-rameter �. Common examples are the Gaussian family, the Gamma family (in whih ases � istypially two-dimensional) and the Poisson family (in whih ase � is one-dimensional). The om-ponent weights are non-negative numbers summing up to unity. Note that we write all densitiesas onditional ones, as our statistial approah is Bayesian. Hene we need to speify a priordensity for (k;w; �), denoted by r(k;w; �). We do not make any further assumptions about theprior, exept that it is proper and that, for eah k, it is exhangeable, that is, invariant underpermutations of the pairs (wi; �i). We also denote by L(k;w; �) the likelihood whih is given byL(k;w; �) = mYi=1 p(yijk;w; �);where y = (y1; : : : ; ym) is the observed sequene. The posterior density, whih is our starting pointfor inferene, is thus proportional to r(k;w; �)L(k;w; �). A real model typially also involveshyperparameters, whih as suh do not add any further diÆulty. We do not spei�ally addressthis issue till Setion 6 where hyperparameters are used. Below we put � = (w; �); in this notationk is impliit.A feature inherent to mixture models is that we may assoiate with eah observation yi a label(or alloation) zi 2 f1; : : : ; kg with P (zi = j j k;w) = wj that indiates from whih omponent yiwas drawn. Given data, these labels an be sampled independently withP (zi = j j k;w; �; yi) = wjf(yij�j)Pk̀=1 w`f(y`j�`) : (1)We all suh a simulation ompleting the sample as (z;y) is often referred to as the omplete data.As detailed below in the setup of hidden Markov models and as demonstrated in Celeux et al.(2000) for mixtures, the ompletion by z is not neessary from a simulation point of view.
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2.2. Birth-and-death MCMCWe now study the following form of BDMCMC: in state �, new omponents are reated (born)in ontinuous time, at rate �(�). Whenever a new omponent is born in this state, its weightw and parameter � are drawn from a joint density h(�; (w; �)). In order to make spae for thenew omponent, the old omponent weights are saled down proportionally as to make all of theweights, inluding the new one, sum to unity; that is, wi := wi=(1 + w). The new omponentweight-parameter pair (w; �) is also augmented to �. We denote these operations by `[', so thatthe new state is � [ (w; �). Furthermore, in a (k + 1) omponent on�guration � [ (w; �), theomponent (w; �) is killed at rateÆ(�; (w; �)) = L(�)r(�)L(� [ (w; �))r(� [ (w; �)) � 1k + 1 � �(�)h(�; (w; �))(1� w)k�1 : (2)The fator (1� w)k�1 in (2) results from a hange of variable Jaobian determinant when renor-malising the weights. Indeed, when the omponent (w; �) is removed, the remaining omponentweights are also renormalised as to sum to unity. We denote these two operations by `n', so that� = (� [ (w; �)) n (w; �). An important feature of the BDMCMC is that (ontinuous time) jumpproesses are assoiated with the birth and death rates: whenever a jump ours, the orrespondingmove is always aepted. What replaes the aeptane probability of lassial MCMC methodsis the duration of the stay in eah state. In partiular, implausible states, that is, states suh thatL(�)r(�) = 0, die immediately.
2.3. Reversible jump MCMCWe now turn to the orresponding reversible jump MCMC sampler. In a k omponent state �, ateah iteration, the algorithm proposes with probability b(�) to reate a new omponent and withprobability d(�) it proposes to kill one. Obviously, b(�) + d(�) = 1. If an attempt to reate a newomponent is made, its weight and parameter are drawn from h(�; (w; �)) as above. If an attemptto kill a omponent is made, eah omponent is seleted with equal probability. A new omponentis aepted with probability min(1; A), where A = A(�;� [ (w; �)) is given byA(�;� [ (w; �)) = L(� [ (w; �))r(� [ (w; �))L(�)r(�) � (k + 1)� d(� [ (w; �))(k + 1)b(�) � (1� w)k�1h(�; (w; �))= L(� [ (w; �))r(� [ (w; �))L(�)r(�) � d(� [ (w; �))b(�) � (1� w)k�1h(�; (w; �)) : (3)Here the �rst ratio, ombined with the �rst fator k + 1, is the ratio of posterior densities;b(�)h(�; (w; �)) is the density of proposing a new omponent (w; �) and d(� [ (w; �))=(k + 1) isthe probability of proposing to kill omponent (w; �) when in state � [ (w; �). Finally (1�w)k�1is the same Jaobian determinant as above.In (3), the �rst fator k + 1 omes from the assumption that in the RJMCMC algorithm wekeep �1; : : : ; �k ordered using a predetermined ordering. For example, in the ase of Gaussianomponents we ould sort aording to the mean. This ordering will, loosely speaking, reduethe size of the spae of k omponent parameters by a fator k!, and the fator k + 1 is the ratio(k+1)!=k!. This fator should thus be assoiated with the posterior density ratio. We do remark,however, that the assumption of ordered omponents is a purely tehnial identi�ability devie anddoes not make any pratial hange to the algorithm: when a new omponent (w; �) is proposedwe keep the omponents ordered by sorting them. Indeed, if ordering is not imposed, one ratherhas to work on a quotient spae indued by the equivalene relation � de�ned by � � �0 if �and �0 are idential up to a permutation of indies. Working with the quotient spae also givesrise to a fator k + 1 as in (2). Regarding deaths in the RJMCMC sampler, if in a (k + 1)omponent state � [ (w; �) a proposal to delete a omponent is made, eah omponent is seletedwith equal probability. Assuming that omponent (w; �) is seleted, the aeptane probability isthen min(1; 1=A), where A = A(�;� [ (w; �)) is as above.Both of the above samplers have the posterior density as their stationary distribution. In RJM-CMC, one typially inludes other kinds of moves suh as moves resampling the omponent weights



4 Cappé et al.and the parameters �i as well as, possibly, the hyperparameters for a �xed k|see, for instane,Rihardson and Green (1997). A omplete sweep of the algorithm onsists in the omposition ofa birth/death move with these other|�xed k|moves. Stephens (2000a) resampled omponentweights and parameters at regularly separated instants. Sampling for a �xed k an be arried outusing a Gibbs move after ompleting the sample aording to (1), but ompletion was not used byStephens (2000a) who only onsidered Metropolis-Hastings updates. As noted above, Rihardsonand Green (1997) designed, in addition, moves for splitting and ombining omponents (see Setion4 for the generalisation of BDMCMC.)
3. Convergence of reversible jump to birth-and-death MCMCWe shall now, starting from a BDMCMC algorithm as above, onstrut a sequene of RJMCMCsamplers onverging, in a ertain sense to be de�ned, to the BDMCMC sampler. Before proeedingwe introdue some additional notation. Let Sk�1 = f(w1; : : : ; wk) : wi > 0;Pwi = 1g, denote by� the spae in whih eah �i lies and put �(k) = Sk�1��k. Thus �(k) is the spae of k-dimensionalparameters. Finally � = [k�1�(k) denotes the overall parameter spae.For N = 1; 2; 3; : : :, we de�ne an RJMCMC sampler by lettingbN (�) = 1� expf��(�)=Ng; dN (�) = 1� bN (�) = expf��(�)=Ng ;where �(�) is the birth rate of the BDMCMC sampler. Then A also depends on N , and we writeA = AN . We remark that as N !1, bN(�) � �(�)=N , and if �(�) is bounded we an take insteadbN(�) = �(�)=N . The state at time n = 0; 1; 2; : : : of the N -th RJMCMC sampler is denoted by�Nn , and for eah N we onstrut a ontinuous time proess f�N (t)gt�0 as �N (t) = �NbNt, whereb� denotes the integer part. The state of the BDMCMC sampler at time t � 0 is denoted by �(t).We now onsider what happens as N ! 1. The probability of proposing a birth in state �tends to zero as �(�)=N . Hene, the aeptane ratio AN tends to in�nity, so that a birth proposalis always aepted. If time is speeded up at sale N , on the nominal time sale the limiting proessof aepted births in state � is a Poisson proess of rate �(�). The saled probability of deletingomponent (w; �) in a state � [ (w; �) 2 �(k+1) isNdN (�)� 1k + 1 �min(1; 1=AN(�;� [ (w; �)))! L(�)r(�)L(� [ (w; �))r(� [ (w; �)) � 1k + 1 � �(�)� h(�; (w; �))(1� w)k�1 as N !1;and the right hand side is nothing but Æ(�; (w; �)). Considering the resaled time axis and theindependent attempts to reate or delete omponents, in the limit the waiting time until thisomponent is killed has an exponential distribution with rate Æ(�; (w; �)), whih agrees with theBDMCMC sampler. Thus, summing up, as N !1 a birth is rarely proposed but always aeptedand a death is almost always proposed but rarely aepted. Both these shemes result in waitingtimes whih are asymptotially exponentially distributed with rates in aordane with the BD-MCMC sampler. Thus, one may expet that as N ! 1, the proesses f�N (t)g and f�(t)g willbeome more and more similar.We will now make this reasoning strit. We �rst note that sine the standard topology onthe open unit interval (0; 1) is separable and an be metrised by a omplete metri, for exampled(x; y) = jlog(x=(1 � x)) � log(y=(1 � y))j, Sk�1 an be viewed as a omplete separable metrispae. Likewise we assume that � has a separable topology whih an be metrised by a ompletemetri. Then �, with the indued natural topology, is a spae of the same kind. The proessf�(t)g is a Markov proess on � whih we assume has sample paths in D�[0;1), the spae of�-valued funtions on [0;1) whih are right-ontinuous and have left hand limits everywhere. Wemake the following assumptions:(A1) �(�) is positive and ontinuous on �.(A2) r(�) and L(�) are positive and ontinuous on �.



Reversible jump and continuous time MCMC 5(A3) For eah (w; �) 2 (0; 1) � �, h(�; (w; �)) is ontinuous on � and for eah � 2 � there is aneighbourhood G of � suh that sup�02G h(�0; �) is integrable.Theorem 1. Under (A1){(A3) and assuming that �(0) and �0 are drawn from the same initialdistribution, f�N (t)gt�0 onverges weakly to f�(t)gt�0 in the Skorohod topology on D�[0;1) asN !1.The proof is given in Appendix A.
4. Generalisations of birth-and-death MCMCAs noted above, Stephens (2000a) resampled omponent weights and parameters with �xed k,as well as hyperparameters, at equidistant times. This obviously makes the overall proess non-Markovian. We an, however, inorporate suh moves into the ontinuous time sampler. Supposefor example that in state � of the RJMCMC sampler, a move that resamples omponent weightsand parameters as well as hyperparameters, while keeping k �xed, is proposed with probability1� exp(�(�)=N). Resaling time as above and passing to the limit produes a ontinuous timeproess in whih, in state �, suh moves our at rate (�). Birth and death rates stay the same.Of ourse we an also have di�erent rates for resampling omponent weights and parameters andhyperparameters, respetively.A further sope for generalisation is to introdue more omplex moves, like the split and ombinemoves of Rihardson and Green (1997). We onsider here the ase of a split or ombine move inthe RJMCMC setting where, following Green (1995), the ombine move is deterministi. Forsimpliity, we denote by � an element of the k omponent parameter vetor � and assume thatthere is no onstraint on �. (In the mixture example onsidered in Setion 2, � = (w; �) was indeedtwo or three dimensional and there was a onstraint on the set of w's. We will see in Setion 6how the onstraint an be e�etively removed.)The RJMCMC sampler proposes to split a randomly hosen omponent of the k omponentvetor � with probability sN (�) so as to give rise to a new parameter vetor with k+1 omponents,de�ned as ((� n �) [ T (�; ")) where T is a di�erentiable one-to-one mapping onto �2, where � 2 �,and " is a random variable with p.d.f. p. We also assume that the mapping is symmetri in thesense that P (T (�; ") 2 A�A0) = P (T (�; ") 2 A0 �A) (4)for all A;A0 � �. For instane if p is a symmetri p.d.f., T (�; ") = (�� "; �+ ") is a valid mapping,and likewise, if p is suh that " and "�1 have the same distribution, T (�; ") = (�"; �=") is alsoa valid mapping. Conversely, the probability of proposing to ombine a randomly hosen pair ofomponents of � (there are k(k � 1)=2 pairs) is denoted by N (�) = 1 � sN (�). The aeptaneprobability of the ombine move a�eting the k + 1 omponent vetor ((� n �) [ T (�; ")) is givenby min� 1; L(�)r(�)k!L ((� n �) [ T (�; ")) r ((� n �) [ T (�; ")) (k + 1)!� sN(�)k(k + 1)=2N((� n �) [ T (�; "))k :� 2p(") �����T (�; ")�(�; ") �����where, as previously, the fatorials in the �rst ratio stems from the ordering of the omponentsbefore and after the ombine move. The fator 2 is a result of the symmetry assumption (4): ina split move, a omponent (w; �) an be split into the pair ((w0; �0); (w00; �00)) as well as into thereversely ordered pair ((w00; �00); (w0; �0)), but upon sorting the omponents these on�gurationsare equivalent. However, the two ways of getting there are typially assoiated with di�erentvalues of " and possibly also with di�erent densities p("); the symmetry assumption is preiselywhat assures that the densities at these two values of " oinide and hene we may replae thesum of two densities that we would otherwise be required to ompute by the fator 2. We ouldproeed without suh symmetry but would then need to onsider the densities of " when ombiningomponents (�0; �00) and (�00; �0) separately.



6 Cappé et al.As in Setion 3, we let sN(�) = 1� expf�'(�)=Ng, so that NsN (�)! '(�), and aordinglysale by N the trajetory of the orresponding disrete time sampler. The limiting ontinuous timeproess thus has a rate of moving from ((� n �) [ T (�; ")) to � by a ombine move whih is givenby L(�)r(�)L ((� n �) [ T (�; ")) r ((� n �) [ T (�; ")) � '(�)=kk + 1 � 2p(") �����T (�; ")�(�; ") ���� (5)Note that it is not neessary to onsider the equivalent disrete time RJMCMC sampler toobtain the above result as it is possible to hek diretly that the loal balaner(�)L(�)� '(�)k = L ((� n �) [ T (�; ")) r ((� n �) [ T (�; "))� q(((� n �) [ T (�; ")) ;�)holds with q(((� n �) [ T (�; ")) ;�) de�ned by (5). Speial are is required with suh onsiderationshowever sine the transition kernel of the jump hain (de�ned in Setion 5) typially does not havea density w.r.t. a single dominating measure. For example, after killing a omponent the new stateis ompletely known given the urrent one. This problem also ours for RJMCMC samplers, asexempli�ed by the measure onstrution in Green (1995), and we do not detail it further here.Further reading on Markov jump proesses is found in, for example, Ripley (1987) and Resnik(1994).
5. Sampling in continuous timeWhen running a disrete time RJMCMC sampler, its state is typially stored (sampled) after eahstep or sweep, or on regular intervals in order to derease inter-sample orrelation, as in Rihardsonand Green (1997) and Robert, Ryd�en and Titterington (2000), even if onvergene assessment forRJMCMC samplers is still in its infany (Brooks and Giudii, 1999).In ontinuous time settings, there are more options. For example, the proess may be stored atregular times, as in Stephens (2000a), or may be sampled using an independent Poisson proess.In either ase posterior means E[g(�) j y℄ are estimated by sample means N�1PN1 g(�(�i)), where�i are the sampling instants. Suppose we adopt the former sampling sheme. If we then let thesampling distane tend to zero, we e�etively put a weight on eah state visited by f�(t)g that isequal to the length of the holding time in that state, when omputing the sample mean. Beforeelaborating further on this idea, we introdue some additional notation.Let Tn be the time of the n-th jump of f�(t)g with T0 = 0. By the jump hain we meanthe Markov hain f�(Tn)g of states visited by f�(t)g. We denote this hain by fe�ng, that is,e�n = �(Tn). Let �(�) be the total rate of f�(t)g leaving state �, that is, the sum of the birth andall death rates, plus the rates of all other kinds of moves there may be. Then the holding timeTn � Tn�1 of f�(t)g in its n-th state e�n has a (onditional) distribution whih is exponential withrate �(e�n).Returning to the sampling sheme, we an then redue sampling variability by replaing theweight Tn�Tn�1 by its expetation 1=�(e�n�1). In this way, the varianes of estimators built fromthe sampler output are dereased by virtue of the Rao-Blakwell theorem, sine~g = 1N NXi=1 g(e�n�1)�(e�n�1) = 1N NXi=1 E[Tn � Tn�1je�n�1℄ g(e�n�1) :When sampling f�(t)g this way, we only simulate the jump hain and store eah state it visits aswell as the orresponding expeted holding time. Alternatively, the expeted holding times maybe reomputed later when proessing the sampler output. In order to simulate the jump hain wenote that its transition law is as follows: the probability of an event happening is proportional toits rate. Hene, for example, the probability of a birth is �(�)=�(�); if a birth ours then the newomponent weight and parameter are drawn from h(�; (w; �)) as before. Thus we need to omputeall rates when simulating the jump hain, just as we do when simulating f�(t)g as well.
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6. An illustration for hidden Markov models

6.1. SettingWe onsider in this setion an appliation of the ontinuous time MCMC methodology to the aseof hidden Markov models, as in Robert, Ryd�en and Titterington (2000). That is, the observationsyt are suh that, onditional on a hidden Markov hain fzng, with �nite state spae f1; : : : ; kg, ynis distributed as a normal variate N (�zn ; �2zn)Contrary to previous implementations, we hoose to parametrise the transition matrix for theMarkov hain fzng by P = (!ij), as follows:P (zn+1 = jjzn = i) = !ij=X̀!i`The !ij 's are therefore not identi�ed, but this parameterisation is bound to failitate the MCMCmoves (provided a vague proper prior is seleted). As in Robert et al. (2000), we are interestedin estimating the number of hidden states, k. The prior modelling on the parameters is an Exp(1)distribution on the !ij 's, a normal N (0; 9�2i ) distribution on the �i's and an Exp(1) distributionon the �i's.In Robert et al. (2000), the model under onsideration onsisted ofN (0; �2zn)for the distribution of yn onditional on zn, i.e. did not involve an unknown mean parameter. Forthis model, we use the same prior, namely a uniform U(0; �) prior on the �i's and an Exp(5max jxnj)prior on the hyperparameter 1=�. (Robert et al. (2000) notied that the fator 5 in the exponentialdistribution was of little inuene on the results.) Note that we do not impose identi�abilityonstraints at the simulation level by ordering the varianes, ontrary to Robert et al. (2000).A major di�erene with the above papers is that, as in Stephens (2000a), we will not useompletion to run our algorithm. That is to say, the latent Markov hain fzng is not to be simulatedby the algorithm. This an be avoided thanks to both the forward reursive representation of thelikelihood for a hidden Markov model (Baum and Petrie, 1966), already used in Robert et al.(1999), and the random walk proposals as in Hurn et al. (2001). We believe that this hoie isbound to aelerate onvergene of the algorithm by a drasti redution of the dimensionality ofthe spae.
6.2. The moves of the BDMCMC algorithmSine reversible tehnology was implemented for this model in Robert et al. (2000), we now fous onthe ontinuous time MCMC ounterpart, extending Stephens (2000a) and Hurn et al. (2001) to thisframework. In addition to birth-and-death moves, whih were enough to provide good mixing inthe above papers, we do need to introdue additional proposals, similar to those in Rihardson andGreen (1997) and Robert et al. (2000), beause we observed that the birth-and-death moves arenot, by themselves, suÆient to ensure fast onvergene of the MCMC algorithm. The proposals weadd are split/ombine moves, following the denomination of Rihardson and Green (1997), wherea given omponent is broken into two parts, and �xed k moves, where the parameters are modi�edvia a regular MCMC step. (The later proposals are quintessential in ensuring good onvergeneproperties.)The birth-and-death and �xed k moves are simple to implement, and are equivalent to thosegiven in Stephens (2000a) and Hurn et al. (2001), with �xed k moves relying on random walkproposals over the transforms log(!i) and log(�i)|or log(�i=� � �i) in the onstrained ase ofRobert et al. (2000). The split/ombine move follows the general framework exposed in Setion 4with a ombine intensity given by (5). We use 'S as an individual split intensity whih is thesame for all omponents. This means that the overall intensity of a split move for a k omponentvetor is '(�) = k'S . In the pratial implementation of the algorithm, we hose 'S = 'B = 2and 'F = 5, where 'B and 'F orrespond to the birth and �xed k move intensities, respetively.



8 Cappé et al.There are many ways of devising a split/ombine move but, ontrary to Rihardson and Green's(1997) observation that their �rst attempt was suessful, we had to try several proposals beforeobtaining proper mixing behaviour, as detailed now.In the ase of a normal hidden Markov model with means �i and varianes �2i both unknown,a split of state t0 into states t0 and (k + 1) involves four di�erent types of ations:(a) a split move in row j 6= t0 of !j;t0 as~!j;t0 = !j;t0"j ; ~!j;k+1 = !j;t0(1� "j) ;with "j uniform on (0; 1); this proposal is sensible when thinking that both the new statesk + 1 and t0 are issued from the state t0: the probabilities to reah t0 are thus distributedbetween the probabilities to reah the new t0 and to reah k + 1;(b) a split move in olumn i 6= t0 !t0;i as~!t0;i = !t0;i�j ; ~!k+1;i = !t0;i=�jwhere �j is lognormal LN (0; 1). The symmetry onstraint (4) is thus satis�ed. Note that we�rst tried this move with a half-Cauhy C+(0; 1) proposal, whih also preserves the distribu-tion by inversion (that is, �j and 1=�j have the same distribution), but this led to very poormixing properties for the algorithm;() a split move for !t0;t0 as~!t0;t0 = !t0;t0"t0�t0 ; ~!t0;k+1 = !t0;t0(1� "t0)�k+1 ;~!k+1;t0 = !t0;t0"t0=�t0 ; ~!k+1;k+1 = !t0;t0(1� "t0)=�k+1where "t0 is uniform on (0; 1) and �t0 ; �k+1 are LN (0; 1);(d) a split move on (�t0 ; �2t0) as~�t0 = �t0 + 3�t0"� ; ~�k+1 = �t0 � 3�2t0"� ; ~�2t0 = �2t0"� ; ~�2k+1 = �2t0="� ;where "� � N (0; 1) and "� � LN (0; 1).The ombine move is hosen in a symmetri way, so that states t0 and t1 are ombined into statet0 by taking �rst the geometri average of rows t0 and t1 in the exponential omponent matrix,by adding olumns t0 and t1, and �nally swithing states t1 and k + 1. (One an hek that thissequene of moves also applies to the partiular ase of !t0;t0 .) The mean �t0 is obtained as thearithmeti average of the means ~�t0 and ~�t1 , while the variane �2t0 is the geometri average of thevarianes ~�2t0 and ~�2t1 . Appendix B details the omputation of the orresponding Jaobian.
6.3. IllustrationsFirst, we onsider a simulated dataset of 500 observations, represented on Figure 1(a); this datasetwas built by joining strethes of three di�erent normal samples that an be spotted diretly onthe graph. The most visited value (and posterior mode) of k is 3, as shown in Figure 1(b), withregular visits to 2 and 4. Larger values were hardly visited (although we used a at prior onk 2 f1; : : : ; 10g). As shown by Figure 1(d), the orrespondene between the estimated density,obtained by averaging all the density estimates over the iterations, and the standard nonparamet-ri kernel estimate, is quite satisfatory. Note in addition that the parameter hains, separatedomponent by omponent, produe a label swithing behaviour that is to be expeted from thetheory (see Hurn et al., 2001), as well as good mixing properties. (The graphs represented inFigure 1 atually orrespond to 50; 000 iterations of the MCMC algorithm, with an average of 25jumps per observation unit.)Our seond dataset orresponds to a transform of the IBM stok over a period of �ve years,starting in 1992, whih represents the volatility of the stok [kindly provided to us by Catalin Staria(Universit�e Libre de Bruxelles)℄. As an be seen from the rawplot of the dataset in Figure 2(a),the states are less learly identi�ed and, more importantly, there seems to be fewer moves betweenthese states. The resulting inferene orroborates this unertainty: the four values k = 1; 2; 3; 4
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Fig. 1. Continuous time MCMC algorithm output for a simulated dataset of 500 points: (a) histogram and

rawplot of the dataset; (b) MCMC output on k (histogram and rawplot), the simulated number of states and

corresponding likelihood values; (c) MCMC sequence of the parameters of the three components when

conditioning on k = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density

estimate.



10 Cappé et al.have similar posterior probabilities and, in opposition to Figure 1(b), the spread of the loglikelihoodvalues is muh larger, suggesting that the posterior distribution has several modes that an onlybe linked by visiting intermediate low likelihood regions. Sine the ase k = 3 is visited less often,the number of simulations in Figure 2() is lower than the number of simulations in Figure 1(),but also exhibits the orret label-swithing behaviour and proper mixing features (even thoughone an spot longer regions when the hain remains invariant). Note also that the �t in Figure2(d) is just as satisfatory as the nonparametri estimation.For a omparison with Robert et al. (2000), we also onsider one dataset studied in this previouspaper, namely the wind intensity in Athens [kindly provided to us by Christian Franq (Universit�edu Littoral)℄. One again, the modelling setting slightly di�ers from the above: the means arenow all set to 0, the prior distribution on the �'s is not an exponential distribution but rather auniform U(0; �), � being estimated from the dataset in a hierarhial way and updated through aslie sampler (sine the onditional distribution is a trunated gamma) via an additional proesswith intensity '�, equal to 1.Figure 3 summarises the output for the dataset orresponding to the wind intensity in Athens.The main point is that, as in Robert et al. (2000), we obtain a mode of the posterior distributionof k at k = 3, although the posterior distribution slightly di�ers in our ase, sine the posteriorprobabilities for 1; 2; 3; 4 are :0064; :1848; :7584; :0488, to be ompared with Table 1 in Robert etal. (2000). Note that Figure 3(b) provides in addition the distribution of the number of moves perunit of time (on the ontinuous time axis). The loglikelihoods are atually overing a wider rangerthan those found in Robert et al. (2000), although the highest values are the same. For instane,the largest likelihood for k = 2 is �688, while it is �675 for k = 3 and �670 for k = 4. The �tbetween the nonparametri density and the Bayesian posterior average is quite aurate.
7. DiscussionConsidering Theorem 1, one may be tempted to say `everything that may be done in ontinuoustime an be done in disrete time'. While that might be true from a theoretial point of view,things are less learut when performane onsiderations are taken into aount.Stephens (2000a) made some omparisons of his algorithm to Rihardson and Green's (1997)reversible jump MCMC sampler, whih we ite:A. Our algorithm works in ontinuous time, replaing the aept-rejet sheme by allowingevents to our at di�ering rates.B. Our dimension-hanging birth and death moves do not make use of the missing data z,e�etively integrating out over them when alulating the likelihood.C. Our birth and death moves take advantage of the natural nested struture of the models,removing the need for the alulation of a ompliated Jaobian, and making implementationmore straightforward.D. Our birth and death moves treat the parameters as a point proess, and do not make use ofany onstraint suh as �1 < � � � < �k [used by Rihardson and Green (1997) in de�ning theirsplit and ombine moves℄.We disagree with point C. sine any Jaobian involved does appear in both ontinuous anddisrete time. As we have seen, the Jaobian determinant (1�w)k�1 due to renormalising ompo-nent weights appears in both the death rates (2) and the aeptane ratio (3). Indeed, Stephens(2000a, p. 71) attributes this determinant to a `simple hange of variable formula'. In our view, thedeterminant should be assoiated with the proposal density h, as the (k+1) omponent parameter�[(w; �) is not drawn diretly from a density on �(k+1) but rather indiretly through �rst drawing(w; �) and then renormalising. In order to ompute the resulting density on �(k+1) one must thenalulate a Jaobian. (In fat, as noted above, there is no density w.r.t. a �xed referene measureon �(k+1).) We also saw in Setion 6 that the Jaobian determinant of the split and ombine movedoes appear in ontinuous time. The omplexity is therefore idential for both methodologies.Regarding D. above, as noted in Setion 2, we �nd the ordering of the omponents more atehnial devie than a pratial one. Indeed, a split move usually makes the new set of omponents
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Fig. 2. Continuous time MCMC algorithm output for a transform of 507 IBM stockprices: (a) histogram and

rawplot of the dataset; (b) MCMC output on k (histogram and rawplot), number of states, and corresponding

likelihood values; (c) MCMC sequence of the parameters of the three components when conditioning onk = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density estimate.
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Wind intensity in Athens
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Fig. 3. Continuous time MCMC algorithm output for a sequence of 500 wind intensities in Athens; (a)

histogram and rawplot of the dataset; (b) MCMC output on k (histogram and rawplot), number of states,

and corresponding likelihood values; (c) MCMC sequence of the parameters of the three components when

conditioning on k = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density

estimate.



Reversible jump and continuous time MCMC 13unordered but they an be sorted again. Nonetheless, we did not impose ordering when simulatingthe parameters with �xed k's and, more importantly, did not restrit ourselves to implementombine moves only on adjaent omponents as in Rihardson and Green (1997).Hene, the above item that we �nd most important is B.; whether the missing data z is kepttrak of in all moves or not. It would indeed be interesting to ompare the performane of twoalgorithms, in disrete or ontinuous time, that are idential exept for this aspet. (We reall thatRobert et al. (2000) did resort to ompletion in their implementation of RJMCMC.)We now proeed to disussing omputational aspets of disrete and ontinuous time algorithms.In ontinuous time, one a state � is entered, it is neessary to ompute the rates of all possiblemoves leading to an exit from that state, at the expense of O(k) for birth/death moves and O(k2)for split/ombines ones. In disrete time this not neessary, as the aeptane ratio of a move isnot omputed until the move is proposed. This is an advantage of reversible jump MCMC. On theother hand, for moves suh as birth and split in ontinuous time, rates are typially very simpleand it is only the death or ombine rates that are expensive to ompute. This is an advantage ofontinuous time algorithms.What an we say about the mixing performane of the di�erent algorithms? A typial set-upof BDMCMC is to let �(�) be onstant, say �(�) = 1 (a di�erent onstant only resales time).Likewise, for RJMCMC b(�) = d(�) = 1=2 is typial, exept for states � with k = 1 for whihb(�) = 1. Under these assumptions Eqs. (2) and (3) relate as A = (k+1)Æ�1. Sine both samplershave the same stationary distribution, we �nd that if one of the algorithms performs poorly, sodoes the other one. For RJMCMC this is manifested as a small A's|birth proposals are rarelyaepted|while for BDMCMC it is manifested as large Æ's|new omponents are indeed born butdie again quikly.Finally we again mention Rao-Blakwellisation as an advantage of ontinuous time algorithms;this feature is, as noted above, obtained at no extra ost. Rao-Blakwellisation ould in priniplebe arried out in disrete time as well sine the holding times have geometri distributions. Butas opposed to ontinuous time, the expeted holding times annot be omputed easily{see (6) inthe proof of Lemma 1 below.
ReferencesBaum, L.E. and Petrie, T. (1966) Statistial inferene for probabilisti funtions of �nite stateMarkov hains. Ann. Math. Statist. 37, 1554{1563.Brooks, S. and Giudii, P. (1999) Diagnosing Convergene of Reversible Jump MCMC Algorithms.In Bayesian Statistis VI, Bernardo, J., Berger, J., Dawid, A.P. and Smith, A.F.M. (Eds), 733{742.Oxford University Press, Oxford.Capp�e, O. and Robert, C.P. (2000) MCMC: Ten years and still running! J. Amer. Statist. Asso.95, 1282{1286.Celeux, G., Hurn, M. and Robert, C.P. (2000) Computational and inferential diÆulties withmixture posterior distributions. J. Amer. Statist. Asso. 95, 957{979.Geyer, C.J. and M�ller, J. (1994) Simulation proedures and likelihood inferene for spatial pointproesses. Sandinavian J. Statist. 21, 359-373.Green, P.J. (1995) Reversible jump Markov hain Monte Carlo omputation and Bayesian modeldetermination. Biometrika 82, 711{732.Grenander, U. and Miller, M. (1994) Representations of knowledge in omplex systems (withdisussion). J. Roy. Statist. So. Ser. B 56, 549{603.Hurn, M., Justel, A. and Robert, C.P. (2001) Estimating mixtures of regressions J. Computationaland Graphial Statistis (to appear).Karr, A.F. (1975) Weak onvergene of a sequene of Markov hains. Z. Wahrsheinlihkeitstheorieverw. Gebiete 33, 41{48.Phillips, D.B. and Smith, A.F.M. (1996) Bayesian model omparison via jump di�usions. InMarkov hain Monte Carlo in Pratie, W.R. Gilks, S.T. Rihardson and D.J. Spiegelhalter (Eds.),215{240. Chapman and Hall, London.Resnik, S. (1994) Adventures in Stohasti Proess. Birkhauser, Basel.



14 Cappé et al.Rihardson, S. and Green, P.J. (1997) On Bayesian analysis of mixtures with an unknown numberof omponents (with disussion). J. Roy. Statist. So. Ser. B 59, 731{792.Rihardson, S. and Green, P.J. (1998) Corrigendum: \On Bayesian analysis of mixtures with anunknown number of omponents". J. Roy. Statist. So. Ser. B 60, 661.Robert, C.P., Ryd�en, T. and Titterington, D.M. (1999) Convergene ontrols for MCMC algo-rithms, with appliations to hidden Markov hains. J. Statistial Computation and Simulation 64,327{355.Robert, C.P., Ryd�en, T. and Titterington, D.M. (2000) Jump Markov hain Monte Carlo algo-rithms for Bayesian inferene in hidden Markov models J. Roy. Statist. So. Ser. B 62, 57{75.Ripley, B. (1987) Stohasti Simulation. J. Wiley, New York.Stephens, M. (2000a) Bayesian analysis of mixture models with an unknown number of omponents|an alternative to reversible jump methods. Ann. Statist. 28, 40{74.Stephens, M. (2000b) Dealing with label swithing in mixture models. J. Roy. Statist. So. Ser.B 62, 795{809.
A. Proof of Theorem 1Let for � 2 �(k), �(�) = �(�) + kXi=1 Æ(� n (wi; �i); (wi; �i))be the overall rate of leaving state � in the BDMCMC sampler and let �N (�) be the overallprobability of moving away from state � (in one step) in the RJMCMC sampler.Before proving the theorem, we state and prove a lemma.Lemma 1. For eah k � 1 and �0 2 �(k), there is a neighbourhood G � �(k) of �0 suh thatsup�2G jN�N (�)� �(�)j ! 0 as N !1.Proof. We �rst note that for � 2 �(k), �N (�) an be written�N (�) = Z bN (�)minfAN (�;� [ (w; �)); 1gh(�; (w; �)) d(w; �)+ kXi=1 dN (�) 1k minfA�1N (� n (wi; �i);�); 1g: (6)Thus sup�2G jN�N (�)� �(�)j� Z sup�2G jNbN (�)minfAN (�;� [ (w; �)); 1gh(�; (w; �)) � �(�)h(�; (w; �))j d(w; �) (7)+ kXi=1 sup�2G j1kNdN (�)minfA�1N (� n (wi; �i);�); 1g � Æ(� n (wi; �i); (wi; �i))j: (8)We start by looking at the `birth part' (7) of this expression. We shall prove that it tends tozero by showing that the integrand tends to zero for all (w; �) and showing that the integrand isdominated, for all suÆiently large N , by an integrable funtion. Bound the integrand assup�2G jNbN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �)) � �(�)h(�; (w; �))j� sup�2G jNbN(�)� �(�)j � 1� sup�2Gh(�; (w; �)) (9)+ sup�2G�(�)� sup�2G jminfAN(�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �))j: (10)



Reversible jump and continuous time MCMC 15For � � 0 and N > �, �N � 12 �2N2 � 1� e��=N � �N ;so that jN(1� e��=N)� �j � 12 �2N :Hene, for suÆiently large N (9) is bounded by12N sup�2G�2(�)� sup�2Gh(�; (w; �)); (11)by (A1) and (A3), for an appropriate G this expression tends to zero as N !1 and is dominatedby an integrable funtion.Regarding (10), it is dominated by an integrable funtion similar to (11) (remove 1=2N andthe square), and it remains to show that it tends to zero as N !1. We havejminfAN (�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �))j= h(�; (w; �))� min�L(� [ (w; �))r(� [ (w; �))L(�)r(�) � dN (� [ (w; �))bN(�) (1� w)k�1; h(�; (w; �))� :By (A2), for eah (w; �), L(� [ (w; �))r(� [ (w; �)) and L(�)r(�) are bounded away from in�nityand zero, respetively, on a suÆiently small G. Likewise, by (A1), dN (� [ (w; �)) and bN (�) tendto unity and zero, respetively, uniformly over suh a G. Finally, by (A3), h(�; (w; �)) is boundedon an appropriate G, and we onlude that (10) tends to zero uniformly over G as N !1 if G issmall enough.We now turn to the `death part' (8). By arguments similar to those above, for large N andsuÆiently small G it holds that1kNdN (�)minfA�1N (� n (wi; �i);�); 1g= 1kN min�L(� n (wi; �i))r(� n (wi; �i))L(�)r(�) � bN(� n (wi; �i))h(� n (wi; �i); (wi; �i))(1� wi)k�2 ; dN (�)�= L(� n (wi; �i))r(� n (wi; �i))L(�)r(�) � 1k � NbN(�)h(� n (wi; �i); (wi; �i))(1� wi)k�2uniformly over G, and, also using arguments as above, one an show the right hand side of thisexpression onverges to Æ(� n (wi; �i); (wi; �i)) as N !1, uniformly over a small enough G. 2Reall the de�nitions of jump times and the jump hain in Setion 5. The sequene fe�n; Tn �Tn�1)g of visited states and holding times form a Markov renewal proess (MRP). The transitionkernel of this MRP is denoted by K, that is, K(�;A�B) = P (e�n 2 A; Tn�Tn�1 2 B j e�n�1 = �).Sine f�(t)g is Markov, the onditional distribution of Tn � Tn�1 given e�n�1 = � is exponentialwith rate �(�). In addition, �(Tn) and Tn � Tn�1 are onditionally independent. Similarly,f�N (t)g is a semi-Markov proess with jump times fTNn g in the lattie i=N , and the kernel ofthe assoiated MRP is denoted by KN . Sine f�Nn g is Markov, �N (TNn ) and TNn � TNn�1 areonditionally independent given �N (TNn�1).Proof of Theorem 1. Using results of Karr (1975), it is suÆient to prove that for eah real-valueduniformly ontinuous funtion g on �� [0;1),(i) Kg(�) is ontinuous on �;(ii) KNg(�)! Kg(�) uniformly on ompat subsets of � as N !1.



16 Cappé et al.We start by showing (ii). By the struture of �, it it suÆient to show that for eah �0 2 �(k),there is a neighbourhood G � �(k) of �0 suh that KNg(�)! Kg(�) uniformly on G, and this iswhat we will do. For � 2 �(k), KNg(�) and Kg(�) an be writtenKNg(�) = 1Xm=1 Z (1� �N (�))m�1bN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �))g(� [ (w; �); mN ) d(w; �)+ 1Xm=1(1� �N (�))m�1 kXi=1 dN (�) 1k minfA�1N (� n (wi; �i);�); 1gg(� n (wi; �i); mN )= Z 10 Z (1� �N (�))bNuNbN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �))g(� [ (w; �); dNueN ) du d(w; �)+ Z 10 (1� �N (�))bNukXi=1 NdN (�) 1k minfA�1N (� n (wi; �i);�); 1gg(� n (wi; �i); dNueN ) du;Kg(�) = Z 10 Z �(�)e��(�)u �(�)�(�)h(�; (w; �))g(� [ (w; �); u) du d(w; �)+ Z 10 kXi=1 �(�)e��(�)u Æ(� n (wi; �i); (wi; �i))�(�) g(� n (wi; �i); u) du= Z 10 Z e��(�)u�(�)h(�; (w; �))g(� [ (w; �); u) du d(w; �)+ Z 10 kXi=1 e��(�)uÆ(� n (wi; �i); (wi; �i))g(� n (wi; �i); u) du;where dxe is the smallest integer no smaller than x.We again start by looking at the `birth parts' of the kernels, bounding the orresponding partof jKNg(�)�Kg(�)j asZ 10 Z sup�2G ����(1� �N (�))bNuNbN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �))�g(� [ (w; �); dNueN )� e��(�)u�(�)h(�; (w; �))g(� [ (w; �); u)���� du d(w; �):We wish to prove that this expression tends to zero as N ! 1. We an do this by showing thatthe integrand tends to zero for all u � 0 and all (w; �) and that there exists a dominating (for allsuÆiently large N) integrable funtion.In order to aomplish this, we add and subtrat a number of telesoping terms, giving ussup�2G ����(1� �N (�))bNuNbN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �))g(� [ (w; �); dNueN )�e��(�)u�(�)h(�; (w; �))g(� [ (w; �); u)����� sup�2G ����(1� �N (�))bNu � e��(�)u����� sup�2GNbN(�)� 1� h(w; �) � jjgjj1+ sup�2G e��(�)u � sup�2GNbN(�)� 1� h(w; �) � Æg1=N+ sup�2G e��(�)u � sup�2G jNbN (�)� �(�)j � 1� h(w; �) � jjgjj1



Reversible jump and continuous time MCMC 17+ sup�2G e��(�)u � sup�2G�(�)� sup�2G jminfAN (�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �)j � jjgjj1;where h(w; �) = sup�2G h(�; (w; �)) and Æg1=N = sup�((�;u);(�0;u0))�1=N jg(�; u) � g(�0; u0)j is g'smodulus of ontinuity; � is a metri making �� [0;1) separable and omplete. All of the termson the right hand side but the �rst one an be treated as in the proof of the lemma, with the extraobservation that �(�) � �(�) is bounded away from zero on ompat subsets of �. Moreover, sine(1� �N (�))bNu � e��N (�)bNu = e�N�N (�)(bNu=N);the lemma implies that the �rst term is, for large N , dominated by an integrable funtion. Finally(1� �N (�))bNu � e��(�)u � e��N (�)bNu � e�(�)u= e��(�)u �e��(�)(bNu=N�u)+bNuo(1=N) � 1� ;where, by the lemma, the o(1=N)-term is uniform over a small G so that the right hand side tendsto zero uniformly over suh a G. The inequality log(1� x) � �x� 2x2 for 0 � x � 1=2 leads to areverse inequality whih is handled similarly.The `death parts' of the kernels, that is, bounding the orresponding parts of jKNg(�)�Kg(�)j,an be handled ombining arguments for the `birth parts' and arguments used to prove the lemma.Finally requirement (i) above an be proved using entirely similar tehniques. 2
B. The Jacobian for the split-combine moveThe parts of the Jaobian determinant orresponding to the split move in x6.2 are(a) !j;t0(b) 2!t0;i=�i() !3t0;t0 ������� "t0�t0 "t0=�t0 (1� "t0)�k+1 (1� "t0)=�k+1"t0 �"t0=�2t0 0 00 0 (1� "t0) �(1� "t0)=�2k+1�t0 1=�t0 ��k+1 �1=�k+1 ������� ;that is, !3t0;t0 ������� "t0�t0 0 �k+1 0"t0 �2"t0=�2t0 0 00 0 (1� "t0) �2(1� "t0)=�2k+1(1 + �t0)=2 0 �(1 + �k+1)=2 0 �������= 4!3t0;t0 "t0(1� "t0)�t0�k+1(d) ������� 1 3"�=2�t0 3�t0 01 �3"�=2�t0 �3�t0 00 "� 0 �2t00 1="� 0 ��2t0="2� ������� = 12�3t0="�given that we di�erentiate w.r.t. �2t0 , not �t0 .The overall Jaobian determinant for the split move is thereforeJ = �����T (�; ")�(�; ") ���� = 3 Yi !i;t0!t0;i�i !t0;t0 "t0(1� "t0)�k+1"� �3t0 2k+3 :




