
 Open access  Journal Article  DOI:10.1111/1467-9868.00409

Reversible jump, birth‐and‐death and more general continuous time Markov chain
Monte Carlo samplers — Source link 

Olivier Cappé, Christian P. Robert, Tobias Rydén

Institutions: Centre national de la recherche scientifique, Paris Dauphine University, Lund University

Published on: 01 Aug 2003 - Journal of The Royal Statistical Society Series B-statistical Methodology (Wiley-Blackwell)

Topics: Markov chain Monte Carlo, Markov chain mixing time, Balance equation, Continuous-time Markov chain and
Monte Carlo method

Related papers:

 Reversible jump Markov chain Monte Carlo computation and Bayesian model determination

 
Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump
methods

 On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)

 Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions

 Monte Carlo Sampling Methods Using Markov Chains and Their Applications

Share this paper:    

View more about this paper here: https://typeset.io/papers/reversible-jump-birth-and-death-and-more-general-continuous-
vm5zedto33

https://typeset.io/
https://www.doi.org/10.1111/1467-9868.00409
https://typeset.io/papers/reversible-jump-birth-and-death-and-more-general-continuous-vm5zedto33
https://typeset.io/authors/olivier-cappe-415sdmqljh
https://typeset.io/authors/christian-p-robert-51gp4i3sbx
https://typeset.io/authors/tobias-ryden-43d5nq9o2u
https://typeset.io/institutions/centre-national-de-la-recherche-scientifique-2ew2zhz4
https://typeset.io/institutions/paris-dauphine-university-2ix8ho0g
https://typeset.io/institutions/lund-university-1sy7t175
https://typeset.io/journals/journal-of-the-royal-statistical-society-series-b-2no1axgs
https://typeset.io/topics/markov-chain-monte-carlo-3eucfqck
https://typeset.io/topics/markov-chain-mixing-time-2cmohb4b
https://typeset.io/topics/balance-equation-37d7weiy
https://typeset.io/topics/continuous-time-markov-chain-1dwqjeo9
https://typeset.io/topics/monte-carlo-method-15rzfqou
https://typeset.io/papers/reversible-jump-markov-chain-monte-carlo-computation-and-26928ek804
https://typeset.io/papers/bayesian-analysis-of-mixture-models-with-an-unknown-number-26kidx1ahn
https://typeset.io/papers/on-bayesian-analysis-of-mixtures-with-an-unknown-number-of-3az6hy3wsw
https://typeset.io/papers/efficient-construction-of-reversible-jump-markov-chain-monte-4x58vrg41i
https://typeset.io/papers/monte-carlo-sampling-methods-using-markov-chains-and-their-3k0c3kuxno
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/reversible-jump-birth-and-death-and-more-general-continuous-vm5zedto33
https://twitter.com/intent/tweet?text=Reversible%20jump,%20birth%E2%80%90and%E2%80%90death%20and%20more%20general%20continuous%20time%20Markov%20chain%20Monte%20Carlo%20samplers&url=https://typeset.io/papers/reversible-jump-birth-and-death-and-more-general-continuous-vm5zedto33
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/reversible-jump-birth-and-death-and-more-general-continuous-vm5zedto33
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/reversible-jump-birth-and-death-and-more-general-continuous-vm5zedto33
https://typeset.io/papers/reversible-jump-birth-and-death-and-more-general-continuous-vm5zedto33


Reversible jump MCMC converging to birth-and-death MCMC
and more general continuous time samplersy
Olivier Cappé
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Summary. At present, reversible jump methods are the most common tool for exploring variable di-

mension statistical models. Recently however, an alternative approach based on birth-and-death pro-

cesses has been proposed by Stephens (2000)in the case of mixtures of distributions. We address the

comparison of both methods by demonstrating that upon appropriate rescaling of time, the reversible

jump chain converges to a limiting continuous time birth-and-death chain. We show in addition that the

birth-and-death setting can be generalised to include other types of jumps like split/combine jumps in

the spirit of Richardson and Green (1997). We illustrate these extensions in the case of hidden Markov

models.

AMS 1991 classification. Primary 62C05. Secondary 60J05, 62F15, 65D30, 65C60.

Keywords: Bayesian inference, birth-and-death process, completion, hidden Markov model, Jacobian,

label switching, MCMC algorithms, mixture distribution, rescaling

1. IntroductionMarkov Chain Monte Carlo [MCMC℄ methods for statisti
al inferen
e, in parti
ular Bayesianinferen
e, have undoubtedly be
ome standard during the past ten years (Capp�e and Robert, 2000).For variable dimension problems, often arising through model sele
tion, a popular approa
h isGreen's (1995) reversible jump MCMC [RJMCMC℄ methodology. Re
ently however, in the 
ontextof mixtures of distributions, Stephens (2000a,b) rekindled interest in a di�erent method based on
ontinuous time birth-and-death pro
esses for estimating the number of 
omponents of the mixture,following earlier proposals by Geyer and M�ller (1994), Grenander and Miller (1994) and Phillipsand Smith (1996). We will 
all this approa
h birth-and-death MCMC [BDMCMC℄.A main question addressed in the present paper is as follows: is there a fundamental di�eren
ebetween the reversible jump and birth-and-death MCMC methodologies, or are these approa
hessimilar? As an answer to this question we show in Se
tion 3 that for any BDMCMC pro
esssatisfying some weak regularity 
onditions there exists a sequen
e of RJMCMC pro
esses that
onverges, in a sense to be pre
ised below, to the BDMCMC pro
ess.In their appli
ation of reversible jump MCMC to mixtures of distributions, Ri
hardson andGreen (1997) involved two types of moves that 
ould 
hange the number of 
omponents of themixture: one was birth/death, in whi
h a new 
omponent is 
reated or an existing one is deleted,and the other was split/
ombine, in whi
h one 
omponent is split in two, or two 
omponents are
ombined in one. On the opposite, Stephens (2000a) only deals with birth/death moves in orderto keep the algorithm within the theory of (marked) point and death pro
esses on general spa
es.We show that 
onvergen
e of reversible jump to birth-and-death MCMC is not limited to moves ofyWork partially supported by EU TMR network ERB{FMRX{CT96{0095 on "Computational and Sta-tisti
al Methods for the Analysis of Spatial Data". The authors are grateful to Gareth Roberts for helpful
omments on the Rao-Bla
kwellisation improvement.zPartially supported by CREST, INSEE, and by CNRS (URA 820, ENST) during a visit to Paris inautumn of 2000.



2 Cappé et al.this kind however, but is mu
h more general. For example, the above split/
ombine moves 
ould bein
orporated. The approa
h so obtained 
ould be named 
ontinuous time reversible jump MCMCand the appropriate theoreti
al framework is that of Markov jump pro
esses.The paper is organised as follows: in Se
tion 2, we provide a review of the main featuresof reversible jump and birth-and-death MCMC methodologies. The 
onvergen
e of RJMCMCto BDMCMC is established in Se
tion 3. In Se
tion 4, we dis
uss the generalisation of movesfor BDMCMC besides birth/death moves, while in Se
tion 5, we show how sampling 
an bemade more eÆ
ient in this approa
h, introdu
ing a 
ontinuous-time Rao-Bla
kwellisation s
heme.Se
tion 6 illustrates the general BDMCMC methodology for hidden Markov models, in parallelwith the RJMCMC approa
h of Robert, Ryd�en and Titterington (2000). Se
tion 7 
on
ludes witha dis
ussion of the pros and 
ons of ea
h method.
2. A quick review of reversible jump and birth-and-death MCMC methodologiesIn this se
tion we give a qui
k review of RJMCMC and BDMCMC in the mixture 
ase 
onsideredby Stephens (2000a). We will 
onsider the extension of BDMCMC to hidden Markov modelsin Se
tion 6. Further reading is provided by Ri
hardson and Green (1997, 1998) and Stephens(2000a,b).
2.1. Mixture modelsThe model we work with thus has a probability density fun
tion of the formp(yjk;w; �) = kXi=1 wif(yj�i);where k is the number of 
omponents,w = (w1; : : : ; wk) are the 
omponent weights, � = (�1; : : : ; �k)are the 
omponent parameters and f(�;�) is some parametri
 
lass of densities indexed by a pa-rameter �. Common examples are the Gaussian family, the Gamma family (in whi
h 
ases � istypi
ally two-dimensional) and the Poisson family (in whi
h 
ase � is one-dimensional). The 
om-ponent weights are non-negative numbers summing up to unity. Note that we write all densitiesas 
onditional ones, as our statisti
al approa
h is Bayesian. Hen
e we need to spe
ify a priordensity for (k;w; �), denoted by r(k;w; �). We do not make any further assumptions about theprior, ex
ept that it is proper and that, for ea
h k, it is ex
hangeable, that is, invariant underpermutations of the pairs (wi; �i). We also denote by L(k;w; �) the likelihood whi
h is given byL(k;w; �) = mYi=1 p(yijk;w; �);where y = (y1; : : : ; ym) is the observed sequen
e. The posterior density, whi
h is our starting pointfor inferen
e, is thus proportional to r(k;w; �)L(k;w; �). A real model typi
ally also involveshyperparameters, whi
h as su
h do not add any further diÆ
ulty. We do not spe
i�
ally addressthis issue till Se
tion 6 where hyperparameters are used. Below we put � = (w; �); in this notationk is impli
it.A feature inherent to mixture models is that we may asso
iate with ea
h observation yi a label(or allo
ation) zi 2 f1; : : : ; kg with P (zi = j j k;w) = wj that indi
ates from whi
h 
omponent yiwas drawn. Given data, these labels 
an be sampled independently withP (zi = j j k;w; �; yi) = wjf(yij�j)Pk̀=1 w`f(y`j�`) : (1)We 
all su
h a simulation 
ompleting the sample as (z;y) is often referred to as the 
omplete data.As detailed below in the setup of hidden Markov models and as demonstrated in Celeux et al.(2000) for mixtures, the 
ompletion by z is not ne
essary from a simulation point of view.
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2.2. Birth-and-death MCMCWe now study the following form of BDMCMC: in state �, new 
omponents are 
reated (born)in 
ontinuous time, at rate �(�). Whenever a new 
omponent is born in this state, its weightw and parameter � are drawn from a joint density h(�; (w; �)). In order to make spa
e for thenew 
omponent, the old 
omponent weights are s
aled down proportionally as to make all of theweights, in
luding the new one, sum to unity; that is, wi := wi=(1 + w). The new 
omponentweight-parameter pair (w; �) is also augmented to �. We denote these operations by `[', so thatthe new state is � [ (w; �). Furthermore, in a (k + 1) 
omponent 
on�guration � [ (w; �), the
omponent (w; �) is killed at rateÆ(�; (w; �)) = L(�)r(�)L(� [ (w; �))r(� [ (w; �)) � 1k + 1 � �(�)h(�; (w; �))(1� w)k�1 : (2)The fa
tor (1� w)k�1 in (2) results from a 
hange of variable Ja
obian determinant when renor-malising the weights. Indeed, when the 
omponent (w; �) is removed, the remaining 
omponentweights are also renormalised as to sum to unity. We denote these two operations by `n', so that� = (� [ (w; �)) n (w; �). An important feature of the BDMCMC is that (
ontinuous time) jumppro
esses are asso
iated with the birth and death rates: whenever a jump o

urs, the 
orrespondingmove is always a

epted. What repla
es the a

eptan
e probability of 
lassi
al MCMC methodsis the duration of the stay in ea
h state. In parti
ular, implausible states, that is, states su
h thatL(�)r(�) = 0, die immediately.
2.3. Reversible jump MCMCWe now turn to the 
orresponding reversible jump MCMC sampler. In a k 
omponent state �, atea
h iteration, the algorithm proposes with probability b(�) to 
reate a new 
omponent and withprobability d(�) it proposes to kill one. Obviously, b(�) + d(�) = 1. If an attempt to 
reate a new
omponent is made, its weight and parameter are drawn from h(�; (w; �)) as above. If an attemptto kill a 
omponent is made, ea
h 
omponent is sele
ted with equal probability. A new 
omponentis a

epted with probability min(1; A), where A = A(�;� [ (w; �)) is given byA(�;� [ (w; �)) = L(� [ (w; �))r(� [ (w; �))L(�)r(�) � (k + 1)� d(� [ (w; �))(k + 1)b(�) � (1� w)k�1h(�; (w; �))= L(� [ (w; �))r(� [ (w; �))L(�)r(�) � d(� [ (w; �))b(�) � (1� w)k�1h(�; (w; �)) : (3)Here the �rst ratio, 
ombined with the �rst fa
tor k + 1, is the ratio of posterior densities;b(�)h(�; (w; �)) is the density of proposing a new 
omponent (w; �) and d(� [ (w; �))=(k + 1) isthe probability of proposing to kill 
omponent (w; �) when in state � [ (w; �). Finally (1�w)k�1is the same Ja
obian determinant as above.In (3), the �rst fa
tor k + 1 
omes from the assumption that in the RJMCMC algorithm wekeep �1; : : : ; �k ordered using a predetermined ordering. For example, in the 
ase of Gaussian
omponents we 
ould sort a

ording to the mean. This ordering will, loosely speaking, redu
ethe size of the spa
e of k 
omponent parameters by a fa
tor k!, and the fa
tor k + 1 is the ratio(k+1)!=k!. This fa
tor should thus be asso
iated with the posterior density ratio. We do remark,however, that the assumption of ordered 
omponents is a purely te
hni
al identi�ability devi
e anddoes not make any pra
ti
al 
hange to the algorithm: when a new 
omponent (w; �) is proposedwe keep the 
omponents ordered by sorting them. Indeed, if ordering is not imposed, one ratherhas to work on a quotient spa
e indu
ed by the equivalen
e relation � de�ned by � � �0 if �and �0 are identi
al up to a permutation of indi
es. Working with the quotient spa
e also givesrise to a fa
tor k + 1 as in (2). Regarding deaths in the RJMCMC sampler, if in a (k + 1)
omponent state � [ (w; �) a proposal to delete a 
omponent is made, ea
h 
omponent is sele
tedwith equal probability. Assuming that 
omponent (w; �) is sele
ted, the a

eptan
e probability isthen min(1; 1=A), where A = A(�;� [ (w; �)) is as above.Both of the above samplers have the posterior density as their stationary distribution. In RJM-CMC, one typi
ally in
ludes other kinds of moves su
h as moves resampling the 
omponent weights



4 Cappé et al.and the parameters �i as well as, possibly, the hyperparameters for a �xed k|see, for instan
e,Ri
hardson and Green (1997). A 
omplete sweep of the algorithm 
onsists in the 
omposition ofa birth/death move with these other|�xed k|moves. Stephens (2000a) resampled 
omponentweights and parameters at regularly separated instants. Sampling for a �xed k 
an be 
arried outusing a Gibbs move after 
ompleting the sample a

ording to (1), but 
ompletion was not used byStephens (2000a) who only 
onsidered Metropolis-Hastings updates. As noted above, Ri
hardsonand Green (1997) designed, in addition, moves for splitting and 
ombining 
omponents (see Se
tion4 for the generalisation of BDMCMC.)
3. Convergence of reversible jump to birth-and-death MCMCWe shall now, starting from a BDMCMC algorithm as above, 
onstru
t a sequen
e of RJMCMCsamplers 
onverging, in a 
ertain sense to be de�ned, to the BDMCMC sampler. Before pro
eedingwe introdu
e some additional notation. Let Sk�1 = f(w1; : : : ; wk) : wi > 0;Pwi = 1g, denote by� the spa
e in whi
h ea
h �i lies and put �(k) = Sk�1��k. Thus �(k) is the spa
e of k-dimensionalparameters. Finally � = [k�1�(k) denotes the overall parameter spa
e.For N = 1; 2; 3; : : :, we de�ne an RJMCMC sampler by lettingbN (�) = 1� expf��(�)=Ng; dN (�) = 1� bN (�) = expf��(�)=Ng ;where �(�) is the birth rate of the BDMCMC sampler. Then A also depends on N , and we writeA = AN . We remark that as N !1, bN(�) � �(�)=N , and if �(�) is bounded we 
an take insteadbN(�) = �(�)=N . The state at time n = 0; 1; 2; : : : of the N -th RJMCMC sampler is denoted by�Nn , and for ea
h N we 
onstru
t a 
ontinuous time pro
ess f�N (t)gt�0 as �N (t) = �NbNt
, whereb�
 denotes the integer part. The state of the BDMCMC sampler at time t � 0 is denoted by �(t).We now 
onsider what happens as N ! 1. The probability of proposing a birth in state �tends to zero as �(�)=N . Hen
e, the a

eptan
e ratio AN tends to in�nity, so that a birth proposalis always a

epted. If time is speeded up at s
ale N , on the nominal time s
ale the limiting pro
essof a

epted births in state � is a Poisson pro
ess of rate �(�). The s
aled probability of deleting
omponent (w; �) in a state � [ (w; �) 2 �(k+1) isNdN (�)� 1k + 1 �min(1; 1=AN(�;� [ (w; �)))! L(�)r(�)L(� [ (w; �))r(� [ (w; �)) � 1k + 1 � �(�)� h(�; (w; �))(1� w)k�1 as N !1;and the right hand side is nothing but Æ(�; (w; �)). Considering the res
aled time axis and theindependent attempts to 
reate or delete 
omponents, in the limit the waiting time until this
omponent is killed has an exponential distribution with rate Æ(�; (w; �)), whi
h agrees with theBDMCMC sampler. Thus, summing up, as N !1 a birth is rarely proposed but always a

eptedand a death is almost always proposed but rarely a

epted. Both these s
hemes result in waitingtimes whi
h are asymptoti
ally exponentially distributed with rates in a

ordan
e with the BD-MCMC sampler. Thus, one may expe
t that as N ! 1, the pro
esses f�N (t)g and f�(t)g willbe
ome more and more similar.We will now make this reasoning stri
t. We �rst note that sin
e the standard topology onthe open unit interval (0; 1) is separable and 
an be metrised by a 
omplete metri
, for exampled(x; y) = jlog(x=(1 � x)) � log(y=(1 � y))j, Sk�1 
an be viewed as a 
omplete separable metri
spa
e. Likewise we assume that � has a separable topology whi
h 
an be metrised by a 
ompletemetri
. Then �, with the indu
ed natural topology, is a spa
e of the same kind. The pro
essf�(t)g is a Markov pro
ess on � whi
h we assume has sample paths in D�[0;1), the spa
e of�-valued fun
tions on [0;1) whi
h are right-
ontinuous and have left hand limits everywhere. Wemake the following assumptions:(A1) �(�) is positive and 
ontinuous on �.(A2) r(�) and L(�) are positive and 
ontinuous on �.
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h (w; �) 2 (0; 1) � �, h(�; (w; �)) is 
ontinuous on � and for ea
h � 2 � there is aneighbourhood G of � su
h that sup�02G h(�0; �) is integrable.Theorem 1. Under (A1){(A3) and assuming that �(0) and �0 are drawn from the same initialdistribution, f�N (t)gt�0 
onverges weakly to f�(t)gt�0 in the Skorohod topology on D�[0;1) asN !1.The proof is given in Appendix A.
4. Generalisations of birth-and-death MCMCAs noted above, Stephens (2000a) resampled 
omponent weights and parameters with �xed k,as well as hyperparameters, at equidistant times. This obviously makes the overall pro
ess non-Markovian. We 
an, however, in
orporate su
h moves into the 
ontinuous time sampler. Supposefor example that in state � of the RJMCMC sampler, a move that resamples 
omponent weightsand parameters as well as hyperparameters, while keeping k �xed, is proposed with probability1� exp(�
(�)=N). Res
aling time as above and passing to the limit produ
es a 
ontinuous timepro
ess in whi
h, in state �, su
h moves o

ur at rate 
(�). Birth and death rates stay the same.Of 
ourse we 
an also have di�erent rates for resampling 
omponent weights and parameters andhyperparameters, respe
tively.A further s
ope for generalisation is to introdu
e more 
omplex moves, like the split and 
ombinemoves of Ri
hardson and Green (1997). We 
onsider here the 
ase of a split or 
ombine move inthe RJMCMC setting where, following Green (1995), the 
ombine move is deterministi
. Forsimpli
ity, we denote by � an element of the k 
omponent parameter ve
tor � and assume thatthere is no 
onstraint on �. (In the mixture example 
onsidered in Se
tion 2, � = (w; �) was indeedtwo or three dimensional and there was a 
onstraint on the set of w's. We will see in Se
tion 6how the 
onstraint 
an be e�e
tively removed.)The RJMCMC sampler proposes to split a randomly 
hosen 
omponent of the k 
omponentve
tor � with probability sN (�) so as to give rise to a new parameter ve
tor with k+1 
omponents,de�ned as ((� n �) [ T (�; ")) where T is a di�erentiable one-to-one mapping onto �2, where � 2 �,and " is a random variable with p.d.f. p. We also assume that the mapping is symmetri
 in thesense that P (T (�; ") 2 A�A0) = P (T (�; ") 2 A0 �A) (4)for all A;A0 � �. For instan
e if p is a symmetri
 p.d.f., T (�; ") = (�� "; �+ ") is a valid mapping,and likewise, if p is su
h that " and "�1 have the same distribution, T (�; ") = (�"; �=") is alsoa valid mapping. Conversely, the probability of proposing to 
ombine a randomly 
hosen pair of
omponents of � (there are k(k � 1)=2 pairs) is denoted by 
N (�) = 1 � sN (�). The a

eptan
eprobability of the 
ombine move a�e
ting the k + 1 
omponent ve
tor ((� n �) [ T (�; ")) is givenby min� 1; L(�)r(�)k!L ((� n �) [ T (�; ")) r ((� n �) [ T (�; ")) (k + 1)!� sN(�)k(k + 1)=2
N((� n �) [ T (�; "))k :� 2p(") �����T (�; ")�(�; ") �����where, as previously, the fa
torials in the �rst ratio stems from the ordering of the 
omponentsbefore and after the 
ombine move. The fa
tor 2 is a result of the symmetry assumption (4): ina split move, a 
omponent (w; �) 
an be split into the pair ((w0; �0); (w00; �00)) as well as into thereversely ordered pair ((w00; �00); (w0; �0)), but upon sorting the 
omponents these 
on�gurationsare equivalent. However, the two ways of getting there are typi
ally asso
iated with di�erentvalues of " and possibly also with di�erent densities p("); the symmetry assumption is pre
iselywhat assures that the densities at these two values of " 
oin
ide and hen
e we may repla
e thesum of two densities that we would otherwise be required to 
ompute by the fa
tor 2. We 
ouldpro
eed without su
h symmetry but would then need to 
onsider the densities of " when 
ombining
omponents (�0; �00) and (�00; �0) separately.



6 Cappé et al.As in Se
tion 3, we let sN(�) = 1� expf�'(�)=Ng, so that NsN (�)! '(�), and a

ordinglys
ale by N the traje
tory of the 
orresponding dis
rete time sampler. The limiting 
ontinuous timepro
ess thus has a rate of moving from ((� n �) [ T (�; ")) to � by a 
ombine move whi
h is givenby L(�)r(�)L ((� n �) [ T (�; ")) r ((� n �) [ T (�; ")) � '(�)=kk + 1 � 2p(") �����T (�; ")�(�; ") ���� (5)Note that it is not ne
essary to 
onsider the equivalent dis
rete time RJMCMC sampler toobtain the above result as it is possible to 
he
k dire
tly that the lo
al balan
er(�)L(�)� '(�)k = L ((� n �) [ T (�; ")) r ((� n �) [ T (�; "))� q(((� n �) [ T (�; ")) ;�)holds with q(((� n �) [ T (�; ")) ;�) de�ned by (5). Spe
ial 
are is required with su
h 
onsiderationshowever sin
e the transition kernel of the jump 
hain (de�ned in Se
tion 5) typi
ally does not havea density w.r.t. a single dominating measure. For example, after killing a 
omponent the new stateis 
ompletely known given the 
urrent one. This problem also o

urs for RJMCMC samplers, asexempli�ed by the measure 
onstru
tion in Green (1995), and we do not detail it further here.Further reading on Markov jump pro
esses is found in, for example, Ripley (1987) and Resni
k(1994).
5. Sampling in continuous timeWhen running a dis
rete time RJMCMC sampler, its state is typi
ally stored (sampled) after ea
hstep or sweep, or on regular intervals in order to de
rease inter-sample 
orrelation, as in Ri
hardsonand Green (1997) and Robert, Ryd�en and Titterington (2000), even if 
onvergen
e assessment forRJMCMC samplers is still in its infan
y (Brooks and Giudi
i, 1999).In 
ontinuous time settings, there are more options. For example, the pro
ess may be stored atregular times, as in Stephens (2000a), or may be sampled using an independent Poisson pro
ess.In either 
ase posterior means E[g(�) j y℄ are estimated by sample means N�1PN1 g(�(�i)), where�i are the sampling instants. Suppose we adopt the former sampling s
heme. If we then let thesampling distan
e tend to zero, we e�e
tively put a weight on ea
h state visited by f�(t)g that isequal to the length of the holding time in that state, when 
omputing the sample mean. Beforeelaborating further on this idea, we introdu
e some additional notation.Let Tn be the time of the n-th jump of f�(t)g with T0 = 0. By the jump 
hain we meanthe Markov 
hain f�(Tn)g of states visited by f�(t)g. We denote this 
hain by fe�ng, that is,e�n = �(Tn). Let �(�) be the total rate of f�(t)g leaving state �, that is, the sum of the birth andall death rates, plus the rates of all other kinds of moves there may be. Then the holding timeTn � Tn�1 of f�(t)g in its n-th state e�n has a (
onditional) distribution whi
h is exponential withrate �(e�n).Returning to the sampling s
heme, we 
an then redu
e sampling variability by repla
ing theweight Tn�Tn�1 by its expe
tation 1=�(e�n�1). In this way, the varian
es of estimators built fromthe sampler output are de
reased by virtue of the Rao-Bla
kwell theorem, sin
e~g = 1N NXi=1 g(e�n�1)�(e�n�1) = 1N NXi=1 E[Tn � Tn�1je�n�1℄ g(e�n�1) :When sampling f�(t)g this way, we only simulate the jump 
hain and store ea
h state it visits aswell as the 
orresponding expe
ted holding time. Alternatively, the expe
ted holding times maybe re
omputed later when pro
essing the sampler output. In order to simulate the jump 
hain wenote that its transition law is as follows: the probability of an event happening is proportional toits rate. Hen
e, for example, the probability of a birth is �(�)=�(�); if a birth o

urs then the new
omponent weight and parameter are drawn from h(�; (w; �)) as before. Thus we need to 
omputeall rates when simulating the jump 
hain, just as we do when simulating f�(t)g as well.
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6. An illustration for hidden Markov models

6.1. SettingWe 
onsider in this se
tion an appli
ation of the 
ontinuous time MCMC methodology to the 
aseof hidden Markov models, as in Robert, Ryd�en and Titterington (2000). That is, the observationsyt are su
h that, 
onditional on a hidden Markov 
hain fzng, with �nite state spa
e f1; : : : ; kg, ynis distributed as a normal variate N (�zn ; �2zn)Contrary to previous implementations, we 
hoose to parametrise the transition matrix for theMarkov 
hain fzng by P = (!ij), as follows:P (zn+1 = jjzn = i) = !ij=X̀!i`The !ij 's are therefore not identi�ed, but this parameterisation is bound to fa
ilitate the MCMCmoves (provided a vague proper prior is sele
ted). As in Robert et al. (2000), we are interestedin estimating the number of hidden states, k. The prior modelling on the parameters is an Exp(1)distribution on the !ij 's, a normal N (0; 9�2i ) distribution on the �i's and an Exp(1) distributionon the �i's.In Robert et al. (2000), the model under 
onsideration 
onsisted ofN (0; �2zn)for the distribution of yn 
onditional on zn, i.e. did not involve an unknown mean parameter. Forthis model, we use the same prior, namely a uniform U(0; �) prior on the �i's and an Exp(5max jxnj)prior on the hyperparameter 1=�. (Robert et al. (2000) noti
ed that the fa
tor 5 in the exponentialdistribution was of little in
uen
e on the results.) Note that we do not impose identi�ability
onstraints at the simulation level by ordering the varian
es, 
ontrary to Robert et al. (2000).A major di�eren
e with the above papers is that, as in Stephens (2000a), we will not use
ompletion to run our algorithm. That is to say, the latent Markov 
hain fzng is not to be simulatedby the algorithm. This 
an be avoided thanks to both the forward re
ursive representation of thelikelihood for a hidden Markov model (Baum and Petrie, 1966), already used in Robert et al.(1999), and the random walk proposals as in Hurn et al. (2001). We believe that this 
hoi
e isbound to a

elerate 
onvergen
e of the algorithm by a drasti
 redu
tion of the dimensionality ofthe spa
e.
6.2. The moves of the BDMCMC algorithmSin
e reversible te
hnology was implemented for this model in Robert et al. (2000), we now fo
us onthe 
ontinuous time MCMC 
ounterpart, extending Stephens (2000a) and Hurn et al. (2001) to thisframework. In addition to birth-and-death moves, whi
h were enough to provide good mixing inthe above papers, we do need to introdu
e additional proposals, similar to those in Ri
hardson andGreen (1997) and Robert et al. (2000), be
ause we observed that the birth-and-death moves arenot, by themselves, suÆ
ient to ensure fast 
onvergen
e of the MCMC algorithm. The proposals weadd are split/
ombine moves, following the denomination of Ri
hardson and Green (1997), wherea given 
omponent is broken into two parts, and �xed k moves, where the parameters are modi�edvia a regular MCMC step. (The later proposals are quintessential in ensuring good 
onvergen
eproperties.)The birth-and-death and �xed k moves are simple to implement, and are equivalent to thosegiven in Stephens (2000a) and Hurn et al. (2001), with �xed k moves relying on random walkproposals over the transforms log(!i) and log(�i)|or log(�i=� � �i) in the 
onstrained 
ase ofRobert et al. (2000). The split/
ombine move follows the general framework exposed in Se
tion 4with a 
ombine intensity given by (5). We use 'S as an individual split intensity whi
h is thesame for all 
omponents. This means that the overall intensity of a split move for a k 
omponentve
tor is '(�) = k'S . In the pra
ti
al implementation of the algorithm, we 
hose 'S = 'B = 2and 'F = 5, where 'B and 'F 
orrespond to the birth and �xed k move intensities, respe
tively.



8 Cappé et al.There are many ways of devising a split/
ombine move but, 
ontrary to Ri
hardson and Green's(1997) observation that their �rst attempt was su

essful, we had to try several proposals beforeobtaining proper mixing behaviour, as detailed now.In the 
ase of a normal hidden Markov model with means �i and varian
es �2i both unknown,a split of state t0 into states t0 and (k + 1) involves four di�erent types of a
tions:(a) a split move in row j 6= t0 of !j;t0 as~!j;t0 = !j;t0"j ; ~!j;k+1 = !j;t0(1� "j) ;with "j uniform on (0; 1); this proposal is sensible when thinking that both the new statesk + 1 and t0 are issued from the state t0: the probabilities to rea
h t0 are thus distributedbetween the probabilities to rea
h the new t0 and to rea
h k + 1;(b) a split move in 
olumn i 6= t0 !t0;i as~!t0;i = !t0;i�j ; ~!k+1;i = !t0;i=�jwhere �j is lognormal LN (0; 1). The symmetry 
onstraint (4) is thus satis�ed. Note that we�rst tried this move with a half-Cau
hy C+(0; 1) proposal, whi
h also preserves the distribu-tion by inversion (that is, �j and 1=�j have the same distribution), but this led to very poormixing properties for the algorithm;(
) a split move for !t0;t0 as~!t0;t0 = !t0;t0"t0�t0 ; ~!t0;k+1 = !t0;t0(1� "t0)�k+1 ;~!k+1;t0 = !t0;t0"t0=�t0 ; ~!k+1;k+1 = !t0;t0(1� "t0)=�k+1where "t0 is uniform on (0; 1) and �t0 ; �k+1 are LN (0; 1);(d) a split move on (�t0 ; �2t0) as~�t0 = �t0 + 3�t0"� ; ~�k+1 = �t0 � 3�2t0"� ; ~�2t0 = �2t0"� ; ~�2k+1 = �2t0="� ;where "� � N (0; 1) and "� � LN (0; 1).The 
ombine move is 
hosen in a symmetri
 way, so that states t0 and t1 are 
ombined into statet0 by taking �rst the geometri
 average of rows t0 and t1 in the exponential 
omponent matrix,by adding 
olumns t0 and t1, and �nally swit
hing states t1 and k + 1. (One 
an 
he
k that thissequen
e of moves also applies to the parti
ular 
ase of !t0;t0 .) The mean �t0 is obtained as thearithmeti
 average of the means ~�t0 and ~�t1 , while the varian
e �2t0 is the geometri
 average of thevarian
es ~�2t0 and ~�2t1 . Appendix B details the 
omputation of the 
orresponding Ja
obian.
6.3. IllustrationsFirst, we 
onsider a simulated dataset of 500 observations, represented on Figure 1(a); this datasetwas built by joining stret
hes of three di�erent normal samples that 
an be spotted dire
tly onthe graph. The most visited value (and posterior mode) of k is 3, as shown in Figure 1(b), withregular visits to 2 and 4. Larger values were hardly visited (although we used a 
at prior onk 2 f1; : : : ; 10g). As shown by Figure 1(d), the 
orresponden
e between the estimated density,obtained by averaging all the density estimates over the iterations, and the standard nonparamet-ri
 kernel estimate, is quite satisfa
tory. Note in addition that the parameter 
hains, separated
omponent by 
omponent, produ
e a label swit
hing behaviour that is to be expe
ted from thetheory (see Hurn et al., 2001), as well as good mixing properties. (The graphs represented inFigure 1 a
tually 
orrespond to 50; 000 iterations of the MCMC algorithm, with an average of 25jumps per observation unit.)Our se
ond dataset 
orresponds to a transform of the IBM sto
k over a period of �ve years,starting in 1992, whi
h represents the volatility of the sto
k [kindly provided to us by Catalin Stari
a(Universit�e Libre de Bruxelles)℄. As 
an be seen from the rawplot of the dataset in Figure 2(a),the states are less 
learly identi�ed and, more importantly, there seems to be fewer moves betweenthese states. The resulting inferen
e 
orroborates this un
ertainty: the four values k = 1; 2; 3; 4
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Simulated dataset
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(
) (d)
Fig. 1. Continuous time MCMC algorithm output for a simulated dataset of 500 points: (a) histogram and

rawplot of the dataset; (b) MCMC output on k (histogram and rawplot), the simulated number of states and

corresponding likelihood values; (c) MCMC sequence of the parameters of the three components when

conditioning on k = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density

estimate.



10 Cappé et al.have similar posterior probabilities and, in opposition to Figure 1(b), the spread of the loglikelihoodvalues is mu
h larger, suggesting that the posterior distribution has several modes that 
an onlybe linked by visiting intermediate low likelihood regions. Sin
e the 
ase k = 3 is visited less often,the number of simulations in Figure 2(
) is lower than the number of simulations in Figure 1(
),but also exhibits the 
orre
t label-swit
hing behaviour and proper mixing features (even thoughone 
an spot longer regions when the 
hain remains invariant). Note also that the �t in Figure2(d) is just as satisfa
tory as the nonparametri
 estimation.For a 
omparison with Robert et al. (2000), we also 
onsider one dataset studied in this previouspaper, namely the wind intensity in Athens [kindly provided to us by Christian Fran
q (Universit�edu Littoral)℄. On
e again, the modelling setting slightly di�ers from the above: the means arenow all set to 0, the prior distribution on the �'s is not an exponential distribution but rather auniform U(0; �), � being estimated from the dataset in a hierar
hi
al way and updated through asli
e sampler (sin
e the 
onditional distribution is a trun
ated gamma) via an additional pro
esswith intensity '�, equal to 1.Figure 3 summarises the output for the dataset 
orresponding to the wind intensity in Athens.The main point is that, as in Robert et al. (2000), we obtain a mode of the posterior distributionof k at k = 3, although the posterior distribution slightly di�ers in our 
ase, sin
e the posteriorprobabilities for 1; 2; 3; 4 are :0064; :1848; :7584; :0488, to be 
ompared with Table 1 in Robert etal. (2000). Note that Figure 3(b) provides in addition the distribution of the number of moves perunit of time (on the 
ontinuous time axis). The loglikelihoods are a
tually 
overing a wider rangerthan those found in Robert et al. (2000), although the highest values are the same. For instan
e,the largest likelihood for k = 2 is �688, while it is �675 for k = 3 and �670 for k = 4. The �tbetween the nonparametri
 density and the Bayesian posterior average is quite a

urate.
7. DiscussionConsidering Theorem 1, one may be tempted to say `everything that may be done in 
ontinuoustime 
an be done in dis
rete time'. While that might be true from a theoreti
al point of view,things are less 
lear
ut when performan
e 
onsiderations are taken into a

ount.Stephens (2000a) made some 
omparisons of his algorithm to Ri
hardson and Green's (1997)reversible jump MCMC sampler, whi
h we 
ite:A. Our algorithm works in 
ontinuous time, repla
ing the a

ept-reje
t s
heme by allowingevents to o

ur at di�ering rates.B. Our dimension-
hanging birth and death moves do not make use of the missing data z,e�e
tively integrating out over them when 
al
ulating the likelihood.C. Our birth and death moves take advantage of the natural nested stru
ture of the models,removing the need for the 
al
ulation of a 
ompli
ated Ja
obian, and making implementationmore straightforward.D. Our birth and death moves treat the parameters as a point pro
ess, and do not make use ofany 
onstraint su
h as �1 < � � � < �k [used by Ri
hardson and Green (1997) in de�ning theirsplit and 
ombine moves℄.We disagree with point C. sin
e any Ja
obian involved does appear in both 
ontinuous anddis
rete time. As we have seen, the Ja
obian determinant (1�w)k�1 due to renormalising 
ompo-nent weights appears in both the death rates (2) and the a

eptan
e ratio (3). Indeed, Stephens(2000a, p. 71) attributes this determinant to a `simple 
hange of variable formula'. In our view, thedeterminant should be asso
iated with the proposal density h, as the (k+1) 
omponent parameter�[(w; �) is not drawn dire
tly from a density on �(k+1) but rather indire
tly through �rst drawing(w; �) and then renormalising. In order to 
ompute the resulting density on �(k+1) one must then
al
ulate a Ja
obian. (In fa
t, as noted above, there is no density w.r.t. a �xed referen
e measureon �(k+1).) We also saw in Se
tion 6 that the Ja
obian determinant of the split and 
ombine movedoes appear in 
ontinuous time. The 
omplexity is therefore identi
al for both methodologies.Regarding D. above, as noted in Se
tion 2, we �nd the ordering of the 
omponents more ate
hni
al devi
e than a pra
ti
al one. Indeed, a split move usually makes the new set of 
omponents
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Starica’s IBM stochastic volatilities
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(
) (d)
Fig. 2. Continuous time MCMC algorithm output for a transform of 507 IBM stockprices: (a) histogram and

rawplot of the dataset; (b) MCMC output on k (histogram and rawplot), number of states, and corresponding

likelihood values; (c) MCMC sequence of the parameters of the three components when conditioning onk = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density estimate.
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Wind intensity in Athens
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(
) (d)
Fig. 3. Continuous time MCMC algorithm output for a sequence of 500 wind intensities in Athens; (a)

histogram and rawplot of the dataset; (b) MCMC output on k (histogram and rawplot), number of states,

and corresponding likelihood values; (c) MCMC sequence of the parameters of the three components when

conditioning on k = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density

estimate.



Reversible jump and continuous time MCMC 13unordered but they 
an be sorted again. Nonetheless, we did not impose ordering when simulatingthe parameters with �xed k's and, more importantly, did not restri
t ourselves to implement
ombine moves only on adja
ent 
omponents as in Ri
hardson and Green (1997).Hen
e, the above item that we �nd most important is B.; whether the missing data z is kepttra
k of in all moves or not. It would indeed be interesting to 
ompare the performan
e of twoalgorithms, in dis
rete or 
ontinuous time, that are identi
al ex
ept for this aspe
t. (We re
all thatRobert et al. (2000) did resort to 
ompletion in their implementation of RJMCMC.)We now pro
eed to dis
ussing 
omputational aspe
ts of dis
rete and 
ontinuous time algorithms.In 
ontinuous time, on
e a state � is entered, it is ne
essary to 
ompute the rates of all possiblemoves leading to an exit from that state, at the expense of O(k) for birth/death moves and O(k2)for split/
ombines ones. In dis
rete time this not ne
essary, as the a

eptan
e ratio of a move isnot 
omputed until the move is proposed. This is an advantage of reversible jump MCMC. On theother hand, for moves su
h as birth and split in 
ontinuous time, rates are typi
ally very simpleand it is only the death or 
ombine rates that are expensive to 
ompute. This is an advantage of
ontinuous time algorithms.What 
an we say about the mixing performan
e of the di�erent algorithms? A typi
al set-upof BDMCMC is to let �(�) be 
onstant, say �(�) = 1 (a di�erent 
onstant only res
ales time).Likewise, for RJMCMC b(�) = d(�) = 1=2 is typi
al, ex
ept for states � with k = 1 for whi
hb(�) = 1. Under these assumptions Eqs. (2) and (3) relate as A = (k+1)Æ�1. Sin
e both samplershave the same stationary distribution, we �nd that if one of the algorithms performs poorly, sodoes the other one. For RJMCMC this is manifested as a small A's|birth proposals are rarelya

epted|while for BDMCMC it is manifested as large Æ's|new 
omponents are indeed born butdie again qui
kly.Finally we again mention Rao-Bla
kwellisation as an advantage of 
ontinuous time algorithms;this feature is, as noted above, obtained at no extra 
ost. Rao-Bla
kwellisation 
ould in prin
iplebe 
arried out in dis
rete time as well sin
e the holding times have geometri
 distributions. Butas opposed to 
ontinuous time, the expe
ted holding times 
annot be 
omputed easily{see (6) inthe proof of Lemma 1 below.
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A. Proof of Theorem 1Let for � 2 �(k), �(�) = �(�) + kXi=1 Æ(� n (wi; �i); (wi; �i))be the overall rate of leaving state � in the BDMCMC sampler and let �N (�) be the overallprobability of moving away from state � (in one step) in the RJMCMC sampler.Before proving the theorem, we state and prove a lemma.Lemma 1. For ea
h k � 1 and �0 2 �(k), there is a neighbourhood G � �(k) of �0 su
h thatsup�2G jN�N (�)� �(�)j ! 0 as N !1.Proof. We �rst note that for � 2 �(k), �N (�) 
an be written�N (�) = Z bN (�)minfAN (�;� [ (w; �)); 1gh(�; (w; �)) d(w; �)+ kXi=1 dN (�) 1k minfA�1N (� n (wi; �i);�); 1g: (6)Thus sup�2G jN�N (�)� �(�)j� Z sup�2G jNbN (�)minfAN (�;� [ (w; �)); 1gh(�; (w; �)) � �(�)h(�; (w; �))j d(w; �) (7)+ kXi=1 sup�2G j1kNdN (�)minfA�1N (� n (wi; �i);�); 1g � Æ(� n (wi; �i); (wi; �i))j: (8)We start by looking at the `birth part' (7) of this expression. We shall prove that it tends tozero by showing that the integrand tends to zero for all (w; �) and showing that the integrand isdominated, for all suÆ
iently large N , by an integrable fun
tion. Bound the integrand assup�2G jNbN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �)) � �(�)h(�; (w; �))j� sup�2G jNbN(�)� �(�)j � 1� sup�2Gh(�; (w; �)) (9)+ sup�2G�(�)� sup�2G jminfAN(�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �))j: (10)



Reversible jump and continuous time MCMC 15For � � 0 and N > �, �N � 12 �2N2 � 1� e��=N � �N ;so that jN(1� e��=N)� �j � 12 �2N :Hen
e, for suÆ
iently large N (9) is bounded by12N sup�2G�2(�)� sup�2Gh(�; (w; �)); (11)by (A1) and (A3), for an appropriate G this expression tends to zero as N !1 and is dominatedby an integrable fun
tion.Regarding (10), it is dominated by an integrable fun
tion similar to (11) (remove 1=2N andthe square), and it remains to show that it tends to zero as N !1. We havejminfAN (�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �))j= h(�; (w; �))� min�L(� [ (w; �))r(� [ (w; �))L(�)r(�) � dN (� [ (w; �))bN(�) (1� w)k�1; h(�; (w; �))� :By (A2), for ea
h (w; �), L(� [ (w; �))r(� [ (w; �)) and L(�)r(�) are bounded away from in�nityand zero, respe
tively, on a suÆ
iently small G. Likewise, by (A1), dN (� [ (w; �)) and bN (�) tendto unity and zero, respe
tively, uniformly over su
h a G. Finally, by (A3), h(�; (w; �)) is boundedon an appropriate G, and we 
on
lude that (10) tends to zero uniformly over G as N !1 if G issmall enough.We now turn to the `death part' (8). By arguments similar to those above, for large N andsuÆ
iently small G it holds that1kNdN (�)minfA�1N (� n (wi; �i);�); 1g= 1kN min�L(� n (wi; �i))r(� n (wi; �i))L(�)r(�) � bN(� n (wi; �i))h(� n (wi; �i); (wi; �i))(1� wi)k�2 ; dN (�)�= L(� n (wi; �i))r(� n (wi; �i))L(�)r(�) � 1k � NbN(�)h(� n (wi; �i); (wi; �i))(1� wi)k�2uniformly over G, and, also using arguments as above, one 
an show the right hand side of thisexpression 
onverges to Æ(� n (wi; �i); (wi; �i)) as N !1, uniformly over a small enough G. 2Re
all the de�nitions of jump times and the jump 
hain in Se
tion 5. The sequen
e fe�n; Tn �Tn�1)g of visited states and holding times form a Markov renewal pro
ess (MRP). The transitionkernel of this MRP is denoted by K, that is, K(�;A�B) = P (e�n 2 A; Tn�Tn�1 2 B j e�n�1 = �).Sin
e f�(t)g is Markov, the 
onditional distribution of Tn � Tn�1 given e�n�1 = � is exponentialwith rate �(�). In addition, �(Tn) and Tn � Tn�1 are 
onditionally independent. Similarly,f�N (t)g is a semi-Markov pro
ess with jump times fTNn g in the latti
e i=N , and the kernel ofthe asso
iated MRP is denoted by KN . Sin
e f�Nn g is Markov, �N (TNn ) and TNn � TNn�1 are
onditionally independent given �N (TNn�1).Proof of Theorem 1. Using results of Karr (1975), it is suÆ
ient to prove that for ea
h real-valueduniformly 
ontinuous fun
tion g on �� [0;1),(i) Kg(�) is 
ontinuous on �;(ii) KNg(�)! Kg(�) uniformly on 
ompa
t subsets of � as N !1.



16 Cappé et al.We start by showing (ii). By the stru
ture of �, it it suÆ
ient to show that for ea
h �0 2 �(k),there is a neighbourhood G � �(k) of �0 su
h that KNg(�)! Kg(�) uniformly on G, and this iswhat we will do. For � 2 �(k), KNg(�) and Kg(�) 
an be writtenKNg(�) = 1Xm=1 Z (1� �N (�))m�1bN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �))g(� [ (w; �); mN ) d(w; �)+ 1Xm=1(1� �N (�))m�1 kXi=1 dN (�) 1k minfA�1N (� n (wi; �i);�); 1gg(� n (wi; �i); mN )= Z 10 Z (1� �N (�))bNu
NbN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �))g(� [ (w; �); dNueN ) du d(w; �)+ Z 10 (1� �N (�))bNu
kXi=1 NdN (�) 1k minfA�1N (� n (wi; �i);�); 1gg(� n (wi; �i); dNueN ) du;Kg(�) = Z 10 Z �(�)e��(�)u �(�)�(�)h(�; (w; �))g(� [ (w; �); u) du d(w; �)+ Z 10 kXi=1 �(�)e��(�)u Æ(� n (wi; �i); (wi; �i))�(�) g(� n (wi; �i); u) du= Z 10 Z e��(�)u�(�)h(�; (w; �))g(� [ (w; �); u) du d(w; �)+ Z 10 kXi=1 e��(�)uÆ(� n (wi; �i); (wi; �i))g(� n (wi; �i); u) du;where dxe is the smallest integer no smaller than x.We again start by looking at the `birth parts' of the kernels, bounding the 
orresponding partof jKNg(�)�Kg(�)j asZ 10 Z sup�2G ����(1� �N (�))bNu
NbN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �))�g(� [ (w; �); dNueN )� e��(�)u�(�)h(�; (w; �))g(� [ (w; �); u)���� du d(w; �):We wish to prove that this expression tends to zero as N ! 1. We 
an do this by showing thatthe integrand tends to zero for all u � 0 and all (w; �) and that there exists a dominating (for allsuÆ
iently large N) integrable fun
tion.In order to a

omplish this, we add and subtra
t a number of teles
oping terms, giving ussup�2G ����(1� �N (�))bNu
NbN(�)minfAN (�;� [ (w; �)); 1gh(�; (w; �))g(� [ (w; �); dNueN )�e��(�)u�(�)h(�; (w; �))g(� [ (w; �); u)����� sup�2G ����(1� �N (�))bNu
 � e��(�)u����� sup�2GNbN(�)� 1� h(w; �) � jjgjj1+ sup�2G e��(�)u � sup�2GNbN(�)� 1� h(w; �) � Æg1=N+ sup�2G e��(�)u � sup�2G jNbN (�)� �(�)j � 1� h(w; �) � jjgjj1



Reversible jump and continuous time MCMC 17+ sup�2G e��(�)u � sup�2G�(�)� sup�2G jminfAN (�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �)j � jjgjj1;where h(w; �) = sup�2G h(�; (w; �)) and Æg1=N = sup�((�;u);(�0;u0))�1=N jg(�; u) � g(�0; u0)j is g'smodulus of 
ontinuity; � is a metri
 making �� [0;1) separable and 
omplete. All of the termson the right hand side but the �rst one 
an be treated as in the proof of the lemma, with the extraobservation that �(�) � �(�) is bounded away from zero on 
ompa
t subsets of �. Moreover, sin
e(1� �N (�))bNu
 � e��N (�)bNu
 = e�N�N (�)(bNu
=N);the lemma implies that the �rst term is, for large N , dominated by an integrable fun
tion. Finally(1� �N (�))bNu
 � e��(�)u � e��N (�)bNu
 � e�(�)u= e��(�)u �e��(�)(bNu
=N�u)+bNu
o(1=N) � 1� ;where, by the lemma, the o(1=N)-term is uniform over a small G so that the right hand side tendsto zero uniformly over su
h a G. The inequality log(1� x) � �x� 2x2 for 0 � x � 1=2 leads to areverse inequality whi
h is handled similarly.The `death parts' of the kernels, that is, bounding the 
orresponding parts of jKNg(�)�Kg(�)j,
an be handled 
ombining arguments for the `birth parts' and arguments used to prove the lemma.Finally requirement (i) above 
an be proved using entirely similar te
hniques. 2
B. The Jacobian for the split-combine moveThe parts of the Ja
obian determinant 
orresponding to the split move in x6.2 are(a) !j;t0(b) 2!t0;i=�i(
) !3t0;t0 ������� "t0�t0 "t0=�t0 (1� "t0)�k+1 (1� "t0)=�k+1"t0 �"t0=�2t0 0 00 0 (1� "t0) �(1� "t0)=�2k+1�t0 1=�t0 ��k+1 �1=�k+1 ������� ;that is, !3t0;t0 ������� "t0�t0 0 �k+1 0"t0 �2"t0=�2t0 0 00 0 (1� "t0) �2(1� "t0)=�2k+1(1 + �t0)=2 0 �(1 + �k+1)=2 0 �������= 4!3t0;t0 "t0(1� "t0)�t0�k+1(d) ������� 1 3"�=2�t0 3�t0 01 �3"�=2�t0 �3�t0 00 "� 0 �2t00 1="� 0 ��2t0="2� ������� = 12�3t0="�given that we di�erentiate w.r.t. �2t0 , not �t0 .The overall Ja
obian determinant for the split move is thereforeJ = �����T (�; ")�(�; ") ���� = 3 Yi !i;t0!t0;i�i !t0;t0 "t0(1� "t0)�k+1"� �3t0 2k+3 :




