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ABSTRACT
Reversible or information-lossless circuits have applications in di-
gital signal processing, communication, computer graphics and cryp-
tography. They are also a fundamental requirement in the emerging
field of quantum computation. We investigate the synthesis of re-
versible circuits that employ a minimum number of gates and con-
tain no redundant input-output line-pairs (temporary storage chan-
nels). We prove constructively that every even permutation can
be implemented without temporary storage using NOT, CNOT and
TOFFOLI gates. We describe an algorithm for the synthesis of
optimal circuits and study the reversible functions on three wires,
reporting distributions of circuit sizes. Finally, in an application
important to quantum computing, we synthesize oracle circuits for
Grover’s search algorithm, and show a significant improvement
over a previously proposed synthesis algorithm.

1. INTRODUCTION
In most computing tasks, the number of output bits is relatively

small compared to the number of input bits. For example, in a
decision problem, the output is only one bit (yes or no) and the
input can be as large as desired. However, computational tasks in
digital signal processing, communication, computer graphics and
cryptography require that all of the information encoded in the in-
put be preserved in the output. Some of those tasks are important
enough to justify adding new microprocessor instructions to the
HP PA-RISC (MAX and MAX-2), Sun SPARC (VIS), PowerPC
(AltiVec), IA-32 and IA-64 (MMX) instruction sets [13, 8]. In par-
ticular, new bit-permutation instructions were shown to vastly im-
prove performance of several standard algorithms, including ma-
trix transposition and DES, as well as two recent cryptographic
algorithms Twofish and Serpent [8]. Bit permutations are a spe-
cial case ofreversible functions, that is, functions that permute the
set of possible input values. For example, the butterfly operation
(x;y)! (x+y;x�y) is reversible but is not a bit permutation. It is
a key element of Fast Fourier Transform algorithms and has been
used in application-specific processors from Tensilica. One might
expect to get further speed-ups by adding instructions to allow com-
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putation of an arbitrary reversible function. The problem of chain-
ing such instructions together provides one motivation for studying
reversible logic circuits, that is, logic circuits composed of gates
computing reversible functions.

Reversible circuits are also interesting because the loss of infor-
mation implies energy loss [2]. Younis and Knight [16] showed
that some reversible circuits can be made asymptotically energy-
lossless if their delay is allowed to be arbitrarily large. Currently,
energy losses due to irreversibility are dwarfed by the overall power
dissipation, but this may change if power dissipation improves.
In particular, reversibility is important for nanotechnologies where
switching devices with gain are difficult to build.

Finally, reversible circuits can be viewed as a special case of
quantum circuits because quantum evolution must be reversible [9].
Classical (non-quantum) reversible gates are subject to the same
“circuit rules”, whether they operate on classical bits or quantum
states. In fact, popular universal gate libraries for quantum compu-
tation often contain as subsets universal gate libraries for classical
reversible computation. While the speed-ups which make quan-
tum computing attractive are not available without purely quan-
tum gates, logic synthesis for classical reversible circuits is a first
step toward synthesis of quantum circuits. Moreover, algorithms
for quantum communications and cryptography often do not have
classical counterparts because they act on quantum states, even if
their action in a given computational basis corresponds to classical
reversible functions on bit-strings. Another connection between
classical and quantum computing comes from Grover’s search al-
gorithm. Circuits for Grover’s algorithm contain large parts con-
sisting of NOT, CNOT and TOFFOLI gates only [9].

We review existing work on classical reversible circuits [10].
Toffoli [14] gives constructions for an arbitrary reversible or irre-
versible function in terms of a certain gate library. However, his
method makes use of a large number of temporary storage chan-
nels, i.e. input-output wire-pairs other than those on which the
function is computed. Sasao and Kinoshita show that any conser-
vative function (f (x) is conservative if for allx, x and f (x) contain
the same number of 1s in their binary expansions) has an imple-
mentation with only three temporary storage channels using a cer-
tain fixed library of conservative gates, although no explicit con-
struction is given [11]. Kerntopf uses exhaustive search methods
to examine small-scale synthesis problems and related theoretical
questions about reversible circuit synthesis [5].

Our work pursues synthesis of optimal reversible circuits which
can be implemented without temporary storage channels. In Sec-
tion 3 we show by explicit construction that any reversible function
which performs an even permutation on the input values can be
synthesized using the CNTS (CNOT, NOT, TOFFOLI, and SWAP)
gate library under such constraints. In Section 4 we present synthe-
sis algorithms for decomposing such a function into a circuit with
a minimal number of gates. Besides branch-and-bound, we use a
dynamic programming technique that exploits reversibility. Appli-
cations to quantum computing are examined in Section 5.
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Figure 1: (a) A 3� 3 reversible circuit computing CNOT,
(b) the corresponding matrix, and (c) its truth table.

2. BACKGROUND
In conventional (irreversible) circuit synthesis, one typically starts

with a universal gate library and some specification of a Boolean
function. The goal is to find a logic circuit that implements the
Boolean function and minimizes a given cost metric, e.g., the num-
ber of gates or the circuit depth. At a high level, reversible circuit
synthesis is just a special case in which no fanout is allowed and all
gates must be reversible.

DEFINITION 1. A gate is reversible if the (Boolean) function it
computes is bijective.

A necessary condition is that the gate have the same number of
input and output wires. If it hask, it is called ak� k gate, or a
gate onk wires. We will think of themth input wire and themth
output wire as really being the same wire. Many gates satisfying
these conditions have been examined. We will consider a specific
set defined by Toffoli [14].

DEFINITION 2. A k-CNOT is a(k+1)� (k+1) gate. It leaves
the first k inputs unchanged, and inverts the last iff all others are1.

Clearly thek-CNOT gates are all reversible. The first three of
these have special names. The 0-CNOT is just an inverter, re-
ferred to as a NOT gate, and denoted N. It performs the operation
(x)! (x� 1), where� denotes XOR. The 1-CNOT, which per-
forms the operation(y;x)! (y;x�y) is referred to as a Controlled-
NOT, or CNOT (C). The 2-CNOT is called a TOFFOLI (T) gate,
and performs the operation(z;y;x)! (z;y;x� yz). We will also
be using another reversible gate, called the SWAP (S) gate. It is a
2�2 gate which exchanges the inputs; that is,(x;y)! (y;x). One
reason for choosing these particular gates is that they appear often
in the quantum computing context [9]. We will be working with
circuits from a given, limited-gate library. Usually, this will be the
CNTS gate library, consisting of the CNOT, NOT, and TOFFOLI,
and SWAP gates defined above.

DEFINITION 3. A well-formed reversible logic circuit is an acyc-
lic combinational logic circuit in which all gates are reversible, and
are interconnected without fanout.

As with reversible gates, a reversible circuit has the same number
of input and output wires; again we will call a reversible circuit with
n inputs ann�n circuit, or a circuit onn wires. We can also think
of ann�n circuit as the inner workings of ann�n reversible gate.

This also allows us to draw reversible circuits as arrays of hor-
izontal lines representing wires, in which gates are represented by
vertically-oriented symbols. For example, in Figure 1a, we see a
reversible circuit drawn in standard notation [9]. The� symbols
represent inverters and the� symbols represent controls. A vertical
line connecting a control to an inverter means that the inverter is
only applied if the wire on which the control is set carries a 1 sig-
nal. Thus, the gates used are, from left to right, TOFFOLI, NOT,
TOFFOLI, and NOT.

(a) (b)

Figure 2: Reversible circuit equivalences: (a) T(1,2;3)� N(1) �
T(1,2;3) �N(1) = C(2;3), and (b) C(3;2)�C(2;3) �C(3;2) = S(2,3).

Since we will be dealing only with bijective functions, we repre-
sent them using thecycle notation, from elementary algebra, where
a permutation is represented by disjoint cycles of variables. For
example, the truth table in Figure 1b is represented by(2;3)(6;7)
because the corresponding function swaps 010 (2) and 011 (3), and
110 (6) and 111 (7). The set of all permutation ofn marks is de-
notedSn, so the set of bijective functions withn binary inputs isS2n .
We will call (2;3)(6;7)CNT-constructiblesince it can be computed
by a circuit with gates from the CNT gate library. More generally:

DEFINITION 4. Let L be a (reversible) gate library. An L-circuit
is a circuit with only gates from L. A permutationπ 2 S2n is L-
constructible if it can be computed by an n�n L-circuit.

In Figure 2a we see that the circuit in Figure 1a is equivalent
to one consisting of a single C gate. Pairs of circuits computing
the same function are very useful, since we can substitute one for
another. On the right, we see similarly that three C gates can be
used to replace a S gate. Figure 2 therefore shows us that the C and
S gates in the CNTS gate library can be removed without losing
computational power. We will still use the CNTS gate library in
synthesis to reduce gate counts and potentially speed up synthesis
This is motivated by Figure 2, which shows how to replace four
gates with one C gate, and thus up to 12 gates with one S.

DEFINITION 5. Two reversible circuits are equivalent if they
compute the same function.

Figure 2a illustrates the use of “temporary storage”. A C gate
only needs two wires, but if we simulate it with two N gates and
two T gates, we need a third wire. The value of the third wire
emerges unaltered. More generally, consider the general reversible
circuit of Figure 3. The topn� k lines transfern� k signalsY
to the corresponding wires on the other side of the circuit. The
bottomk wires enter as the input valueX and emerge as the output
value f (X). These wires usually serve as an essential workspace for
computing f (X). Following Toffoli, we say this circuit computes
f (X) usingn�k lines of temporary storage [14].

DEFINITION 6. Let L be a reversible gate library. Then L is
universal if for all k and all permutationsπ 2S2k , there exists some
l such that some L-constructible circuit computesπ using l wires of
temporary storage. (Note that we do not assume that fixed inputs
are available.)

It is a result of Toffoli’s that the CNT gate library is universal; he
also showed that one can bound the amount of temporary storage
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Figure 3: Circuit C with n�k wires Y of temporary storage.



required to compute a permutation inS2n by n�3. We are inter-
ested in trying to synthesize permutations using no extra storage.
For an example of what limitations this puts on the set of com-
putable permutations, suppose we were working with only the C
gate library. Then the following is true:

PROPOSITION 1. Every C-constructible permutation computes
an invertible linear transformation. Moreover, every invertible lin-
ear transformation is computable by a C-constructible circuit. Fi-
nally, S2n has∏n�1

i=0 (2
n�2i ) C-constructible permutations.

Proof: A function f is linear iff f (x� y) = f (x)� f (y), where
� denotes bitwise XOR. The composition of two linear functions
is a linear function. Therefore, to show that all C circuits are lin-
ear, it suffices to prove each C gate computes a linear transforma-
tion. Indeed,C(x1� y1;x2� y2) = (x1� y1;x1� y1� x2� y2) =
(x1;x1� y1)� (x2;x2� y2) = C(x1;y1)�C(x2;y2). On the other
hand, observe that the linearity in terms of bit-wise� matches the
linearity in vector spaces over the two-element fieldF2. In the basis
10: : :0, 01: : :0, : : :, 0: : :01, the matrices corresponding to individ-
ual C gates account for all the elementary row-addition matrices.
An example is given in Figure 1. Because there is only one non-
zero scalar inF2, any invertible matrix inGL(F2) can be written as
a product of these. Thus, any invertible linear transformation can
be computed by a C-circuit.

Finally, a linear mapping is fully defined by its values on basis
vectors. There are 2n�1 ways of mapping the 2n-bit string 10:::0.
Once we fixed its image, there are 2n�2 ways of mapping 010:::0,
and so on. Each time we map one of these basis bit-strings it can’t
map to the subspace spanned by the previous bit-strings. There are
2n�2i choices for thei-th basis bit-string. Once all basis bit-strings
are mapped, the mapping of the rest is specified by linearity.

A similar result for CNT-constructible permutations requires:

DEFINITION 7. A permutation is called even if it can be written
as the product of an even number of transpositions. The set of even
permutations in Sn is denoted An.

It is well-known that if a permutation can be written as the prod-
uct of an even number of transpositions, then it may not be written
as the product of an odd number of transpositions. Moreover, half
the permutations inSn are even forn> 1.

PROPOSITION 2. Any n� n circuit with no n� n gates com-
putes an even permutation[14].

To illustrate this proposition, consider the following example. A
2�2 circuit consisting of a single S gate performs the permutation
(1;2), as the inputs 01 and 10 are interchanged, and the inputs 00
and 11 remain fixed. This permutation consists of one transposi-
tion, and is therefore odd. On the other hand, in a 3�3 circuit, one
can check that a swap gate on the bottom two wires performs the
permutation(1;2)(5;6), which is even.

3. THEORETICAL RESULTS
Since the CNTS gate library contains no gates of size greater

than three, Proposition 2 implies that every CNTS-constructible
(without temporary storage) permutation is even forn � 4. The
converse is true as well:

PROPOSITION 3. Every even permutation is CNT-constructible.

Proof: It follows from a result of Toffoli’s [14] that every permuta-
tion in S2n is CNT-constructible forn< 4. This is explicitly verified
in Table 1. Supposen� 4. Any permutationπ 2A2n can be written
as the product of pairs of disjoint transpositions; for a proof, see

yes

yes

no

no

Is LT

Decompose C

Append LT1 to LT

Remove a cycle, C
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Create subcircuit
corresponding to
transposition pair
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into list of cycles, LC

Is LC
empty?

empty?
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partitioning as necessary
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Figure 5: Flowchart for algorithm from proof of Proposition 3.

Proposition 13 in the Appendix. It therefore suffices to show that
pairs of disjoint transpositions are constructible, as we can chain
together their circuits to obtain the circuit forπ. First, we observe
that the permutation with cycle decomposition(0;1)(2;3) can be
computed by a circuit consisting of a(n�2)-CNOT gate with the
controls on the topn�2 wires and the inverter on the bottom wire,
and with an N gate on each side of each control. We can replace the
(n�2)-CNOT gate with a 8(n�5) T gates [1, Corollary 7.4]. Let
S= fa;b;c;dg with a;b;c;d distinct. In Proposition 14 in the Ap-
pendix, we explicitly construct a circuit computing a permutation
πS such thatπS(a) = 0, πS(b) = 1, πS(c) = 2, andπS(d) = 3. Be-
cause(a;b)(c;d) = πS(0;1)(2;3)π�1

S , we can sequence the circuits
for πS, (0;1)(2;3), andπ�1

S , to obtain a circuit for(a;b)(c;d).

The following two corollaries give a way to synthesize circuits
computing odd permutations using temporary storage, and also ex-
tend Proposition 3 to an arbitrary universal gate library.

PROPOSITION 4. Every permutation is CNT-constructable with
at most one wire of temporary storage.
Proof: Suppose we have an�n gate G computingπ 2 S2n , and
we place it on the bottomn wires of an(n+1)� (n+1) reversible
circuit; let π̃ be the permutation computed by this new circuit. Then
by Proposition 2,̃π is even. Another way of seeing is this to ob-
serve that each cycle inπ appears “twice” inπ̃, once when the top
wire carries 0 and once when it carries 1. By Proposition 3,π̃ is
CNT-constructible. Let C be a CNT-circuit computingπ̃. Then C
computesπ with one line of temporary storage.

PROPOSITION 5. For any universal gate library L and suffi-
ciently large n, permutations in A2n are L-constructible, and those
in S2n are realizable with at most one wire of temporary storage.
Proof: SinceL is universal, there is some numberk such that we
can compute the permutations corresponding to the NOT, CNOT,
and TOFFOLI gates usingk total wires. Letn> k, and letπ 2 A2n.
By Proposition 3, we can find a CNT-circuit C computingπ, and
can replace every occurrence of N, C, or T gate with a circuit com-
puting it. The second claim follows from Propositions 3 and 4.
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Figure 4: Equivalences between reversible circuits used in our constructions.

Proposition 3 is proven by an explicit construction, which consti-
tutes a (non-optimal) circuit synthesis heuristic; see Figure 5. For
permutations inA2n, the runtime and the length of the circuits pro-
duced are bothΘ(n2n) in the worst case. In general, the complexity
is Θ(ns)wheres is the number of indices moved by the permutation
we are trying to synthesize. This agrees with the above estimate, as
at most 2n indices may be moved.

Later, we describe an algorithm which synthesizes optimal cir-
cuits using an arbitrary gate library. Roughly speaking, the perfor-
mance of this algorithm is improved by using a smaller gate library,
as long as the average circuit length is not significantly increased.

DEFINITION 8. For any gate libraries L1 : : :Lk, a L1j : : : jLk-
circuit is an L1-circuit followed by an L2-circuit, . . . , followed by
an Lk-circuit. A permutation computed by an L1j : : : jLk-circuit is
L1j : : : jLk-constructible.

PROPOSITION 6. For every CNT-circuit there is an equivalent
CTjN-circuit.
Proof: First, we move all the N gates toward the outputs of the
circuit. Each box in Figure 4a indicates a way of replacing an NjCT
circuit with a CTjN circuit. Moreover, every possible way for an N
gate to appear to the immediate left of a C or a T is accounted for,
up to permuting the input and output wires. Now, number the non-
N gates in the circuit in a reverse topological order starting from
the outputs. In particular, if two gates appear at the same level
in a circuit diagram, they must be independent, and one can order
them arbitrarily. Letd be the number of the highest-numbered gate
with an N gate to its left. All N gates past thed-th gateG can be
reordered with theG gate without introducing new N gates on the
other side ofG. In any event, as there are no remaining N gates to
the left of G anymore,d decreases. This process terminates with
all the N gates are clustered together at the circuit outputs. If we
always cancel redundant N gates, then no more than two new gates
will be introduced for each non-inverter originally in the circuit;
additionally, there will be no more thann total N gates when the
process is complete. Thus if the original circuit hadl gates, then
the new circuit has at most 3(l �1)+n gates.

PROPOSITION 7. The permutationπ computed by a CTjN-circuit
determines theπCT andπN computed by the CT and N sub-circuits.
Proof: C and T gates (and hence CT-circuits) fix 0. Thusπ(0) =
πN(0). But the image of 0 (or anything else) under an N-circuit
completely determines theπN. HenceπCT = ππ�1

N = ππN.

Thus, if we want a CNT-circuit computing a permutationπ, we
can quickly computeπN and then simplify the problem to that of
finding a CT-circuit forππN. By Proposition 6, we know that a
minimal-gate circuit of this form has at most about three times as
many gates as the gate-minimal circuit computingπ.

Figure 4b shows how to move a C gate past a T gate, and account
for every possible way a C can appear to the left of a T, up to per-
muting wires. From this, one might expect every CT circuit to be

equivalent to a TjC circuit. This is not the case, however. We note
that the proof of Proposition 6 in fact requires the ability to move an
arbitrary number of N gates past any other given gate, while Figure
4b only allows us to move one C gate past a given T gate. However,
many CT circuits are equivalent to TjC circuits, and the following
result holds:

PROPOSITION 8. The permutationπ computed by a TjC-circuit
determines permutationsπT andπC computed by the sub-circuits.
Proof: By Proposition 1, any C-circuit is linear, so it suffices to
check its values on the basis elements (binary expansions of 2i ).
As any T circuit fixes these,π(2i) = πC ÆπT(2i) = πC(2i), so the
permutationπ uniquely determinesπC. πT = ππ�1

C .

Proposition 8 implies that the number of TjC-constructible per-
mutations inS2k is equal to the number that are C-constructible
times the number that are T-constructible. In Section 4, we use this
to show that there exist CT-constructible permutations which are
not TjC-constructible.

4. OPTIMAL SYNTHESIS
Now that we know which permutations admit circuit realizations

without extra storage, we seekoptimal realizations of this type. A
circuit is optimal if no equivalent circuit has smaller cost; in our
case, the cost function will be the number of gates in the circuit.

PROPOSITION 9. (Property of Optimality) If B is a sub-circuit
of an optimal circuit A, then B is optimal.
Proof: Suppose not. Then letB0 be a circuit with fewer gates than
B, but computing the same function. If we replaceB by B0, we
get another circuitA0 which computes the same function asA. But
since we have only modifiedB, A0 must be as much smaller than
A asB0 is smaller thanB. However,A was assumed to be optimal,
hence this is a contradiction. Note: equivalent, optimal circuits can
have the same number of gates.

Proposition 9 allows us to build a library of small optimal circuits
by dynamic programming because the firstm gates of an optimal
(m+1)-gate circuit form an optimal subcircuit. Therefore, to exa-
mine all optimal(m+1)-gate circuits, we iterate through optimal
m-gate circuits and add single gates at the end in all possible ways.
Some of the(m+1)-gate circuits found may have been synthesized
with fewer gates. Those which have not are optimal. In fact, instead
of storing a library of all optimal circuits, we store one optimal
circuit per synthesized permutation and also store optimal circuits
of a given size together.

One way to find an optimal circuit for a given permutationπ is
to generate all optimalk-gate circuits for increasing values ofk un-
til a circuit computingπ is found. This procedure requiresΘ(2n!)
memory in the worst case (n is the number of wires) and may re-
quire more memory than is available. Therefore, we stop growing



CIRCUIT find circ(COST, PERM, CURR CCT)
// assumes circuit library stored in LIB

if (COST � k)

// If PERM can be computed by a circuit with� k gates,
// such a circuit must be in the library

return CURR CCT * LIB[DEPTH].find(PERM)

else

// Try building the goal circuit from�k-gate circuits
for each C in LIB[k]

// Divide PERM by permutation computed by C
PERM2 PERM * INVERSE(C.perm)

// and try to synthesize the result
TEMPCCT  find circ(depth-k,PERM2)
if (TEMP CCT != NIL) return TEMP CCT

Figure 6: Finding a circuit of cost �COST that computes
permutation PERM (NIL returned if no such circuit exists).
CURR CCT, TEMP CCT and records in LIB represent cir-
cuits, and include a field “perm” storing the permutation com-
puted. The * character means concatenation of circuits, and
NIL* <anything>=NIL.

the circuit library atm-gate circuits, when hardware limitations be-
come an issue. The second stage of the algorithm uses the com-
puted library of optimal circuits and, in our implementation, starts
by reading the library from a file. Since little additional memory is
available, we trade off runtime for memory.

We use a technique known asdepth-first search with iterative
deepening(DFID) [6]. After a given permutation is checked against
the circuit library, we seek circuits withj =m+1 gates that imple-
ment this permutation. If none are found, we seek circuits with
j = m+ 2 gates, etc. This algorithm, in general, needs an addi-
tional termination condition to prevent infinite looping for inputs
which cannot be synthesized with a given gate library. For each
j , we consider all permutations optimally synthesizable inmgates.
For each such permutationρ, we multiplyπ by ρ�1 and recursively
try to synthesize the result usingj �m gates. Whenj �m� m,
this can be done by checking against the existing library. Other-
wise, the recursion depth increases. Pseudocode for this stage of
our algorithm is given in Figure 6.

In addition to being more memory-efficient than straightforward
dynamic programming, our algorithm is faster than branching over
all possible circuits. To quantify these improvements, consider a
library of circuits of sizem or less, containinglm circuits of size
m. We analyze the efficiency of the algorithms discussed by sim-
ulating them on an input permutation of costk. Our algorithm re-

quiresl b(k�1)=mc
m references to the circuit library. Simple branch-

ing is no better than our algorithm withm= 1, and thus takes at

least l k1 steps, which isl k1=l b(k�1)=mc
m times more than our algo-

rithm. A speed-up can be expected becauselm � lm1 , but specific
numerical values of that expression depend on the numbers of sub-
optimal and redundant optimal circuits of lengthm. Indeed, Table
1 lists values oflm for various subsets of the CNTS gate library
and m= 3. For example, for the NT gate gate library,k = 12,
b(k�1)=mc = 3, l1 = 6 andlm = 88. Therefore the performance

ratio is l k1=l b(k�1)=mc
m = 612=883 � 3194:2. Yet, this comparison is

Size N C T NC CT NT CNT CNTS
12 0 0 0 0 0 47 0 0
11 0 0 0 0 0 1690 0 0
10 0 0 0 0 0 8363 0 0
9 0 0 0 0 0 12237 0 0
8 0 0 0 0 6 9339 577 32
7 0 0 0 14 386 5097 10253 6817
6 0 2 0 215 1688 2262 17049 17531
5 0 24 0 474 1784 870 8921 11194
4 0 60 5 393 845 296 2780 3752
3 1 51 9 187 261 88 625 844
2 3 24 6 51 60 24 102 134
1 3 6 3 9 9 6 12 15
0 1 1 1 1 1 1 1 1

Total 8 168 24 1344 5040 40320 40320 40320
Time 1 1 1 30 215 97 40 15

Table 1: Number of permutations computable in an optimalL-
circuit using a given number of gates.L�CNTS. Runtimes are
given in seconds for a 2GHz Pentium-4 Xeon workstation.

incomplete because it does not account for time spent building cir-
cuit libraries. We point out, however, that this charge is amortized
over multiple synthesis operations. In our experiments, generat-
ing a circuit library on three wires of up to three gates (m= 3)
from the CNTS gate library takes less than a minute on a 2-GHz
Pentium-4 Xeon. Using such libraries, all of Table 1 can be gen-
erated in minutes,1 but cannot be generated even in several hours
using branching.

Let us now see what additional information we can glean from
Table 1. Adding the C gate to the NT library appears to significantly
reduce circuit size, but further adding the S gate does not help as
much. To illustrate this, we show sample worst-case circuits on
three wires for the NT, CNT, and CNTS gate libraries in Figure 7.

The totals in Table 1, can be independently determined by the
following arguments. Every reversible function on three wires can
be synthesized using the CNT gate library [14], and there are 8!=
40;320 of these. All can be synthesized with the NT library be-
cause the C gate is redundant in the CNT library; see Figure 2a.
On the other hand, adding the S gate to the library cannot decrease
the number of synthesizable functions. Therefore, the totals in the
NT and CNTS columns must be 40;320 as well. On the other
side of the table, the number of possible N circuits is just 23 = 8
since there are three wires, and there can be at most one N gate per
wire in an optimal circuit (else we can cancel redundant pairs.) By
Propositions 6 and 7, the number of CN-constructible permutations
should be the product of the number of N-constructible permuta-
tions and the number of C constructible permutations, since any
CN-constructible permutation can be written uniquely as a product
of an N-constructible and a C-constructible permutation. So the to-
tal in the CN column should be the product of the totals in the C
and N columns, which it is. Similarly, the total in the CNT column
should be the product of the totals in the CT and N columns; this
allows one to deduce the total number of CT-constructible permu-
tations from values we know. Finally, Proposition 1 states that the
number of permutations implementable onn wires with C gates is
∏n�1

i=0 (2
n�2i). Forn= 3 this yields 168 and agrees with Table 1.

1Although complete statistics for all 16! 4-wire functions are be-
yond our reach, average synthesis times are less than one second
when the input function can be implemented with eight gates or
less. Functions requiring nine or more gates tend to take more than
1.5 hours to synthesize. In this case memory constraints limit our
circuit library to 4-gate circuits, and the large jump in runtime after
the 8-gate mark is due to an extra level of recursion.



Figure 7: Worst-caseL-circuits where L is NT, CNT and CNTS.

We can also add to the discussion of TjC constructible circuits
we began in Section 3. By Proposition 7, the number of TjC-
constructible permutations can be computed as the product of the
numbers of T-constructible and C-constructible permutations. Ta-
ble 1 mentions 24 T-circuits and 168 C-circuits on three wires. The
product, 4032, is less than 5040, the number of CT constructible
permutations on three wires. Therefore:

PROPOSITION 10. There exist CT constructible permutations
in S8 which are not TjC constructible.

Finally, we observe that the longest optimal C-circuits on 3, 4
and 5 wires merely permute the wires. Our experimental data sup-
ports the conjecture that no optimal C-circuit onn wires has more
than 3(n�1) gates, and the ones with 3(n�1) gates represent wire
permutations that leave no wire fixed. However, an information-
theoretic counting argument shows that the optimal gate count in an
optimal C-circuit is at leastO(n2=log(n)). This asymptotic bound
is produced by comparing the number of unique C-circuits onn
wires and the number of circuits formed by chains of up tod C
gates [12]. Identifying specific worst-case circuits and describing
families with worst-case asymptotics remains a challenge.

5. QUANTUM SEARCH APPLICATIONS
Quantum computation is necessarily reversible, and quantum cir-

cuits generalize their reversible counterparts in the classical domain
[9]. Instead of wires, information is stored onqubits, whose states
we write asj0i andj1i instead of 0 and 1. There is an added com-
plexity — a qubit can be in asuperposition statethat combines
j0i and j1i. Specifically,j0i and j1i are thought of as vectors of
the computational basis, and the value of a qubit can be any unit
vector in the space they span. The scenario is similar when con-
sidering many qubits at once: the possible configurations of the
corresponding classical system are now the computational basis,
and any unit vector in the linear space they span is a valid con-
figuration of the quantum system. Just as the classical configura-
tions of the circuit persist as basis vectors of the space of quantum
configurations, so too classical reversible gates persist in the quan-
tum context. Non-classical gates are allowed; in fact, any (invert-
ible) norm-preserving linear operator is allowed as a quantum gate.
However, quantum gate libraries often have very few non-classical
gates [9]. An important example of a non-classical gate (and the
only one used in this paper) is the Hadamard gateH. It operates
on one qubit, and is defined as follows:Hj0i = 1p

2
(j0i+ j1i), and

Hj1i = 1p
2
(j0i� j1i). Note that becauseH is linear, giving the

images of the computational basis elements defines it completely.
During the course of the computation, the quantum state can be

anywhere in the linear space spanned by the computational basis.
However, a serious limitation is imposed by quantum measurement,
performed after a quantum circuit is executed. A measurement non-
deterministically collapses the state onto some vector in a basis cor-
responding to the measurement being performed. The probabilities
of outcomes depend on the measured state — basis vectors [nearly]
orthogonal to the measured state are least likely to appear as out-
comes of measurement. For example, ifHj0i were measured in the

computational basis, it would be seen asj0i half the time, andj1i
the other half.

Despite this limitation, quantum circuits have significantly more
computational power than classical circuits. In this work, we con-
sider Grover’s search algorithm, which is provably faster than any
non-quantum algorithm for the same problem [4]. Grover’s algo-
rithm selects one ofN unordered items that satisfy a given pre-
dicate. No structural information about the predicate is used — it
is treated as a black box. Grover’s algorithm completes inΘ(

p
N)

time, not counting the evaluation of the predicate, thereby achie-
ving a quadratic speedup over the best possible classical algorithms
if no structural information about the predicate is used in search.
Grover’s algorithm presupposes that the desired items are indexed
from 0 to 2n� 1 (padding is required whenN is not a power of
two). Its first step is to useH gates to bring the system into a super-
position of all the computational basis states. Then, a transforma-
tion called theGrover operatoriteratively changes the state of the
system so that subsequent measurement will, with high probability,
yield this index. Since the result can be easily verified and since the
input is classical, the procedure can be repeated until successful. If
the procedure guarantees success with probability> 0:5, relatively
few (poly(n)) repetitions are required to decrease the overall prob-
ability of failure below that of classical computers.

To implement the Grover operator, one needs anoracle circuit
that represents the search predicatef (x). This circuit transforms
an arbitrary basis statejxi to the state(�1) f (x)jxi. The oracle
is followed by (i) several Hadamard gates, (ii) a subcircuit which
flips the sign on all computational basis states other thanj0i, and
(iii) more Hadamard gates. A sample Grover-operator circuit for
a search on 2 qubits is shown in Figure 8 and uses one qubit of
temporary storage [9]. The search space here isf0;1;2;3g, and the
desired indices are 0 and 3. The oracle circuit is highlighted by
a dashed line. While the portion following the oracle is fixed, the
oracle may vary depending on the search criterion. Unfortunately,
most works on Grover’s algorithm do not address the synthesis of
oracle circuits and their complexity. According to Bettelli et al.
[3], this is a major obstacle for automatic compilation of high-level
quantum programs, and little help is available.

PROPOSITION 11. With one temporary storage qubit, the prob-
lem of synthesizing a quantum circuit that transforms computa-
tional basis statesjxi to (�1) f (x)jxi can be reduced to a problem
in the synthesis of classical reversible circuits [9].
Proof: Define the permutationπ f by π f (x;y) = (x;y� f (x)), and
define a unitary operatorUf by letting it permute the states of the
computational basis according toπ f . The additional qubit is ini-

tialized to j�i = Hj1i so thatUf jx;�i = (�1) f (x)jx;�i. If we

H

H

H H H

H

HH

H

H

Figure 8: A Grover-operator circuit with oracle highlighted.



Size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
XOR 1 4 6 4 4 12 18 12 6 12 19 16 10 8 10 16 19 12 6 12 18 12 4 4 6 4 1
OPT T 1 4 6 4 4 12 21 24 29 33 44 46 22 5 1 0 0 0 0 0 0 0 0 0 0 0 0
OPT 1 7 21 35 36 28 28 36 35 21 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Circuit size distribution of 3+2 ROM based circuits synthesized using various algorithms.

Circuit Size 0 1 2 3 4 5 6 7 Total
No. of circuits 1 7 21 35 35 24 4 1 128

Table 3: Optimal 3+1 oracle circuits for Grover’s search.

now ignore the value of the last qubit, the system is in the state
(�1) f (x)jxi, which is exactly the state needed for Grover’s algo-
rithm. Since a quantum operator is completely determined by its
behavior on a given computational basis, any circuit implement-
ing π f implementsUf . In particular, since reversible gates may be
implemented with quantum technology, we can synthesizeUf as a
reversible logic circuit.

Quantum computers implemented so far are severely limited by
the number of simultaneously available qubits. Whilen qubits are
necessary for Grover’s search, one should try to minimize the num-
ber of additional temporary storage qubits. One such qubit is en-
tailed by Proposition 11 to convert classical reversible circuits to
alter the phase of quantum states. Another qubit is required to syn-
thesize circuits for oddπ f , according to Proposition 4. Construc-
tively, given π f , we can use the algorithm of Section 4 to find an
optimal circuit for it. Figure 3 gives the optimal circuit sizes of
functionsπ f corresponding to 3-input 1-output functionsf (“3+1
oracles”) which can be synthesized on four wires. These circuits
are significantly smaller than many optimal circuits on four wires.
This is not surprising, as they perform less computation.

In Grover oracle circuits, the main input lines preserve their input
values and only the temporary storage lines can change their val-
ues. Therefore, Travaglione et al. [15] studied circuits where some
lines cannot be changed even at intermediate stages of computa-
tion. In their terminology, a circuit withk lines that we are allowed
to modify and an arbitrary number of read-only lines is called a
k-bit ROM-based circuit. They show how to compute permutation
π f arising from a Boolean functionf using a 1-bit quantum ROM-
based circuit, and prove that if only classical gates are allowed,
two writable bits are necessary. Two bits are sufficient if the CNT
gate library is used. Their synthesis algorithms rely on XOR sum-
of-products decompositions off . We outline their method in the
Appendix, in a proof of the following result.

PROPOSITION 12. There exists a reversible 2-bit ROM based
CNT-circuit computing(x;a;b)! (x;a;b� f (x)), where x is a k-bit
input. If a function’s XOR decomposition consists of only one term,
let k be the number of literals appearing (without complementation)
If k > 0 then there will be3�2k�1�2 gates. [15].

We apply the construction given in the Appendix to all 256 func-
tions implementable in 2-bit ROM based circuits with 3 bits of
ROM. The circuit size distribution is given in the line labeled XOR
in Table 2. That is compared with optimal circuit sizes produced
by the algorithm from Section 4. The line OPT T gives the size
distribution of circuits synthesized under the restriction [15] that at
most one control bit per gate be a ROM bit, which is observed by
the heuristic based on XOR decomposition. This is why, for allj ,
the sum of the firstj numbers in the OPT T line is greater than or

equal to that in the XOR line. Travaglione et al [15] mention that
their results do not depend on the above restriction, and the OPT
line of Table 2 relaxes it.2

Most functions computable by a 2-bit ROM-based circuit actu-
ally require two writeable bits [15]. Whether or not a given func-
tion can be computed by a 1-bit ROM-based CNT-circuit, can be
determined by the following constructive procedure. Observe that
gates in 1-bit ROM circuits can be reordered arbitrarily, as no gate
affects the control-bits of any other gate. Thus, whether or not a C
or T gate flips the controlled bit, depends only on the circuit inputs.
Furthermore, multiple copies of the same gate on the same wires
cancel out, and we can assume that at most one is present in an op-
timal circuit. A synthesis procedure can then check which gates are
present by applying the permutation on every possible input com-
bination with zero, one, or two 1s in its binary expansion. If the
value of the function is 1, the circuit must have a N, C or T gate
controlled by those bits.

Observe that adding the S gate to the gate library duringk+1
ROM synthesis will never decrease circuit sizes — no two wires
can be swapped since at least one of them is a ROM wire. In the
case ofk+2 ROM synthesis, only the two non-ROM wires can be
swapped, and one of them must be returned to its initial value by the
end of the computation. We ran an experiment comparing circuit
lengths in the 3+2 ROM-based case and found no improvement in
circuit sizes upon adding the S gate, however we have been unable
to prove this in the general case.

6. CONCLUSIONS
We have explored a number of promising techniques for syn-

thesizing optimal and near-optimal reversible circuits that require
little or no temporary storage. In particular, we have proven con-
structively that every even permutation function can be synthesized
without temporary storage using the CNT gate library, and our
proof is the basis of a reasonably efficient heuristic synthesis al-
gorithm. We have also derived various equivalences among CNT-
circuits that are useful for synthesis purposes. Our experimental
data for optimal reversible circuits on three wires using various
subsets of the CNTS library reveals some interesting characteris-
tics of these circuits. Finally, we have applied our approach to the
design of oracle circuits for a key quantum computing application,
Grover’s search algorithm, and obtained much smaller circuits than
previous methods.

While the algorithm to synthesize optimal circuits scales better
than its counterparts for irreversible computation [7], it is still lim-
ited by an exponentially growing search space. In on-going work,
we are attempting to extend the proposed methods to handle larger
and more general reversible circuits, with the eventual goal of syn-
thesizing quantum circuits containing dozens of qubits.

2Using a circuit library with� 6 gates (191Mb file, 1.5 min to
generate), the OPT line takes 5 min to generate. For the OPT T
line, we first find the 250 optimal circuits of size� 12 (15 min)
using a 6-gate library (61Mb, 5min). The remaining 6 functions
were synthesized in 5 min with a 7-gate library (376Mb, 10 min).
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Appendix
Below we state and prove technical results used in Section 3 and
then detail a proof of Propostion 12.

PROPOSITION 13. For n� 5, we can write any permutation in
An as the product of no more than n pairs of disjoint transpositions.

Proof: Fix π 2 An. Then take the cycle decomposition ofπ and
decompose each cycle into transpositions to writeπ as a product
of c(π) � n transpositions. Sinceπ is even, we knowc(π) = 2k
for somek. Pair up the 2i-th and(2i +1)-st transpositions. Some
of these pairs can not be disjoint, but sincen � 5 we can write
(a;b)(a;c) = (a;b)(d;e)(d;e)(a;c) whered 6= e are distinct from
a;b;c. Thus breaking up non-disjoint pairs, we writeπ as a product
of 2k= c(π)� n pairs of transpositions.

PROPOSITION 14. Let n� 4, and a;b;c;d be distinct integers
between0 and n�1. Then there exists a constructable permutation
π 2 A2n such thatπ(a) = 0, π(b) = 1, π(c) = 2, andπ(d) = 3. It
takes at most2n N gates,4(n+1) C gates, and2(n�2) T gates.
Proof: Start with an empty circuit and place N gates on every line
corresponding to a 1 in the binary expansion ofa. Let π0 be the
permutation performed by the circuit so far;π0(a) = 0. Sinceb 6= a,
so π0(b) 6= 0 and thereforeπ0(b) has at least one 1 in its binary
expansion. Say it’s on thek-th line; then using C gates controlled
on thek-th line, flip any other non-zero bits ofb0. Finally, if k 6= 1,
swap thek-th bit and the 0-th bit. This can always be done using 3
C gates, as in Figure 2. In this case, since we know that the bottom
bit is 0 and thek-th bit is 1, we need only 2.

Let π1 be the permutation performed by the circuit so far. by
construction,π1(b) = 1, and since C gates fix 0, we haveπ1(a) =
π0(a) = 0. As before,c 6= b;a =) π1(c) 6= 1;0 henceπ1(c) has
a 1 somewhere in its binary expansion other than the lowest bit,
say in thep-th bit. Using the algorithm of the previous paragraph,
flip every other bit to 0 and then swap thep-th and 2-nd bit; we
note that again we have not affected 0, and none of our C gates
have been controlled on the bottom line, we cannot move 1. The
permutationπ2 performed by the circuit thus far has the property
thatπ2(c) = 2, π2(b) = 1, π2(a) = 0.

Finally, observe thatπ2(d) � 3; if it is in fact 3 then we are
done, if not then we haveπ2(d) � 4, and some bit in the binary
expansion ofπ2(d) other than the lowest two bits must be 1; let it
be theq-th bit. Then using C gates controlled theq-th bit, flip the
bottom two wires to 1 if necessary, and use T gates controlled on
these bottom two bits to clear off the rest of the wires. We are now
done, as none of these gates affect 0;1;2, and this subcircuit sends
π2(d)! 3. A careful count of the gates used verifies the final claim
of the proposition.

PROPOSITION 12. There exists a reversible 2-bit ROM based
CNT-circuit computing(x;a;b)! (x;a;b� f (x)), where x is a k
bit input. If a function’s XOR decomposition consists of only one
term, let k be the number of literals appearing (without comple-
mentation) If k> 0 then there will be3�2k�1�2 gates. [15].
Proof: Assume we are given an XOR sum-of-products decompo-
sition of f . Then it suffices to know how to transform(x;a;b)!
(x;a;b� p) for an arbitrary product of uncomplemented literalsp,
because then we can add the terms in an XOR decomposition term
by term. So, without the loss of generality, letp= x1 : : :xm. De-
note byT(a;b;c) a T gate with controls ona;b and inverter onc.
Similarly, denote byC(a;b) a C gate with control ona and inverter
onb. Number the ROM wires 1: : :k, and the non-ROM wiresk+1
and k+ 2. Let us first suppose that there is at least one uncom-
plemented literal, and put aC(1;k+ 2) on the circuit; note that
C(1;k+2) applied to the input(x;a;b) gives(x;a;b�x1). We will
write this asC(1;k+2) : (x;a;b)! (x;a;b� x1), and denote this
operation byV1. Then, we define the circuitV 0

2 as the sequence
of gatesT(2;k+2;k+1)V0T(2;k+2;k+1)V0, and one can check
thatV 0

2 : (x;a;b)! (x;a� x1x2;b). We defineV2 by exchanging
the wiresk+1 andk+2; clearlyV2 : (x;a;b)! (x;a;b�x1x2). In
general, given a circuitVl : (x;a;b�x1 : : :xl�1)! (x;a�x1 : : :xl ),
we defineV 0

l+1 := T(l + 1;k+ 2;k+ 1)Vl T(l + 1;k+ 2;k+ 1)Vl ;
one can check thatV 0

l+1 : (x;a;b)! (x;a� x1 : : :xl+1;b). Define
Vl+1 by exchanging the wiresk+1 andk+2; then clearlyVl+1 :
(x;a;b)! (x;a;b�x1 : : :x1+1). By induction, we can get as many
uncomplemented literals in this product as we like.


