
Reversible Logic Synthesis with Minimal Usage of
Ancilla Bits

by

Siyao Xu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2015

Certified by. .
Prof. Scott Aaronson

Associate Professor
Thesis Supervisor

Accepted by .
Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

Reversible Logic Synthesis with Minimal Usage of Ancilla Bits

by

Siyao Xu

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Reversible logic has attracted much research interest over the last few decades, espe-
cially due to its application in quantum computing. In the construction of reversible
gates from basic gates, ancilla bits are commonly used to remove restrictions on the
type of gates that a certain set of basic gates generates. With unlimited ancilla bits,
many gates (such as Toffoli and Fredkin) become universal reversible gates. However,
ancilla bits can be expensive to implement, thus making the problem of minimizing
necessary ancilla bits a practical topic.

This thesis explores the problem of reversible logic synthesis using a single base
gate and a few ancilla bits. Two base gates are discussed: a variation of the 3-
bit Toffoli gate and the original 3-bit Fredkin gate. There are three main results
associated with these two gates: i) the variated Toffoli gate can generate all 𝑛-bit
reversible gates using 1 ancilla bit, ii) the variated Toffoli can generate all 𝑛-bit
reversible gates that are even permutations using no ancilla bit, iii) the Fredkin gate
can generate all 𝑛-bit conservative reversible gates using 1 ancilla bit. Prior to this
paper, the best known result for general universality requires three basic gates, and
the best known result for conservative universality needs 5 ancilla bits.

The second result is trivially optimal. For the first and the third result, we explic-
itly prove their optimality: the variated Toffoli cannot generate all 𝑛-bit reversible
gates without using any extra input lines, and the Fredkin gate cannot generate all
𝑛-bit conservative reversible gates without using extra input lines. We also explore a
stronger version of the second converse by introducing a new concept called borrowed
bits, and prove that the Fredkin gate cannot generate all 𝑛-bit conservative reversible
gates without ancilla bits, even with an unlimited number of borrowed bits.

Thesis Supervisor: Prof. Scott Aaronson
Title: Associate Professor

3

Acknowledgments
First of all, I would like to express my sincere gratitude towards Prof. Scott Aaronson,
my M.Eng. supervisor, who guided me in my research and provided me with a lot of
useful resources and advice. I would also like to thank Prof. Dana Moshkovitz, my
academic advisor, for helping me find this project that I love.

I would like to thank Qian Yu, my fiancé, for teaching me the basics of quantum
computing, and inspiring me on important techniques used in this thesis. Most im-
portantly, Qian provided me with mental support without reservation, which helped
me through difficult times during my research.

In addition, I thank all my friends for making my last year at MIT fun and
meaningful.

Last but not least, my greatest gratitude goes to my parents for always respecting
my decisions and providing me with unwavering support.

4

Contents

1 Introduction 9

1.1 Reversible Gates . 9

1.1.1 Definition and Representation 9

1.1.2 Background . 11

1.2 Ancilla Bits . 12

1.3 Toffoli Gate . 12

1.4 Fredkin Gate and Conservative Gates 13

1.5 Problem Statement and Related Work 15

1.6 Organization . 16

2 General Universality With One Borrowed Bit 19

2.1 Toffoli Gate and Universality . 19

2.2 The Variated Toffoli Gate . 20

2.3 Reversible Gate from CiNOT . 20

2.4 CiNOT from Variated Toffoli . 23

2.4.1 Base Cases . 23

2.4.2 Borrowed Bits . 24

2.4.3 General Cases . 25

2.5 Conclusion . 27

3 Constructing Even Permutations without Ancilla Bits 29

5

4 Conservative Universality Using One Ancilla Bit 33

4.1 From CiSWAP to Conservative Reversible Gates 34

4.2 Constructing CiSWAP . 36

4.2.1 The Ancilla Bit Construction 36

4.2.2 The Borrowed Pair Construction 37

4.2.3 Merged construction for CiSWAP 38

4.3 Necessity of Ancilla Bits . 39

5 Conclusions and Further Work 43

A Small Gate Cannot Be Universal Without Ancilla Bits 45

B Decomposing Permutation into Basic Operations 47

6

List of Figures

1-1 Circuit and truth table representations of the Toffoli gate. 13

1-2 Circuit and truth table representations of the Fredkin gate. 14

2-1 The circuit and truth table representations of the variated Toffoli gate. 20

2-2 Circuit representation for 𝑡1. 22

2-3 Circuit representation for 𝑡2. 23

2-4 Construction of C4NOT from C3NOT. 27

4-1 Two phases constructing the transposition between two strings. . . . 35

7

8

Chapter 1

Introduction

1.1 Reversible Gates

1.1.1 Definition and Representation

In logic circuits, a reversible gate is defined as a gate where no information is lost

in the process of computing the output from the input. Strictly speaking, an 𝑛-bit

reversible gate takes in 𝑛 bits of input and returns 𝑛 bits of output, and when given

the output, we can unambiguously reconstruct the input from that information. For

example, the NOT gate, which implements logical negation, is reversible because the

input can be reconstructed by inverting the output. The AND gate, which implements

logical conjunction, is not reversible because 4 different inputs produce only 2 different

outputs; specifically the output 0 has 3 different inputs mapped to it.

There are many ways to represent reversible gates. In this paper, we use mainly

the following two forms of representation: permutation and sum of products.

Permutation: We consider all the possible inputs to an 𝑛-bit reversible gate as

a set of binary strings. This set 𝐼𝑛 = {0, 1}𝑛 contains 2𝑛 elements. Since the output

of an 𝑛-bit reversible gate also consist of 𝑛 bits, the set of all possible outputs is also

𝐼𝑛.

9

In order to allow for unambiguously reconstructing the input, the inputs must be

mapped to the outputs one-on-one. In other words, an 𝑛-bit reversible gate can be

represented as a permutation of the set 𝐼𝑛. As a result, there are (2𝑛)! 𝑛-bit reversible

gates.

Permutations have all kinds of properties that may be useful for classifying dif-

ferent reversible gates. In particular, we will be using the parity and the cycle repre-

sentation of permutations in this paper to prove several results about reversible gate

constructions.

Sum of Products: A gate (not necessarily reversible) can be represented as an

arithmetic expression on the field of F2. An AND gate can be represented as 𝑎 · 𝑏

where 𝑎 and 𝑏 are the two input bits. A XOR gate can be represented as 𝑎 + 𝑏. A

NOT gate is 𝑎+1, where 𝑎 is the input bit. Because any gate can be constructed by

cascading a certain number of AND and XOR gates in some order, we can translate

the cascading sequence into an arithmetic expression. After expanding it, we will get

a representation of the gate in the form of a sum of products.

Since all the operations happen on F2, certain properties hold true apart from

associativity and commutativity laws for regular addition and multiplication.

Lemma 1. In the gate representation using the sum of products, the following hold

true:

(1) 𝑎+ 𝑎 = 0

(2) if 𝑎 ̸= 𝑏, 𝑎𝑏 = 0

(3) 𝑎 · 𝑎 = 𝑎

The representation using the sum of products is useful when we want a compact

way of expressing the reversible gate output. It usually takes a more concise form

than a complete truth table.

10

Apart from the two forms we just introduced, other common ones exist such as

circuit representations, but for complicated gates they are much more difficult to

analyze.

1.1.2 Background

Reversible logic provides a large potential in energy-efficient computers. Landauer’s

Principle [6] provides a lower bound on the energy loss for each bit of information that

is erased during computation. Since no information is erased in reversible computing,

devices built using purely reversible circuits can potentially achieve energy efficiency

greater than that bounded using Landauer’s Principle. Such observation motivated

research in reversible computing. Furthermore, recent decades have seen the flour-

ishing of quantum computing, which attracted more research interest in reversible

computing since reversible circuits serve as important components in many quantum

algorithms.

Among the most extensively studied problems in reversible computing, one of the

most fundamental is the question of universality. In other words, we are interested

in whether all reversible gates can be constructed using certain basic reversible gates.

We formally define universality as follows.

Definition 1. Denote the universe of all reversible gates by 𝒰 . Let 𝑆 be a small subset

of 𝒰 . For each gate 𝑔 in 𝒰 , we aim to represent it as a cascade of a sequence of gates

(𝑔1, 𝑔2, ..., 𝑔𝑘), where each 𝑔𝑖 is a gate in 𝑆. If we are able to find such representations

for all gates in 𝒰 , then we call the subset 𝑆 universal.

Just like NAND and NOR in the set of general gates, we are also interested in

finding a small single reversible gate that is universal in 𝒰 . However, we can prove

that no single reversible gate with a constant number of input bits can be universal

without additional conditions. (See Appendix A) One way to make a non-universal

gate universal, however, is to provide extra input lines called ancilla bits.

11

1.2 Ancilla Bits

An ancilla bit provides extra computational power to a gate by serving as an extra

input line with a fixed input. For example, a 3-bit gate could request an ancilla bit

with input 1, allowing itself to operate on 4 input bits in total. The ancilla bit can

have its value changed in intermediate steps, but to maintain the reversibility of the

gate, the ancilla bit has to be returned to its original value (1 in this example) as

part of the output. An ancilla bit that is not guaranteed to be reset to its original

value is said to produce a garbage output bit.

Definition 2. Let 𝑔 be a 𝑘-bit reversible gate in 𝒰 , where 𝑘 is a constant. Let 𝒰𝑛

denote the set of all 𝑛-bit reversible gates. For each gate 𝑔𝑛 in 𝒰𝑛, we aim to find

a cascade of 𝑔 operating on different input lines. In addition, we are allowed to use

𝑏 ancilla bits with constant values (𝑐1, 𝑐2, ..., 𝑐𝑏) where 𝑐𝑖 ∈ {0, 1}. The cascade of 𝑔

should be equivalent to 𝑔𝑛 disregarding the ancilla output lines. In other words, if 𝑔𝑛

maps input (𝑖1, 𝑖2, ..., 𝑖𝑛) to output (𝑜1, 𝑜2, ..., 𝑜𝑛), then the cascade of 𝑔 plus 𝑏 ancilla

bits should map input (𝑖1, 𝑖2, ..., 𝑖𝑛, 𝑐1, 𝑐2, ..., 𝑐𝑏) to output (𝑜1, 𝑜2, ..., 𝑜𝑛, 𝑐1, 𝑐2, ..., 𝑐𝑏). If

such a cascade can be found for any gate in 𝒰𝑛, we call the gate 𝑔 𝑛-bit universal with

𝑏 ancilla bits.

Many 3-bit reversible gates are 𝑛-bit universal given sufficient ancilla bits, allowing

for garbage output bits. Two common examples are the Toffoli gate and the Fredkin

gate.

1.3 Toffoli Gate

The Toffoli gate, or the Controlled-Controlled-Not (𝐶2𝑁𝑂𝑇) gate, was first invented

by Toffoli [12]. It is 𝑛-bit universal given unlimited ancilla bits. Given three input

bits (𝑎, 𝑏, 𝑐), the Toffoli gate inverts 𝑐 if and only if both 𝑎 and 𝑏 are 1, and it keeps

12

𝑎 and 𝑏 unchanged. Figure 1-1 shows the circuit and the truth table representations

of the Toffoli gate.

Figure 1-1: Circuit and truth table representations of the Toffoli gate.

In the circuit representation, the top two lines are called the control lines, and the bottom
line is called the target line.

We can also represent Toffoli gate using the sum of product representation men-

tioned in Section 1.1.1. 𝑎𝑏 is equal to 1 if and only if both 𝑎 and 𝑏 are 1, so the Toffoli

gate will return output (𝑎, 𝑏, 𝑎𝑏+ 𝑐).

By adding more control lines to the Toffoli gate, we get multi-control Toffoli

gates. A multi-control Toffoli gate with 𝑘 control lines (CkNOT) takes in input

(𝑎1, 𝑎2, ..., 𝑎𝑘, 𝑏), keeps the first 𝑘 bits unchanged, and inverts the last bit 𝑏 if and only

if all the first 𝑘 bits are 1. Using the same sum of products representation, CkNOT

produces output (𝑎1, 𝑎2, ..., 𝑎𝑘, 𝑏+
∏︀𝑘

𝑖=1 𝑎𝑖).

1.4 Fredkin Gate and Conservative Gates

Another common gate that is 𝑛-bit universal with sufficient ancilla bits is the Fredkin

gate, also know as CSWAP , invented by Fredkin [4]. Given three input bits (𝑎, 𝑏, 𝑐),

the Fredkin gate swaps 𝑏 and 𝑐 if and only if 𝑎 is 1. It keeps 𝑎 unchanged. Figure 1-2

shows the circuit and the truth table representations of the Fredkin gate.

13

Figure 1-2: Circuit and truth table representations of the Fredkin gate.

In the circuit representation, the top line is called the control line, and the bottom two
lines are called the target lines.

We can also represent the Fredkin gate using the sum of products representation.

Input (𝑎, 𝑏, 𝑐) corresponds to output (𝑎, (1− 𝑎)𝑏+ 𝑎𝑐, (1− 𝑎)𝑐+ 𝑎𝑏), which simplifies

to (𝑎, 𝑏+ 𝑎𝑏+ 𝑎𝑐, 𝑐+ 𝑎𝑏+ 𝑎𝑐).

By adding more control lines to the Fredkin gate, we get multi-control Fredkin

gates. A multi-control Fredkin gate with 𝑘 control lines (CkSWAP) takes in input

(𝑎1, 𝑎2, ..., 𝑎𝑘, 𝑏, 𝑐), keeps the first 𝑘 bits unchanged, and swaps the last 2 bits 𝑏 and 𝑐

if and only if all the first 𝑘 bits are 1. Using the same sum of products representation,

CkSWAP produces output (𝑎1, 𝑎2, ..., 𝑎𝑘, 𝑏(1 −
∏︀𝑘

𝑖=1 𝑎𝑖) + 𝑐
∏︀𝑘

𝑖=1 𝑎𝑖, 𝑐(1 −
∏︀𝑘

𝑖=1 𝑎𝑖) +

𝑏
∏︀𝑘

𝑖=1 𝑎𝑖).

An interesting property of the Fredkin gate is that it performs a conditional swap

on the input bits, thus not changing the Hamming weight of the input string. We call

this type of gate conservative. Conservative gates have the following property which

is trivial to prove:

Lemma 2. If a gate 𝑔 can be constructed as the cascade of a sequence of conservative

gates, then gate 𝑔 must also be conservative.

This lemma indicates that any gate constructed by cascading Fredkin gates and

14

multi-control Fredkin gates must also be conservative. When using ancilla bits we

need to return them to their original values, so even with unlimited ancilla bits,

we are still unable to construct non-conservative gates using Fredkin gates without

producing any garbage output.

Another question to ask about Fredkin gates is whether they are universal within

the set of conservative gates, i.e. whether any 𝑛-bit conservative gate can be con-

structed using Fredkin gates with sufficient ancilla bits. This problem has practical

applications in conservative logic synthesis and other topics. The answer is that Fred-

kin gate is 𝑛-bit universal in the subset of conservative gates using sufficient ancilla

bits, without producing garbage output. [4]

1.5 Problem Statement and Related Work

Ancilla bits help remove certain constraints on the type of gates that a base gate can

generate. For example, cascading Toffoli gates cannot generate any 𝑛-bit gate that

maps the all-zero input to a non-all-zero output, but it can do so by using ancilla bits

with values set to 1.

However, ancilla bits have high implementation cost, thus making minimizing the

necessary number of ancilla bits a practical problem. This thesis explores two main

questions in this category: What is the minimum number of ancilla bits needed in

order for a small reversible gate to be 𝑛-bit universal? What is the minimum number

of ancilla bits needed for a small conservative reversible gate to be 𝑛-bit universal in

the set of all conservative reversible gates?

The topic of reversible logic synthesis has been attracting research interest for

decades. Due to the difference in their applications, various synthesis methods were

proposed using different optimization metrics and base gate constraints. Toffoli [12]

first proved that the Toffoli gate is universal, using a recursive construction on the

15

multi-control Toffoli gates. However, this method is not optimized. The paper also

proved that, when using only the Toffoli gate as the base gate, a minimum number

of 2 ancilla bits are needed just to generate the NOT gate. Shende et al. [11] later

provided a construction for any even permutation reversible gate using no ancilla bit,

with the NCT library (NOT, CNOT, Toffoli) as the set of base gates. However, this

result uses three gates for construction instead of one. Aaronson et al. [1] proposed

a new construction for any reversible gate using only the Toffoli gate with 3 ancilla

bits, and a construction for any conservative reversible gate using the Fredkin gate

and 5 ancilla bits.

Apart from minimizing the number of ancilla bits, two other commonly used

metrics are gate complexity and circuit depth [10]. Various synthesis methods have

been proposed in order to minimize gate complexity [3, 5, 7, 8]. These methods

usually use multiple base gates as the generating set, for example, the NCT library,

and sometimes the NCTSFP library (NCT plus SWAP, Fredkin, and Peres [9]). Also,

the number of ancilla bits is not minimized in these synthesis methods.

1.6 Organization

This thesis focuses on minimizing the number of ancilla bits needed by any single base

gate. Chapter 2 introduces a construction of any reversible gate using a variation of

the Toffoli gate with 1 ancilla bit. Compared to the construction by Shende et al.,

this construction needs only a single gate as the base gate. We also define a new

concept called the borrowed bit, which is a weaker version of the ancilla bit, and

argue that 1 borrowed bit is enough for the above construction. Chapter 3 introduces

a construction of any even permutation reversible gate using the variation of the

Toffoli gate with no extra input line at all. Chapter 4 introduces a construction

of any conservative reversible gate using the Fredkin gate with 1 ancilla bit. This

16

improves the currently best known result [1] by 4 ancilla bits. We also prove that, in

terms of ancilla bits needed, 1 ancilla bit is the best we can achieve, and there exists

no construction using only borrowed bits. Chapter 5 concludes the results and poses

questions that remain to be solved on this topic.

17

18

Chapter 2

General Universality With One

Borrowed Bit

2.1 Toffoli Gate and Universality

There are several reasons why the Toffoli gate cannot be universal without ancilla

bits. First, just like any small gate with a constant number of input bits, Toffoli is

an even permutation when considered as an 𝑛-bit gate that only operates on 3 bits

and leaves the rest unchanged. (See Appendix A) This means that it cannot generate

odd permutations. In addition to that, Toffoli maps input (0, 0, 0) to output (0, 0, 0),

so without any ancilla bits, any cascade using only Toffoli gates must also map the

all-zero input to the all-zero output.

The first restriction applies to any 𝑘-bit gate where 𝑘 is smaller than 𝑛. The

second restriction, however, is specific to the Toffoli gate. We can easily modify the

Toffoli gate to remove this restriction.

19

2.2 The Variated Toffoli Gate

We invent a variation of the Toffoli gate by cascading the Toffoli gate with a NOT

on the second bit afterwards, and name it the variated Toffoli gate. Figure 2-1 shows

its circuit and truth table representations. We can also represent it using the sum of

products: It maps input (𝑎, 𝑏, 𝑐) to output (𝑎, 𝑏+ 1, 𝑎𝑏+ 𝑐).

Figure 2-1: The circuit and truth table representations of the variated Toffoli gate.

From the truth table, it is not hard to see that the variated Toffoli gate is also a

reversible gate. In addition, it maps the (0, 0, 0) input to (0, 1, 0). We claim that the

variated Toffoli gate is 𝑛-bit universal with 1 ancilla bit. The construction comes in

two steps: First we prove that any 𝑛-bit reversible gate can be constructed using a set

of multi-control Toffoli gates. Then we provide a construction for any multi-control

Toffoli gate using the variated Toffoli gate.

2.3 Reversible Gate from CiNOT

We start by constructing any reversible gate using certain multi-control Toffoli gates.

Claim 1. Let 𝑇𝑛 denote the set of gates 𝑁𝑂𝑇,𝐶𝑁𝑂𝑇,𝐶𝐶𝑁𝑂𝑇, ...,CnNOT . Given

any 𝑛-bit reversible transformation 𝑔, there exists a construction of 𝑔 by cascading

gates in 𝑇𝑛.

20

Recall that in the permutation representation of a gate 𝑔, we find an equivalent

permutation 𝜋 on the input set 𝐼𝑛, which consists of all binary inputs of length 𝑛. If

we consider these binary strings as numbers, then equivalently 𝜋 is a permutation on

the set 𝑁 of numbers {0, 1, 2, ..., 2𝑛 − 1}. The following is a well-known result about

decomposing this permutation into a sequence of basic transformations.

Lemma 3. Any permutation 𝜋 on the set 𝑁 = {0, 1, 2, ..., 2𝑛 − 1} can be decomposed

into the following two basic transformations:

(1) 𝑡1: swapping 0 and 1

(2) 𝑡2: shifting 𝑘 to (𝑘 + 1) mod 2𝑛, ∀𝑘 ∈ 𝑁

This lemma reduces the problem of constructing any reversible gate to construct-

ing the 𝑡1 and 𝑡2 gates using multi-control Toffoli gates. A proof of this lemma is

included in Appendix B.

Lemma 4. The 𝑛-bit gates 𝑡1 and 𝑡2 can be constructed by cascading gates from 𝑇𝑛.

Proof. The gate 𝑡1 swaps elements 0 and 1, which, in the original binary settings, is

equivalent to mapping input (0, 0, ..., 0) to (0, 0, ..., 1), mapping input (0, 0, ..., 1) to

(0, 0, ..., 0), and mapping all other inputs to themselves. This is equivalent to inverting

the last bit if and only if all first 𝑛− 1 bits are 0, which is exactly the opposite from

the multi-control Toffoli gate. Thus, 𝑡1 can be constructed by applying NOT to each

of the first 𝑛− 1 bits, followed by a Cn-1NOT with the last bit being the target line,

and finally NOT again for each of the first 𝑛− 1 bits in order to return them to their

original states. Figure 2-2 shows a circuit representation for 𝑡1.

The gate 𝑡2 adds 1 to each element. In the original binary settings, the last bit is

always inverted. The second to last bit is inverted if and only if there was a carry bit

from the addition on the last bit. Similarly, the 𝑖th bit is inverted if and only if there

was a carry bit from the (𝑖+ 1)th bit.

21

Figure 2-2: Circuit representation for 𝑡1.

More specifically, the 𝑖th bit is inverted if and only if all the lower bits are 1, where

𝑖 = 1, 2, ..., 𝑛− 1. Thus 𝑡2 can be implemented as a cascade of the following gates:

(1) NOT on the last bit

(2) CNOT on the last two bits, with the (𝑛− 1)th bit as the target line

(3) C2NOT on the last three bits, with the (𝑛− 2)th bit as the target line

...

(n) Cn-1NOT on all 𝑛 bits, with the highest bit as the target line

Figure 2-3 illustrates the construction on a 5-bit input.

Combining the two lemmas above, we can conclude that any 𝑛-bit reversible gate

can be constructed by cascading multi-control Toffoli gates with up to 𝑛− 1 control

lines.

22

Figure 2-3: Circuit representation for 𝑡2.

2.4 CiNOT from Variated Toffoli

In the previous section we constructed reversible gates using CiNOT , so what remains

to do is to construct CiNOT from the 3-bit variated Toffoli gate. We first examine a

few cases when 𝑖 is small.

2.4.1 Base Cases

When 𝑖 is 1, CiNOT becomes CNOT, which can be implemented by applying the

variated Toffoli twice. We apply the variated Toffoli in the same order as the input,

with the third bit being the target line and the second bit being the inversion line.

Suppose the input is (𝑎, 𝑏, 𝑐), then this will generate the following output:

(𝑎, 𝑏, 𝑐) → (𝑎, 𝑏+ 1, 𝑎𝑏+ 𝑐) → (𝑎, 𝑏, 𝑎(𝑏+ 1) + 𝑎𝑏+ 𝑐) = (𝑎, 𝑏, 𝑎+ 𝑐)

The resulting gate is equivalent to a CNOT on the bits 𝑎 and 𝑐, with 𝑐 being the

target line.

When 𝑖 is 0, CiNOT becomes NOT, which can be implemented using a slightly

23

more complicated procedure:

1. Apply variated Toffoli on the 1st, 2nd, and 3rd bits. Starting with input (𝑎, 𝑏, 𝑐),

this gives us (𝑎, 𝑏+ 1, 𝑎𝑏+ 𝑐).

2. Apply variated Toffoli on the 2nd, 1st, and 3rd bits. This gives us (𝑎 + 1, 𝑏 +

1, 𝑎+ 𝑐).

3. Apply variated Toffoli on the 1st, 2nd, and 3rd bits. This gives us (𝑎+1, 𝑏, 𝑎+

𝑐+ (𝑎+ 1)(𝑏+ 1)) = (𝑎+ 1, 𝑏, 𝑎𝑏+ 𝑏+ 𝑐+ 1).

4. Apply variated Toffoli on the 2nd, 1st, and 3rd bits. This gives us (𝑎, 𝑏, 𝑎𝑏+ 𝑏+

𝑐+ 1 + (𝑎+ 1)𝑏) = (𝑎, 𝑏, 𝑐+ 1).

The resulting gate is equivalent to a NOT gate on 𝑐.

When 𝑖 is 2, CiNOT becomes the regular Toffoli gate, which can be implemented

by a variated Toffoli followed by a NOT on the second bit.

2.4.2 Borrowed Bits

Before constructing the general cases, we introduce a new concept called the borrowed

bit, which is a weaker version of the ancilla bit. The main difference between a

borrowed bit and an ancilla bit is the specification on the input value.

Definition 3. A borrowed bit is an auxiliary input line provided to a gate such that

it could be manipulated by the gate, but must be returned with the same value as its

original state. A borrowed bit could start as either 0 or 1. The gate that requires a

borrowed bit does not have the privilege of specifying its starting value.

Borrowed bits are strictly less powerful than value-specified ancilla bits. However,

their flexibility can make them useful when building reversible gates recursively. For

example, gate 𝐴 requires a borrowed bit and changes it to an unknown intermediate

24

stage during the computation. Gate 𝐵, which is a subroutine used as a building block

for 𝐴, needs another borrowed bit. Then 𝐵 can simply reuse the bit from 𝐴, change

it to anything, and revert it back to the original state before returning it back to 𝐴.

The advantage comes from the fact that gate 𝐵 does not require the auxiliary bit to

start with some particular value.

In practice, borrowed bits are also much cheaper than ancilla bits. Creating value-

specific input lines such as ancilla bits might induce undesirable energy consumption.

The borrowed bits, however, can simply be taken from unused memory. This signifi-

cantly lowers the implementation cost.

2.4.3 General Cases

Now we examine how to construct CiNOT where 𝑖 > 2, using induction. In the

previous section where we construct the reversible gates using CiNOT , no ancilla bit

is necessary. For the construction of CiNOT , we aim at using only one ancilla bit.

An ancilla bit is an auxiliary input line, so with the extra input bit, an (𝑖 + 1)-bit

CiNOT can be expressed as an (𝑖 + 2)-bit gate, where the first (𝑖 + 1) bits are used

to perform CiNOT , and the last bit remains unchanged.

The core idea of this construction is as follows: Assume we know a construction

with at most one ancilla bit for gate Ci-1NOT , then we have a method of constructing

CiNOT from the Ci-1NOT gate using an additional ancilla bit. However, this alone

does not guarantee that the total number of ancilla bits needed for CiNOT is 1.

The reason is that, the Ci-1NOT gate is used within CiNOT as a subroutine; the

ancilla bit required by Ci-1NOT requires a fixed input of 0 or 1, thus it cannot use

the same ancilla bit as the one for the construction of CiNOT , which is currently in

an intermediate stage with an unknown value.

However, this issue can be resolved using the idea of borrowed bits. Assume that

we have a construction for Ci-1NOT using one borrowed bit, then we claim that we

25

can construct CiNOT using another borrowed bit. Since borrowed bits can be reused

in subroutines, the total number of borrowed bits used to construct CiNOT would

merely be 1. The construction of CiNOT (an (𝑖+1)-bit gate) is as follows, assuming

the input is (𝑎1, 𝑎2, ..., 𝑎𝑖, 𝑎𝑖+1, 𝑥) with 𝑎𝑖+1 being the target line and 𝑥 being the

borrowed bit:

(1) Apply Ci-1NOT on the first (𝑖− 1) bits and the last bit, with the last bit being

the target line. This gives us (𝑎1, 𝑎2, ..., 𝑎𝑖, 𝑎𝑖+1, 𝑥 +
∏︀𝑖−1

𝑘=1 𝑎𝑘). Denote the new

value of the last bit (𝑥+
∏︀𝑖−1

𝑘=1 𝑎𝑘) by 𝑥′.

(2) Apply CCNOT on bits (𝑎𝑖, 𝑥′, 𝑎𝑖+1), with 𝑎𝑖+1 being the target line. This gives

us (𝑎1, 𝑎2, ..., 𝑎𝑖, 𝑎𝑖+1+𝑎𝑖(𝑥+
∏︀𝑖−1

𝑘=1 𝑎𝑘), 𝑥
′), which simplifies to (𝑎1, 𝑎2, ..., 𝑎𝑖, 𝑎𝑖+1+

𝑎𝑖𝑥+
∏︀𝑖

𝑘=1 𝑎𝑘, 𝑥+
∏︀𝑖−1

𝑘=1 𝑎𝑘).

(3) Apply Ci-1NOT on the first (𝑖−1) bits and the last bit again to return the bor-

rowed bit to its original value. This gives us (𝑎1, 𝑎2, ..., 𝑎𝑖, 𝑎𝑖+1+𝑎𝑖𝑥+
∏︀𝑖

𝑘=1 𝑎𝑘, 𝑥).

Denote the new value of the target line (𝑎𝑖+1 + 𝑎𝑖𝑥+
∏︀𝑖

𝑘=1 𝑎𝑘) by 𝑎′𝑖+1.

(4) Apply CCNOT on bits (𝑎𝑖, 𝑥, 𝑎′𝑖+1) again, removing the redundant term in 𝑎′𝑖+1.

This gives us (𝑎1, 𝑎2, ..., 𝑎𝑖, 𝑎𝑖+1 +
∏︀𝑖

𝑘=1 𝑎𝑘, 𝑥).

Figure 2-4 illustrates this construction on a 5-bit input, with the last line being

the borrowed bit.

The resulting gate is equivalent to applying CiNOT on the first (𝑖+ 1) bits. The

borrowed bit 𝑥 participated in the computation, but was returned to its original value

eventually. A small subtlety is that we used CCNOT, which is the regular Toffoli gate.

Note that Toffoli can be constructed from the variated Toffoli without any borrowed

bits as explained in Section 2.4.1.

By induction, we have constructed CnNOT using only 1 borrowed bit.

26

Figure 2-4: Construction of C4NOT from C3NOT.

The last line is the borrowed bit, and the second to last line is the target line.

2.5 Conclusion

Combining the two previous sections, we provided a construction of any 𝑛-bit re-

versible gate using the variated Toffoli gate plus at most 1 borrowed bit. We also

saw from previous chapters that a small gate like the variated Toffoli cannot possibly

generate all 𝑛-bit reversible gates using pure cascades with no additional input lines.

Thus, in terms of minimizing the number of ancilla bits needed for 𝑛-reversible gate

construction, we have found an optimal solution. Compared to the other optimal

construction method proposed by Shende et al. [11], our construction uses only a

single base gate.

27

28

Chapter 3

Constructing Even Permutations

without Ancilla Bits

In the previous chapter we discussed the variated Toffoli gate, which can be used to

generate any 𝑛-bit reversible gate using one borrowed bit. One extra input line is

optimal for general universality, but for a special subset of reversible gates, we can

achieve even better results. In this chapter, we explore the set of reversible gates that

are equivalent to even permutations, and prove that the variated Toffoli can generate

any such gate using no extra input line.

Lemma 5 states that any permutation can be broken into one of the two basic

types of transformations 𝑡1 and 𝑡2. To make analysis easier for this chapter, we slightly

tweak the definition of 𝑡1 without changing the correctness.

Lemma 5. Any permutation 𝜋 on the set 𝑁 = {0, 1, 2, ..., 2𝑛 − 1} can be decomposed

into the following two basic transformations:

(1) 𝑡′1: swapping 2𝑛 − 2 and 2𝑛 − 1

(2) 𝑡′2: shifting 𝑘 to (𝑘 + 1) mod 2𝑛, ∀𝑘 ∈ 𝑁

Furthermore, if 𝜋 is an even permutation, then the number of 𝑡′1 and the number of

29

𝑡′2 in the decomposition are both even numbers.

See Appendix B for the proof of this lemma.

Given any even reversible gate 𝑔, consider the sequence of 𝑡′1 and 𝑡′2 that its cor-

responding permutation is broken down into. Since there are an even number of 𝑡′1

and 𝑡′2 respectively, we can break down the sequence into pairs of adjacent transfor-

mations. Thus we only need to figure out how to construct gates corresponding to

each possible pair of transformations using the variated Toffoli gate.

We build the gates recursively. In the previous chapter we already saw how the

variated Toffoli gate can generate NOT, CNOT, and CCNOT without any extra input

lines. We also proved that the set 𝑇𝑛 can generate all 𝑛-bit reversible gates, so the

variated Toffoli can generate any 3-bit gate without any extra input lines. We use

this as our base case.

Assume that a construction exists for any (𝑖− 1)-bit gate that is an even permu-

tation. Now we aim at constructing the 𝑖-bit even permutation gates. We consider

the sequence of 𝑡′1 and 𝑡′2 broken into adjacent pairs; these pairs fall into one of the

four possible cases: (1) 𝑡′1 𝑡′1 (2) 𝑡′2 𝑡′2 (3) 𝑡′1 𝑡′2 (4) 𝑡′2 𝑡′1 . For convenience, we consider

these combined transformations as matrices and denote them as 𝑀1, 𝑀2, 𝑀3, and

𝑀4 respectively.

In the first case, the two 𝑡′1 cancel out, so 𝑀1 is the identity matrix.

In the second case, the combined transformation corresponds to adding 2 to any

input, which is equivalent to leaving the last bit unchanged and adding 1 to the first

(𝑖− 1) bits. This is an even permutation gate with 𝑖− 1 bits, so it is already handled

based on our assumption.

The third case and the fourth case are similar. As an example, we show the

construction for the third case. 𝑀3 consists of 𝑡′1 followed by 𝑡′2 . In the previous

chapter, we saw that 𝑡′2 can be broken into a cascade of NOT, CNOT, CCNOT, ... ,

Ci-1NOT . The highest bit can be used as a borrowed bit for all but the last Ci-1NOT

30

in the sequence, so it remains to be solved how to use the variated Toffoli gate to

generate 𝑡′1 followed by Ci-1NOT with no extra input line. This Ci-1NOT operates

on all the bits, with the highest bit being the target line. Notice that 𝑡′1 , the swap of

2𝑖 − 2 and 2𝑖 − 1, is equivalent to a Ci-1NOT on all 𝑖 bits, with the lowest bit being

the target line.

Suppose that the input is (𝑎, 𝑐1, 𝑐2, ..., 𝑐𝑖−2, 𝑏), then the gate corresponding to these

two Ci-1NOT cascaded together will change the highest bit 𝑎 to 𝑎 + 𝑎
∏︀𝑖−2

𝑘=1 𝑐𝑘 +

𝑏
∏︀𝑖−2

𝑘=1 𝑐𝑘, and change the lowest bit 𝑏 to 𝑏+ 𝑎
∏︀𝑖−2

𝑘=1 𝑐𝑘.

In order to construct such a gate using smaller gates, we consider breaking the

elements (𝑐1, 𝑐2, ..., 𝑐𝑖−2) into roughly even halves. Denote the first half by 𝑥 and the

second half by 𝑦. Let 𝑋 be the product of all elements in 𝑥 and 𝑌 be the product of

all elements in 𝑦. We can construct the gate using a sequence of CkNOT :

(𝑎, 𝑥, 𝑦, 𝑏)

→ (𝑎+ 𝑏𝑋, 𝑥, 𝑦, 𝑏)

→ (𝑎+ 𝑏𝑋, 𝑥, 𝑦, 𝑏+ 𝑎𝑌 + 𝑏𝑋𝑌)

→ (𝑎+ 𝑎𝑋𝑌 + 𝑏𝑋𝑌, 𝑥, 𝑦, 𝑏+ 𝑎𝑌 + 𝑏𝑋𝑌)

→ (𝑎+ 𝑎𝑋𝑌 + 𝑏𝑋𝑌, 𝑥, 𝑦, 𝑏+ 𝑎𝑋𝑌)

Notice that each of these CkNOT gates has fewer than 𝑖 control lines, which are

already handled based on the inductive assumption. This completes the construction

for any conservative reversible gate given all even permutation gates with up to 𝑖− 1

bits. Thus, the variated Toffoli gate can be used to generate any even permutation

reversible gate using no extra input lines.

31

32

Chapter 4

Conservative Universality Using One

Ancilla Bit

Conservative logic gates are a subset of logic gates with practical applications in

modeling physical systems with quantity conservation. The Fredkin gate is a com-

mon conservative reversible gate. In this chapter we examine a way to construct all

conservative reversible gates using 3-bit Fredkin gates plus one ancilla bit.

Fredkin gates are conservative, and thus can only generate conservative transfor-

mations.

We can divide the set 𝐼𝑚 = {0, 1}𝑚 into 𝑚+1 disjoint subsets 𝑆0, 𝑆1, ..., 𝑆𝑚, where

𝑆𝑖 represents the subset of all such strings with Hamming weight 𝑖. 𝑆𝑖 contains
(︀
𝑚
𝑖

)︀
elements.

If we consider a conservative reversible gate as a permutation 𝜋 on 𝐼𝑚, then

due to the fact that conservative gates preserve Hamming weights, 𝜋 must not map

an element in subset 𝑆𝑖 to another element in a different subset 𝑆𝑗. Thus, we can

decompose 𝜋 into permutations within each of the subsets. That is,

𝜋 = 𝜋0 · 𝜋1 · ... · 𝜋𝑚

33

where 𝜋𝑖 denotes the permutation on 𝑆𝑖. This representation for conservative re-

versible gates will be used throughout this chapter.

4.1 From CiSWAP to Conservative Reversible Gates

We consider breaking down the gate construction into permutations, using CiSWAP

to construct each 𝜋𝑘, 𝑘 = 0, 1, ...,𝑚. Basically we aim at constructing any transposi-

tion within 𝑆𝑘 using CiSWAP . 𝑆𝑘 consists of strings with Hamming weight 𝑘. Thus,

we can use Ck-1SWAP as a transposition of any two strings in 𝑆𝑘 with a Hamming

distance of 2. However, Ck-1SWAP also takes effect on strings in 𝑆𝑘+2, 𝑆𝑘+2, ..., 𝑆𝑚−1.

In order to not mess up the permutations on the subsets that have already been

constructed, we build the permutations starting from subsets with lower Hamming

weight.

Now what remains is to construct 𝜋𝑘 using Ck-1SWAP . It suffices to use Ck-1SWAP

to construct any transposition that is part of 𝜋𝑘. Take 𝑆𝑚−2 as an example, and

consider the transposition on two strings 𝑠𝑎,𝑏 and 𝑠𝑐,𝑑, where 𝑠𝑖,𝑗 indicates a string

with locations 𝑖 and 𝑗 being 0. Consider an intermediate string 𝑠𝑏,𝑐. Then we have

the following procedure to swap 𝑠𝑎,𝑏 and 𝑠𝑐,𝑑, propagating through the intermediate

string:

(1) Apply Cm-3SWAP , using bits other than 𝑎, 𝑏, 𝑐 as control lines, and bits 𝑎, 𝑐 as

the target lines. This swaps 𝑠𝑎,𝑏 and 𝑠𝑏,𝑐.

(2) Apply Cm-3SWAP , using bits other than 𝑏, 𝑐, 𝑑 as control lines, and bits 𝑏, 𝑑 as

the target lines. This swaps 𝑠𝑏,𝑐 and 𝑠𝑐,𝑑.

This is based on the assumption that 𝑏 ̸= 𝑐. When 𝑏 = 𝑐, the conversion can be

done using a single Cm-3SWAP .

After these steps, 𝑠𝑎,𝑏 becomes 𝑠𝑐,𝑑, while 𝑠𝑐,𝑑 is now 𝑠𝑏,𝑐. We need one more step

to propagate 𝑠𝑐,𝑑 back to 𝑠𝑎,𝑏:

34

(3) Apply Cm-3SWAP , using bits other than 𝑎, 𝑏, 𝑐 as control lines, and bits 𝑎, 𝑐 as

the target lines. This swaps 𝑠𝑎,𝑏 and 𝑠𝑏,𝑐.

After these steps, we will have swapped 𝑠𝑎,𝑏 and 𝑠𝑐,𝑑 without changing any other

input in 𝑆𝑚−2.

In the general case of 𝑆𝑘 where we want to construct the transposition of two

strings 𝑠1, 𝑠2, we can always find a sequence of intermediate strings between 𝑠1 and

𝑠2, such that each pair of adjacent strings have Hamming distance 2. Thus we can

use Ck-1SWAP to swap any pair of adjacent strings.

The first phase involves shifting 𝑠1 all the way to 𝑠2. This converts 𝑠1 to 𝑠2 while

shifting all other strings in the sequence to the left by 1. The second phase involved

shifting 𝑠2 all the way back to 𝑠1. This converts 𝑠2 to 𝑠1 while shifting all other strings

back to their original locations. Figure 4-1 illustrates the two phases when 𝑠1 and 𝑠2

are Hamming distance 10 away.

Figure 4-1: Two phases constructing the transposition between two strings.

The last line is the borrowed bit, and the second to last line is the target line.

Thus we have a construction of any conservative reversible gate using CkSWAP .

35

4.2 Constructing CiSWAP

We consider a recursive implementation of CiSWAP , similar to the process for con-

structing CiNOT . We explore two methods of constructing CiSWAP from Ci-1SWAP.

The first method uses an ancilla bit, while the second method uses a borrowed pair of

bits that are opposite. The final construction for CiSWAP merges the two methods

and uses one ancilla bit in total.

4.2.1 The Ancilla Bit Construction

This construction requires an ancilla bit with its original value set to 0. Assume the

input is (𝑎1, 𝑎2, ..., 𝑎𝑖+1, 𝑎𝑖+2, 𝑥) with (𝑎𝑖+1, 𝑎𝑖+2) being the target lines and 𝑥 being

the ancilla bit, whose initial value is set to 0. We also assume that there exists a con-

struction for Ci-1SWAP, disregarding the extra input requirements for this subroutine.

The construction is as follows:

(1) Apply Ci-1SWAP on the first 𝑖 bits and the last bit 𝑥, with 𝑎𝑖 and 𝑥 being the

target lines. After this step, the last bit becomes 𝑎𝑖 if all but the last control

lines are set to 1. It remains 0 otherwise.

(2) Apply CSWAP on the last three bits, with 𝑎𝑖+1 and 𝑎𝑖+2 being the target lines,

and the last bit being the control line.

When there is at least one 0 in the set (𝑎1, 𝑎2, ..., 𝑎𝑖−1), the control line will be

0, and thus the target lines will not be swapped. Otherwise if (𝑎1, 𝑎2, ..., 𝑎𝑖−1)

are all 1, the control line will now be 𝑎𝑖, and thus the target lines are changed

if and only if 𝑎𝑖 is also 1. This effectively swaps the target lines if and only if

all control bits are 1.

(3) Apply Ci-1SWAP on the first 𝑖 bits and the last bit again. The ancilla bit is

reverted to its original value because the first 𝑖 bits were never changed.

36

Notice that this alone does not give us a single-ancilla-bit construction for CiSWAP,

because the ancilla bit needed during this step cannot be reused in the subroutines.

4.2.2 The Borrowed Pair Construction

This construction requires two extra input lines whose original values are set to 0 and

1. Assume the input is (𝑎1, 𝑎2, ..., 𝑎𝑖+1, 𝑎𝑖+2, 𝑥, 𝑦) with (𝑎𝑖+1, 𝑎𝑖+2) being the target

lines and (𝑥, 𝑦) being the borrowed pair, where 𝑥 is set to 0 and 𝑦 is set to 1. The

construction is as follows:

(1) Apply CSWAP on bits (𝑎1, 𝑥, 𝑦), with 𝑥 being the control line and (𝑎1, 𝑦) being

the target lines. This changes 𝑦 to 𝑦′ = 𝑦(1 − 𝑥) + 𝑎1𝑥, and changes 𝑎1 to

𝑎′1 = 𝑎1(1− 𝑥) + 𝑦𝑥, which simplifies to 𝑎1 + 𝑎1𝑥 because 𝑥 and 𝑦 take opposite

values.

(2) Apply Ci-1SWAP on the first 𝑖 bits and 𝑥, with 𝑎𝑖 and 𝑥 being the target lines.

The new value for 𝑎𝑖 after this step is:

𝑎′𝑖 = 𝑎𝑖(1−
𝑖−1∏︁
𝑘=1

𝑎𝑘) + 𝑥
𝑖−1∏︁
𝑘=1

𝑎𝑘

= 𝑎𝑖 + (𝑎1 + 𝑎1𝑥)
𝑖∏︁

𝑘=2

𝑎𝑘 + 𝑥(𝑎1 + 𝑎1𝑥)
𝑖−1∏︁
𝑘=2

𝑎𝑘

= 𝑎𝑖 +
𝑖∏︁

𝑘=1

𝑎𝑘 + 𝑥
𝑖∏︁

𝑘=1

𝑎𝑘

(3) Apply CSWAP on bits (𝑎′𝑖, 𝑎𝑖+1, 𝑎𝑖+2), with (𝑎𝑖+1, 𝑎𝑖+2) as the target lines. At

this point, the swap of (𝑎𝑖+1, 𝑎𝑖+2) depends on the value 𝑎𝑖+
∏︀𝑖

𝑘=1 𝑎𝑘+𝑥
∏︀𝑖

𝑘=1 𝑎𝑘.

(4) Apply Ci-1SWAP on the first 𝑖 bits and 𝑥 once again to revert 𝑎′𝑖 and 𝑥′ to their

original values 𝑎𝑖 and 𝑥.

37

(5) Apply CSWAP on bits (𝑎1, 𝑥, 𝑦) again to revert 𝑦′ and 𝑎′1 to their original values

𝑦 and 𝑎1.

(6) - (10) Repeat gates (1) to (5), replacing 𝑥 with 𝑦, and 𝑦 with 𝑥. This initiates

another swap on the bits (𝑎𝑖+1, 𝑎𝑖+2), controlled by the value 𝑎𝑖 +
∏︀𝑖

𝑘=1 𝑎𝑘 +

𝑦
∏︀𝑖

𝑘=1 𝑎𝑘

After cascading the gates above, the target lines (𝑎𝑖+1, 𝑎𝑖+2) are conditionally

swapped twice, using two different control values 𝑎𝑖 +
∏︀𝑖

𝑘=1 𝑎𝑘 + 𝑦
∏︀𝑖

𝑘=1 𝑎𝑘 and 𝑎𝑖 +∏︀𝑖
𝑘=1 𝑎𝑘 + 𝑥

∏︀𝑖
𝑘=1 𝑎𝑘. This is equivalent to a single conditional swap on the target

lines with the control bit being the sum of these two values, which is (𝑥+ 𝑦)
∏︀𝑖

𝑘=1 𝑎𝑘.

Because 𝑥 and 𝑦 take opposite values, 𝑥 + 𝑦 must be 1, so swapping (𝑎𝑖+1, 𝑎𝑖+2) is

effectively controlled by
∏︀𝑖

𝑘=1 𝑎𝑘, which includes all the control lines.

Notice that in the calculation of the final control bit value, the only requirement

on (𝑥, 𝑦) is actually the fact that they are opposite. It is not hard to verify that if 𝑥

is set to 1 and 𝑦 is set to 0, the same argument still holds. This is why we call it a

borrowed pair; the requirement is still weaker than a pair of ancilla bits.

4.2.3 Merged construction for CiSWAP

The final construction of CiSWAP makes use of both constructions. The core idea

of this combination step is based on the following observation: In the borrowed pair

construction, when the borrowed pair of bits (𝑥, 𝑦) share the same initial value, then

the output will be exactly the same as the input, failing our original intention of

swapping 𝑎𝑖+1 and 𝑎𝑖+2 controlled by
∏︀𝑖

𝑘=1 𝑎𝑘. However, if we use the target lines as

the borrowed bits, then when the target lines share the same initial value, whether

the gate swaps them or not has no effect on the final output.

This observation provides us a way to incorporate both constructions in one.

When constructing CiSWAP from Ci-1SWAP, we inevitably need to pick one of the

38

two constructions for Ci-1SWAP. In order to reuse bits to the largest extent, we choose

the borrowed pair construction, using the two target lines (𝑎𝑖+1, 𝑎𝑖+2) in the CiSWAP

as the borrowed pair for Ci-1SWAP. We use this method to construct CCSWAP from

CSWAP, CCCSWAP from CCSWAP, and so on. In this way, the only extra input

lines we need from outside are from the last layer when we construct CiSWAP from

Ci-1SWAP, which are a borrowed pair (𝑥, 𝑦) whose values are opposite. This gives

us a construction of CiSWAP using Fredkin gates with 2 ancilla bits. These are

ancilla bits instead of borrowed bits because their initial values cannot be completely

arbitrary.

However, with the ancilla bits construction, we can further reduce the number of

ancilla bits needed. We use the borrowed pair construction for constructing up to

Ci-1SWAP, using the same target line trick described in the previous paragraph. Then,

when constructing CiSWAP from Ci-1SWAP, we switch to the ancilla bit construction,

using an ancilla bit with its value set to 0. This gives us a construction of CiSWAP

using Fredkin gates with only 1 ancilla bit.

Combined with the fact that any conservative reversible gate can be generated

using CkSWAP without any extra input lines, we now have a way to construct any

𝑛-bit conservative reversible gate using Fredkin gates and 1 ancilla bit. In the next

section, we examine if it is possible to do even better.

4.3 Necessity of Ancilla Bits

We mentioned in previous chapters that a borrowed bit is weaker than an ancilla bit

in the sense that it does not guarantee a fixed input. In the previous section, we

provided a construction of any 𝑛-bit conservative reversible gate using the Fredkin

gate plus 1 ancilla bit. But since borrowed bits are cheaper, is it possible to find a

construction using only borrowed bits?

39

Claim 2. Even with an unlimited number of borrowed bits, we still cannot generate

all 𝑛-bit conservative reversible gates with 3-bit Fredkin gates.

Proof. Assume we have 𝑏 borrowed bits. The statement is thus equivalent to the state-

ment that Fredkin gates cannot be used to generate all 𝑛-bit conservative reversible

gates in the (𝑛+ 𝑏)-bit universe. For convenience, let 𝑚 denote 𝑛+ 𝑏.

Using the permutation decomposition technique we introduced at the beginning at

this chapter, we study the parity of the permutation 𝜋𝑖. Take SWAP as an example.

𝑆0 and 𝑆𝑚 contain only one element each, so SWAP is an even permutation on these

two subsets. On 𝑆1, SWAP is an odd permutation because it swaps two elements and

keeps everything else unchanged. On 𝑆𝑖, without loss of generality we assume that

SWAP operates on the first 𝑖 bits. Thus it pairs up two strings that start with 01 and

10 but all of the remaining 𝑚− 2 bits are the same, and performs a transposition on

those two numbers. 𝜋2 is equivalent to the product of all such transpositions. Since

the Hamming weight is 𝑖, there must be exactly 𝑖− 1 1’s in the remaining 𝑛− 2 bits.

Thus there are a total of
(︀
𝑚−2
𝑖−1

)︀
pairs, corresponding to

(︀
𝑚−2
𝑖−1

)︀
transpositions. Whether

SWAP is an even or permutation on 𝑆𝑖 depends on the parity of this number.

We define a parity vector for each conservative reversible gate. A parity vector 𝑝 =

(𝑝0, 𝑝1, ..., 𝑝𝑚) represents the permutation parity in each of the 𝑚 subsets. Specifically,

𝑝𝑖 is 1 if 𝜋𝑖 is an odd permutation, 0 if even. The parity vector for SWAP would then

be

(0, 1,

(︂
𝑚− 2

1

)︂
mod 2,

(︂
𝑚− 2

2

)︂
mod 2, ...,

(︂
𝑚− 2

𝑚− 3

)︂
mod 2, 1, 0)

Similarly, the parity vector for CSWAP would be

(0, 0, 1,

(︂
𝑚− 3

1

)︂
mod 2,

(︂
𝑚− 3

2

)︂
mod 2, ...,

(︂
𝑚− 3

𝑚− 4

)︂
mod 2, 1, 0)

40

The parity vector for CkSWAP is

(0, ..., 0, 1,

(︂
𝑚− 2− 𝑘

1

)︂
mod 2,

(︂
𝑚− 2− 𝑘

2

)︂
mod 2, ...,

(︂
𝑚− 2− 𝑘

𝑚− 3− 𝑘

)︂
mod 2, 1, 0)

These parity vectors put together are equivalent to the mod 2 remainder of the

elements in the Pascal triangle.

Now we can discuss whether a subset 𝐺 of the gates SWAP,CSWAP , ...,CkSWAP

can generate a gate that is not in set 𝐺. It is not hard to see that if gates 𝑔1 and 𝑔2

have parity vectors 𝑝1 and 𝑝2 correspondingly, then the gate generated by cascading

𝑔2 after 𝑔1 would have a parity vector of 𝑝1 + 𝑝2. In fact any gate generated by

cascading any number of 𝑔1 and 𝑔2 in any order would have a parity vector that is a

linear combination of 𝑝1 and 𝑝2.

We denote by 𝑝𝑠𝑖 the parity vector of CiSWAP . From our analysis above we see

that 𝑝𝑠2 starts with three 0’s and a 1; it ends with a 1 and 0. Assume that there is a

way to generate CCSWAP by cascading SWAP and CSWAP, then there exists two

integers 𝑎 and 𝑏 such that

𝑝𝑠2 = 𝑎 · 𝑝𝑠0 + 𝑏 · 𝑝𝑠1

The first few elements of the right-hand side are 0, 𝑎 mod 2, (𝑎𝑚+ 𝑏) mod 2, ..., while

the first few elements of the left-hand side are 0, 0, 0, 1, Thus we have

𝑎 mod 2 = 0

and

(𝑎𝑚+ 𝑏) mod 2 = 0

These two equations give us 𝑎 mod 2 = 0 and 𝑏 mod 2 = 0. That is to say, if there

exists a way to generate CCSWAP with SWAP and CSWAP , then there must be an

even number of each. However, this also means that 𝑎 · 𝑝𝑠0+ 𝑏 · 𝑝𝑠1 is a 0 vector. This

41

is a contradiction since the fourth element of 𝑝𝑠2 has to be a 1.

We have just proven that cascades of SWAP and CSWAP cannot generate CC-

SWAP, no matter how large 𝑚 is. In fact, we can easily generalize the result to the

following: Given all the CiSWAP with 𝑖 up to 𝑘 − 1, we cannot generate CkSWAP

through cascading, no matter how many borrowed bits are provided.

42

Chapter 5

Conclusions and Further Work

There are many ways to evaluate how good a certain gate construction is. The main

problem we are concerned with in this thesis is the number of ancilla bits used. Other

metrics include the gate complexity, circuit depth, and others.

We introduced the concept of borrowed bits, which allows us to consider a weaker

but also cheaper version of ancilla bits. In terms of the number of extra input lines

used, we arrived at three optimal constructions. We invented a single gate that can be

used to generate both any 𝑛-bit reversible gate using only one borrowed bit and any

𝑛-bit even permutation reversible gate using no extra input line. We also designed

a construction for any 𝑛-bit conservative reversible gate using the Fredkin gate with

only 1 ancilla bit. These results were proved to have reached the minimum number

of necessary extra input lines.

In terms of other metrics, these constructions are not optimal. For example, the

gate complexity (asymptotic number of basic gates used) for generating CnNOT using

Toffoli and 𝑂(log 𝑛) ancilla bits can be polynomial. However, in our construction using

the variated Toffoli and 1 borrowed bit, we need an exponential gate complexity due

to the fact that we construct CiNOT from Ci-1NOT , rather than construct it using

a binary recursion.

43

An interesting question to ask is whether there exists a construction using the

same number of extra input lines, while still achieving polynomial gate complexity

for CnNOT ; or is it possible that there exists a trade-off relationship between the

number of ancilla bits used and the best gate complexity that can be achieved? If

so, then what is the minimum number of ancilla bits required while achieving a low

enough gate complexity, for example, asymptotically the same as the lower bound

predicted by Shannon’s counting argument? These questions remain to be answered.

44

Appendix A

Small Gate Cannot Be Universal

Without Ancilla Bits

For completeness, we prove the following statement which has already been proved by

Toffoli [12]: No reversible gate with a constant number of input bits can be universal

without extra input lines.

Proof. Assume that there exists a 𝑘-bit reversible gate 𝑔 that is universal without

extra input lines. We decompose 𝑔 into transpositions 𝜏1𝜏2...𝜏𝑗.

Consider an 𝑛-bit gate where 𝑛 > 𝑘. Then for an input with 𝑛 bits, 𝑔 is equivalent

to an 𝑛-bit gate that operates on 𝑘 bits and leaves the other 𝑛 − 𝑘 bit unchanged.

Thus, each 𝜏𝑖 corresponds to a transposition in this 𝑛-bit version of 𝑔 that has the

same effect on the 𝑘 effective bits, but leave the other 𝑛−𝑘 bits unchanged. Since the

unchanged 𝑛− 𝑘 bits can have 2𝑛−𝑘 possibilities, the total number of transpositions

in this 𝑛-bit version of 𝑔 must be a multiple of 2𝑛−𝑘, which is an even number since

𝑛 > 𝑘. Thus 𝑔 as an 𝑛-bit gate is an even permutation.

Any cascade of even permutations is still an even permutation, meaning that no

odd 𝑛-bit gate can be generated by cascading 𝑔. Thus 𝑔 must not be universal.

45

46

Appendix B

Decomposing Permutation into Basic

Operations

We prove the following lemma: Any permutation 𝜋 on the set 𝑁 = {0, 1, 2, ..., 2𝑛−1}

can be decomposed into the following two basic operations:

(1) 𝑡1: swapping 0 and 1

(2) 𝑡2: shifting 𝑘 to (𝑘 + 1) mod 2𝑛, ∀𝑘 ∈ 𝑁

Proof. Any permutation can be decomposed into a sequence of transpositions. For

transposition (𝑖, 𝑗), we can further decompose it into adjacent swaps:

∙ Swap (𝑖, 𝑖+ 1).

∙ Swap (𝑖, 𝑖+ 2).

∙ ...

∙ Swap (𝑖, 𝑗).

∙ Swap (𝑗, 𝑗 − 1).

∙ Swap (𝑗, 𝑗 − 2).

47

∙ ...

∙ Swap (𝑗, 𝑖+ 1).

Thus it suffices to find a construction for any adjacent swap (𝑖, 𝑖+1) using 𝑡1 and

𝑡2.

∙ Apply 𝑡2 for 2𝑛 − 𝑖 times. This shifts everything to the right for 2𝑛 − 𝑖 times,

placing (𝑖, 𝑖+ 1) at (0, 1).

∙ Apply 𝑡1. This swaps (0, 1), which corresponds to (𝑖, 𝑖+ 1) originally.

∙ Apply 𝑡2 for 𝑖 times. This shifts everything back to their original position,

except that (𝑖, 𝑖+ 1) are now swapped.

We can also count the total number of 𝑡1 and 𝑡2 used in this procedure. For each

adjacent swap, 𝑡1 is applied once, and 𝑡2 is applied 2𝑛 times.

Each transposition is always decomposed into an odd number of adjacent swaps.

Thus for each transposition, 𝑡1 is applied an odd number of times, and 𝑡2 is applied

an even number of times.

If the permutation is even, then it can be decomposed into an even number of

transpositions. Thus the total number of 𝑡1 for this even permutation is even, and so

is the total number of 𝑡2. Changing 𝑡1 to 𝑡′1 does not change this fact.

48

Bibliography

[1] S. Aaronson, D. Grier, and L. Schaeffer. The Classification of Reversible Bit
Operations. Electronic Colloquium on Computational Complexity, 22, 66, 2015.

[2] M. Ben-Or and R. Cleve. Computing algebraic formulas with a constant num-
ber of registers. Proceedings of the ACM Symposium on Theory of Computing,
254âĂŞ257, 1988.

[3] J. Donald and N. K. Jha. Reversible logic synthesis with Fredkin and Peres gates.
ACM Journal on Emerging Technologies in Computing Systems, 4, 1, 2:1-2:19,
2008.

[4] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical
Physics, 21, 3/4, 219-253, 1982.

[5] P. Gupta, A. Agrawal, and N. Jha. An algorithm for synthesis of reversible logic
circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 25, 11, 2317-2330.

[6] R. Landauer. Irreversibility and heat generation in the computing process. IBM
Hournal of Research and Development, 5, 3, 183-191, 1961.

[7] D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis of re-
versible Toffoli networks. ACM Transactions on Design Automation of Electronic
Systems, 12, 4, 42:1-42:28, 2007.

[8] D. M. Miller, D. Maslov, and G.W. Dueck. A transformation based algorithm
for reversible logic synthesis. Design Automation Conference, 318-323, 2003.

[9] A. Peres. Reversible logic and quantum computers. Physical Review A, 32, 3266-
3276, 1985.

[10] M. Saeedi and I. L. Markov. Synthesis and optimization of reversible circuits - a
survey. ACM Computing Surveys, 45, 2, 21, 2013.

[11] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of reversible
logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 22, 6, 710âĂŞ722, 2003.

49

[12] T. Toffoli. Reversible computing. Automata, Languages and Programming, Sev-
enth Colloquium, Lecture Notes in Computer Science, Vol. 84, J. W. de Bakker
and J. van Leeuwen, eds., Springer, 632âĂŞ644, 1980.

50

