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Abstract— A key function for network traffic monitoring and
analysis is the ability to perform aggregate queries over multiple
data streams. Change detection is an important primitive which
can be extended to construct many aggregate queries. The
recently proposed sketches [1] are among the very few that can
detect heavy changes online for high speed links, and thus support
various aggregate queries in both temporal and spatial domains.
However, it does not preserve the keys (e.g., source IP address)
of flows, making it difficult to reconstruct the desired set of
anomalous keys.

To address this challenge, we propose the reversible sketch
data structure along with reverse hashing algorithms to infer the
keys of culprit flows. There are two phases. The first operates
online, recording the packet stream in a compact representation
with negligible extra memory and few extra memory accesses.
Our prototype single FPGA board implementation can achieve
a throughput of over 16 Gbps for 40-byte-packet streams (the
worst case). The second phase identifies heavy changes and their
keys from the representation in nearly real time. We evaluate
our scheme using traces from large edge routers with OC-12 or
higher links. Both the analytical and experimental results show
that we are able to achieve online traffic monitoring and accurate
change/intrusion detection over massive data streams on high
speed links, all in a manner that scales to large key space size.
To the best of our knowledge, our system is the first to achieve
these properties simultaneously.

I. INTRODUCTION

The ever-increasing link speeds and traffic volumes of the
Internet make monitoring and analyzing network traffic a
challenging but essential service for managing large ISPs.
A key function for network traffic analysis is the ability to
perform aggregate queries over multiple data streams. This
aggregation can be either temporal or spatial. For example,
consider applying a time series forecast model to a sequence
of time intervals over a given data stream for the purpose of
determining which flows are exhibiting anomalous behavior
for a given time interval. Alternately, consider a distributed
detection system where multiple data streams in different
locations must be aggregated to detect distributed attacks, such
as an access network where the data streams from its multiple
edge routers need to be aggregated to get a complete view of
the traffic, especially when there are asymmetric routings.

Meanwhile, the trend of ever-increasing link speed moti-
vates three highly desirable performance features for high-
speed network monitoring: 1) a small amount of memory

usage (to be implemented in SRAM); 2) a small number of
memory accesses per packet [2], [3]; and 3) scalabilty to a
large key space size. A network flow can be characterized
by 5 tuples: source and destination IP addresses, source and
destination ports, and protocol. These add up to 104 bits. Thus,
the system should at least scale to a key space of size 2104.

In response to these trends, a special primitive called heavy
hitter detection (HHD) over massive data streams has received
a lot of recent attention [3]–[6]. The goal of HHD is to detect
keys whose traffic exceeds a given threshold percentage of
the total traffic. However, these solutions do not provide the
much more general, powerful ability to perform aggregate
queries. To perform aggregate queries, the traffic recording
data structures must have linearity, i.e., two traffic records
can be linearly combined into a single record structure as if it
were constructed with two data streams directly.

The general aggregate queries can be of various forms.
In this paper, we show how to efficiently perform change
detection, an important primitive which can be extended
to construct many aggregate queries. The change detection
problem is to determine the set of flows whose size changes
significantly from one period to another. That is, given some
time series forecast model (ARIMA, Holt-Winters, etc.) [1],
[7], we want to detect the set of flows whose size for a given
time interval differs significantly from what is predicted by the
model with respect to previous time intervals. This is thus a
case of performing aggregative queries over temporally distinct
streams. In this paper, we focus on a simple form of change
detection in which we look at exactly two temporally adjacent
time intervals and detect which flows exhibit a large change in
traffic between the two intervals. Although simple, the ability
to perform this type of change detection easily permits an
extension to more sophisticated types of aggregation. Our
goal is to design efficient data structures and algorithms that
achieve near real-time monitoring and flow − level heavy
change detection on massive, high bandwidth data streams,
and then push them to real-time operation through affordable
hardware assistance.

The sketch, a recently proposed data structure, has proven
to be useful in many data stream computation applications [5],
[8]–[10]. Recent work on a variant of the sketch, namely the
k-ary sketch, showed how to detect heavy changes in massive
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data streams with small memory consumption, constant up-
date/query complexity, and provably accurate estimation guar-
antees [1]. In contrast to the heavy hitter detection schemes,
sketch has the linearity properties to support aggregate queries
as discussed before.

Sketch methods model the data as a series of (key, value)
pairs where the key can be a source IP address, or a
source/destination pair of IP addresses, and the value can be
the number of bytes or packets, etc.. A sketch can indicate
if any given key exhibits large changes, and, if so, give an
accurate estimate of the change.

However, sketch data structures have a major drawback:
they are not reversible. That is, a sketch cannot efficiently
report the set of all keys that have large change estimates in
the sketch. A sketch, being a summary data structure based
on hash tables, does not store any information about the
keys. Thus, to determine which keys exhibit a large change in
traffic requires either exhaustively testing all possible keys, or
recording and testing all data stream keys and corresponding
sketches [1], [2]. Unfortunately, neither option is scalable.

To address these problems, in this paper, we propose a
novel framework for efficiently reversing sketches, focusing
primarily on the k-ary sketch. The basic idea is to hash intel-
ligently by modifying the input keys and/or hashing functions
so that we can recover the keys with certain properties like big
changes without sacrificing the detection accuracy. We note
that streaming data recording needs to done continuously in
real-time, while change/anomaly detection can be run in the
background executing only once every few seconds with more
memory (DRAM).

The challenge is this: how can we make data recording
extremely fast while still being able to support, with reasonable
speed and high accuracy, queries that look for heavy change
keys? In this paper, we answer the following questions.

• How fast can we record the streaming traffic, with and
without certain hardware support?
• How can we simultaneously detect multiple heavy
changes from the reversible sketch?
• How can we obtain high accuracy and efficiency for
detecting a large number of heavy changes?
• How can we protect the heavy change detection
system from being subverted by attackers (e.g., injecting
false positives into the system by creating spoofed
traffic of certain properties)?
• How can we apply the reversible sketch, e.g., in an
intrusion detection and mitigation system?
• How does the system perform (accuracy, speed, etc.)
with various key space sizes under real router traffic?

In addressing these questions, we make the following con-
tributions.

• For data stream recording, we design IP mangling and
modular hashing operations which only require
negligible extra memory consumption (4KB - 8KB) and
few (4 to 8) additional memory accesses per packet, as
compared to the basic sketch scheme. When
implemented on a single FPGA board, we can sustain

more than 16Gbps even for a stream of 40-byte-packets
(the worst case traffic).

• We introduce the bucket index matrix algorithm to
simultaneously detect multiple heavy changes
efficiently. We further propose the iterative approach to
improve the scalability of detecting a large number of
changes. Both space and time complexity are sub-linear
in the key space size.

• To improve the accuracy of our algorithms for
detecting heavy change keys we apply the following
two approaches: 1) To reduce false negatives we
additionally detect keys that are not reported as heavy
by only a small number of hash tables in the sketch;
and 2) To reduce false positives we apply a second
verifier sketch with 2-universal hash functions. In fact,
we obtain analytical bounds on the false positives with
this scheme.

• The IP-mangling scheme we design has good statistical
properties that prevent attackers from subverting the
heavy change detection system to create false alarms.

• We design and implement a novel sketch-based
statistical flow-level intrusion detection and mitigation
system (IDMS) that deals with two popular attacks:
TCP SYN flooding and port scans.

In addition, we implemented and evaluated our system with
network traces obtained from two large edge routers with an
OC-12 link or higher. The one day NU trace consists of 239M
netflow records of 1.8TB total traffic. With a Pentium IV
2.4GHz PC, we record 1.6M packets per second. For inferring
keys of even 1,000 heavy changes from two 5-minute traffic
each recorded in a 3MB reversible sketch, our schemes find
more than 99% of the heavy change keys with less than a
0.1% false positive rate within 13 seconds.

Both the analytical and experimental results show that we
are able to achieve online traffic monitoring and accurate
change/anomaly detection over massive data streams on high
speed links, all in a manner that scales to large key space size.
To the best of our knowledge, our system is the first to achieve
these properties simultaneously. Furthermore, evaluation on
the Northwestern traces show that the IDMS built on top of
reversible sketches can detect almost all SYN flooding and
port scans that can be found using complete flow-level logs.

The rest of the paper is organized as follows. We give
an overview of the data stream model and k-ary sketches
in Section II. In Section III we discuss the algorithms for
streaming data recording and in Section IV discuss those for
heavy change detection. The application is briefly discussed
in Section V. We evaluate our system in Section VI, survey
related work in Section VII, and finally conclude in Sec-
tion VIII.

II. OVERVIEW

A. Data Stream Model and the k-ary Sketch
The Turnstile Model [11] is one of the most general data

stream models. Let I = α1, α2, . . . , be an input stream that
arrives sequentially, item by item. Each item αi = (ai, ui)
consists of a key ai ∈ [n], where [n] = {0, 1, . . . , n − 1},
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and an update ui ∈ R. Each key a ∈ [n] is associated with a
time varying signal U [a]. Whenever an item (ai, ui) arrives,
the signal U [ai] is incremented by ui.

To efficiently keep accurate estimates of the signals U [a],
we use the k-ary sketch data structure. A k-ary sketch consists
of H hash tables of size m (the k in the name k-ary sketch
comes from the use of size k hash tables. However, in this
paper we use m as the size of the hash tables, as is standard).
The hash functions for each table are chosen independently at
random from a class of 2-universal hash functions from [n] to
[m]. We store the data structure as an H×m table of registers
T [i][j] (i ∈ [H ], j ∈ [m]). Denote the hash function for the
ith table by hi. Given a data key and an update value, k-ary
sketch supports the operation INSERT(a,u) which increments
the count of bucket hi(a) by u for each hash table hi. Let
D =

∑

j∈[m] T [0][j] be the sum of all updates to the sketch
(the use of hash table 0 is an arbitrary choice as all hash
tables sum to the same value). If an INSERT(a,u) operation is
performed for each (key, update) pair in a data stream, then for
any given key in a data stream, for each hash table the value
T [i][hi(a)]−D/m

1−1/m constitutes an unbiased estimator for U [a] [1].
A sketch can then provide a highly accurate estimate U est

a for
any key a, by taking the median of the H hash table estimates.
See [1] or Theorem 2 for details on how to choose H and m
to obtain quality estimates.

B. Change Detection
1) Absolute Change Detection: K-ary sketches can be used

in conjunction with various forcasting models to perform
sophisticated change detection as discussed in [1]. While
all of our techniques in this paper are easily applicable to
any of the forcast models in [1], for simplicity in this paper
we focus on the simple model of change detection in which
we break up the sequence of data items into two temporally
adjacent chunks. We are interested in keys whose signals differ
dramatically in size when taken over the first chunk versus the
second chunk. In particular, for a given percentage φ, a key
is a heavy change key if the difference in its signal exceeds
φ percent of the total change over all keys. That is, for two
input sets 1 and 2, if the signal for a key x is U1[x] over
the first input and U2[x] over the second, then the difference
signal for x is defined to be D[x] = |U1[x]−U2[x]|. The total
difference is D =

∑

x∈[n] D[x]. A key x is then defined to be
a heavy change key if and only if D[x] ≥ φ ·D. Note that this
definition describes absolute change and does not characterize
the potentially interesting set of keys with small signals that
exhibit large change relative to their own size.

In our approach, to detect the set of heavy keys we create
two k-ary sketches, one for each time interval, by updating
them for each incoming packet. We then subtract the two
sketches. Say S1 and S2 are the sketches recorded for the two
consecutive time intervals. For detecting significant change
in these two time periods, we obtain the difference sketch
Sd = |S2 − S1|. The linearity property of sketches allows us
to add or subtract a sketch to obtain estimates of the sum or
difference of flows. Any key whose estimate value in Sd that
exceeds the threshold φ ·D is denoted as a suspect heavy key

in sketch Sd and offered as a proposed element of the set of
heavy change keys.

2) Relative Change Detection: An alternate form of change
detection is considered in [2]. In relative heavy change detec-
tion the change of a key is defined to be D[x]rel = U1[x]

U2[x] .
However, it is known that approximating the ratio of signals
accurately requires a large amount of space [12]. The work
in [2] thus limits itself to a form of pseudo relative change
detection in which the exact values of all signals U1[x] are
assumed to be known and only the signals U2[x] need to be es-
timated by updates over a data stream. Let U1 =

∑

x∈[n]
1

U1[x] ,
U2 =

∑

x∈[n] U2[x]. For this limited problem, the following
relative change estimation bounds for k-ary sketches can be
shown.

Theorem 1: For a k-ary sketch which uses 2-universal hash
functions, if m = 4

ε and H = 4 log 1
δ , then for all x ∈ [n]

D[x]rel > φD + εU1U2 ⇒ Pr[Uest
x < φ · D] < δ

D[x]rel < φD − εU1U2 ⇒ Pr[Uest
x > φ · D] < δ

Similar to Theorem 2, this bound suggests that our algo-
rithms could be used to effectively solve the relative change
problem as well. However, due to the limited motivation for
pseudo relative change detection, we do no experiment with
this problem.

TABLE I
TABLE OF NOTATIONS

H number of hash tables
m = k number of buckets per hash table

n size of key space
q number of words keys are broken into
hi ith hash function

hi,1, hi,2, . . . , hi,q q modular hash functions that make up hi

σw(x) the wth word of a q word integer x

T [i][j] bucket j in hash table i

φ percentage of total change required to be heavy
h−1

i,w an m
1
q × ( n

m
)
1
q table of 1

q
log n bit words.

h−1
i,w [j][k] the kth n

1
q bit key in the reverse

mapping of j for hi,w

h−1
i,w [j] the set of all x ∈ [n

1
q ] s.t. hi,w(x) = j

t′ number of heavy change keys
t maximum number of heavy buckets per hash table
ti number of heavy buckets in hash table i

ti,j bucket index of the jth heavy
bucket in hash table i

r number of hash tables a key can miss
and still be considered heavy

Iw set of modular keys occurring in heavy buckets
in at least H − r hash tables for the wth word

Bw(x) vector denoting for each hash table the set of
heavy buckets modular key x ∈ Iw occurs in

C. Problem Formulation
Instead of focusing directly on finding the set of keys that

have heavy change, we instead attempt to find the set of keys
denoted as suspects by a sketch. That is, our goal is to take a
given sketch T with total traffic sum D, along with a threshold
percentage φ, and output all the keys whose estimates in T
exceed φ ·D. We thus are trying to find the set of suspect keys
for T .

To find this set, we can think of our input as a sketch T in
which certain buckets in each hash table are marked as heavy.
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In particular, we denote the jth bucket in hash table i as
heavy if the value T [i][j]−D/m

1−1/m ≥ φD. Thus, the jth bucket in
hash table i is heavy iff T [i][j] ≥ φ(D−1/m)+D/m. Thus,
since the estimate for a sketch is the median of the estimates
for each hash table, the goal is to output any key that hashes
to a heavy bucket in more than bH

2 c of the H hash tables. If
we let t be the maximum number of distinct heavy buckets
over all hash tables, and generalize this situation to the case
of mapping to heavy buckets in at least H − r of the hash
tables where r is the number of hash tables a key can miss
and still be considered heavy, we get the following problem.

The Reverse Sketch Problem
Input:

• Integers t ≥ 1, r < H
2 ;

• A sketch T with hash functions {hi}
H−1
i=0 from [n] to

[m];
• For each hash table i a set of at most t heavy buckets
Ri ⊆ [m];

Output: All x ∈ [n] such that hi(x) ∈ Ri for H − r or more
values i ∈ [H ].

In section IV we show how to efficiently solve this problem.

D. Bounding False Positives
Since we are detecting suspect keys for a sketch rather

than directly detecting heavy change keys, we discuss how
accurately the set of suspect keys approximates the set of
heavy change keys. Let Sd = |S2 −S1| be a difference sketch
over two data streams. For each key x ∈ [n] denote the value
of the difference of the two signals for x by D[x] = |U2[x]−
U1[x]|. Denote the total difference by D =

∑

x∈[n] D[x]. The
following theorem relates the size of the sketch (in terms of
m and H) with the probability of a key being incorrectly
categorized as a heavy change key or not.

Theorem 2: For a k-ary sketch which uses 2-universal hash
functions, if m = 8

ε and H = 4 log 1
δ , then for all x ∈ [n]

D[x] > (φ + ε) · D ⇒ Pr[U est
x < φ · D] < δ

D[x] < (φ − ε) · D ⇒ Pr[U est
x > φ · D] < δ

Intuitively this theorem states that if a key is an ε-
approximate heavy change key, then it will be a suspect with
probability at least 1 − δ, and if it is an ε-approximate non-
heavy key, it will not be a suspect with probability at least
1−δ. We can thus make the set of suspect keys for a sketch an
appropriately good approximation for the set of heavy change
keys by choosing large enough values for m and H . For the
proof of this theorem we refer the reader to [2] in which a
similar theorem is proven.

As we discuss in Section III-A, our reversible k-ary sketch
does not have 2-universality. However, we use a second non-
reversible k-ary sketch with 2-universal functions to act as a
verifier for any suspect keys reported. This gives our algorithm
the analytical limitation on false positives of theorem 2. As an
optimization we can thus leave the reduction of false positives
to the verifier and simply try to output as many suspect keys
as is feasible. For example, to detect the heavy change keys
with respect to a given percentage φ, we could detect the set

10010100 10101011 10010101 10100011 8 bit

Hash functionsh1 h2 h3 h4

010 110 001 101 3 bit

010  110  001  101
Fig. 2. Illustration of modular hashing.

of suspect keys for the initial sketch with respect to φ−α, for
some percentage α, and then verify those suspects with the
second sketch with respect to φ. However, we note that even
without this optimization (setting α = 0) we obtain very high
true-positive percentages in our simulations.

E. Architecture
Our change detection system has two parts (Figure 1):

streaming data recording and heavy change detection as dis-
cussed below.

III. STREAMING DATA RECORDING

The first phase of the change detection process is passing
over each data item in the stream and updating the summary
data structure. The update procedure for a k-ary sketch is
very efficient. However, with standard hashing techniques
the detection phase of change detection cannot be performed
efficiently. To overcome this we modify the update for the k-
ary sketch by introducing modular hashing and IP mangling
techniques.

A. Modular hashing
Modular hashing is illustrated in Figure 2. Instead of

hashing the entire key in [n] directly to a bucket in [m],
we partition the key into q words, each word of size 1

q log n
bits. Each word is then hashed separately with different hash
functions which map from space [n

1
q ] to [m

1
q ]. For example,

in Figure 2, a 32-bit IP address is partitioned into q = 4
words, each of 8 bits. Four independent hash functions are
then chosen which map from space [28] to [23]. The results of
each of the hash functions are then concatenated to form the
final hash. In our example, the final hash value would consist
of 12 bits, deriving each of its 3 bits from the separate hash
functions hi,1, hi,2, hi,3, hi,4. If it requires constant time to
hash a value, modular hashing increases the update operations
from O(H) to O(q ·H). On the other hand, no extra memory
access is needed. Furthermore, in section IV we will discuss
how modular hashing allows us to efficiently perform change
detection. However, an important issue with modular hashing
is the quality of the hashing scheme. The probabilistic estimate
guarantees for k-ary sketch assume 2-universal hash functions,
which can map the input keys uniformly over the buckets.
In network traffic streams, we notice strong spatial localities
in the IP addresses, i.e., many simultaneous flows only vary
in the last few bits of their source/destination IP addresses,
and share the same prefixes. With the basic modular hashing,
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Fig. 1. Architecture of the reversible k-ary-sketch-based heavy change detection system for massive data streams.

the collision probability of such addresses are significantly
increased.

For example, consider a set of IP addresses 129.105.56.∗
that share the first 3 octets. Modular hashing always maps the
first 3 octets to the same hash values. Thus, assuming our small
hash functions are completely random, all distinct IP addresses
with these octets will be uniformly mapped to 23 buckets,
resulting in a lot of collisions. This observation is further
confirmed when we apply modular hashing to the network
traces used for evaluation (see Section VI). The distribution
of the number of keys per bucket is highly skewed, with most
of the IP addresses going to a few buckets (Figure 3). This
significantly disrupts the estimation accuracy of the reversible
k-ary sketch. To overcome this problem, we introduce the
technique of IP mangling.

B. IP Mangling
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Fig. 3. Distribution of number of keys for each bucket under three hashing
methods. Note that the plots for direct hashing and the GF transformation are
essentially identical.

In IP mangling we attempt to artificially randomize the input
data in an attempt to destroy any correlation or spatial locality
in the input data. The objective is to obtain a completely
random set of keys, and this process should be still reversible.

The general framework for the technique is to use a bijective
function from key space [n] to [n]. For an input data set
consisting of a set of distinct keys {xi}, we map each
xi to f(xi). We then use our algorithm to compute the
set of proposed heavy change keys C = {y1, y2, . . . , yc}
on the input set {f(xi)}. We then use f−1 to output
{f−1(y1), f

−1(y2), . . . , f
−1(yc)}, the set of proposed heavy

change keys under the original set of input keys. Essentially,
we transform the input set to a mangled set and perform all
our operations on this set. The output is then transformed

back to the original input keys. We consider two different IP-
mangling schemes. The first is a simple multiplication scheme
that works well for non-adversarial streams of IP address keys.
The second uses arithmetic over Galois Fields to yield an
attack proof scheme that works for any key space.

1) Odd Linear Equation Scheme: As a first approach,
consider the function f(x) = a · x (mod n) where a is an
odd integer chosen uniformly at random. As the key space
is a power of 2, this function is bijective, fast to compute,
and has an equally fast to compute inverse. Note that this
function will tend to map keys with similar suffixes to similar
buckets (consider two distinct keys ending in a string of zeros).
However, in practice, this function performs extremely well
for a key space of single IP addresses due to the fact that
such keys are hierarchical in nature. That is, it is natural to
assume no traffic correlation exists among any two keys that
have different (non-empty) prefixes.

However, this is not a safe assumption in general. For ex-
ample, in the case of keys consisting of source and destination
IP address pairs, the hierarchical assumption should not apply,
and we do expect to see traffic correlation among, say, keys
sharing the same destination IP but completely different source
IP’s. And even for single IP address keys, it is plausible that
an attacker could antagonistically cause a non-heavy-change
IP address to be reported as a false positive by creating large
traffic changes for an IP address that has a similar suffix to
the target - also known as behavior aliasing. To prevent such
attacks, we need the mapping of any pair of distinct keys to be
independent of the choice of the two keys. That is, we want
a universal mapping.

2) Attack-resilient Scheme: We propose the following uni-
versal hashing scheme based on simple arithmetic operations
on a Galois Extension Field [13] GF(2`), where ` = log2 n.
More specifically, we choose a and b from {1, 2, · · · , 2` − 1}
uniformly at random, and then define f(x) ≡ a ⊗ x ⊕ b,
where ’⊗’ is the multiplication operation defined on GF(2`)
and ’⊕’ is the bit-wise XOR operation. We refer to this as
the Galois Field (GF) transformation. By precomputing a−1

on GF(2`), we can easily reverse a mangled key y using
f−1(y) = a−1 ⊗ (y ⊕ b).

The direct computation of a ⊗ x can be very expensive,
as it would require multiplying two polynomials (of degree
` − 1) modulo an irreducible polynomial (of degree `) on a
Galois Field GF(2). In our implementation, we use tabulation
to speed up the computation of a⊗x. The basic idea is to divide
input keys into shorter characters. Then, by precomputing
the product of a and each character we can translate the
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computation of a ⊗ x into a small number of table lookups.
For example, with 8-bit characters, a given 32-bit key x can
be divided into four characters: x = x3x2x1x0. According to
the finite field arithmetic, we have a ⊗ x = a ⊗ x3x2x1x0 =
⊕3

i=0 a ⊗ (xi � 8 i), where ’⊕’ is the bit-wise XOR opera-
tion, and � is the shift operation. Therefore, by precomputing
4 tables ti[0..255], where ti[y] = a ⊗ (y � 8 i) (∀i = 0..3,
∀y = 0..255), we can efficiently compute a ⊗ x using four
table lookups: a ⊗ x = t3[x3] ⊕ t2[x2] ⊕ t1[x1] ⊕ t0[x0].

We can apply the same approach to compute f and f−1

(with separate lookup tables). Depending on the amount of
resource available, we can use different character lengths. For
our hardware implementation, we use 8-bit characters so that
the tables are small enough to fit into fast memory (28 ×
4 × 4Bytes = 4KB for 32-bit IP addresses). Note that only
IP mangling needs extra memory and extra memory lookup
as modular hashing can be implemented efficiently without
table lookup. For our software implementation, we use 16-bit
characters, which is faster than 8-bit characters due to fewer
table lookups.

In practice this mangling scheme effectively resolves the
highly skewed distribution caused by the modular hash func-
tions. Using the source IP address of each flow as the key,
we compare the hashing distribution of the following three
hashing methods with the real network flow traces: 1) modular
hashing with no IP mangling, 2) modular hashing with the
GF transformation for IP mangling, and 3) direct hashing
(a completely random hash function). Figure 3 shows the
distribution of the number of keys per bucket for each hashing
scheme. We observe that the key distribution of modular
hashing with the GF transformation is essentially the same
as that of direct hashing. The distribution for modular hashing
without IP mangling is highly skewed. Thus IP mangling is
very effective in randomizing the input keys and removing
hierarchical correlations among the keys.

In addition, our scheme is resilient to behavior aliasing
attacks because attackers cannot create collisions in the re-
versible sketch buckets to make up false positive heavy
changes. Any distinct pair of keys will be mapped completely
randomly to two buckets for each hash table.

IV. REVERSE HASHING

We now discuss how modular hashing permits the efficient
execution of the detection phase of the change detection
process. To provide an initial intuition, we start with the simple
(but somewhat unrealistic) scenario in which we have a sketch
taken over a data stream that contains exactly one heavy bucket
in each hash table. Our goal is to output any key value that
hashes to the heavy bucket for most of the hash tables. For
simplicity, let’s assume we want to find all keys that hit the
heavy bucket in every hash table. We thus want to solve the
reverse sketch problem for t = 1 and r = 0.

To find this set of culprit keys, consider for each hash table
the set Ai consisting of all keys in [n] that hash to the heavy
bucket in the ith hash table. We thus want to find

⋂H−1
i=0 Ai.

The problem is that each set Ai is of expected size n
m , and is

thus quite large. However, if we are using modular hashing,

we can implicity represent each set Ai by the cross product
of q modular reverse mapping sets Ai,1 × Ai,2 × · · ·Ai,q

determined by the corresponding modular hash functions hi,w.
The pairwise intersection of any two reverse mapping sets is
then Ai

⋂

Aj = Ai,1

⋂

Aj,1×Ai,2

⋂

Aj,2×· · ·×Ai,q

⋂

Aj,q .
We can thus determine the desired H-wise intersection by
dealing with only the smaller modular reverse mapping sets
of size ( n

m )
1
q . This is the basic intuition for why modular

hashing might improve the efficiency of performing reverse
hashing.

A. Simple Extension Doesn’t Work

b1

b2

b3

b4

b5

1
2
3
4
5

b1

b2

b3

b4

b5

Union ( U )Intersection, no union ( ∩∩∩∩ )

Fig. 4. For the case of t = 2, various possibilities exist for taking the
intersection of each bucket’s potential keys

Extending the intuitions for how to reverse hash for the case
where t = 1 to the case where t ≥ 1 is not trivial. Consider
the simple case of t = 2, as shown in Figure 4. There are
now tH = 2H possible ways to take the H-wise intersections
discussed for the t = 1 case. One possible heuristic is to take
the union of the possible keys of all heavy change buckets
for each hash table and then take the intersections of these
unions. However, this can lead to a huge number of keys output
that do not fulfill the requirement of our problem. In fact, we
have shown (proof omitted) that for arbitrary modular hash
functions that evenly distribute n

m keys to each bucket in each
hash table, there exist extreme cases such that the Reverse
Sketch Problem cannot be solved for t ≥ 2 in polynomial
time in both q and H in general, even when the size of the
output is O(1) unless P = NP . We thus are left to hope for an
algorithm that can take advantage of the random modular hash
functions described in Section III-A to solve the reverse sketch
problem efficiently with high probability. The remainder of
this section describes our general case algorithm for resolving
this problem.

B. Notation for the General Algorithm
We now introduce our general method of reverse hashing

for the more realistic scenarios where there are multiple heavy
buckets in each hash table and we allow for the possibility that
a heavy change key can miss a heavy bucket in a few hash
tables. That is, we present an algorithm to solve the reverse
sketch problem for any t and r that is assured to obtain the
correct solution with a polynomial run time in q and H with
very high probability. To describe this algorithm, we define
the following notation.

Let the ith hash table contain ti heavy buckets. Let t be
the value of the largest ti. For each of the H hash tables hi,
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Fig. 5. Given the q sets Iw and bucket index matrices Bw we can compute
the sets Aw incrementally. The set A2 containing (〈a, d〉, 〈2, 1, 4, ∗, 3〉),
(〈a, d〉, 〈2, 1, 9, ∗, 3〉), and (〈c, e〉, 〈2, 2, 2, 1, 3〉) is depicted in (a).
From this we determine the set A3 containing (〈a, d, f〉, 〈2, 1, 4, ∗, 3〉),
(〈a, d, g〉, 〈2, 1, 9, ∗, 3〉), and (〈c, e, h〉, 〈2, 2, 2, 1, 3〉) shown in (b). Finally
we compute A4 containing (〈a, d, f, i〉, 〈2, 1, 4, ∗, 3〉) shown in (c).

assign an arbitrary indexing of the ti heavy buckets and let
ti,j ∈ [m] be the index in hash table i of heavy bucket number
j. Also define σw(x) to be the wth word of a q word integer
x. For example, if the jth heavy bucket in hash table i is
ti,j = 5.3.0.2 for q = 4, then σ2(ti,j) = 3.

For each i ∈ [H ] and word w, denote the reverse mapping
set of each modular hash function hi,w by the m

1
q ×( n

m )
1
q table

h−1
i,w of 1

q log n bit words. That is, let h−1
i,w[j][k] denote the kth

n
1
q bit key in the reverse mapping of j for hi,w. Further, let

h−1
i,w[j] = {x ∈ [n

1
q ] | hi,w(x) = j}.

Let Iw = {x | x ∈
⋃ti−1

j=0 h−1
i,w[σw(ti,j)] for at least H − r

values i ∈ [H ]}. That is, Iw is the set of all x ∈ [n
1
q ] such that

x is in the reverse mapping for hi,w for some heavy bucket in
at least H − r of the H hash tables. We occasionally refer to
this set as the intersected modular potentials for word w. For
instance, in Figure 5, I1 has three elements and I2 has two.

For each word we also define the mapping Bw which
specifies for any x ∈ Iw exactly which heavy buckets
x occurs in for each hash table. In detail, Bw(x) =
〈Lw[0][x], Lw[1][x], . . . , Lw[H−1][x]〉 where Lw[i][x] = {j ∈
[t] | x ∈ h−1

i,w[σw(ti,j)]}
⋃

{∗}. That is, Lw[i][x] denotes the
collection of indices in [t] such that x is in the modular

bucket potential set for the heavy bucket corresponding to
the given index. The special character * is included so that
no intersection of sets Lw yields an empty set. For example,
Bw(129) = 〈{1, 3, 8}, {5}, {2, 4}, {9}, {3, 2}〉 means that the
reverse mapping of the 1st, 3rd, and 8th heavy bucket under
h0,w all contain the modular key 129.

We can think of each vector Bw(x) as a set of all H
dimensional vectors such that the ith entry is an element of
Lw[i][x]. For example, B3(23) = 〈{1, 3}, {16}, {∗}, {9}, {2}〉
is indeed a set of two vectors: 〈{1}, {16}, {∗}, {9}, {2}〉 and
〈{3}, {16}, {∗}, {9}, {2}〉. We refer to Bw(x) as the bucket
index matrix for x, and a decomposed vector in a set Bw(x)
as a bucket index vector for x. We note that although the
size of the bucket index vector set is exponential in H , the
bucket index matrix representation is only polynomial in size
and permits the operation of intersection to be performed in
polynomial time. Such a set like B1(a) can be viewed as a
node in Figure 5.

Define the r intersection of two such sets to be B
⋂r

C =
{v ∈ B

⋂

C | v has at most r of its H entries equal to
* }. For example, Bw(x)

⋂r Bw+1(y) represents all of the
different ways to choose a single heavy bucket from each of
at least H − r of the hash tables such that each chosen bucket
contains x in it’s reverse mapping for the wth word and y for
the w+1th word. For instance, in Figure 5, B1(a)

⋂r
B2(d) =

〈{2}, {1}, {4}, {∗}, {3}〉, which is denoted as a link in the
figure. Note there is no such link between B1(a) and B2(e).
Intuitively, the a.d sequence can be part of a heavy change key
because these keys share common heavy buckets for at least
H−r hash tables. In addition, it is clear that a key x ∈ [n] is a
suspect key for the sketch if and only if

⋂r
w=1...q Bw(xw) 6= ∅.

Finally, we define the sets Aw which we compute in our
algorithm to find the suspect keys. Let A1 = {(〈x1〉, v) |
x1 ∈ I1 and v ∈ B1(x1)}. Recursively define Aw+1 =
{(〈x1, x2, . . . , xw+1〉, v) | (〈x1, x2, . . . , xw〉, v) ∈ Aw and
v ∈ Bw+1(xw+1)}. Take Figure 5 for example. Here A4

contains 〈a, d, f, i〉, 〈2, 1, 4, ∗, 3〉 which is the suspect key.
Each element of Aw can be denoted as a path in Figure 5.
The following lemma tells us that it is sufficient to compute
Aq to solve the reverse sketch problem.

Lemma 1: A key x = x1.x2. · · · .xq ∈ [n] is a suspect key
if and only if (〈x1, x2, · · · , xq〉, v) ∈ Aq for some vector v.

C. General Algorithm for Reverse Hashing
To solve the reverse sketch problem we first compute the

q sets Iw and bucket index matrices Bw. From these we
iteratively create each Aw starting from some base Ac for
any c where 1 ≤ c ≤ q up until we have Aq . We then output
the set of heavy change keys via lemma (1). Intuitively, we
start with nodes as in Figure 5, I1 is essentially A1. The links
between I1 and I2 give A2, then the link pairs between (I1

I2) and (I2 I3) give A3, etc.
The choice of the base case Ac affects the performance

of the algorithm. The size of the set A1 is likely to be
exponentially large in H . However, with good random hashing,
the size of Aw for w ≥ 2 will be only polynomial in H , q,
and t with high probability with the detailed algorithm and
analysis below. Note we must choose a fairly small value c to



8

start with because the complexity of computing the base case
grows exponentially in c.

REVERSE HASH(r)

1) For each w = 1 to q, set
(Iw , Bw) = MODULAR POTENTIALS(w, r).

2) Initialize A2 = ∅. For each x ∈ I1, y ∈ I2, and
corresponding v ∈ B1(x)

⋂r
B2(y), insert (〈x, y〉, v)

into A2.
3) For any given Aw set

Aw+1 = Extend(Aw, Iw+1, Bw+1).
4) Output all x1.x2. · · · .xq ∈ [n] s.t.

(〈x1, . . . , xq〉, v) ∈ Aq for some v.

MODULAR POTENTIALS(w, r)

1) Create an H × n
1
q table of sets L initialized to all

contain the special character *. Create a size [n
1
q ]

array of counters hits initialized to all zeros.
2) For each i ∈ [H ], j ∈ [t], and k ∈ [( n

m )
1
q ] insert

h−1
i,w[σw(ti,j)][k] into L[i][x]. If L[i][x] was empty,

increment hits[x].
3) For each x ∈ [n

1
q ] s.t. hits[x] ≥ H − r, insert x into

Iw and set
Bw(x) = 〈L[0][x], L[1][x], . . . , L[H − 1][x]〉.

4) Output (Iw, Bw).

EXTEND(Aw, Iw+1, Bw+1)

1) Initialize Aw+1 = ∅.
2) For each y ∈ Iw+1, (〈x1, . . . , xw〉, v) ∈ Aw, determine

if v
⋂r

Bw+1(y) 6= null. If so, Insert (〈x1, . . . , xw, y〉 ,
v

⋂r Bw+1(y)) into Aw+1.
3) Output Aw+1.

D. Complexity Analysis
Lemma 2: The number of elements in each set Iw is at most

H
H−r · t · ( n

m )
1
q .

Proof: Each element x in Iw must occur in the modular
potential set for some bucket in at least H − r of the H hash
tables. Thus at least |Iw| · (H − r) of the elements in the
multiset of modular potentials must be in Iw . Since the number
of elements in the multiset of modular potentials is at most
H · t · ( n

m )
1
q we get the following inequality.

|Iw| · (H − r) ≤ H · t · ( n

m
)

1
q =⇒ |Iw| ≤

H

H−r
· t · ( n

m
)

1
q

Next, we will show that the size of Aw will be only
polynomial in H, q and t.

Lemma 3: With proper m and t, the number of bucket index
vectors in A2 is O(n2/q) with high probability.

Proof: For simplicity, below we assume r = 0. (The
proof for r > 0 is similar but slightly more involved.)

For any vector a ∈ [n
1
q ]2, b ∈ [m

1
q ]2, u ∈ [t]H , define

Y u
a,b =







1 σw(ti,u[i]) = hi,w(a[w]) = b[w]
for ∀i ∈ [H ], ∀w ∈ [2],

0 otherwise

Clearly, A2 has Y =
∑

a,b,u Y u
a,b bucket index vectors.

We have Prob{hi,w(a[w]) = b[w]} = m−1/q . With man-
gling, we have Prob{σw(ti,u[i]) = b[w]} = m−1/q. Therefore,

E(Y u
a,b) = (m−2/q)H+1. This implies

E(Y ) =
∑

a,b,u

E(Y u
a,b) = n2/q · (t · m−2/q)H

We now estimate V ar(Y ). For any a, c ∈ [n
1
q ]2, u, v ∈ [t]H ,

define e(a, c) ≡ |{w|w ∈ [2] ∧ a[w] = c[w]}|, and e(u, v) ≡
|{i|i ∈ [H ] ∧ u[i] = v[i]}|.

We have

E(Y u
a,b · Y

v
c,d) =































0
b 6= d ∧ (e(u, v) 6= 0 ∨ e(a, c) 6= 0)

(m−2/q)2H+2

b 6= d ∧ e(u, v) = 0 ∧ e(a, c) = 0

(m−2/q)2H+2−j−k

b = d ∧ e(u, v) = j ∧ e(a, c) = k

Therefore,

V ar(Y ) = E(Y 2) − E(Y )2

=
∑

a,b,u,c,d,v

E(Y u
a,b · Y

v
c,d) − E(Y )2

= −E(Y )2 +
∑

a,b,c,d,u,v
b6=d∧e(u,v)=0∧e(a,c)=0

(m−2/q)2H+2 +

∑

a,b,c,d,u,v,j,k
b6=d∧e(u,v)=j∧e(a,c)=k

(m−2/q)2H+2−j−k

≡ −E(Y )2 + T1 + T2

We can prove

T1 ≤
∑

a,b,c,d,u,v

(m−2/q)2H+2 = E(Y )2

T2 ≤ n4/q · (
t

m2/q
)H · (1 +

t

m2/q
)H

With t
m2/q ≤

√
5−1
2 , we have E(Y ) < n2/q and V ar(Y ) ≤

T2 ≤ n4/q. By Chebyshev Inequality, we can then show that
the number of bucket index vectors in A2 is O(n2/q) with
high probability.

Given Lemma 3, the more heavy buckets we have to
consider, the bigger m must be, and the more memory is
needed. Take the 32-bit IP address key as an example. In
practice, t ≤ m2/q works well. When q = 4 and t ≤ 64,
we need m = 212. For the same q, when t ≤ 256, we need
m = 216, and when t ≤ 1024, we need m = 220. This
may look prohibitive. However, with the iterative approach in
Section IV-F, we are able to detect many more changes with
small m. For example, we are able to detect more than 1000
changes accurately with m = 216 (1.5MB memory needed) as
evidenced in the evaluations (Section VI). Since we normally
only consider at most the top 50 to a few hundred heavy
changes, we can have m = 212 with memory less than 100KB.

Lemma 4: With proper choices of H , r, and m, the ex-
pected number of bucket index vectors in Aw+1 is less than
that of Aw for w ≥ 2.
That is, the expected number of link sequences with length
x + 1 is less than the number of link sequences with length x
when x ≥ 2.
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Proof: For any bucket index vector v ∈ Aw, for any
word x ∈ [n1/q ] for word w +1, the probability for x to be in
the same ith (i ∈ [H ]) bucket is 1

m1/q . Thus the probability for
B(x)

⋂r
v to be not null is at most CH

H−r ×
1

m(H−r)/q . Given
there are n1/q possible words for word w + 1, the probability
for any v to be extensible to Aw+1 is CH

H−r×
1

m(H−r)/q ×n1/q.
With proper H , r and m for any n, we can easily have such
probability to be smaller than 1. Then the number of bucket
index vectors in Aw+1 is less than that of Aw.

Given the lemmas above, MODULAR POTENTIALS and
step 2 of REVERSE HASH run in time O(n2/q). The running
time of EXTEND is O(n3/q). So the total running time is
O((q − 2) · n3/q).

E. Parameter Choices
To make our scheme run efficiently and maintain accuracy

for large values of n, we need to carefully choose the param-
eters m, H , and q as functions of n. Our data structures and
algorithms for the streaming update phase use space and time
polynomial in H , q, and m, while for the change detection
phase they use space and time polynomial in H , q, m, and n

1
q .

Thus, to maintain scalability, we must choose our parameters
such that all of these values are sufficiently smaller than n.

To maintain accuracy and a small sketch, for given constants
ε and c, the choice of parameters H , q, and m should abide
by the following constraints.

1) n
mH < ε , equivalent to (n

ε )
1
H < m.

2) m
1
q > c , equivalent to m > cq

The first constraint corresponds to the fact that we need it to
be very unlikely that two given keys hash to the same bucket
in all H hash tables. Thus, for a given choice of one bucket
from each hash table, we want the expected number of keys
that hash to the buckets, n

mH for completely random hashing,
to be sufficiently small. Note that for m ≥ log n, constraint
one is fulfilled for H = Θ( log n

log log n ). Both of these values are
sufficiently small in n, so constraint (1) is actually easy to
fulfill.

The second constraint corresponds to the fact that we cannot
allow the size of the space that the modular keys map to, m

1
q ,

to drop below 2. In fact, to maintain accuracy and efficiency
we need m

1
q to grow as a functions of t (Subsection IV-D).

However, in Subsection IV-F we introduce iterative detection
in which we perform multiple iterations of detection for values
of t bounded by a constant c. We thus develop parameter
choices working under the assumption that t is bounded by
a constant.

A final the third constraint requires that we choose a small
enough value for m such that the size of the sketch m · H
is only poly-logarithmic in n. This is important because the
entire sketch needs to fit into fast memory in order for updates
to be performed at network traffic speeds. Satisfying the last 2
constraints comes down to choosing an appropriate value for
q. To make the detection phase run as quickly as possible, we
choose q = log log n, the smallest value of q that satisfies the
above contraints. This yields:

q = log log n m = (log n)Θ(1)

n
1
q = n

1
log log n H = O( log n

log log n )

With the poly-logarithmic hash table size m ·H , the update
phase of the problem is scalable to large n. While the value
of n

1
q is not polylogarithmic in n, this term does not come

into play until the second phase of change detection when we
perform the actual detection. Since this is not performed for
every packet, we can withstand larger terms for this phase.

F. Iterative Detection
From our discussion in Section IV-D we have that our

detection algorithm can only effectively handle t of size at
most m

2
q . With our discussion in Section IV-E this is only a

constant. To handle larger t, consider the following heuristic.
Suppose we can comfortably handle at most c heavy buckets
per hash table. If a given φ percentage results in t > c buckets
in one or more tables, sort all heavy buckets in each hash table
according to size. Next, solve the reverse sketch problem with
respect to only the largest c heavy buckets from each table.
For each key output, obtain an estimate from a second k-ary
sketch independent of the first. Update each key in the output
by the negative of the estimate provided by the second sketch.
Having done this, once again choose the largest c buckets from
each hash table and repeat. Continue until there are no heavy
buckets left.

One issue with this approach is that an early false positive
(a key output that is not a heavy change key) will cause large
numbers of false negatives since the (incorrect) decrement of
the buckets for the false positive will potentially cause many
false negatives in successive iterations. To help reduce this we
can use the second sketch as a verifier for any output keys to
reduce the possibility of a false positive in each iteration.

G. Comparison with the Deltoids Approach
The most related work to ours is the recently proposed

deltoids approach for heavy change detection [2]. Though
developed independently of k-ary sketch, deltoid essentially
expands k-ary sketch with multiple counters for each bucket
in the hash tables. The number of counters is logarithmic to
the key space size (e.g., 32 for IP addresses), so that for
every (key, value) entry, instead of adding the value to one
counter in each hash table, it is added to multiple counters
(32 for IP addresses and 64 for IP address pairs) in each hash
table. This significantly increases the necessary amount of fast
memory and number of memory accesses per packet, and is
not scalable to large key space size such as 2104 discussed in
Section I. Thus, it violates all the aforementioned performance
constraints in Section I.

The advantage of the deltoids approach is that it is more
efficient in the detection phase, with run time and space usage
only logarithmic in the key space n. While our method does
not achieve this, its run time and space usage is significantly
smaller than the key space n. And since this phase of change
detection only needs to be done periodically in the order of
at most seconds, our detection works well for key sizes of
practical interest. We summarize the asymptotic efficiencies
of the two approaches in Table II, but omit details of the
derivations in the interest of space. Note that the reversible
sketch data structure offers an improvement over the deltoids
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TABLE II
A COMPARISON BETWEEN THE REVERSIBLE SKETCH METHOD AND THE DELTOIDS APPROACH. HERE t′ DENOTES THE NUMBER OF HEAVY CHANGE

KEYS IN THE INPUT STREAM. NOTE THAT IN EXPECTATION t ≥ t′ .

Update Detection
memory memory accesses operations memory operations

Reverse Sketch Θ( (log n)Θ(1)

log log n
) Θ( log n

log log n
) Θ(log n) Θ(n

1
log log n · log log n) O(n

3
log log n · log log n · t)

Deltoids Θ(log n · t′) Θ(log n) Θ(log n) Θ(log n · t′) O(log n · t′)

Fig. 6. Architecture of the sketch-based flow-level IDMS.

approach in the number of memory accesses per update, as
well as the needed size of the data structure when there
are many heavy buckets (changes). Together this yields a
significant improvement in achievable update speed.

V. APPLICATIONS

A. General Framework
The key feature of reversible sketches is to support aggre-

gate queries over multiple data streams, i.e., to find the top
heavy hitters and their keys from the linear combination of
multiple data streams for temporal and/or spatial aggregation.
Many statistical approaches, such as Time Series Analysis
(TSA), need this functionality for anomaly/trend detection.
Take TSA as an example. In the context of network appli-
cations, there are often tens of millions of network time series
and it is very hard, if not impossible, to apply the standard
techniques on a per time series basis. Reversible sketches help
solve this problem. Moreover, in today’s networks, asymmetric
routing, multi-homing, and load balancing are very common
and many enterprises have more than one upstream or down-
stream link. For example, it is quite impossible to detect port
scans or SYN flooding based on {SYN, SYN/ACK} or {SYN,
FIN} pairs on a single router if the SYN, SYN/ACK and FIN
for a particular flow can travel different routers or links. Again,
the linearity of reversible sketches enables traffic aggregation
over multiple routers to facilitate such detection.

B. Intrusion Detection and Mitigation on High-speed Net-
works

With reversible sketches, we have built a novel statistical
flow-level intrusion detection and mitigation system (IDMS).
Reversible sketches reveal the IP addresses and ports that
are closely related to attacks. We can then apply appropriate
counter-measures to mitigate them. Take port scans and point-
to-point SYN flooding for example. We can use ingress filters
to block the traffic from the attacker IP.

1) System Design: Figure 6 shows the architecture of the
IDMS system. With traffic recorded in sketches, we first use
a time series analysis method, like the exponentially-weighted
moving average (EWMA), to get the forecast sketch. Such

a forecast sketch can help remove noises for detection. We
can then subtract the forecast sketch from the current sketch
to get the forecast error recorded in sketches. Intuitively, a
large forecast error implies there is an anomaly. Thus, the
forecast error is the key metric for detection in our system.
Moreover, we adopt other techniques, e.g.the two-dimensional
sketch, to further distinguish different types of attacks and
to reduce false positives. For the details please refer to our
technique report [14]

2) The Threat Model and Detection Algorithms: Most of
the existing network IDSs like Bro [15] and Snort [16] check
packet payload for virus/worm signatures. However, such
schemes are not scalable for high-speed network links. Recent
work has been proposed to detect large scale attacks, such
as DoS attacks, port scans, etc., based on statistical traffic
patterns. They can roughly be classified into two categories:

• Detection based on overall traffic [17]–[20]. The problem
with this approach is that attacks can easily be buried in
background network traffic. Thus, such detection schemes
tend to be inaccurate or uable to find real attack flows
for mitigation. For example, Change-Point Monitoring
(CPM) [17], [18] will detect port scans as SYN floodings
as we have verified in [14].

• Flow level detection [15], [16], [21]. The problem here
is that such schemes usually need to maintain a per-
flow table (e.g., a per-source-IP table for Threshold
Random Walk(TRW) [21]) for detection. As this is not
scalable, such approaches are vulnerable to DoS attacks
with randomly spoofed IP addresses, especially on high-
speed networks. TRW was recently improved by limit-
ing its memory consumption with Approximate Caches
(AC) [22]. However, the spoofed DoS attacks will still
cause collisions in AC and make the real port scans
undetected1.

To address these problems, we design the IDMS system which
is, to the best of our knowledge, the first flow-level intrusion
detection and mitigation system capable of running on very
high-speed networks and capable of detecting a mixture of
real world attacks.

As a first step, our threat model consists of arguably the
two most popular intrusions for detection: TCP SYN flooding
and port scan (mostly for worm propagation). It is reported
that more than 90% of DoS attacks are TCP SYN flooding
attacks [17], [18]. Scan is probably the most common and
versatile type of intrusion. Based on source/dest IP and the port

1As the authors mentioned in [22], when the connection cache size of 1
million entries reaches about 20% full, each new scan attempt has a 20%
chance of not being recorded because it aliases with an already-established
connection. Actually, during spoofed DoS attacks, such collisions can become
even worse.
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Attack types RS((DIP, Dport), RS((SIP, DIP), RS((SIP, Dport),
SYN-SYN/ACK) SYN-SYN/ACK) SYN-SYN/ACK)

SYN flooding Yes Yes Yes
Vertical scans No Yes No
Horizontal scans No No Yes

Fig. 7. Different attacks are captured and detected in different reversible sketches.
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Fig. 8. Visual representa-
tion of scans.

number involved in the scans, there are three well known types
of scans: horizontal scan, vertical scan, and block scan [23],
[24], as illustrated in Figure 8.

Note that while each of these attacks seems relatively easy
to detect separately, or in an offline setting, it is in fact very
hard to detect a mixture of such attacks online at flow-level
for high-speed networks as discussed before.

For our sketch based scheme, we denote the key of a sketch
as K, the feature value recorded in a sketch as V, the destination
IP as DIP, source IP as SIP, destination port as Dport, and
the reversible sketch as RS(K,V). Due to the limitations of
space, here we only give an example of TCP SYN flooding
detection.

We use RS((DIP, Dport), SYN-SYN/ACK) to detect
SYN flooding attacks because they usually target certain
services as characterized by the Dport on a small set of
machine(s). The value of SYN-SYN/ACK means that for
each incoming SYN packet, we will update the sketch by
incrementing one, while for each outgoing SYN/ACK packet,
the sketch will be updated by decrementing one. The reversible
sketch can further provide the victim IP and port number for
mitigation.

As shown in Figure 7, we can combine different reversible
sketches (RS) to fully detect and differentiate the TCP SYN
flooding attacks, vertical scans and horizontal scans. For more
detailed algorithms, please refer to [14].

VI. IMPLEMENTATION AND EVALUATION

In this section, we first discuss the implementation and
evaluation of streaming data recording in hardware. We then
introduce the methodology and simulation results for heavy
change detection.

A. Hardware Traffic Recording Achieves 16Gbps
The Annapolis WILDSTAR Board is used to implement the

original and reversible k-ary sketch. This platform consists
of three Xilinx Virtex 2000E FPGA chips [25], each with
2.5M gates contained within 9600 Configurable Logic Blocks
(CLBs) interconnected via a cross-bar along with memory
modules. This development board is hosted by a SUN Ultra-
10 workstation. The unit is implemented using the Synplify
Pro 7.2. tool [26]. Such FPGA boards cost about $1000.

The sketch hardware consists of H hash units, each of
which addresses a single m-element array. For almost all
configurations, delay is the bottleneck. Therefore, we have
optimized it using excessive pipelining. The resulting maxi-
mum throughputs for 40-byte-packet streams for H = 5 are:

For the original k-ary sketch, we achieve a high bandwidth of
over 22 Gbps. For the reversible sketch with modular hashing
we archive 19.3Gbps. Even for the reversible sketch with IP
mangling and modular hashing, we achieve 16.2 Gbps.

B. Software Simulation Methodology
1) Network Traffic Traces: In this section we evaluate our

schemes with Netflow traffic traces collected from two sources
as shown in Table III.

TABLE III
EVALUATION DATA SETS

Collection Location A large US ISP Northwestern Univ.
# of Netflow records 330M 19M

peak packet rate 86K/sec 79K/sec
avg. packet rate 63K/sec 37K/sec

In both cases, the trace is divided into 5-minute intervals.
For ISP data the traffic for each interval is about 6GB. The
distribution of the heavy change traffic volumes (in Bytes)
over 5 minutes for these two traces is shown in Figure 9. The
y-axis is in logarithmic scale. Though having different traffic
volume scales, the heavy changes of both traces follow heavy-
tail distributions. In the interest of space, we focus on the ISP
data. Results are the same for the Northwestern traces.
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Fig. 9. The distribution of the top heavy changes for both data sets

2) Experimental Parameters: In this section, we present the
values of parameters that we used in our experiments, and
justify their choices.

The cost of sketch updating is dominated by the number of
hash tables, so we choose small values for H . Meanwhile, H
improves the accuracy by making the probability of hitting
extreme estimates exponentially small [1]. We applied the
“grid search” method in [1] to evaluate the impact on the
accuracy of estimation with respect to cost, and obtained
similar results as those for the original sketches. That is, it
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makes little difference to increase H much beyond 5. As a
result, we choose H to be 5 and 6.

Given H , we also need to choose r. As in Section II-C,
our goal is to output any key that hashes to a heavy bucket
in more than bH

2 c of the H hash tables. Thus, we consider
r < bH

2 c and the values H = 5, r = 1; and H = 6, r = 1 or
2.

Another important parameter is m, the number of buckets in
each hash table. The lower bound for providing a reasonable
degree of error threshold is found to be m = 1024 for normal
sketches [1], which is also applicable to reversible sketches.
Given that the keys are usually IP addresses (32 bits, q = 4)
or IP address pairs (64 bits, q = 8), we want m = 2xq for an
integer x. Thus, m should be at least 212.

We also want to use a small amount of memory so that the
entire data structure can fit in fast SRAM. The total memory
for update recording is only 2 × 〈number of tables(H)〉 ×
〈number of bins(m)〉 × 4bytes/bucket. This includes a re-
versible k-ary sketch and an original k-ary sketch. In addition
to the two settings for H , we experiment with two choices
for m: 212 and 216. Thus, the largest memory consumption
is 3MB for m = 216 and H = 6, while the smallest one is
160KB for m = 212 and H = 5.

We further compare it with the state-of-the-art deltoids ap-
proach (see Section IV-G), with the deltoids software provided
by its authors. To obtain a fair comparison we allot equal
memory to each method, i.e., the memory consumption of the
reversible sketch and the verifying sketch equals that of the
deltoids.

3) Evaluation Metrics: Our metrics include accuracy (in
terms of the real positive /false positive percentages), execution
speed, and the number of memory accesses per packet. To
verify the accuracy results, we also implemented a naive
algorithm to record per-flow volumes, and then find the heavy
changes as the ground truth. The real positive percentage is the
number of true positives reported by the detection algorithm
divided by the number of real heavy change keys. The false
positive percentage is the number of false positives output
by the algorithm divided by the number of keys output by
the algorithm. Each experiment is run 10 times with different
datasets (i.e., different 5-minute intervals) and the average is
taken as the result.

C. Software Simulation Results
1) Highly Accurate Detection Results: First, we test the

performance with varying m, H and r selected before. We
also vary the number of true heavy keys from 1 to 120 for
m = 4K, and from 1 to 2000 for m = 64K by adjusting φ.
Both of these limits are much larger than the m2/q bound and
thus are achieved using the iterative approach of Section IV-F.

As shown in Figure 10, all configurations produce very
accurate results: over a 95% true positive rate and less than
a 0.25% false positive rate for m = 64K, and over a 90%
true positive rate and less than a 2% false positive rate for
m = 4K. Among these configurations, the H = 6 and r = 2
configuration gives the best result: over a 98% true positive
and less than a 0.1% false positive percentage for m = 64K,
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and over a 95% true positive and less than a 2% false positive
percentage for m = 4K. When using the same amount of
memory for recording, our scheme is much more accurate
than the deltoids approach. Such trends remain for the stress
tests and large key space size test discussed later. In each
figure, the x-axis is the number of heavy change keys and
their corresponding change threshold percentage φ.

Note that an increase of r, while being less than H
2 ,

improves the true positive rate quite a bit. It also increase the
false positive rate, but the extra original k-ary sketch bounds
the false positive percentage by eliminating false positives
during verification. The running time also increases for bigger
r, but only marginally.

2) Iterative Approach Very Effective: As analyzed in Sec-
tion IV-C, the running time grows exponentially as t exceeds
m2/q. Otherwise, it only grows linearly. This is indeed con-
firmed with our experimental results as shown in Figure 11.
For the experiments, we use the best configuration from
previous experiments: H = 6, m = 64K, and r = 2. Note
that the point of deviation for the running time of the two
approaches is at about 250 ≈ m2/q(256), and thus matches
very well with the theoretic analysis.

We implement the iterative approach by finding the thresh-
old that produces the desired number of changes for the current
iteration, detecting the offending keys using that threshold,
removing those keys from the sketch, and repeating the
process until the threshold equals the original threshold. Both
the iterative and non-iterative approach have similarly high
accuracy as in Figure 10.

3) Stress Tests with Larger Dataset Still Accurate: We
further did stress tests on our scheme with two 2-hour netflow
traces and detected the heavy changes between them. Each
trace has about 240 GB of traffic. Again, we have very
high accuracy for all configurations, especially with m =
64K, H = 6 and r = 2, which has over a 97% real positive
percentage and less than a 1.2% false positive percentage as
in Figure 10.

4) Performs Well on Different Networks: From Figure 9 it
is evident that the data characteristics of both the ISP and the
Northwestern data set are very similar, so it is no surprise that
we get very close results on both data sets. Here, we omit the
figures of the Northwestern data set in the interest of space.

5) Scalable to Larger Key Space Size: For 64-bit keys
consisting of source IP and destination IP addresses we tested
with up to the top 300 changes. Various settings give good
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Fig. 10. True positive and false positive percentage results for 12 bit buckets, 16 bit buckets, and a large dataset.

results. The best results are for H = 6 and r = 1 with a
true positive percentage of over 99.1% and a false positive
percentage of less than 1.2%.

6) Few Memory Accesses Per Packet Recording: It is very
important to have few memory accesses per packet for online
traffic recording over high-speed links. For each packet, our
traffic recording only needs to 1) look up the mangling table
(see Section III-B) and 2) update each hash table in the
reversible and verifier sketch. (2H accesses).

Key length log n (bits) 32 64 104
# of mangling table lookup, g 4 8 13
(# of characters in each key)
Size of characters in each key, c 8 8 13
Mangling table size 4KB 8KB 13KB
(2c × g × 4Byte)
memory access/pkt (g + 2H) 14-16 18-20 23-25
Avg memory access/pkt 34 66 106
(deltoids) (2 × (log n/2 + 1))

TABLE IV
MEMORY ACCESS COMPARISON: REVERSIBLE SKETCH & DELTOIDS. 104

BITS FOR 5 TUPLES (SRC IP, DEST IP, SRC PORT, DEST PORT, PROTOCOL)

For deltoids, for each entry in a hash table, there are log n
counters (e.g., 32 counters for IP addresses) corresponding to
each bit of the key. Given a key, the deltoids data structure
needs to update each counter corresponding to a “1” bit in
the binary expansion of the key, as well as update a single
sum counter. Thus, on average, the number of counters to
be updated is half of the key length plus one. As suggested
in [2], we use 2 hash tables for deltoids. Thus, the average
number of memory accesses per packet is the same as the key
length in bits. The comparison between the reversible sketch
and deltoids is shown in Table IV. Our approach uses only 20-
30% of the memory accesses per packet as that of the deltoids,

and even fewer for larger key spaces.
7) Monitoring and Detection with High Speeds: In this

section, we show the running time for both recording and
detection in software.

With a Pentium IV 2.4 GHz machine with normal DRAM
memory, we record 2.83M items in 1.72 seconds, i.e., 1.6M
insertions/second. For the worst case scenario with all 40-byte
packets, this translates to around 526 Mbps. These results are
obtained from code that is not fully optimized and from a
machine that is not dedicated to this process. Our change
detection is also very efficient. As shown in Figure 11, for
K=65,536, it only takes 0.34 second for 100 changes. To the
extreme case of 1000 changes, it takes about 13.33 seconds.

8) Accurate IDMS Based on Reversible Sketch: We im-
plemented the IDMS system as discussed in Section V, and
evaluated it with the 1-day Northwestern trace. We used the
reversible sketch based methods (m = 16, H = 6), and
found 25 SYN flooding attacks, 938 horizontal scans and 19
vertical scans. We re-ran the same detection experiments with
the complete flow table (i.e., using per-flow information), and
obtained almost exactly the same results except 2 (0.21%)
false positives for horizontal scans. In fact, both of them are
near the boundary of the detection threshold. It shows that
the compact sketch can record the traffic very accurately for
detection.

We further manually validated all SYN flooding attacks and
vertical scans. For horizontal scans, we check the top 10 and
bottom 10 attacks in terms of their change difference. We
found that they are all attacks. The port scans are caused
by numerous viruses/worms such as SQLSnake worms and
W32.Rahack as well as remote desktop scans, SSH scans, etc..
There are even some unknown worm scans detected by us,
and also confirmed in the Dshield [27], the largest worldwide
intrusion log repository. Such high accuracy is also due to
the false positive reduction techniques we introduced in [14].
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Again, see our tech report [14] for details.
In summary, our evaluation results show that we are able

to infer the heavy change keys solely from the k-ary sketch
accurately and efficiently, without explicitly storing any keys.
Our scheme is much more accurate than deltoids, and has
far fewer memory accesses per packet, even to an order of
magnitude.

VII. RELATED WORK

Most related work has been discussed earlier in this paper.
Here we briefly examine a few remaining works.

Given today’s traffic volume and link speeds, it is either
too slow or too expensive to directly apply existing tech-
niques on a per-flow basis [1], [3]. Therefore, most existing
high-speed network monitoring systems estimate the flow-
level traffic through packet sampling [28], but this has two
shortcomings. First , sampling is still not scalable; there are
up to 264 simultaneous flows, even defined only by source
and destination IP addresses. Second, long-lived traffic flows,
increasingly prevalent for peer-to-peer applications [28], will
be split up if the time between sampled packets exceeds
the flow timeout. Thus, the application of sketches has been
studied quite extensively [4], [5], [8].

The AutoFocus system automates the dynamic clustering
of network flows which exhibit interesting properties such as
being a heavy hitter. But this system requires large memory
and can only operate offline [29]. Recently, PCF has been
proposed for scalable network detection [20]. It uses a similar
data structure as the original sketch, and is not reversible.
Thus, even when attacks are detected, attacker or victim
information is still unknown, making mitigation impossible.

VIII. CONCLUSION

In this paper, we propose efficient reversible hashing
schemes which record massive network streams over high-
speed links online, while maintaining the ability to detect
heavy changes and infer the keys of culprit flows in (nearly)
real time. This scheme has a very small memory usage and a
small number of memory accesses per packet, and is further
scalable to a large key space. Evaluations with real network
traffic traces show that the system has high accuracy and
speeds. In addition, we designed a scalable network intrusion
and mitigation system based on the reversible sketches, and
demonstrate that it can detect almost all SYN flooding attacks
and port scans that can be found with complete flow-level logs.
Moreover, we will release the software implementation soon.
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