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Background: Ligands consisting of two aryl moieties connected via a short spacer were

shown to be potent inhibitors of monoamine oxidases (MAO) A and B, which are known

as suitable targets in treatment of neurological diseases. Based on this general blueprint,

we synthesized a series of 66 small aromatic amide derivatives as novel MAO A/B

inhibitors.

Methods: The compoundswere synthesized, purified and structurally confirmed by spectroscopic

methods. Fluorimetric enzymological assays were performed to determine MAO A/B inhibition

properties. Mode and reversibility of inhibition was determined for the most potent MAO

B inhibitor. Docking poses and pharmacophore models were generated to confirm the in vitro

results.

Results: N-(2,4-Dinitrophenyl)benzo[d][1,3]dioxole-5-carboxamide (55, ST-2043) was

found to be a reversible competitive moderately selective MAO B inhibitor (IC50 = 56 nM,

Ki = 6.3 nM), while N-(2,4-dinitrophenyl)benzamide (7, ST-2023) showed higher preference

for MAO A (IC50 = 126 nM). Computational analysis confirmed in vitro binding properties,

where the anilides examined possessed high surface complementarity to MAO A/B active

sites.

Conclusion: The small molecule anilides with different substitution patterns were identified

as potent MAO A/B inhibitors, which were active in nanomolar concentrations ranges. These

small and easily accessible molecules are promising motifs, especially for newly designed

multitargeted ligands taking advantage of these fragments.

Keywords: salicylic acid derivatives, molecular modeling, Parkinson’s disease, enzyme

inhibitor, pharmacophore, structure-activity relationships

Plain Language Summary
Monoamine oxidases (MAO) A and B are neurotransmitter-catabolizing enzymes, which

play a role in the pathophysiology of neurological diseases such as Parkinson’s disease,

depression or schizophrenia. Small molecules consisting of two aryl moieties connected via

a short spacer were shown to be potent MAO A/B inhibitors. In this study, aromatic amide

derivatives with different structural variations and substitution pattern were demonstrated

to have MAO A/B inhibition properties in a nanomolar concentration range. Compound 55

was found to be a reversible competitive MAO B preferring inhibitor (IC50 = 56 nM, Ki =

6.3 nM), while compound 7 showed a higher preference for MAO A (IC50 = 126 nM).

Computational analysis confirmed in vitro binding properties as the respective anilides

possessed high surface complementarity to MAO A/B active sites. These results suggest

that the herein described anilides are small and easily accessible molecules, which may

serve as promising precursors for the design of selective or multitargeting MAO A/B

inhibitors.
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Introduction
The neurotransmitter-catabolizing monoamine oxidases

(MAO) are localized in the outer mitochondrial membrane

and are classified into the A and B isoforms. MAO A is

mainly involved in the degradation of serotonin, melatonin,

norepinephrine, and epinephrine, and is expressed nearly

ubiquitously in the human body. MAO B breaks down phe-

nethylamine and benzylamine and it is highly expressed in

the central nervous system (CNS). Dopamine, tyramine and

tryptamine can be metabolized by both isoforms but with

individual metabolic activity for each substrate.

Consequently, inhibitors of both enzymes are established in

the pharmacotherapy for neurological diseases.1–3

Moclobemide was the first marketed MAO inhibitor and

entered the Swedish market in 1989.4 Slowing down the

degradation of neurotransmitters like dopamine and norepi-

nephrine via MAO A inhibition, this drug exhibits mood-

lifting properties facilitating its use as an antidepressant.4

Since then the irreversible nonselective MAO inhibitor tra-

nylcypromine as well as the irreversible MAO B inhibitors

rasagiline and selegiline were approved for the treatment of

depression and Parkinson’s disease (PD), respectively.

Recently, safinamide as first reversible MAO B inhibitor in

PD therapy was approved.5–7 As the imminent therapeutic

benefits of MAO inhibitors are nowadays clear, multiple

efforts have been made to develop new reversible and irre-

versible inhibitors. Due to long-term enzyme inactivation by

irreversible MAO inhibitors, these can be associated with

serious side effects or drug–drug interactions, eg leading to

a serotonin syndrome.8 Reversible MAO inhibitors have

a more favorable side effect profile; however, they can be

displaced from the active site in case of high levels of the

endogenous ligands. To maintain pharmacological efficacy,

they are aimed to show a high affinity towards the MAOs

and/or tight binding behavior.9 The design of such reversible

and selective inhibitors of MAO A and B became a strongly

researched area to identify suitable drug candidates for the

treatment of neurological diseases, particularly of PD.

Having in mind that such diseases usually derive from

multifactorial disorders, the development of sophisticated

multitargeted ligands (MTLs) became of major exploration

to treat these CNS disorders.10,11 The combination of different

biological active moieties in onemolecule is challenging since

the affinity for each target needs to be preserved together with

maintaining drug-likeness properties. Identification of small

chemical entities with a promising target affinity are of great

value in MTL drug design, as they might be easily combined

or fused with other pharmacophores with minor influences on

molecular size.

Accordingly, we synthesized a series of 66 anilides

with diverse substitution patterns. The presented anilides

are small-sized and have low molecular weights. The

ligands show structural similarities to previously described

potent MAO inhibitors assuring potential MAO inhibition

activities. Multiple publications identified two aromatic

moieties linked by a short bridging element as mutual

MAO scaffold.8,12–16 Due to their high stability under

physiological conditions, amides were used as linkers in

our series. Aromatic moieties bearing different substitu-

ents were chosen to elucidate electronic and steric effects

on the binding affinities towards both MAO isoforms. The

presented ligands were characterized in vitro. For a better

understanding of the binding modes, computational dock-

ing experiments were performed and a ligand-based phar-

macophore-model was established.

Materials and Methods
Reagents and Instrumentation
Reagents and solvents for synthesis were purchased from

Sigma-Aldrich, VWR Chemicals, Fisher Scientific,

Panreac AppliChem, Alfa Aesar and Chemsolute and

were used without further purifications (unless stated

otherwise). 1H NMR and 13C NMR were recorded on

a Bruker AMX spectrometer (Bruker, Germany) at 300

and 75 MHz respectively, where either CDCl3 or DMSO-

d6 was used as a solvent. Tetramethylsilane was used as

standard and chemical shifts are reported in parts

per million (ppm). Elementary analyses (C, H, N) were

measured on a CHN-Rapid (Heraeus, Germany) and were

within 0.4% of the theoretical values for final compounds.

LC-MS analysis was performed on a Bruker Elute SP;

Column: Intensity Solo C18 RP; column dimensions: 100

x 2.1 mm; eluent: acetonitrile (1–40%) in water, 0.1%

formic acid; flow: 0.3 mL/min) combined with mass spec-

trometric detection (Bruker amazon speed with ESI; detec-

tion: ion-trap; ion-polarity: positive; scan: 100–600 m/z).

Data are given as retention time (tR), mass number ([M

+H]+), and normalized peak area (%) as approximated

purity. Melting points (m.p., uncorrected) were determined

on a M-564 Büchi melting point apparatus (Büchi,

Germany). Thin-layer chromatography (TLC) was carried

out using pre-coated silica gel 60 with fluorescence indi-

cator at UV 254 nm (Macherey-Nagel, Germany). The

structure and purity of each compound were confirmed
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using 1H NMR, 13C NMR, LC-MS and/or elemental

analysis.

Human recombinant monoamine oxidase A (MAO A,

E.C. 1.4.3.4), human recombinant monoamine oxidase

B (MAO B, E.C. 1.4.3.4), kynuramine dihydrobromide

(KYN) and dimethylsulfoxide (DMSO) were purchased

from Sigma Aldrich. For biological evaluation tests, com-

pounds were dissolved in 100% DMSO (max. 10−3 M).

Fluorescence intensity measurements were performed with

an infinite M1000 Pro multimode reader (Tecan,

Switzerland). Assay pipetting was partly automated using

a Freedom EVO pipetting robot (Tecan, Switzerland).

Experimental Procedures

N-Phenylbenzamid (1)34

Using Method A the title compound was isolated as

a white amorphous powder. Yield: 53%
1H NMR (300 MHz, DMSO-d6) δ 10.25 (s, 1H), 8.-

00–7.93 (m, 2H), 7.82–7.75 (m, 2H), 7.65–7.49 (m, 3H),

7.41–7.29 (m, 2H), 7.15–7.06 (m, 1H). 13C NMR (75

MHz, DMSO) δ 165.50, 139.13, 134.95, 131.49, 128.55,

128.33, 127.60, 123.60, 120.31.

Elemental Analysis: calc C 79.17%, H 5.62%,

N 7.10%; found C 78.91%, H 5.53%, N 6.89%.

m.p.: 163°C (lit.163–164°C).35

N-(Pyridin-2-yl)benzamide (2)36

Using Method C the title compound was isolated as

a white amorphous powder. Yield: 83%
1H NMR (300 MHz, DMSO-d6) δ 11.95 (s, 1H), 8.51

(dt, J = 5.6, 1.3 Hz, 1H), 8.28–8.24 (m, 2H), 8.20–8.12 (m,

2H), 7.73–7.64 (m, 1H), 7.62–7.54 (m, 2H), 7.47 (td, J =

5.7, 2.7 Hz, 1H).
13C NMR (75 MHz, DMSO-d6) δ 166.89, 149.65,

143.30, 142.29, 132.94, 132.55, 128.60, 128.32, 120.34,

116.28.

LC-MS tR = 16.8 min; [M+H]+ = 198.9; 100%.

m.p.: 78°C (lit: 75–80°C).

N-(4-Cyanophenyl)benzamide (3)37

Using Method A the title compound was isolated as

a white solid. Yield: 57%
1H NMR (300 MHz, DMSO-d6) δ 10.65 (s, 1H), 8.-

06–7.92 (m, 4H), 7.87–7.78 (m, 2H), 7.68–7.49 (m, 3H).
13C NMR (75 MHz, DMSO) δ 166.15, 143.46, 134.34,

133.07, 131.99, 128.44, 127.80, 120.12, 119.04, 105.30.

Elemental Analysis: calc C 75.60%, H 4.54%,

N 12.60%; found C 75.44%, H 4.24%, N 12.33%.

m.p.: 165°C (lit: 165–166°C).38

N-(4-(Trifluoromethoxy)phenyl)benzamide (4)39

Using Method A the title compound was isolated as

a white solid. Yield: 62%
1H NMR (300 MHz, DMSO-d6) δ 10.44 (s, 1H), 8.-

14–7.79 (m, 4H), 7.57 (ddd, J = 14.4, 7.8, 6.0 Hz, 3H),

7.37 (d, J = 8.6 Hz, 2H).
13C NMR (75 MHz, DMSO) δ 165.66, 143.82, 143.79,

138.36, 134.61, 131.68, 128.37, 127.65, 121.60, 121.41.

Elemental Analysis: calc C 59.79%, H 3.58%,

N 4.98%; found C 59.76%, H 3.42%, N 4.90%.

m.p.: 179°C (lit: 176–178°C).40

N-(4-Amino-2-methylphenyl)benzamide (5)41

Using Method D the title compound was isolated as

a white solid. Yield 89%
1H NMR (300 MHz, DMSO-d6) δ 9.57 (s, 1H), 8.06–-

7.86 (m, 2H), 7.62–7.43 (m, 3H), 6.91 (d, J = 8.2 Hz, 1H),

6.47 (d, J = 2.5 Hz, 1H), 6.42 (dd, J = 8.3, 2.6 Hz, 1H),

2.08 (s, 3H).
13C NMR (75 MHz, DMSO) δ 165.29, 146.96, 134.81,

134.59, 131.13, 128.26, 127.78, 127.40, 124.87, 115.19,

111.43, 17.99.

Elemental Analysis: calc C 74.31%, H 6.05%,

N 12.38%; found C 74.22%, H 6.05%, N 12.08%.

m.p.: 201°C (lit: 199–201°C).42

N-(2-Methyl-4-nitrophenyl)benzamide (6)41

Using Method A the title compound was isolated as a faint

yellow solid. 63%
1H NMR (300 MHz, DMSO-d6) δ 10.11 (s, 1H), 8.19

(dd, J = 2.6, 0.9 Hz, 1H), 8.12 (dd, J = 8.8, 2.8 Hz, 1H),

8.05–7.98 (m, 2H), 7.84 (d, J = 8.8 Hz, 1H), 7.68–7.52 (m,

3H), 2.41 (s, 3H).
13C NMR (75 MHz, DMSO) δ 165.59, 144.14, 143.00,

133.99, 133.88, 131.99, 128.47, 127.86, 125.57, 125.35,

121.49, 17.90.

Elemental Analysis: calc C 65.62%, H 4.72%,

N 10.93%; found C 65.38%, H 4.42%, N 10.74%.

m.p.: 186°C (lit:181–186°C).42

N-(2,4-Dinitrophenyl)benzamide (7)43

Using Method A the title compound was isolated as

a yellow solid. Yield 23%
1H NMR (300 MHz, DMSO-d6) δ 11.23 (s, 1H), 8.76

(d, J = 2.6 Hz, 1H), 8.59 (dd, J = 9.1, 2.7 Hz, 1H), 8.15 (d,

J = 9.1 Hz, 1H), 8.05–7.91 (m, 2H), 7.78–7.53 (m, 3H).

Dovepress Hagenow et al

Drug Design, Development and Therapy 2020:14 submit your manuscript | www.dovepress.com

DovePress
373

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


13C NMR (75 MHz, DMSO) δ 164.49, 156.60, 141.19,
139.12, 137.12, 134.71, 131.32, 129.31, 123.56, 121.58,

119.84, 117.83, 116.95.

Elemental Analysis: calc C 54.36%, H 3.16%,

N 14.63%; found C 54.21%, H 3.48%, N 14.80%.

m.p.: 199°C (lit: 199–201°C).44

N-(4-Amino-2-methoxyphenyl)benzamide (8)45

Using Method D the title compound was isolated as an off-

white solid. Yield 90%
1H NMR (300 MHz, DMSO-d6) δ 9.17 (s, 1H), 8.01–

7.88 (m, 2H), 7.63–7.40 (m, 3H), 7.18 (d, J = 8.3 Hz, 1H),

6.31 (d, J = 2.3 Hz, 1H), 6.15 (dd, J = 8.4, 2.3 Hz, 1H),

5.08 (s, 2H), 3.71 (s, 3H).
13C NMR (75 MHz, DMSO) δ 153.40, 147.70, 134.82,

131.12, 128.28, 127.29, 126.68, 115.16, 105.13, 97.61, 55.12.

Elemental Analysis: calc C 69.41%, H 5.81%,

N 11.56%; found C 69.49%, H 5.82%, N 11.38%.

m.p.: 115°C (lit: 112–113°C).

N-(2-Methoxy-4-nitrophenyl)benzamide (9)45

Using Method A the title compound was isolated as

a yellow solid. Yield 60%
1H NMR (300 MHz, DMSO-d6) δ 9.63 (s, 1H), 8.31

(d, J = 8.9 Hz, 1H), 8.03–7.88 (m, 3H), 7.85 (d, J = 2.5 Hz,

1H), 7.69–7.49 (m, 3H), 4.00 (s, 3H).
13C NMR (75 MHz, DMSO) δ 165.32, 149.81, 143.47,

133.76, 132.16, 128.57, 127.62, 121.16, 116.53, 105.97, 56.55.

Elemental Analysis: calc C 61.76%, H 4.44%,

N 10.29%; found C 61.71%, H 4.53%, N 10.33%.

m.p.: 149°C (lit: 148–151°C).

N-(2-Chloro-4-nitrophenyl)benzamide (10)46

Using Method A the title compound was isolated as a pale-

yellow solid. Yield 59%
1H NMR (300 MHz, DMSO-d6) δ 10.29 (s, 1H), 8.41 (d,

J = 2.6 Hz, 1H), 8.27 (dd, J = 9.0, 2.6 Hz, 1H), 8.09 (d, J = 9.0

Hz, 1H), 8.05–7.95 (m, 2H), 7.73–7.50 (m, 3H).
13C NMR (75 MHz, DMSO) δ 165.49, 144.45, 141.31,

133.37, 132.36, 128.59, 128.01, 127.89, 126.58, 124.85,

122.89.

Elemental Analysis: calc C 56.44%, H 3.28%,

N 10.13%; found C 56.14%, H 3.38%, N 10.18%.

m.p.: 161°C (lit: 160°C).

N-(4-Bromophenyl)picolinamide (11)47

Using Method B the title compound was isolated as

a white solid. Yield 75%

1H NMR (300 MHz, DMSO-d6) δ 10.80 (s, 1H), 8.75

(ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.17 (dt, J = 7.8, 1.2 Hz,

1H), 8.07 (td, J = 7.7, 1.7 Hz, 1H), 7.96–7.88 (m, 2H),

7.69 (ddd, J = 7.5, 4.8, 1.4 Hz, 1H), 7.59–7.52 (m, 2H).
13C NMR (75MHz, DMSO-d6) δ 162.65, 149.66, 148.41,

138.12, 137.77, 131.41, 127.00, 122.46, 122.24, 115.64.

Elemental Analysis: calc C 52.01%, H 3.27%,

N 10.11%; found C 51.74%, H 3.06%, N 10.10%.

m.p.: 148°C (lit: 147–148°C).48

2-Hydroxy-N-phenylbenzamide (12)49

Using Method A the title compound was isolated as

a white solid. Yield 61%
1H NMR (300 MHz, DMSO-d6) δ 11.83 (s, 1H), 10.40

(s, 1H), 7.99 (dd, J = 7.9, 1.7 Hz, 1H), 7.75–7.69 (m, 2H),

7.51–7.33 (m, 3H), 7.18–7.09 (m, 1H), 7.03–6.93 (m, 2H).
13C NMR (75 MHz, DMSO) δ 166.57, 158.48, 138.10,

133.62, 128.99, 128.69, 124.15, 120.96, 118.98, 117.42,

117.19.

Elemental Analysis: calc C 73.23%, H 5.20%,

N 6.57%; found C 73.13%, H 5.21%, N 6.46%.

m.p.: 132°C (lit: 127–129°C).50

N-(4-Cyanophenyl)-2-hydroxybenzamide (13)51

Using Method A the title compound was isolated as

a white solid. Yield 47%
1H NMR (300 MHz, DMSO-d6) δ 11.41 (s, 1H), 10.66

(s, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.88 (dd, J = 7.9, 1.7 Hz,

1H), 7.83 (d, J = 8.8 Hz, 2H), 7.45 (ddd, J = 8.2, 7.2, 1.7

Hz, 1H), 7.05–6.92 (m, 2H).
13C NMR (75 MHz, DMSO) δ 166.45, 157.49, 142.68,

133.67, 133.15, 129.48, 120.40, 119.18, 118.96, 118.47,

117.05, 105.57.

Elemental Analysis: calc C 70.58%, H 4.23%,

N 11.76%; found C 70.40%, H 4.11%, N 11.67%.

m.p.: 176°C (lit: 175–176.5°C).52

N-(2,4-Dinitrophenyl)-2-hydroxybenzamide (14)53

Using Method A the title compound was isolated as

a yellow solid. Yield 22%
1H NMR (300 MHz, DMSO-d6) δ 12.41 (s, 1H), 11.96

(s, 1H), 9.01 (d, J = 9.4 Hz, 1H), 8.88 (d, J = 2.7 Hz, 1H),

8.59 (dd, J = 9.4, 2.8 Hz, 1H), 8.01 (dd, J = 8.0, 1.8 Hz,

1H), 7.50 (ddd, J = 8.6, 7.2, 1.8 Hz, 1H), 7.11–6.97

(m, 2H).
13C NMR (75 MHz, DMSO) δ 165.50, 142.73, 137.31,

132.90, 132.80, 128.81, 128.61, 127.91, 125.49, 121.16.
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Elemental Analysis: calc C 51.49%, H 2.99%,

N 13.86%; found C 51.40%, H 2.77%, N 13.97%.

m.p.: 212°C (lit: 213–214°C).54

2-Hydroxy-N-(2-methoxy-4-nitrophenyl)benzamide (15)55

Using Method A the title compound was isolated as

a yellow solid. Yield 45%
1H NMR (300 MHz, DMSO-d6) δ 11.86 (s, 1H), 11.28

(s, 1H), 8.73 (d, J = 9.0 Hz, 1H), 8.03 (dd, J = 7.9, 1.8 Hz,

1H), 7.95 (dd, J = 9.0, 2.5 Hz, 1H), 7.85 (d, J = 2.5 Hz,

1H), 7.45 (ddd, J = 8.2, 7.2, 1.8 Hz, 1H), 7.09–6.96 (m,

2H), 4.04 (s, 3H).
13C NMR (75 MHz, DMSO) δ 163.54, 156.01, 147.85,

142.27, 134.60, 133.98, 131.09, 119.89, 118.33, 118.17,

117.34, 116.95, 105.64, 56.78.

Elemental Analysis: calc C 58.33%, H 4.20%,

N 9.72%; found C 58.15%, H 4.05%, N 9.54%.

m.p.: 207°C (lit: 205–206°C).

N-(2-Chloro-4-nitrophenyl)-2-hydroxybenzamide (16)56

Using Method A the title compound was isolated as a pale-

yellow solid. Yield 55%
1H NMR (300 MHz, DMSO-d6) δ 12.18 (s, 1H), 11.42

(s, 1H), 8.89 (d, J = 9.3 Hz, 1H), 8.44 (d, J = 2.6 Hz, 1H),

8.31 (dd, J = 9.3, 2.7 Hz, 1H), 8.09 (dd, J = 7.9, 1.8 Hz,

1H), 7.53 (ddd, J = 8.2, 7.2, 1.8 Hz, 1H), 7.16–7.02

(m, 2H).
13C NMR (75 MHz, DMSO) δ 163.74, 156.15, 142.21,

141.45, 134.41, 131.14, 124.67, 123.78, 122.09, 120.45,

120.03, 117.82, 116.98.

Elemental Analysis: calc C 53.35%, H 3.10%,

N 9.57%; found C 53.05%, H 3.32%, N 9.27%.

m.p.: 219°C (lit: 218–220°C).

4-Methyl-N-(4-nitro-2-(trifluoromethyl)phenyl)benzamide

(17)
Using Method A the title compound was isolated as

a paleyellow solid. Yield 12%
1H NMR (300 MHz, DMSO-d6) δ 10.31 (s, 1H), 8.56

(dd, J = 8.7, 2.7 Hz, 1H), 8.52 (d, J = 2.6 Hz, 1H), 7.96 (d, J =

8.8 Hz, 1H), 7.92–7.86 (m, 2H), 7.38 (d, J = 7.9 Hz, 2H), 2.40

(s, 3H).
13C NMR (75 MHz, DMSO) δ 166.12, 145.09, 142.45,

141.88, 141.86, 141.84, 131.48, 130.41, 129.09, 127.87,

127.80, 126.04, 125.63, 124.29, 122.32, 122.25, 120.66, 20.99.

Elemental Analysis: calc C 55.56%, H 3.42%,

N 8.64%; found C 55.46%, H 3.25%, N 8.39%.

m.p.: 144°C.

4-Chloro-N-phenylbenzamide (18)57

Using Method A the title compound was isolated as

a white solid. Yield 63%
1H NMR (300 MHz, DMSO-d6) δ 10.32 (s, 1H), 8.-

04–7.95 (m, 2H), 7.83–7.74 (m, 2H), 7.65–7.55 (m, 2H),

7.36 (dd, J = 8.5, 7.3 Hz, 2H), 7.16–7.07 (m, 1H).
13C NMR (75 MHz, DMSO) δ 164.38, 138.92, 136.34,

133.61, 129.57, 128.58, 128.40, 123.77, 120.38.

Elemental Analysis: calc C 67.40%, H 4.35%,

N 6.05%; found C 67.37%, H 4.21%, N 5.93%.

m.p.: 198°C (lit: 200–201°C).

4-Chloro-N-(pyridin-2-yl)benzamide (19)58

Using Method C the title compound was isolated as

a white solid. Yield 78%
1H NMR (300 MHz, DMSO-d6) δ 12.13 (s, 1H), 8.51

(ddd, J = 5.7, 1.7, 0.9 Hz, 1H), 8.36–8.14 (m, 4H), 7.73–

7.60 (m, 2H), 7.47 (ddd, J = 7.1, 5.6, 1.5 Hz, 1H).

13CNMR (75MHz,DMSO-d6) δ 165.86, 149.58, 143.24,
142.44, 137.80, 131.38, 130.33, 128.66, 120.45, 116.30.

LC-MS tR = 22.3 min; [M+H]+ = 232.9; 100%.

m.p.: 138°C (lit: 137–139°C).59

4-Chloro-N-(4-cyanophenyl)benzamide (20)
Using Method A the title compound was isolated as

a white solid. Yield 49%
1H NMR (300 MHz, DMSO-d6) δ 10.67 (s, 1H), 8.00

(d, J = 1.6 Hz, 2H), 7.97 (d, J = 1.8 Hz, 2H), 7.81 (d, J =

8.8 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H).
13C NMR (75 MHz, DMSO) δ 164.97, 143.25, 136.87,

133.04, 132.97, 129.75, 128.49, 120.18, 118.98, 105.48.

Elemental Analysis: calc C 65.51%, H 3.53%,

N 10.91%; found C 65.62%, H 3.51%, N 10.95%.

m.p.: 208°C.

4-Chloro-N-(2-methyl-4-nitrophenyl)benzamide (21)60

Using Method A the title compound was isolated as

a yellow solid. Yield 52%

1H NMR (300 MHz, DMSO-d6) δ 10.18 (s, 1H), 8.19

(d, J = 2.7 Hz, 1H), 8.11 (dd, J = 8.8, 2.7 Hz, 1H), 8.02 (d,

J = 8.6 Hz, 2H), 7.81 (d, J = 8.8 Hz, 1H), 7.63 (d, J = 8.6

Hz, 2H), 2.40 (s, 3H).

13C NMR (75 MHz, DMSO) δ 164.57, 144.26, 142.76,
136.83, 134.00, 132.70, 129.81, 128.53, 125.72, 125.36,

121.48, 17.89.
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Elemental Analysis: calc C 57.84%, H 3.81%,

N 9.64%; found C 58.03%, H 3.99%, N 9.64%.

m.p.: 193°C.

4-Chloro-N-(2-methoxy-4-nitrophenyl)benzamide (22)
Using Method A the title compound was isolated as

a yellow solid. Yield 54%
1H NMR (300 MHz, DMSO-d6) δ 9.83 (s, 1H), 8.24

(d, J = 8.9 Hz, 1H), 8.03–7.91 (m, 3H), 7.88 (d, J = 2.5 Hz,

1H), 7.67–7.58 (m, 2H), 4.00 (s, 3H).
13C NMR (75 MHz, DMSO) δ 164.51, 150.30, 143.83,

136.97, 133.55, 132.59, 129.72, 128.60, 122.03, 116.45,

106.18, 56.56.

Elemental Analysis: calc C 54.83%, H 3.62%,

N 9.13%; found C 54.67%, H 3.57%, N 8.86%.

m.p.: 200°C (decomposition).

4-Chloro-N-(2-chloro-4-nitrophenyl)benzamide (23)
Using Method A the title compound was isolated as

a yellow solid. Yield 17%
1H NMR (300 MHz, DMSO-d6) δ 10.42 (s, 1H), 8.43

(d, J = 2.6 Hz, 1H), 8.27 (dd, J = 8.9, 2.6 Hz, 1H),

8.09–7.98 (m, 3H), 7.66 (d, J = 8.6 Hz, 2H).
13C NMR (75 MHz, DMSO) δ 164.56, 144.69, 141.12,

137.19, 132.13, 129.87, 128.69, 128.32, 127.00, 124.90,

122.89.

Elemental Analysis: calc C 50.19%, H 2.59%,

N 9.00%; found C 50.44%, H 2.30%, N 8.96%.

m.p.: 219°C.

4-Bromo-N-(2-chloro-4-nitrophenyl)benzamide (24)
Using Method A the title compound was isolated as an off-

white solid. Yield 20%
1H NMR (300 MHz, DMSO-d6) δ 10.41 (s, 1H),

8.41 (d, J = 2.6 Hz, 1H), 8.27 (dd, J = 9.0, 2.6 Hz,

1H), 8.04 (d, J = 9.0 Hz, 1H), 7.99–7.92 (m, 2H),

7.83–7.76 (m, 2H).
13C NMR (75 MHz, DMSO) δ 164.70, 144.65, 141.10,

132.49, 131.62, 130.00, 128.25, 126.92, 126.19, 124.88,

122.88.

Elemental Analysis: calc C 43.91%, H 2.27%,

N 7.88%; found C 43.65%, H 1.90%, N 7.53%.

m.p.: 205°C.

5-Amino-2-hydroxy-N-phenylbenzamide (25)61

Using Method D the title compound was isolated as an off-

white solid. Yield 90%

1H NMR (300 MHz, DMSO-d6) δ 10.47 (s, 1H),

7.69 (dd, J = 8.3, 1.3 Hz, 2H), 7.36 (t, J = 7.9 Hz,

2H), 7.21–7.15 (m, 1H), 7.12 (d, J = 7.4 Hz, 1H), 6.73

(d, J = 2.0 Hz, 2H), 4.72 (s, 2H).
13C NMR (75 MHz, DMSO) δ 165.96, 148.64, 140.98,

138.50, 128.72, 123.71, 120.37, 120.29, 118.02, 117.50,

113.68.

Elemental Analysis: calc C 68.41%, H 5.30%,

N 12.27%; found C 68.01%, H 4.96%, N 12.38%.

m.p.: 176°C (lit: 174–176°C).62

2-Hydroxy-5-nitro-N-phenylbenzamide (26)61

Using Method A the title compound was isolated as

a white solid. Yield 61%
1H NMR (300 MHz, DMSO-d6) δ 12.78 (s, 1H),

10.57 (s, 1H), 8.79 (d, J = 2.9 Hz, 1H), 8.29 (dd, J =

9.1, 2.9 Hz, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.39 (t, J =

7.7 Hz, 2H), 7.16 (dd, J = 8.4, 5.5 Hz, 2H).
13C NMR (75 MHz, DMSO) δ 164.08, 163.27,

139.34, 137.89, 128.75, 128.33, 125.71, 124.39,

120.77, 119.33, 117.97.

Elemental Analysis: calc C 60.47%, H 3.90%,

N 10.85%; found C 60.20%, H 3.85%, N 10.65%.

m.p.: 223°C (lit: 219–221°C).

5-Chloro-2-hydroxy-N-phenylbenzamide (27)56

Using Method A the title compound was isolated as

a white solid. Yield 62%
1H NMR (300 MHz, DMSO-d6) δ 11.87 (s, 1H), 10.41

(s, 1H), 7.98 (d, J = 2.7 Hz, 1H), 7.77–7.64 (m, 2H), 7.47

(dd, J = 8.8, 2.7 Hz, 1H), 7.43–7.32 (m, 2H), 7.21–7.10

(m, 1H), 7.02 (d, J = 8.8 Hz, 1H).
13C NMR (75 MHz, DMSO) δ 164.96, 156.87,

137.95, 132.99, 128.72, 128.32, 124.29, 122.68,

120.81, 119.45, 119.04.

Elemental Analysis: calc C 63.04%, H 4.07%,

N 5.66%; found C 62.83%, H 4.17%, N 5.55%.

m.p.: 209°C (lit: 211–212°C).63

5-Chloro-N-(2-chlorophenyl)-2-hydroxybenzamide (28)64

Using Method A the title compound was isolated as a pale-

yellow solid. Yield 46%
1H NMR (300 MHz, DMSO-d6) δ 12.26 (s, 1H), 10.88

(s, 1H), 8.40 (dd, J = 8.3, 1.6 Hz, 1H), 7.99 (d, J = 2.8 Hz,

1H), 7.54 (dd, J = 8.0, 1.5 Hz, 1H), 7.48 (dd, J = 8.7, 2.8

Hz, 1H), 7.43–7.34 (m, 1H), 7.17 (ddd, J = 8.0, 7.4, 1.6

Hz, 1H), 7.07 (d, J = 8.8 Hz, 1H).
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13C NMR (75 MHz, DMSO-d6) δ 162.59, 155.35,

134.98, 133.33, 129.72, 129.29, 127.78, 125.32, 123.46,

122.76, 119.58, 118.99.

Elemental Analysis: calc C 55.35%, H 3.22%,

N 4.96%; found C 55.35%, H 3.31%, N 4.75%.

m.p.: 189°C (lit:184–186°C).62

5-Chloro-N-(3-chlorophenyl)-2-hydroxybenzamide (29)56

Using Method A the title compound was isolated as a pale-

yellow solid. Yield 41%
1H NMR (300 MHz, DMSO-d6) δ 11.65 (s, 1H), 10.49

(s, 1H), 7.92 (t, J = 2.1 Hz, 1H), 7.90 (d, J = 2.7 Hz, 1H),

7.61 (ddd, J = 8.3, 2.1, 1.0 Hz, 1H), 7.47 (dd, J = 8.8, 2.7

Hz, 1H), 7.40 (t, J = 8.1 Hz, 1H), 7.20 (ddd, J = 8.0, 2.1,

1.0 Hz, 1H), 7.02 (d, J = 8.8 Hz, 1H).
13C NMR (75 MHz, DMSO-d6) δ 164.96, 156.41,

139.55, 133.01, 130.39, 128.44, 123.87, 122.72, 120.05,

119.94, 118.99.

Elemental Analysis: calc C 55.35%, H 3.22%,

N 4.96%; found C 55.12%, H 3.25%, N 4.86%.

m.p.: 219°C (lit: 217–218°C).62

Ethyl 4-(5-chloro-2-hydroxybenzamido)benzoate (30)65

Using Method A the title compound was isolated as a pale-

yellow solid. Yield 37%
1H NMR (300 MHz, DMSO-d6) δ 11.63 (s, 1H), 10.65

(s, 1H), 8.03–7.93 (m, 2H), 7.92–7.83 (m, 3H), 7.47 (dd,

J = 8.8, 2.7 Hz, 1H), 7.03 (d, J = 8.8 Hz, 1H), 4.30 (q, J =

7.1 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H).
13C NMR (75 MHz, DMSO) δ 165.22, 164.87, 156.25,

142.53, 132.99, 130.11, 128.61, 125.00, 122.74, 120.28,

119.80, 118.96, 60.49, 14.17.

Elemental Analysis: calc C 60.10%, H 4.41%,

N 4.38%; found C 60.46%, H 4.38%, N 4.32%.

m.p.: 214°C (lit: 212–214°C).

5-Chloro-2-hydroxy-N-(4-(trifluoromethyl)phenyl)benza-

mide (31)66

Using Method A the title compound was isolated as a pale-

yellow solid. Yield 62%
1H NMR (300 MHz, DMSO-d6) δ 11.65 (s, 1H), 10.65

(s, 1H), 7.94 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 2.7 Hz, 1H),

7.72 (dd, J = 8.7, 0.9 Hz, 2H), 7.46 (dd, J = 8.8, 2.7 Hz,

1H), 7.03 (d, J = 8.8 Hz, 1H).
13C NMR (75 MHz, DMSO) δ 165.02, 156.30, 141.75,

141.73, 133.02, 128.57, 125.97, 125.92, 122.78, 120.39,

120.07, 118.95.

Elemental Analysis: calc C 53.27%, H 2.87%,

N 4.44%; found C 53.09%, H 2.63%, N 4.38%.

m.p.: 221°C (lit: 222–223°C).63

5-Chloro-2-hydroxy-N-(4-nitrophenyl)benzamide (32)65

Using Method A the title compound was isolated as

a yellow solid. Yield 9%
1H NMR (300 MHz, DMSO-d6) δ 11.46 (s, 1H), 10.84 (s,

1H), 8.28 (d, J = 9.2 Hz, 2H), 7.99 (d, J = 9.2 Hz, 2H), 7.84 (d,

J = 2.8 Hz, 1H), 7.48 (dd, J = 8.8, 2.8 Hz, 1H), 7.04 (d, J = 8.8

Hz, 1H).
13C NMR (75 MHz, DMSO) δ 164.98, 155.83, 144.50,

142.70, 133.00, 128.73, 124.85, 122.77, 120.88, 120.01,

118.90.

Elemental Analysis: calc C 53.35%, H 3.10%,

N 9.57%; found C 53.37%, H 3.02%, N 9.36%.

m.p.: 259°C (li: 260–262°C).62

5-Chloro-2-hydroxy-N-(4-(trifluoromethoxy)phenyl)ben-

zamide (33)63

Using Method A the title compound was isolated as

a white solid. Yield 60%
1HNMR (300MHz, DMSO-d6) δ 11.76 (s, 1H), 10.54 (s,

1H), 7.94 (d, J = 2.7 Hz, 1H), 7.83 (d, J = 9.0 Hz, 2H), 7.46

(dd, J = 8.8, 2.7 Hz, 1H), 7.41–7.30 (m, 2H), 7.02 (d, J = 8.8

Hz, 1H).
13CNMR (75MHz,DMSO) δ 165.04, 156.73, 144.25 (m),

137.21, 133.02, 128.36, 122.71, 122.12, 121.46, 119.51,

118.99.

Elemental Analysis: calc C 50.70%, H 2.74%,

N 4.22%; found C 50.30%, H 2.65%, N 4.06%.

m.p.: 200°C (lit: 200–202°C).

N-(4-Bromophenyl)-5-chloro-2-hydroxybenzamide (34)67

Using Method A the title compound was isolated as

a yellow solid. Yield 55%
1H NMR (300 MHz, DMSO-d6) δ 11.75 (s, 1H), 7.93 (d,

J = 2.7 Hz, 1H), 7.76–7.65 (m, 2H), 7.59–7.50 (m, 2H), 7.45

(dd, J = 8.8, 2.7 Hz, 1H), 7.01 (d, J = 8.8 Hz, 1H).
13C NMR (75 MHz, DMSO) δ 164.92, 156.63, 137.43,

133.00, 131.52, 128.38, 122.71, 122.57, 119.64, 119.00,

115.97.

Elemental Analysis: calc C 47.81%, H 2.78%,

N 4.29%; found C 47.49%, H 2.47%, N 3.94%.

m.p.: 237°C (lit: 240–241.5°C).68

5-Chloro-2-hydroxy-N-(2-methyl-4-nitrophenyl)benza-

mide (35)69
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Using Method A the title compound was isolated as

a yellow solid. Yield 16%
1H NMR (300 MHz, DMSO-d6) δ 12.33 (s, 1H), 10.73

(s, 1H), 8.52 (d, J = 9.0 Hz, 1H), 8.25–8.11 (m, 2H), 7.98

(d, J = 2.8 Hz, 1H), 7.53 (dd, J = 8.7, 2.8 Hz, 1H), 7.10 (d,

J = 8.7 Hz, 1H), 2.45 (s, 3H).
13C NMR not performed due to poor solubility.

Elemental Analysis: calc C 54.83%, H 3.62%,

N 9.13%; found C 54.78%, H 3.32%, N 8.96%.

m.p.: 229°C (lit: 225–227).

N-(2,4-Bis(trifluoromethyl)phenyl)-5-chloro-2-hydroxy-

benzamide (36)70

Using Method A the title compound was isolated as an off-

white solid. Yield 51%
1H NMR (300 MHz, DMSO-d6) δ 11.42 (s, 1H), 10.76

(s, 1H), 8.36 (d, J = 1.8 Hz, 2H), 7.91–7.63 (m, 2H), 7.39

(dd, J = 8.8, 2.7 Hz, 1H), 6.96 (d, J = 8.8 Hz, 1H).
13C NMR (75 MHz, DMSO) δ 165.46, 156.39, 140.14,

133.21, 130.64 (q, J = 32.9 Hz), 128.47, 124.94, 122.73,

121.33, 120.22, 119.74, 118.97,116.70 (q, J = 7.8, 4.0 Hz).

Elemental Analysis: calc C 46.96%, H 2.10%,

N 3.65%; found C 46.73%, H 1.70%, N 3.61%.

m.p.: 171°C.

5-Chloro-2-hydroxy-N-(4-nitro-2-(trifluoromethyl)phenyl)

benzamide (37)
Using Method A the title compound was isolated as a pale-

yellow solid. Yield 63%
1H NMR (300 MHz, DMSO-d6) δ 12.51 (s, 1H), 11.24

(s, 1H), 8.77 (d, J = 9.2 Hz, 1H), 8.53 (dd, J = 9.2, 2.7 Hz,

1H), 8.43 (d, J = 2.7 Hz, 1H), 7.91 (d, J = 2.8 Hz, 1H),

7.51 (dd, J = 8.8, 2.8 Hz, 1H), 7.06 (d, J = 8.8 Hz, 1H).
13C NMR (75 MHz, DMSO) δ 162.50, 155.11, 142.28,

141.10, 134.09, 130.06, 128.68, 123.81, 123.74, 122.11,

122.02, 118.98, 118.95, 118.26.

Elemental Analysis: calc C 46.62%, H 2.24%,

N 7.77%; found C 46.32%, H 1.94%, N 7.64%.

m.p.: 191°C.

5-Chloro-2-hydroxy-N-(2-methoxy-4-nitrophenyl)benza-

mide (38)71

Using Method A the title compound was isolated as an off-

white solid. Yield 13%
1H NMR (300 MHz, DMSO-d6) δ 12.25 (s, 1H), 11.24

(s, 1H), 8.69 (d, J = 9.0 Hz, 1H), 8.04–7.82 (m, 3H), 7.50 (dd,

J = 8.7, 2.9 Hz, 1H), 7.08 (d, J = 8.8 Hz, 1H), 4.04 (s, 3H).

13C NMR (75 MHz, DMSO) δ 162.21, 154.92, 147.93,

142.54, 134.19, 133.54, 130.00, 123.62, 119.85, 119.04,

118.34, 117.31, 105.72, 56.84.

Elemental Analysis: calc C 52.10%, H 3.28%,

N 8.68%; found C 52.10%, H 3.28%, N 8.65%.

m.p.: 230°C (lit: 233–235°C).72

Dimethyl 2-(5-chloro-2-hydroxybenzamido)terephthalate

(39)
Using Method A the title compound was isolated as a pale-

yellow solid. Yield 57%
1H NMR (300 MHz, DMSO-d6) δ 12.05 (s, 1H), 11.89

(s, 1H), 9.23 (d, J = 1.6 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H),

7.92 (d, J = 2.8 Hz, 1H), 7.77 (dd, J = 8.2, 1.7 Hz, 1H), 7.49

(dd, J = 8.8, 2.8 Hz, 1H), 7.06 (d, J = 8.8 Hz, 1H), 3.91 (s,

3H), 3.90 (s, 3H).
13C NMR (75 MHz, DMSO) δ 166.13, 165.35, 163.21,

155.43, 139.41, 133.74, 133.34, 131.12, 129.96, 123.60,

123.07, 122.67, 121.54, 120.19, 118.83, 52.78, 52.58.

Elemental Analysis: calc C 56.13%, H 3.88%, N 3.85%;

found C 56.53%, H 3.64%, N 4.00%.

m.p.: 193°C.

5-Chloro-2-hydroxy-N-(5-fluoro-2-nitrophenyl)benzamide

(40)
Using Method A the title compound was isolated as

a yellow solid. Yield 11%
1H NMR (300 MHz, DMSO-d6) δ 12.24 (s, 1H), 12.20

(s, 1H), 8.58 (dd, J = 11.9, 2.9 Hz, 1H), 8.30 (dd, J = 9.2,

5.8 Hz, 1H), 7.90 (d, J = 3.0 Hz, 1H), 7.49 (dd, J = 8.6, 2.9

Hz, 1H), 7.20 (ddd, J = 9.8, 7.3, 3.0 Hz, 1H), 7.05 (d, J =

8.7 Hz, 1H).
13C NMR (75 MHz, DMSO-d6) δ 164.87 (d, J = 252.5

Hz), 163.08, 155.34, 136.01 (d, J = 13.7 Hz), 134.52 (d,

J = 2.7 Hz), 133.83, 130.12, 128.75 (d, J = 11.4 Hz),

123.36, 119.48, 118.92, 111.09 (d, J = 24.2 Hz), 109.40

(d, J = 29.8 Hz).

Elemental Analysis: calc C 50.26%, H 2.60%,

N 9.02%; found C 50.19%, H 2.73%, N 9.02%.

m.p.: 178°C.

5-Chloro-2-hydroxy-N-(4-methyl-3-nitrophenyl)benza-

mide (41)
Using Method A the title compound was isolated as

a brown solid. Yield 37%
1H NMR (300 MHz, DMSO-d6) δ 11.61 (s, 1H), 10.65 (s,

1H), 8.50 (d, J = 2.2 Hz, 1H), 7.89 (dd, J = 8.1, 2.5 Hz, 2H),

7.58–7.44 (m, 2H), 7.03 (d, J = 8.8 Hz, 1H), 3.33 (s, 3H).
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13C NMR (75 MHz, DMSO) δ 165.18, 156.50, 148.51,
137.04, 133.10, 133.04, 128.39, 128.15, 125.13, 122.69,

119.80, 119.02, 115.79, 19.19.

Elemental Analysis: calc C 54.83%, H 3.62%,

N 9.13%; found C 55.21%, H 3.50%, N 8.73%.

m.p.: 278°C.

5-Chloro-2-hydroxy-N-(3,4-dimethoxyphenyl)benzamide

(42)73

Using Method A the title compound was isolated as

a yellow solid. Yield 29%
1H NMR (300 MHz, DMSO-d6) δ 12.04 (s, 1H), 10.30

(s, 1H), 8.01 (d, J = 2.7 Hz, 1H), 7.46 (dd, J = 8.8, 2.7 Hz,

1H), 7.39 (d, J = 2.4 Hz, 1H), 7.25 (dd, J = 8.7, 2.4 Hz,

1H), 7.01 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 8.7 Hz, 1H),

3.77 (s, 3H), 3.75 (s, 3H).
13C NMR (75 MHz, DMSO) δ 165.02, 157.36, 148.46,

145.70, 133.03, 131.21, 127.99, 122.58, 119.10, 118.81,

113.05, 111.77, 106.00, 55.63, 55.42.

Elemental Analysis: calc C 58.55%, H 4.59%,

N 4.55%; found C 58.53%, H 4.68%, N 4.46%.

m.p.: 185°C.

5-Chloro-2-hydroxy-N-(3,5-dichlorophenyl)benzamide

(43)63

Using Method A the title compound was isolated as a pale-

yellow solid. Yield 56%
1H NMR (300 MHz, DMSO-d6) δ 11.75–11.27 (s, 1H),

10.56 (s, 1H), 7.90–7.76 (m, 2H), 7.47 (dd, J = 8.8, 2.7 Hz,

1H), 7.34 (t, J = 1.9 Hz, 1H), 7.03 (d, J = 8.8 Hz, 1H).
13C NMR (75 MHz, DMSO) δ 164.99, 156.11, 140.56,

133.99, 133.05, 128.53, 123.23, 122.74, 120.21, 118.93,

118.54.

Elemental Analysis: calc C 49.32%, H 2.55%,

N 4.42%; found C 49.70%, H 2.20%, N 4.36%.

m.p.: 247 °C (lit: 247–249 °C).

2-Chloro-4-nitro-N-(2-chlorophenyl)benzamide (44)
Using Method A the title compound was isolated as an off-

white solid. Yield 50%
1H NMR (300 MHz, DMSO-d6) δ 10.52 (s, 1H), 8.42

(d, J = 2.2 Hz, 1H), 8.32 (dd, J = 8.4, 2.2 Hz, 1H), 7.92 (d,

J = 8.4 Hz, 1H), 7.74 (dd, J = 8.0, 1.7 Hz, 1H), 7.58 (dd,

J = 8.0, 1.5 Hz, 1H), 7.43 (td, J = 7.6, 1.6 Hz, 1H), 7.32

(td, J = 7.7, 1.7 Hz, 1H).
13C NMR (75 MHz, DMSO-d6) δ 163.90, 148.38,

141.98, 133.87, 131.20, 130.11, 129.72, 128.35, 127.69,

127.56, 124.57, 122.40.

Elemental Analysis: calc C 50.19%, H 2.59%,

N 9.00%; found C 50.11%, H 2.70%, N 8.81%.

m.p.: 171°C.

2-Chloro-4-nitro-N-(3-chlorophenyl)benzamide (45)
Using Method A the title compound was isolated as an off-

white solid. Yield 51%

1H NMR (300 MHz, DMSO-d6) δ 10.95 (s, 1H), 8.44

(d, J = 2.2 Hz, 1H), 8.32 (dd, J = 8.4, 2.2 Hz, 1H), 7.99–7.87

(m, 2H), 7.58 (ddd, J = 8.3, 2.1, 1.0 Hz, 1H), 7.42 (t, J = 8.1

Hz, 1H), 7.22 (ddd, J = 8.0, 2.1, 1.0 Hz, 1H).

13C NMR (75 MHz, DMSO-d6) δ 163.57, 148.44,

141.85, 139.78, 133.18, 131.09, 130.62, 130.06, 124.63,

123.98, 122.49, 119.14, 118.09.

Elemental Analysis: calc C 50.19%, H 2.59%,

N 9.00%; found C 50.26%, H 2.64%, N 8.92%.

m.p.: 163°C.

2-Chloro-4-nitro-N-(4-nitrophenyl)benzamide (46)74

Using Method A the title compound was isolated as a pale-

yellow solid. Yield 39%
1H NMR (300 MHz, DMSO-d6) δ 11.36 (s, 1H), 8.45

(d, J = 2.2 Hz, 1H), 8.36–8.25 (m, 3H), 7.97 (dd, J = 8.7,

5.3 Hz, 3H).
13C NMR (75 MHz, DMSO-d6) δ 164.04, 148.58, 144.35,

142.96, 141.45, 131.09, 130.15, 125.03, 124.67, 122.54, 119.54.

Elemental Analysis: calc C 48.54%, H 2.51%,

N 13.06%; found C 48.16%, H 2.63%, N 12.81%.

m.p.: 197°C (lit: 196–198°C).

2-Chloro-4-nitro-N-(5-chloro-2-hydroxyphenyl)benzamide

(47)
Using Method B the title compound was isolated as

a yellow solid. Yield 20%
1H NMR (300 MHz, DMSO-d6) δ 10.26 (s, 1H), 10.11

(s, 1H), 8.38 (d, J = 2.2 Hz, 1H), 8.27 (dd, J = 8.4, 2.2 Hz,

1H), 8.01 (d, J = 2.6 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H),

7.08 (dd, J = 8.6, 2.6 Hz, 1H), 6.92 (d, J = 8.6 Hz, 1H).
13C NMR (75 MHz, DMSO-d6) δ 163.88, 148.22,

147.47, 142.16, 131.16, 130.13, 126.51, 124.96, 124.35,

122.24, 121.98, 116.59.

Elemental Analysis: calc C 47.79%, H 2.47%,

N 8.56%; found C 47.68%, H 2.48%, N 8.51%.

m.p.: 223°C.

3,4-Diethoxy-N-(4-(trifluoromethoxy)phenyl)benzamide (48)
Using Method A the title compound was isolated as

a white solid. Yield 66%

Dovepress Hagenow et al

Drug Design, Development and Therapy 2020:14 submit your manuscript | www.dovepress.com

DovePress
379

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


1H NMR (300 MHz, DMSO-d6) δ 10.22 (s, 1H), 7.-

95–7.81 (m, 2H), 7.60 (dd, J = 8.4, 2.1 Hz, 1H), 7.53 (d,

J = 2.1 Hz, 1H), 7.41–7.30 (m, 2H), 7.08 (d, J = 8.5 Hz,

1H), 4.11 (qd, J = 7.0, 1.7 Hz, 4H), 1.36 (td, J = 6.9, 1.1

Hz, 6H).
13C NMR (75 MHz, DMSO) δ 165.01, 151.23, 147.59,

143.67, 143.64, 138.50, 126.46, 121.63, 121.35, 121.16,

112.52, 111.99, 63.96, 63.82, 14.67, 14.55.

Elemental Analysis: calc C 58.54%, H 4.91%,

N 3.79%; found C 58.64%, H 5.16%, N 3.66%.

m.p.: 173°C.

3,4-Diethoxy-N-(4-bromophenyl)benzamide (49)
Using Method A the title compound was isolated as

a white solid. Yield 57%
1H NMR (300 MHz, DMSO-d6) δ 10.16 (s, 1H), 7.-

79–7.71 (m, 2H), 7.59 (dd, J = 8.4, 2.1 Hz, 1H), 7.56–7.49

(m, 3H), 7.07 (d, J = 8.5 Hz, 1H), 4.11 (qd, J = 7.0, 1.3 Hz,

4H), 1.36 (td, J = 7.0, 1.1 Hz, 6H).
13C NMR (75 MHz, DMSO) δ 164.96, 151.19, 147.57,

138.67, 131.31, 126.53, 122.22, 121.14, 115.03, 112.48,

111.99, 63.96, 63.82, 14.69, 14.57.

Elemental Analysis: calc C 56.06%, H 4.98%,

N 3.85%; found C 56.19%, H 5.26%, N 3.77%.

m.p.: 198°C.

3,4-Diethoxy-N-(4-nitro-2-(trifluoromethyl)phenyl)benza-

mide (50)
Using Method A the title compound was isolated as

a white solid. Yield 64%
1H NMR (300 MHz, DMSO-d6) δ 10.20 (s, 1H), 8.56

(dd, J = 8.7, 2.7 Hz, 1H), 8.52 (d, J = 2.7 Hz, 1H), 7.93 (d,

J = 8.8 Hz, 1H), 7.60 (dd, J = 8.4, 2.1 Hz, 1H), 7.53 (d, J =

2.1 Hz, 1H), 7.12 (d, J = 8.5 Hz, 1H), 4.24–4.01 (m, 4H),

1.37 (t, J = 6.9 Hz, 6H).
13C NMR (75 MHz, DMSO) δ 165.66, 151.64, 147.68,

145.02, 142.03, 131.43, 127.87, 125.97, 125.56, 125.10,

122.36, 121.35, 112.38, 112.13, 63.92, 63.88, 14.63,

14.53.

Elemental Analysis: calc C 54.27%, H 4.30%,

N 7.03%; found C 54.18%, H 4.22%, N 6.96%.

m.p.: 158°C.

3,4-Diethoxy-N-(2-chloro-4-nitrophenyl)benzamide (51)
Using Method A the title compound was isolated as an off-

white solid. Yield 65%
1H NMR (300 MHz, DMSO-d6) δ 10.08 (s, 1H), 8.41

(d, J = 2.6 Hz, 1H), 8.26 (dd, J = 9.0, 2.6 Hz, 1H), 8.04 (d,

J = 9.0 Hz, 1H), 7.64 (dd, J = 8.4, 2.1 Hz, 1H), 7.56 (d, J =

2.1 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 4.12 (qd, J = 6.9, 5.4

Hz, 4H), 1.37 (t, J = 6.9 Hz, 6H).
13C NMR (75 MHz, DMSO) δ 164.82, 151.71, 147.70,

144.28, 141.56, 127.89, 126.54, 125.22, 124.84, 122.86,

121.51, 112.43, 112.10, 63.94, 63.89, 14.65, 14.54.

Elemental Analysis: calc C 55.98%, H 4.70%,

N 7.68%; found C 56.00%, H 4.69%, N 7.54%.

m.p.: 168°C.

N-Phenylbenzo[d][1,3]dioxole-5-carboxamide (52)75

Using Method A the title compound was isolated as

a white solid. Yield 64%
1H NMR (300 MHz, DMSO-d6) δ 10.06 (s, 1H), 7.83–-

7.72 (m, 2H), 7.59 (dd, J = 8.2, 1.8 Hz, 1H), 7.53 (d, J = 1.8

Hz, 1H), 7.34 (dd, J = 8.5, 7.3 Hz, 2H), 7.15–7.02 (m, 2H),

6.14 (s, 2H).
13C NMR (75 MHz, DMSO) δ 164.44, 149.98, 147.32,

139.18, 128.70, 128.50, 123.46, 122.79, 120.31, 107.87,

107.68, 101.76.

Elemental Analysis: calc C 69.70%, H 4.60%,

N 5.81%; found C 69.54%, H 4.65%, N 5.77%.

m.p.: 142°C (lit: 138–139°C).76

N-(4-Cyanophenyl)benzo[d][1,3]dioxole-5-carboxamide

(53)
Using Method A the title compound was isolated as

a white solid. Yield 48%
1H NMR (300 MHz, DMSO-d6) δ 10.44 (s, 1H), 7.97 (d,

J = 8.8 Hz, 2H), 7.80 (d, J = 8.7 Hz, 2H), 7.59 (dd, J = 8.1, 1.8

Hz, 1H), 7.52 (d, J = 1.8 Hz, 1H), 7.08 (d, J = 8.1 Hz, 1H), 6.15

(s, 2H).
13C NMR (75 MHz, DMSO) δ 165.02, 150.42, 147.41,

143.54, 133.02, 128.01, 123.21, 120.06, 119.06, 107.96,

107.80, 105.10, 101.91.

Elemental Analysis: calc C 67.67%, H 3.79%,

N 10.52%; found C 67.62%, H 3.87%, N 10.67%.

m.p.: 193°C.

N-(2-Methyl-4-nitrophenyl)benzo[d][1,3]dioxole-5-car-
boxamide (54)
Using Method A the title compound was isolated as an off-

white solid. Yield 18%
1H NMR (300 MHz, DMSO-d6) δ 9.92 (s, 1H), 8.19 (d,

J = 2.7 Hz, 1H), 8.10 (dd, J = 8.8, 2.8 Hz, 1H), 7.78 (d, J =

8.8 Hz, 1H), 7.61 (dd, J = 8.1, 1.8 Hz, 1H), 7.53 (d, J = 1.8

Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 6.15 (s, 2H), 2.39 (s, 3H).
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13C NMR (75 MHz, DMSO) δ 164.56, 150.40, 147.43,
144.05, 143.11, 133.85, 127.74, 125.59, 125.33, 123.20,

121.47, 108.02, 107.83, 101.88, 17.89.

Elemental Analysis: calc C 60.00%, H 4.03%,

N 9.33%; found C 59.85%, H 3.76%, N 9.22%.

m.p.: 230°C.

N-(2,4-Dinitrophenyl)benzo[d][1,3]dioxole-5-carboxamide

(55)
Using Method A the title compound was isolated as

a yellow solid. Yield 10%
1H NMR (300 MHz, DMSO-d6) δ 11.04 (s, 1H), 8.74

(d, J = 2.6 Hz, 1H), 8.57 (dd, J = 9.0, 2.7 Hz, 1H), 8.12 (d,

J = 9.1 Hz, 1H), 7.59 (dd, J = 8.2, 1.8 Hz, 1H), 7.47 (d, J =

1.8 Hz, 1H), 7.12 (d, J = 8.2 Hz, 1H), 6.17 (s, 2H).
13C NMR (75 MHz, DMSO) δ 164.49, 151.20, 147.73,

142.52, 140.60, 137.48, 128.56, 126.54, 125.30, 123.62,

121.14, 108.26, 107.68, 102.18.

Elemental Analysis: calc C 50.77%, H 2.74%,

N 12.69%; found C 50.84%, H 2.46%, N 12.68%.

m.p.: 200°C.

N-(2-Methoxy-4-nitrophenyl)benzo[d][1,3]dioxole-5-car-
boxamide (56)
Using Method A the title compound was isolated as

a yellow solid. Yield 33%
1H NMR (300 MHz, DMSO-d6) δ 9.53 (s, 1H), 8.24 (d,

J = 8.9 Hz, 1H), 7.94 (dd, J = 8.9, 2.5 Hz, 1H), 7.87 (d, J =

2.5 Hz, 1H), 7.59 (dd, J = 8.2, 1.8 Hz, 1H), 7.52 (d, J = 1.8

Hz, 1H), 7.08 (d, J = 8.1 Hz, 1H), 6.15 (s, 2H), 4.01 (s, 3H).
13C NMR (75 MHz, DMSO) δ 164.40, 150.58, 150.01,

147.55, 143.50, 133.87, 127.62, 123.09, 121.56, 116.53,

108.09, 107.67, 106.07, 101.96, 56.57.

Elemental Analysis: calc C 56.97%, H 3.82%,

N 8.86%; found C 56.67%, H 3.71%, N 8.64%.

m.p.: 237°C.

N-(2-Chloro-4-nitrophenyl)benzo[d][1,3]dioxole-5-car-
boxamide (57)
Using Method A the title compound was isolated as a pale-

yellow solid. Yield 53%
1H NMR (300 MHz, DMSO-d6) δ 10.11 (s, 1H), 8.41

(d, J = 2.6 Hz, 1H), 8.26 (dd, J = 9.0, 2.6 Hz, 1H), 8.04 (d,

J = 9.0 Hz, 1H), 7.63 (dd, J = 8.2, 1.8 Hz, 1H), 7.53 (d, J =

1.8 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 6.16 (s, 2H).
13C NMR (75 MHz, DMSO) δ 164.49, 150.72, 147.55,

144.38, 141.41, 127.99, 127.12, 126.65, 124.85, 123.39,

122.86, 108.12, 107.78, 101.99.

Elemental Analysis: calc C 52.44%, H 2.83%,

N 8.74%; found C 52.20%, H 2.85%, N 8.65%.

m.p.: 227°C.

N-(2-Chloro-4-nitrophenyl)-2-naphthamide (58)
Using Method A the title compound was isolated as a pale-

yellow solid. Yield 52%
1H NMR (300 MHz, Chloroform-d) δ 8.86 (d, J = 9.2

Hz, 1H), 8.79 (s, 1H), 8.43–8.37 (m, 1H), 8.31 (d, J = 2.5

Hz, 1H), 8.19 (ddd, J = 9.3, 2.6, 0.5 Hz, 1H), 7.99–7.82

(m, 4H), 7.63–7.49 (m, 2H).
13C NMR (75 MHz, CDCl3) δ 165.44, 143.07, 140.51,

135.31, 132.57, 130.76, 129.30, 129.24, 128.64, 128.32,

127.92, 127.37, 124.76, 123.83, 123.06, 122.59, 120.24.

Elemental Analysis: calc C 62.49%, H 3.39%,

N 8.57%; found C 62.72%, H 3.09%, N 8.71%.

m.p.: 225°C.

1-Hydroxy-N-(2-chloro-4-nitrophenyl)-2-naphthamide

(59)56

Using Method A the title compound was isolated as

a yellow solid. Yield 10%
1H NMR (300 MHz, DMSO-d6) δ 12.21 (s, 1H), 11.64

(s, 1H), 8.91 (d, J = 9.2 Hz, 1H), 8.75 (s, 1H), 8.46 (d, J =

2.6 Hz, 1H), 8.34 (dd, J = 9.2, 2.7 Hz, 1H), 8.03 (d, J = 8.2

Hz, 1H), 7.81 (dd, J = 8.5, 1.2 Hz, 1H), 7.56 (ddd, J = 8.2,

6.9, 1.3 Hz, 1H), 7.46–7.35 (m, 2H).
13C NMR (75 MHz, DMSO) δ 163.56, 152.25, 142.46,

141.41, 136.28, 133.41, 129.23, 128.86, 127.21, 125.73,

124.81, 124.14, 123.93, 122.35, 120.73, 120.10, 110.95.

Elemental Analysis: calc C 59.58%, H 3.24%,

N 8.17%; found C 58.97%, H 3.20%, N 7.67%.

m.p.: 230°C (lit: 233°C).77

3-Hydroxy-N-(4-(trifluoromethyl)phenyl)-2-naphthamide

(60)78

Using Method A the title compound was isolated as an off-

white solid. Yield 26%
1H NMR (300 MHz, DMSO-d6) δ 11.20 (s, 1H), 10.89

(s, 1H), 8.48 (s, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.94 (d, J =

8.2 Hz, 1H), 7.76 (dd, J = 8.7, 4.6 Hz, 3H), 7.51 (ddd, J =

8.3, 6.9, 1.3 Hz, 1H), 7.42–7.31 (m, 2H).
13C NMR (75 MHz, DMSO) δ 165.84, 153.25, 142.22,

135.71, 130.63, 128.66, 128.11, 126.83, 126.12, 126.06,

126.01, 125.75, 123.72, 122.51, 120.11, 110.47.

Elemental Analysis: calc C 65.26%, H 3.65%,

N 4.23%; found C 64.43%, H 3.69%, N 3.93%.

m.p.: 280°C (lit: 276–278°C).
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3-Hydroxy-N-(4-bromophenyl)-2-naphthamide (61)78

Using Method A the title compound was isolated as an off-

white solid. Yield 29%
1H NMR (300 MHz, DMSO-d6) δ 11.22 (s, 1H), 10.68

(s, 1H), 8.47 (s, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.83–7.71

(m, 4H), 7.63–7.45 (m, 4H), 7.42–7.30 (m, 2H).
13C NMR (75 MHz, DMSO) δ 165.64, 153.46, 137.91,

135.70, 131.57, 130.44, 128.65, 128.09, 126.82, 125.75,

123.72, 122.26, 122.12, 115.62, 110.48.

Elemental Analysis: calc C 59.67%, H 3.53%,

N 4.09%; found C 59.37%, H 3.56%, N 3.98%.

m.p.: 250°C (lit: 248–250°C).

3-Hydroxy-N-(2-chloro-4-nitrophenyl)-2-naphthamide

(62)79

Using Method A the title compound was isolated as

a yellow solid. Yield 13%
1H NMR (300 MHz, DMSO-d6) δ 13.06 (s, 1H), 11.-

92–11.53 (m, 1H), 8.50–8.42 (m, 2H), 8.38 (d, J = 8.2 Hz,

1H), 8.31 (dd, J = 9.1, 2.6 Hz, 1H), 8.07 (d, J = 8.8 Hz,

1H), 7.92 (d, J = 8.1 Hz, 1H), 7.72–7.54 (m, 2H), 7.48 (d,

J = 8.8 Hz, 1H).
13C NMR (75 MHz, DMSO) δ 167.42, 143.79, 141.30,

136.40, 129.02, 127.62, 126.20, 125.80, 124.85, 124.75,

124.52, 123.42, 123.35, 109.88.

Elemental Analysis: calc C 59.58%, H 3.24%,

N 8.17%; found C 59.36%, H 3.25%, N 8.05%.

m.p.: 238°C.

N-(2-Chloro-4-nitrophenyl)-3-methyl-1H-indene-2-car-
boxamide (63)
Using Method A the title compound was isolated as a pale-

yellow solid. Yield 47%
1H NMR (300 MHz, Chloroform-d) δ 8.90 (d, J = 9.2

Hz, 1H), 8.46–8.29 (m, 2H), 8.21 (dd, J = 9.3, 2.6 Hz, 1H),

7.57 (ddt, J = 5.3, 3.8, 1.9 Hz, 2H), 7.50–7.39 (m, 2H),

3.80 (q, J = 2.4 Hz, 2H), 2.69 (t, J = 2.4 Hz, 3H).
13C NMR (75 MHz, CDCl3) δ 163.71, 152.04, 145.10,

142.64, 141.96, 140.74, 130.78, 128.36, 127.23, 124.68,

124.04, 123.76, 122.02, 121.40, 119.77, 38.03, 12.76.

Elemental Analysis: calc C 62.11%, H 3.99%,

N 8.54%; found C 62.23%, H 3.59%, N 8.29%.

m.p.: 216°C.

N-(2,4-Dinitrophenyl)benzofuran-2-carboxamide (64)
Using Method A the title compound was isolated as

a yellow solid. Yield 13%

1H NMR (300 MHz, DMSO-d6) δ 11.58 (s, 1H), 8.82

(d, J = 2.6 Hz, 1H), 8.63 (dd, J = 9.1, 2.7 Hz, 1H), 8.37 (d,

J = 9.1 Hz, 1H), 7.94–7.84 (m, 2H), 7.78 (dd, J = 8.4, 1.0

Hz, 1H), 7.58 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.42 (td, J =

7.6, 1.0 Hz, 1H).

13C NMR not performed due to poor solubility.

Elemental Analysis: calc C 55.05%, H 2.77%,

N 12.84%; found C 54.77%, H 2.67%, N 12.85%.

m.p.: 237°C.

N-(2-Chloro-4-nitrophenyl)benzofuran-2-carboxamide (65)
Using Method A the title compound was isolated as

a yellow solid. Yield 54%
1H NMR (300 MHz, Chloroform-d) δ 9.13 (s, 1H),

8.79 (d, J = 9.2 Hz, 1H), 8.29 (d, J = 2.6 Hz, 1H), 8.15

(ddd, J = 9.2, 2.6, 0.6 Hz, 1H), 7.71–7.65 (m, 1H), 7.62 (d,

J = 1.0 Hz, 1H), 7.54 (dq, J = 8.5, 1.0 Hz, 1H), 7.44 (ddd,

J = 8.4, 7.2, 1.3 Hz, 1H), 7.29 (ddd, J = 8.0, 7.2, 1.1

Hz, 1H).
13C NMR (75 MHz, CDCl3) δ 156.56, 155.05, 147.26,

143.26, 139.86, 128.12, 127.41, 124.84, 124.33, 123.71,

123.13, 122.73, 120.23, 113.21, 112.13.

Elemental Analysis: calc C 56.89%, H 2.86%,

N 8.85%; found C 56.99%, H 2.78%, N 8.64%.

m.p.: 203°C.

N-(2-Chloro-4-nitrophenyl)benzo[b]thiophene-2-carboxa-
mide (66)80

Using Method A the title compound was isolated as an off-

white solid. Yield 21%
1H NMR (300 MHz, DMSO-d6) δ 10.59 (s, 1H), 8.-

49–8.39 (m, 2H), 8.28 (dd, J = 8.9, 2.6 Hz, 1H), 8.13–7.99

(m, 3H), 7.58–7.45 (m, 2H).
13C NMR (75 MHz, DMSO) δ 160.53, 144.74,

140.72, 140.63, 138.90, 138.05, 128.21, 127.35,

127.03, 126.94, 125.69, 125.20, 124.97, 122.93, 122.90.

Elemental Analysis: calc C 54.14%, H 2.73%,

N 8.42%, S 9.63%; found C 54.34%, H 2.46%,

N 8.37%, S 9.49%.

m.p.: 228°C.

Chemistry
General Synthesis Procedures

Method A

The aniline derivative (6 mmol, 1 eq) and the aromatic

acid derivative (6 mmol, 1 eq) were suspended in toluene

(10 mL). After heating to reflux and dissolving of the

precipitate, phosphor trichloride (2.4 mmol, 0.4 eq) was
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added in a dropwise manner. The reaction was monitored

using TLC (ethyl acetate:n-hexane 1:4). After reaction

completion, the hot mixture was filtered and the organic

solution was stored at 5 °C. The formed precipitate was

filtered off, washed with ice-cold toluene and recrystal-

lized from toluene.17

Method B

1,1ʹ-Carbonyldiimidazole (CDI) (9 mmol, 1.5 eq) was

dissolved in THF (10 mL). To this solution the respec-

tive aromatic acid (9 mmol, 1.5 eq) was added dissolved

in THF (10 mL). After 10 min stirring at room tem-

perature, a solution of the aniline derivative (6 mmol, 1

eq) in THF (10 mL) was added. The reaction mixture

was stirred for 10 min at room temperature and then

refluxed overnight. After cooling to room temperature,

the solvent was evaporated under reduced pressure and

the residue dissolved in ethylacetate. The organic phase

was then washed with saturated aqueous sodium hydro-

gen carbonate solution and brine. After drying over

magnesium sulfate, the solvent was evaporated under

reduced pressure and the residue was recrystallized

from toluene.18

Method C

The respective pyridine derivative (6 mmol, 1 eq) and the

benzoyl chloride derivative (6 mmol, 1 eq) were sealed in

a glass vial. The reaction mixture was stirred for 4 min at

160°C under microwave irradiation. The resulting mixture

was recrystallized from ethanol.19

Method D

The respective nitro derivative (6, 9, 26) (6 mmol, 1 eq)

was dissolved in dried ethanol (20 mL). After adding Pd/C

(0.6 mmol, 0.1 eq) and hydrazine monohydrate (60 mmol,

10 eq), the mixture was refluxed for 2 h and afterwards

stirred for another 45 min at room temperature. Filtration

via a short Celite column and evaporation of the solvent

afforded the desired compounds (5, 8, 25).20

Enzymology
Monoamine oxidase A/B inhibition assays were performed

as described previously using the discontinuous fluori-

metric method with kynuramine as MAO substrate.21 For

the screening (test concentration: 10−6 M) and IC50 deter-

minations (ten suitable concentrations ranging from 10−11

to 10−5 M), the test compounds were pre-mixed with the

substrate (2 ⨰ KM final concentration; KM of 20 µm and

30 µm for MAO A and B, respectively). MAO A (1.25

ng mL−1, 900 units mL−1) or MAO B (1.67 ng mL−1, 375

units mL−1), respectively, was added to start the reactions.

The reaction mixtures were incubated for 20 min incuba-

tion time at 37°C. All enzyme assays were conducted in

pre-warmed potassium phosphate buffer (50 mM, pH =

7.4) and a final assay volume of 100 µL. Reactions were

stopped by adding 35 µL sodium hydroxide solution (2 N)

to the assay mixture. The enzyme activity was determined

by measuring the 4-hydroxyquinoline formed during incu-

bation time (expressed as RFU; λEm = 405±20 nm and λEx
= 320±20 nm). Compounds showing a MAO B inhibition

>90% at 10−6 M were evaluated for their IC50-values. The

IC50 curves were fitted (via nonlinear regression) either to

the respective bottom plateau (graphically defined by

RFUs for the at least two highest concentrations used,

see Figure S12 in supplemental material) or set to zero

in case when the bottom plateau was not reached with

highest concentration tested (leading to “IC50 estimates”).

The highest concentrations to be tested had to be identified

considering each compound’s solubility and potential

interfering fluorescence properties under assay conditions.

Reversibility of inhibition was confirmed via prein-

cubation of inhibitor (10 ⨰ IC50 in preincubation set-

ting) with MAO B (10 ng µL−1 in preincubation setting)

for 0, 30, 60 and 90 min (37 °C), followed by 50⨰
dilution in buffer and assayed with an excess of sub-

strate (10 ⨰ KM final concentration) as described

above.21 Data were calculated as percentage of vehicle

control (DMSO; set to 100% enzyme activity remained)

for each time point.

Mode of MAOB inhibition was determined by substrate-

dependent (seven concentrations, 5 to 400 µm kynuramine)

Michaelis-Menten kinetic analysis without inhibitor and in

the presence of five different inhibitor concentrations (0.25⨰,
0.5⨰, 0.75⨰, 1⨰ and 2 ⨰ IC50) and assayed as described

above. Data were fitted using nonlinear “Competitive

inhibition” fit and transformed into double reciprocal

(Lineweaver–Burk) plots. The slopes of respective

Lineweaver–Burk linearization were plotted against inhibitor

concentration for additional Ki determination.22

All data were analyzed with GraphPad Prism 6.

Molecular Modelling
The crystal structure 2Z5X23 was used as the represen-

tative complex structure of MAO A and the crystal

structure 6FVZ9 for MAO B. Both crystal structures

were chosen due to the lipophilicity of the crystalized
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ligands (HRM for MAO A and E8Z for MAO B) and

the presence of a peptide bond of the MAO B ligand.

The enzyme structures were prepared using the Quick

Prep tool in MOE 2018.0101 (Chemical Computing

Group Inc., Canada) including protonation and energy

minimization. Poses were generated using the Dock

tool in MOE 2018.0101. A general docking was con-

ducted. In case of MAO A, solvent was ignored. The

placement method triangle matcher with the scoring

function London dG was chosen. The refinement

method rigid receptor with the scoring function Alpha

HB was chosen.

Pharmacophore Modeling
The pharmacophore hypotheses of the MAO A and

B inhibitors were constructed using the HipHop mod-

ule of Discovery studio software 2.5.5. A subset of 25

representative compounds was selected and classified

as active, moderately active, and inactive (Table S1 in

the supplemental material). In total 16 HipHop runs

were separately conducted for MAO A and MAO

B ligands that ultimately generate 160 models (10

from each run) for each target by varying the types

and ranges of pharmacophoric features and the number

of features (Table S2 in the supplemental material).

The generated models were allowed to compete in

Receiver Operating Characteristic (ROC) curve analy-

sis to assess their abilities to selectively capture diverse

MAO A or MAO B inhibitors from a large list of

decoys. The decoy list was prepared as described by

Verdonk et al.24 The testing sets include structurally

diverse active inhibitors of 14 MAO A and 18 MAO

B retrieved from literature.14,25,26 36 decoys were

selected for each active compound in the testing set

retrieved from ZINC-database. The ROC testing set

was screened by each pharmacophore for ROC analysis

employing the “Best rigid search” option, while the

conformational spaces of the compounds were gener-

ated employing the “CAESAR conformation generation

option”. Compounds missing one or more features

were discarded from hit lists. The validity of

a particular pharmacophore is assessed by the area

under the curve (AUC) of the corresponding ROC

curve, as well as accuracy, specificity, true positive

rate, and false negative rate of the pharmacophore.

Table S3 and Figure S10 in the supplemental material

show the ROC performance of the best pharmacophore

models generated for MAO A and MAO B. The active/

inactive classification accuracy of these models is good

with ROC-AUC values of 0.779 and 0.750 for MAO

A and MAO B models, respectively. Further theoretical

and experimental methodology of ROC analyses are

described in supplemental material.

Results and Discussion
Chemistry
In 2018 the European Medicines Agency (EMA) recom-

mended 22 biological active small molecules for market

authorization.27 All newly approved small molecules

exhibit rather complex structures with the need for mul-

tistep synthesis, often including stereoselective synthesis

steps. Using a one-step synthesis followed by easy pur-

ification procedures, we generated a series of promising

MAO A/B inhibitors. These small entities might be of

interest for the development of selective or multitarget-

ing MAO A/B inhibitors. The substituted aromatic

amides were synthesized in low to good yields via

activation of the carboxylic acid using either PCl3 or

CDI. CDI was used as a coupling agent for compound

47 to prevent condensation to a substituted benzoxazole,

which was the major product using PCl3 method. For

compounds 2 and 19, solvent free acylation using ben-

zoyl chloride derivatives was performed under micro-

wave irradiation (Figure 1). The aromatic amines (5, 8,

25) were obtained in excellent yields from reduction of

the respective nitro derivatives (6, 9, 26). Due to their

simple structures, many of our compounds have been

described previously, but to our knowledge none of

them were determined as potent inhibitors for MAO

A or B so far.

Biological Activity
MAO A and B Inhibition

An enzyme inhibition screening at a concentration of 1

µm revealed that the synthesized anilides showed the pre-

sumed MAO inhibition potency. The majority of derivatives

(32 compounds) were found to be MAO B-preferring inhibi-

tors, while 24 compounds were not selective for either of the

isoforms and only ten compounds exhibited MAO

A preference (Table 1 and see Figure 2 for all compound

structures). The most potent MAO inhibitors were chosen for

further IC50 evaluation. Six compounds (31, 33, 34, 39, 55, and

65) showed >90% inhibition of MAO B. The most potent

MAO A-preferring inhibitor (with MAO B inhibition <50%),

compound 7was also considered for additional investigations.

Hagenow et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Drug Design, Development and Therapy 2020:14384

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=236586.pdf
https://www.dovepress.com/get_supplementary_file.php?f=236586.pdf
https://www.dovepress.com/get_supplementary_file.php?f=236586.pdf
https://www.dovepress.com/get_supplementary_file.php?f=236586.pdf
https://www.dovepress.com/get_supplementary_file.php?f=236586.pdf
https://www.dovepress.com/get_supplementary_file.php?f=236586.pdf
https://www.dovepress.com/get_supplementary_file.php?f=236586.pdf
https://www.dovepress.com/get_supplementary_file.php?f=236586.pdf
http://www.dovepress.com
http://www.dovepress.com


Compounds 31, 33, 34, 55, and 65 showed the expected pre-

ference for MAO B with IC50 values in nanomolar concentra-

tion ranges (IC50 values between 55 nM and 139 nM; Table 2).

A preference for MAOA could be confirmed for compound 7

(ST-2023) (MAO A, IC50 = 126 nM) with an IC50 > 1000 nM

for MAO B; selectivity index, SI = 0.1). The potent MAO

Table 1 MAO A and B Inhibition Percentages Measured at One-Point Screening of Anilides (Screening Concentration 1 µm)

n % Inhibition at 1 µm n % Inhibition at 1 µm

MAO A MAO B MAO A MAO B

1 12±8 5±3 15 9±3 7±5

2 11±5 2±4 16 20±12 14±10

3 29±3 27±3 17 10±5 69±28

4 24±20 29±3 18 18±5 24±9

5 1±2 −2±3 19 13±2 11±7

6 16±7 7±5 20 72±2 61±4

7 82±2 46±4 21 13±1 10±7

8 10±4 1±3 22 2±1 14±3

9 14±7 14±5 23 23±3 25±4

10 28±8 25±3 24 27±4 48±5

11 48±3 85±1 25 25±2 11±4

12 28±8 5±3 26 11±2 2±3

13 50±4 32±10 27 20±6 44±23

14 49±5 18±11 28 8±4 5±2

29 15±1 87±5 41 8±4 85±3

30 7±3 38±7 42 5±3 30±5

31 82±1 104±2 43 4±8 0±5

32 45±5 66±5 44 34±3 6±2

33 74±2 96±2 45 13±2 36±4

34 71±5 96±1 46 13±3 68±2

35 8±1 5±10 47 35±3 36±4

(Continued)

Figure 1 Synthetic route to the amide analogs 1–4, 6, 7, 9–24, 26–66. Reagents and conditions: (A) PCl3, toluene, reflux. (B) CDI, THF, reflux. (C) mw, 160 °C. For R1,

R2, and R3 see Table 1.
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B inhibition capacity of 39, presumed depending on screening

results, could not be verified in IC50 determinations (MAO B,

IC50 >1000 nM), where assay limitations did not allow the

determination of the bottom plateau due to low solubility and

fluorescence crosstalk. Assuming that the real but

nondetectable bottom plateau might be » 0, the previous

determined percent inhibition value in one-point screening

would have been overestimated (as calculated with bottom

= 0). The most potent compound 55 (ST-2043) showed high

inhibition of MAO B (IC50 = 56 nM), which is in a similar

range as described for themarketed drug safinamide (IC50 = 53

nM; Table 1). Compared to safinamide (MAO A/B SI >940),

55 demonstrated only an about five-fold lower inhibition of

isoform A, thus being a rather balanced MAO inhibitor. The

highest MAO B preference within this series was shown for

compound 31 with an SI >10 (MAO B, IC50 = 92 nM).

The docking experiments revealed a good match of all

compounds in the lipophilic binding pockets of the MAO

A and B with exception of compound 39, where no suitable

docking pose into the MAOA binding pocket could be identi-

fied (see Figures S1-S9 in the supplemental material).

According to the result of the docking experiments, surface

complementarities influence the binding properties of the ani-

lides nearly exclusively, whereas direct interactions are not

involved in the binding of the presented ligands. Compounds

31, 33, and 34 showed close structural similarities and compar-

able inhibition properties. All of these ligands are substituted

with a hydroxyl group at the 2-position of the benzylic site and

a chloro substituent at the 5-position. The aniline moiety in all

cases is para-substituted with a highly lipophilic residue, ie a

bromo-substituent (34), a trifluoromethoxy group (33), and

a trifluoromethyl group (31) in the para-position. The interac-

tion of these hydrophobic residues with the lipophilic cavity of

the MAO B binding pocket, including the nonpolar amino

acids Pro102 andLeu164,might be responsible for their potent

MAO B inhibition properties. The carbonyl function of the

linking amide and the hydroxyl groups in 2-position are direc-

ted towards Cys172 and interact via polar aprotic forces (see

Figures S5-S7 in the supplemental material). A similar polar

system is present in pyrrolo-pyridinyl derivatives synthesized

by Tzvetkov et alindicating that a central hydrogen bond

donor/acceptor complex is favorable for MAO B binding.28

The docking pose of the MAO A preferring inhibitor 7 (ST-

2023) is inverted by 180° in the binding pocket of the MAO

Bmodel,where the polar nitro-group is interactedwithCys172

(Figure 3). This would enlarge the distance to the FAD and

could be responsible for the low MAO B activity compared

with MAO A. This reversed pose was also observed in

Table 1 (Continued).

n % Inhibition at 1 µm n % Inhibition at 1 µm

MAO A MAO B MAO A MAO B

36 6±4 84±12 48 5±5 1±2

37 13±4 30±10 49 3±3 13±6

38 9±2 −2±2 50 6±5 62±2

39 20±8 91±1 51 3±4 34±2

40 8±4 6±2 52 19±4 80±4

53 38±6 87±1 60 −12±18 67±2

54 7±9 24±26 61 −3±5 72±2

55 44±4 91±2 62 −2±20 48±5

56 1±2 47±5 63 −3±19 44±23

57 9±9 62±7 64 84±2 80±4

58 11±7 58±1 65 52±10 92±4

59 −4±10 28±2 66 11±8 40±31

Notes: aData represent mean values ± standard deviation of at least two independent experiments each performed in duplicates (global fit). Percentage values were

calculated relative to control (set to 100% remained activity). Bold values represent inhibition rates >90 % MAO B and highest MAO A inhibitions.
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Figure 2 Compounds with anilide motifs taken to MAO A and B screening.
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compounds 39 and 65. In case of inhibitor 39, the salicylic

moiety is shifted towards the lipophilic cavity at the entrance of

the binding pocket, which might be responsible for its rather

poor inhibition properties (see Figures S8 in the supplemental

material). In contrast, inhibitor 65 maintained the lipophilic

interaction with its benzofuran residue resulting in an orienta-

tion of the polar nitro group towards the FAD (see Figures S9 in

the supplemental material). Carboxamides synthesized by

Tzvetkov et al showed the same orientation resulting from

a polar interaction with a bridging water molecule and

a tyrosine close to the FAD.29 The most potent inhibitor 55

(ST-2043) in this series is oriented with its piperonylic acid

moiety towards the FAD (Figure 3). Using the same moiety,

Vishnu et al designedMTLswhere the piperonylic acid aligned

within the hydrophobic region opposite to the FAD, and the

high inhibition capacities resulted from irreversible binding via

a propargyl amine residue.30

Due to their small size andmolecular weight, the presented

structures are useful starting skeletons to design MTLs with

MAO B activity. The docking experiments suggest using the

aniline residue of 55 (ST-2043) as an attachment point to

implement pharmacophores of additional targets. Zhang et al

showed that larger substituents at this position are tolerated,

where a bulky fluorobenzyl group is located further outside of

the enzymes binding pocket than the here presented aniline

groups.31 The hypothesis that substitution at this position

might be suitable for designing MTLs is coherent with the

linear structures synthesized by Pisani et al that combineMAO

B inhibition with nitric oxide releasing precursors and acet-

ylcholine esterase (AChE) inhibition moieties.32

In the MAO A binding pocket, the polar salicylic group

of compounds 31, 33, 34, and 39 did not match the surround-

ing hydrophobic cavity, which might explain the loss of

inhibition properties for MAO A (see Figures S1-S3 in the

supplemental material). The three compounds, missing the

salicylic moiety (7, 55, 65), are aligned well into the MAO

Table 2 MAO A and B Inhibition Activities of the Most Potent

Compounds Expressed as IC50 Values Within the 95%CI

No. IC50 [nM] [95%CI] (N)a

hMAO B hMAO A MAO SI c

7 (ST-2023) 1052 [759; 1459] (3) 126 [101; 158] (4) 0.1

31 92.3 [70.3; 121] (3) >1000b >10.8

33 128 [54.0; 305] (3) >1000b >7.8

34 139 [64.7; 300] (3) >1000b >7.2

39 >1000b >5000b

55 (ST-2043) 55.5 [31.9; 96.7] (5) 289 [193; 433] (5) 5.2

65 123 [87.6; 172] (5) 293 [203; 424] (3) 2.4

Safinamided 53 [20, 141] (4) >50000 (4) >940

Notes: aData represent mean values within the 95%CI of multiple independent experi-

ments (n) each performed in duplicates. bCompounds did not reach bottom plateau at

highest tested concentrations; Data are estimates extrapolated with bottom was set to

zero. cSelectivity index (SI) = IC50 MAOA/IC50 MAO B. dValues taken from Affini et al.21

Figure 3 Visualization of 55 (ST-2043, A1, A2) and 7 (ST-2023, B1, B2) in the binding pockets of MAO A and B. Compound 55 (ST-2043) binding to the crystal structure

of A1) hMAO B (PDB: 6FVZ) and A2) hMAO A (PDB: 2Z5X). Compound 7 (ST-2023) binding to the crystal structure of B1) hMAO B (PDB: 6FVZ) and B2) hMAO A (PDB:

2Z5X). Surface coloring: white: neutral, green: lipophilic; magenta: hydrophilic.
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A active site with respect to surface complementarity, show-

ing that small alteration in the molecular structure can have

a major impact on the modulation of the MAO isoform

selectivity. The modeling results are further supported by

ROC-selected pharmacophore models based on inhibitors

presented here (see Figure 4 and supplemental material).

The essential predicted characteristics for MAO A and

MAO B binding are a central hydrogen bond acceptor

flanked by aromatic or hydrophobic features. This is in

good accordance with the docking poses, with the limitation

that the molecular docking showed no direct hydrogen bond

interactions between the ligands and the amino acids of the

binding pocket.

The most potent MAO B inhibitor 55 (ST-2043) was

further investigated to determinemode and type of inhibition.

Reversibility studies with excess of substrate verified the

expected reversible mode of inhibition. Compared to the

suicide inhibitor L-deprenyl, inhibition by compound 55

(ST-2043) (10-fold IC50 concentrations) preincubated with

MAO B for 30, 60 or even 90 min was completely reversed

after 50-fold dilution in assays mixture (Figure 5). It could be

assumed, that compound 55 was readily displaced from the

MAOB active side, while a more tight-binding interaction, e.

g. as shown for safinamide, is considered to be more favor-

able in terms of pharmacological activity.9

Inhibition studies using different concentrations of 55

(ST-2043) with seven appropriate substrate concentrations

suggest a competitive inhibition type as demonstrated by

Lineweaver–Burk plots (Figure 6). Compound 55 (ST-

2043) showed promising Ki values of 6.3 nM with 95%

CI = [5.0; 7.5] (Michaelis Menten fit “competitive inhibi-

tion”) and 9.5 nM (slopes from Lineweaver–Burk plots vs

inhibitor concentration) for MAO B, respectively.

Cholinesterase Inhibition

Cholinesterase enzymes are of potential interest inMTL drug

design for the treatment of neurodegenerative diseases.33

Therefore, compound 55 (ST-2043) was screened for inhibi-

tion of acetyl- and butyrylcholine esterases (AChE/BuChE).

At a concentration of 1 µm, 55 (ST-2043) showed only

moderate inhibition capacity with 24±1.8% and 57±4.5%

for AChE and BuChE, respectively (see Table S4 and

Figure S11 in supplemental material). Thus, no further char-

acterization in this direction has been performed.

Figure 4 ROC-selected pharmacophores of MAO A and MAO B. (A) Overlay of compound 55 (ST-2043) and MAO B pharmacophore model. (B) Overlay of compound 7
(ST-2013) and MAO A pharmacophore model. Color code: green vectored sphere: hydrogen bond acceptor; orange vectored sphere: aromatic feature; blue sphere:

hydrophobic feature.
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Figure 5 Reversibility of inhibition after preincubation of 55 (ST-2043) and L-deprenyl
withMAOB. Inhibitors (10⨰ IC50) were preincubatedwith enzyme for 0, 30, 60 or 90min

prior to 50-fold dilution in assays mixture containing kynuramine as substrate (10 ⨰ KM).

Data represent mean values ± SD of n independent experiments, each performed in

duplicates.
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Conclusion
This study presented small anilides as MAO A and

B inhibitors. Out of 66 screened compounds seven showed

promising inhibition properties at a concentration of

1 µm (>90% or >80% inhibition for MAO B and A,

respectively). Evaluation of their IC50 values revealed six

MAO B preferring (31, 33, 34, 55 (ST-2043), 65) inhibi-

tors and one MAO A preferring (7 (ST-2023)) inhibitor

with activities in low nanomolar concentration ranges. The

MAO B preferring inhibitors showed IC50 values ranging

from 56 nM to 128 nM with selectivity indices between

2.4 and >10. Computational analysis confirmed in vitro

binding properties by demonstrating good surface comple-

mentarity of the inhibitors with the binding-pockets of the

two MAO isoforms. The highest affinity for MAO A was

found for ST-2023 (7, IC50 = 126 nM) with 8.3-fold lower

affinity towards MAO B. ST-2043 (55) was identified as

most potent MAO B inhibitor (IC50 = 56 nM, Ki = 6.3 nM)

within this series, which demonstrated a similar inhibition

capacity as the reference reversible MAO B inhibitor safi-

namide, but with rather low MAO selectivity (SI = 5.2).

Further characterization suggested a competitive mode of

MAO B inhibition for 55, however, with a readily rever-

sible binding rather than tight binding behavior as antici-

pated for pharmacological efficacy. Nevertheless, these

small-sized ligands might be a promising starting point

for the design of new selective or multitargeting MAO

inhibitors.
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