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Reversible Transitions between Synchronization States of the Cardiorespiratory System
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Phase synchronization between cardiac and respiratory oscillations is investigated during anesthesia in
rats. Synchrograms and time evolution of synchronization indices are used to show that the system passes
reversibly through a sequence of different phase-synchronized states as the anesthesia level changes,
indicating that it can undergo phase transitionlike phenomena. It appears that the synchronization state
may be used to characterize the depth of anesthesia.
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Whenever two or more oscillatory processes are weakly
coupled, there exists the possibility of their becoming syn-
chronized. It is a scenario that is ubiquitous in nature,
including living systems where rhythmic processes take
place on widely differing time scales, ranging from mil-
liseconds for single cell activity up to years for ecological
changes.

Living systems are becoming increasingly accessible to
mathematical modeling using the methods of dynamical
systems theory. However, they are inherently nonstation-
ary, being characterized by many oscillatory processes
whose frequencies also change in time. The fact that
they are quasiperiodic (with several characteristic frequen-
cies) and nonstationary makes them difficult to study since,
strictly, most of the methods for linear and nonlinear time
series analysis require stationarity. The recently proposed
concept of phase-synchronization analysis of noisy nonsta-
tionary bivariate data [1,2] provides a promising method
for reconstructing their dynamics.

In this Letter we use the concept of synchronization to
analyze interactions between cardiac and respiratory os-
cillations during general anesthesia in rats. Under resting
conditions, the cardiovascular-respiratory system has been
shown to be characterized by oscillatory processes on mul-
tiple time scales in both humans [3] and rats [4]. It has
long been recognized that heart and respiratory activity in-
teract, leading, e.g., to frequency modulation of the heart
rate by respiration, known as respiratory arrhythmia [5].
The adjustment of the rhythms of the two oscillators may
be expected to give rise to synchronization.

Early studies of the dynamics of coordinated activity
between the respiratory and cardiovascular systems [6,7]
assumed they behaved as almost periodic oscillators. His-
tograms of ratios of their periods were analyzed and, for
example, an n:1 synchronization between the cardiac and
respiratory rhythms was found in healthy subjects during
sleep [7]. Entrainment was also found to occur in anes-
thetized rabbits [6] and humans [8]. It was proposed that
synchronization (or, as named, frequency and phase co-
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ordination) establishes a system of economical coaction
and thus favors the functional economy of the organism
[7]. In another study, however, only weak coupling be-
tween cardiac and respiratory rhythms was found and it
was concluded that the two rhythms are generally not phase
locked [9].

The development of nonlinear methods has brought new
attention to this problem [10]. Recently, using the concept
of synchronization analysis in chaotic, noisy, and nonsta-
tionary oscillators, episodes of phase synchronization be-
tween cardiac and respiratory oscillations were observed
in resting humans [11]. Cardiorespiratory synchronization
during paced respiration [12] and heart synchronization to
external stimuli [13] were also demonstrated. It appears
that the degree of synchronization at rest differs in athletes
(synchronization periods �1000 s [11]) and nonathletes
(�100 s [14]), and is inversely related to the extent of fre-
quency modulation of the heart rate. Therefore, we may
expect that a better understanding of phase and frequency
relations among the oscillatory processes involved in blood
circulation may lead to deeper insight into the state of the
system, with corresponding diagnostic possibilities.

Here we investigate phase synchronization during the
state of anesthesia in rats, which in practice can be studied
under more precisely controlled conditions than are usu-
ally possible for humans. It has been shown that the dy-
namics of the cardiovascular-respiratory system in rats [4]
possesses similar features to those observed in humans,
despite the cardiac and respiratory rhythms in rats being
approximately 4 times faster than in humans. Moreover,
during anesthesia in rats, respiration need not be assisted.
This is an important point, as paced respiration has already
been shown to influence the state of cardiorespiratory syn-
chronization [12].

The electric activity of the heart (EKG) and excursions
of the thorax, which are proportional to respiratory activ-
ity [15], were noninvasively recorded (Fig. 1) while the
breathing remained spontaneous and unassisted. Using a
16 bit A�D converter, each time series was digitized at
© 2000 The American Physical Society 4831
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FIG. 1. Extracts from typical respiratory and EKG signals
recorded from a rat in anesthesia. The y axes are in arbitrary
units.

a sampling rate of 2000 Hz and recorded over the en-
tire duration of anesthesia ��120 min�. Recording started
5–10 min after anesthetic drugs [16] were injected and
ended 5–10 min after the first signs of recovered reflex re-
sponses, detected by a skin pinch test [17], were observed.
Five rats were recorded in the same way. On each ani-
mal the recording was repeated after one week, using the
same anesthetics and concentrations. The synchronization
analysis presented below revealed the same pattern in all
animals and was well reproduced in the second recording
in each case.

The instantaneous cardiac, fh, and respiratory, fr , fre-
quencies and their ratio were first calculated. To calculate
the instantaneous frequency the marker events method was
used. The times of R peaks in the EKG signal and maxima
of inspiration were taken as markers. Peaks were detected
automatically and also manually checked. One oscillatory
cycle was determined as the interval between two consecu-
tive peaks in each time series, at times tk and tk11. The in-
stantaneous frequency was taken to be f�t� � 1

tk112tk
, and

set constant within one cycle. In this paper, we use the
same method to calculate the relative cyclic phase.

Both frequencies were found to undergo dramatic
changes during the anesthesia (Fig. 2). During the first
�25 min, fh decreases from 4 to 3.2 Hz; it then increases
and decreases again and, after �70 min, varies randomly
between 3.5 and 4.5 Hz. The fr slowly decreases from 2 to
�0.8 Hz until at �40 min, it begins to increase again; it
returns to its initial value of 2 Hz at �70 min, at which
point it becomes highly variable, between 1 and 4 Hz.
Consequently, fh�fr first increases, from 2 to 5, then de-
creases back to 2 (top graph in Fig. 3), and as the effect of
the anesthetic drugs vanishes it becomes highly variable,
spanning a wide amplitude range, between 1 and 4.

The instantaneous cyclic relative phase between cardiac
and respiratory activity was then calculated. This quan-
tity has been discussed in several recent papers [1,2,11,18]
but, briefly, the underlying idea is as follows. Classically,
synchronization of two periodic nonidentical oscillators is
understood as an adjustment of their rhythms, or lock-
ing (entrainment) of their phases, wn,m � nf1 2 mf2 �
const, where f1 and f2 are phases (here defined on the
whole real line and not on the circle �0, 2p�), n and m
are integers, and wn,m is the generalized phase difference,
or relative phase. In this simplest case, the condition for
phase locking is equivalent to the notion of frequency
4832
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FIG. 2. Evolution of the instantaneous cardiac and respiratory
frequencies during the period of anesthesia. The right-hand
column shows the corresponding distributions.

locking nf1 � mf2, where f1,2 � � �f1,2� and the brack-
ets mean time averaging. If n periods of the first oscillator
have exactly the same duration as m periods of the second
one, the rhythms are n:m entrained.

Recently, the concept of synchronization was gener-
alized to chaotic systems [19] and synchronizationlike
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FIG. 3. Evolution of phase-synchronization measures during
anesthesia. Top to bottom: frequency ratio, cardiorespiratory
synchrogram, and 1:2, 1:3, 1:4 and 1:5 synchronization indices,
respectively. Occurrence of 1:n synchronization is demonstrated
both by the appearance of n plateaus in C1 and by l1,n ap-
proaching unity. The reflex responsiveness from the skin pinch
test [17] is given at the top.



VOLUME 85, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 27 NOVEMBER 2000
phenomena have also been reported in purely stochastic
systems, where the noise controls a characteristic time
scale [20]. For noisy, chaotic systems and/or systems with
modulated natural frequencies a weaker condition of phase
synchronization, jwn,mj � jnf1 2 mf2 2 dj , const,
where d is some (average) phase shift, was introduced
[1,2]. Accordingly, synchronization is understood as
the appearance of peaks in the distribution of cyclic
relative phase Cn,m � wn,m mod2p and interpreted as the
existence of a preferred stable value of phase difference
between two oscillators. In such a case, the n:m phase
locking is manifested as a time variation of Cn,m around
a horizontal plateau.

In analyzing synchronization, the integers n and m
should both be determined. In the case of two interacting
noisy oscillatory processes, n and m change in time. One
possibility (similar to an earlier proposed method of en-
trainment analysis [6]), known as the phase stroboscope, or
synchrogram, is to fix the value of m and observe changes
of n in time [11]. Accordingly, the cardiorespiratory syn-
chrogram is constructed by plotting the normalized rela-
tive phase of a heartbeat within m respiratory cycles,
Cm �

1
2p ���fr�tk� mod2pm���, where tk is the time of kth

heartbeat and fr is the instantaneous phase of respiration.
Here we focus on phase synchronization for m � 1

since, for most of the time, an integer value of the in-
stantaneous frequency ratio was observed. We calculated
the normalized relative phase, C1, directly from the mea-
sured data, exploiting the fact that both signals contain
sharp peaks that clearly mark the instantaneous cycles (see
Fig. 1). Each successive peak was marked as an equiva-
lence of one oscillatory cycle, corresponding to which a
2p increment was added. The instantaneous phase is then

f�t� � 2p
t 2 tk

tk11 2 tk
1 2pk, tk # t , tk11 , (1)

where tk is time of kth marker event. Defined in this way
the phase is a monotonically increasing piecewise-linear
function of time defined on the real line.

Usually, the first step in searching an n:m locking is
to look for horizontal plateaus in C1, revealing the value
of n in cases when synchronization exists. The distribu-
tion of Cn,m�t� is then a d function, smeared in the pres-
ence of noise. For strongly nonlinear oscillators it can be
nonuniform even in the absence of noise [2]. To charac-
terize the strength of synchronization we therefore need a
robust quantitative measure. Since in noisy systems phase
synchronization can be understood in a statistical sense as
the existence of preferred values of generalized phase dif-
ference, measures based on quantifying the distribution of
phases

h � f2 mod2pnjf1 mod2pm�u (2)

were proposed. We will use an index based on conditional
probability which was introduced in [18] and was shown
to facilitate reliable detection of synchronous epochs of
different order n:m [21]. Accordingly, the phase of the
second oscillator is observed at fixed values of the phase
of the first oscillator, u. The interval of each phase f1 and
f2, �0, 2pm� and �0, 2pn�, respectively, is divided into N
bins. The values of f1 mod2pm that belong to bin l are
denoted as ul , while the number of points inside this bin
is denoted as Ml , and, by using Eq. (2), Ml values of hj,l ,
j � 1, . . . , Ml , are calculated.

If there is no synchronization between the oscillators, a
uniform distribution of hj,l can be expected on the interval
�0, 2pn�, or else it clusters around a certain value result-
ing in a unimodal distribution. Hence, the distribution is

quantified as rl�tk� �
1

Ml �tk�
PMl �tk�

i�1 eif2�tj� for each j when
f1�tj� belongs to the lth bin and tk 2 tp�2 # tj , tk 1

tp�2. Ml�tk� is the number of points in this bin at the kth
instant. An average over 10 periods, tp , of the slower os-
cillator was used [18]. Where the phases are completely
locked, or completely unlocked we obtain jrl�tk�j � 1 or
jrl�tk�j � 0, respectively.

To improve reliability, we also calculate the average over
all bins and obtain the index of synchronization ln,m�tk� �
1
N

PN
l�1 jrl�tk�j. Accordingly, ln,m is a measure of the

conditional probability that f2 has a certain value within
lth bin when f1 belongs to this bin.

Some typical results are shown in Fig. 3. The syn-
chrogram, C1�t�, indicates immediately that several phase-
synchronization states occur during anesthesia. This is
confirmed by time evolutions of the synchronization in-
dices, l1,n, which were obtained using a sliding window
with tp � 8 s. Three distinct stages during anesthesia may
be distinguished from the evolutions of fh�fr , C1, l1,2,
l1,3, l1,4, and l1,5. Stage 1, 0–40 min from the start of
recording, may be defined as the interval during which
the frequency ratio increases. Stage 2 of the recording
(40–70 min) is where the frequency ratio decreases again.
Stage 3 consists of the interval (70–100 min) in which the
frequency ratio is hugely variable around a steady value.
These same three stages were observed in all recordings,
which lasted between 70 and 130 min (until the rat started
to run freely).

During stage 1 all four states of synchronization, 1:2,
1:3, 1:4, and 1:5, are clearly present and gradually switch
one into the other. The 1:2 phase-locked state seems to be
observed for as long as a reflex response (tested by skin
pinch test [17]) can still be obtained (depicted at the top
of the figure). Approximately at the time when the re-
flex disappears, the transition to 1:3 phase locking starts,
which then changes into 1:4 locking, followed by 1:5 lock-
ing. One possible explanation is that nerve conductivity
decreases during this initial state of anesthesia, and this
causes changes of the overall nervous control of the car-
diorespiratory system, which then results in a series of
phase-synchronized states.

As the effect of the drugs starts to decline, the phase-
synchronization states switch back in reverse order. The
strength of phase synchronization is slightly weaker on the
way out of anesthesia than during entry. Shortly before the
4833
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end of anesthesia (stage 3), phase synchronization becomes
very weak.

In conclusion, we have shown that the cardiac and res-
piratory systems possess dynamical properties and cou-
plings that can synchronize their oscillations in a hierarchy
of different phase-locked states. Kinetic phase transition
phenomena between these states are reminiscent of those
seen and analyzed in detail for physical systems such as
lasers [22]. During the course of anesthesia, the transi-
tions are found to occur in a reproducible sequence, sug-
gesting that the state of synchronization may provide a
potentially useful measure of the depth of anesthesia at
any moment. Given the similarities in cardiorespiratory
dynamics, in fh�fr , and in other characteristic frequency
ratios for humans and rats [3,4], it seems plausible that
similar results may also apply to humans.
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