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ABSTRACT
◥

Anti–PD-1/PD-L1 immune checkpoint blockade (ICB) therapy
has revolutionized the treatment of many types of cancer over the
past decade. The initial therapeutic hypothesis underlying the
mechanism of anti–PD-1/PD-L1 ICB was built around the premise
that it acts locally in the tumor, reversing the exhaustion of
PD-1hiCD8þ T cells by “releasing the brakes.” However, recent
studies have provided unprecedented insight into the complexity
within the CD8þ T-cell pool in the tumor microenvironment
(TME). Single-cell RNA sequencing and epigenetic profiling studies
have identified novel cell surface markers, revealing heterogeneity

within CD8þ T-cell states classified as unique. Moreover, these
studies highlighted that following ICB, CD8þ T-cell states within
and outside the TME possess a differential capacity to respond,
mobilize to the TME, and seed an effective antitumor immune
response. In aggregate, these recent developments have led to a
reevaluation of our understanding of both the underlying mechan-
isms and the sites of action of ICB therapy. Here, we discuss the
evidence for the reversibility of CD8þ T-cell exhaustion after ICB
treatment and its implication for the further development of cancer
immunotherapy.

Introduction
CD8þ T cells play a crucial role in the control of both tumor growth

and chronic viral infections. The hallmark of the CD8þT-cell response
in these settings is exhaustion, a dysfunctional state occurring as an
adaptation to chronic antigen exposure (1–3). During exhaustion,
persisting CD8þ T cells undergo a hierarchical loss of effector func-
tions leading to a state of hyporesponsiveness and eventual clonal
deletion (4–9). Notably, exhausted T cells exhibit enhanced and
sustained expression of PD-1, primarily functioning to limit immu-
nopathology in the setting of chronic T-cell receptor (TCR)
stimulation (10–12). This feature of exhausted CD8þ T cells
prompted the development of immune checkpoint blockade (ICB)
therapy targeting PD-1 and its ligand, PD-L1 (13, 14). Antibody-
mediated blockade of PD-1/PD-L1 interactions restores functional
properties of CD8þ T cells in chronic infections and tumor models
and is associated with improved control of viral and tumor
load (15–17). Clinically, ICB has revolutionized the approach to
cancer treatment as it enhances antitumor immunity and survival in
multiple tumor indications (18–21).

Initially, the paradigm in the field was that anti–PD-1/PD-L1 ICB
acts locally in the tumor microenvironment (TME) where it directly
reverses exhaustion within PD-1hiCD8þT cells by opposing inhibitory
signaling through PD-1. However, recent developments in the field
have challenged this notion. Mechanistic studies have determined
that the response to ICB is a complex process defined by heterogeneity
in the functional characteristics and differentiation status within the
intratumoral CD8þ T-cell pool (22, 23). In this revised mechanistic

model, PD-1 blockade drives the expansion of a progenitor
PD-1loCD8þ T-cell subset with self-renewal properties. These pro-
genitor exhausted cells differentiate into PD-1hiCD8þ cytotoxic
effector-like cells that ultimately become exhausted. We now appreci-
ate that ICB activity is not restricted to theTME and, at least in part, is a
result of the mobilization of ICB-permissive, stem-like precursor
CD8þ T cells that reside outside the tumor.

This review discusses the original seminal works supporting the
concept that ICB reverts CD8þ T-cell exhaustion alongside emer-
gent data giving rise to the new paradigm of vast intratumoral CD8þ

T-cell heterogeneity and the existence of distinct ICB-permissive cell
states. Although we note that a body of literature describes addi-
tional direct and indirect effects of ICB on multiple immune cells
beyond CD8þ T cells, such as effector and regulatory CD4þ T cells,
macrophages, and dendritic cells (DC), these topics exceed the
focus of this review and have been recently addressed in detail
elsewhere (24–30). Finally, we review the emergent body of work
identifying immunologic niches outside of the TME (e.g., lymphoid
tissue) as key sites of ICB action and discuss the significance of this
knowledge for further improvement and development of immuno-
therapy approaches.

Reinvigoration of Exhausted CD8þ

TCells: Insights fromPreclinical Models
of Chronic Infection

Early evidence of anti–PD-1/PD-L1 ICB activity in the context of
chronic antigen exposure was reported in viral infection models.
Pioneering work by Barber and colleagues showed that treatment of
mice chronically infected with lymphocytic choriomeningitis virus
(LCMV) Clone 13 with anti–PD-L1 ICB leads to a functional rein-
vigoration of exhausted CD8þ T cells (15). In addition to a substantial
increase in the number of LCMV-specific CD8þT cells, ICB treatment
also induces an increase in the production of effector cytokines and
cytolytic function, leading to dramatically improved control of Clone
13 infection. Notably, this response originates from existing
PD-1þCD8þT cells rather than de novo priming of naive PD-1�CD8þ

T cells (15). This early work provided data to support the idea that
reversal of exhaustion in existing CD8þ T cells, featured by their
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reacquisition of effector functions, is an underlying mechanism of
action of anti–PD-1/PD-L1 ICB.

Several seminal studies revealing phenotypic and functional het-
erogeneity of exhausted CD8þ T cells followed the initial findings by
Barber and colleagues. One of the key findings was that the exhausted
PD-1þCD8þ T-cell population is not uniform and can be divided into
PD-1lo and PD-1hi subsets (31). Significantly, this PD-1lo/hi dichotomy
is associatedwith dramatic differences in responsiveness to anti–PD-1/
PD-L1 ICB (Fig. 1). In this study, PD-1lo and PD-1hi CD8þ T cells
generated in the context of chronic LCMV infection were isolated and
transferred into mice, followed by a rechallenge with LCMV Clone 13
in the presence or absence of anti–PD-L1 blocking antibodies (31).
Only the PD-1lo subset could respond to ICB treatment, and these cells
imparted superior control of viral load compared with their PD-1hi

counterparts (Fig. 1). This finding was extended by Paley and collea-
gues, who introduced, for the first time, a concept of a developmental
connection between PD-1lo and PD-1hi CD8þT-cell states, whichwere
further defined based upon differential expression of the transcription
factors Eomes and Tbet (32). Specifically, PD-1loTbethiEomeslo CD8þ

T cells were shown to possess memory-like features characterized by
slow homeostatic turnover. These cells respond to antigen leading to a
proliferative burst that gives rise to the pool of PD-1hiTbetloEomeshi

terminally differentiated progeny. Importantly, this conversion process
seemed to be continuous, potentially leading to depletion of the pre-
cursor populations. Replenishing precursor exhausted cells through
ICB-induced expansion or recruitment could prevent this depletion
and ensure the persistence of the antitumor CD8þ T-cell response. The
finding that PD-1hi cells did not respond to anti–PD-L1 challenged the
concept of ICB reversing the exhaustion of these cells and suggested that
beneficial responses originate from a permissive PD-1lo subset.

Transcriptional profiling of the PD-1lo precursor population has
further strengthened the connection of this population with stem-like
or memory-like cells (33). In one study, it was shown that PD-1lo

precursors exhibit a protein expression signature resembling both
follicular helper (Tfh) CD4þ and memory CD8þ T cells defined by
expression of ICOS, CXCR5, Bcl-6, and TCF-1 (33). Moreover,
transcription factor TCF-1, implicated in the maintenance of memory
CD8þ T cells in the context of acute viral infections (34), was reported
to play a crucial role in the maintenance of the memory-like precursor
population in Clone 13 infection. TCF-1þ cells share some common
features with bona fidememory CD8þ T cells, including pluripotency,
homeostatic proliferation, and capacity to undergo recall response.
However, unlike memory cells, they display some of the phenotypic
features of exhaustion, such as enhanced expression of inhibitory
receptors (35). These memory-like TCF-1þCD8þ T cells were shown
to respond to anti–PD-1/PD-L1 ICB treatment giving rise to effector
cells required for successful viral control (35). The same was found to
be true for CXCR5þCD8þ T cells, unlike the CXCR5� subset (33),
pointing to a similar phenotypic assignment for these subpopulations
in chronic viral infection. These early studies in viral models highlight-
ed heterogeneity within the CD8þ T-cell exhaustion lineage and
identified PD-1lo precursor exhausted cells as the primary responders
to anti–PD-1/PD-L1 ICB.

Reinvigoration of Exhausted CD8þ T
Cells: Insights from Preclinical Cancer
Models

It was recognized early on that CD8þ tumor-infiltrating lympho-
cytes (TIL) exhibit features of exhaustion (6, 36, 37). Thus, whether the
paradigm of chronic antigen exposure–driven exhaustion derived
from chronic viral infection models directly relates to the exhaustion
observed in cancers has long been a topic of debate. In this regard,
recent work has demonstrated that, despite disease-specific differ-
ences, CD8þ TILs share a common transcriptional program with
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Figure 1.

PD-1loCD8þ T cells are susceptible to anti–PD-L1 ICB treatment. LCMV Clone 13 induces distinct CD8þ T-cell populations defined as PD-1lo and PD-1hi. These cells
can be isolated by FACS. The PD-1lo cells respond to anti–PD-L1 treatment, leading to robust expansion and viral control, whereas transferred PD-1hiCD8þ T cells
do not.
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CD8þ T cells in chronic infection (38). Progenitor exhausted CD8þ

TILs, defined as TCF-1þSLAMF6þTim-3�, are observed in multiple
tumor models and share functional similarities with their counter-
parts induced by LCMV Clone 13 infection (38). These progenitor
cells possess stem-like features, including long-term persistence
and spontaneous differentiation into terminally exhausted TILs
(TCF-1�SLAMF6�Tim-3þ). Notably, these stem-like progenitors
were shown to respond to ICB by rapid expansion, leading to increased
effector cells and enhanced cytotoxic activity. Ameta-analysis of CD8þ

T-cell epigenomic footprints obtained from 12 independent studies
comparing viral and bacterial infection alongside cancer models
supports the hypothesis that phenotypic similarities between progen-
itor and terminally exhausted CD8þ T cells in cancer and viral
infection are governed by common molecular processes (39). In this
work, Pritykin and colleagues compared Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) profiles obtained
from 166 biological samples comprising a wide range of CD8þ T-cell
states including naive, effector, exhausted, memory, and tissue-
residentmemory. An integrated analysis of theseATAC-seq signatures
shows that dysfunctional CD8þ T-cell states cluster together. Fur-
thermore, assessing enriched transcription factor–binding sites iden-
tified a core set of exhaustion-associated transcription factor motifs
including NFAT, AP-1, Myb, NR4A, and NF-kB (39).

Several studies have identified ‘transitory’ states between stem-like
progenitors and terminally exhausted CD8þ T cells. These cell states
exhibit various degrees of susceptibility to ICB treatment and possess
intrinsically different effector capacities (22, 40, 41). During Clone 13
infection, TCF-1þ stem-like precursors transit through an effector-like
CD101�Tim-3þ state before differentiating into CD101þTim-3þ termi-
nally exhausted CD8þ T cells (22). Beltra and colleagues revealed further
granularity in the composition of the exhausted CD8þ T-cell pool in
chronic viral infections and tumors, extending this developmental

scheme into four distinct cell states (Fig. 2; ref. 23). They characterized
stem-likePD-1loTCF-1þCD8þTcells as two interconvertingpopulations
(progenitor 1, SLAMF6þCD69þ; and progenitor 2, SLAMF6þCD69�)
giving rise to a single intermediate (SLAMF6�CD69�) state that
ultimately undergoes TOX-orchestrated conversion to a terminally
differentiated state (SLAMF6�CD69þ). This more granular apprecia-
tion of the stem-like/effector/exhaustion CD8þ T-cell differentiation
hierarchy paved the way to understanding how these distinct cell states
contribute to immunity in chronic disease. In the four-cell subset
scheme described by Beltra and colleagues (23), the progenitor 2 and
intermediate populations respond to anti–PD-1/PD-L1 ICB treat-
ment, as shown by their preferential accumulation following anti–
PD-L1 treatment.

Similarly, the transitory CD101þTim-3� population observed in
Clone 13 infection expands following anti–PD-1/PD-L1 ICB treat-
ment (22). This population resembles bona fide KLRG-1þ effector
CD8þ T cells induced by acute LCMV Armstrong infection coexpres-
sing Ki-67, granzyme B, S1PR1, and CX3CR1 and exhibits both
proliferative and cytolytic functions (22). These recent findings cast
a new paradigm in which anti–PD-1/PD-L1 ICB induces the prolif-
eration of stem-like progenitors that differentiate into cytotoxic effec-
tors before exhausting in the presence of chronic antigen.

Of note, the discussed findings are primarily focused on the
molecular and cellular mechanisms of action of anti–PD-1/PD-L1
ICB. Extrapolation to other immunotherapeutic agents (including
ICB) or combinations, therefore, should be carefully considered. For
example, high-dimensional profiling of murine and human tumors
treated with anti–PD-1 or anti–CTLA-4 reveal distinct cellular
mechanisms induced by these individual ICB agents (42). Although
both antibodies were able to induce substantial expansion of distinct
exhausted-like CD8þ T cell populations, only anti–CTLA-4 treatment
could numerically enhance a population of ICOSþ Th1-like CD4þ
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Figure 2.

Heterogeneity of CD8þT-cell states in the context of chronic viral infections and tumors. Thepool of CD8þT cells inducedby chronic viral infectionor tumorigenesis is
composed of cells in distinct cellular states. These cells therefore exhibit different phenotypic, functional, differentiation, and tissue residence properties.
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T cells. Although the functional importance of individual populations
is not fully clear, their potential contribution to tumor control cannot
be ruled out. Finally, treatment based on the combination of anti–PD-1
and anti–CTLA-4 exhibits synergistic activity in both murine tumors
and peripheral blood of patients with melanoma, as demonstrated by
induction of partially distinct cellular mechanisms (43).

The Site of ICB Activity: Tumor versus
Lymph Nodes

Several studies support the notion that secondary lymphoid tissues,
such as lymph nodes (LN), are important sites of action for anti–PD-1/
PD-L1 ICB (Fig. 3; refs. 44–47). In one of these studies, immuno-PET
was used to track CD8þ T-cell kinetics following anti–PD-1 treatment
in syngeneic mouse colorectal MC38 tumors to characterize features
that discriminate resistance from response to the anti–PD-1 (44). The
authors found that robust accumulation of CD8þ T cells within the
TME following anti–PD-1 was required for a therapeutic response.
Evidence that these CD8þ T-cell populations were mobilized from
peripheral lymphoid tissues was provided by the observation that the
S1P receptor antagonist FTY720 prevented the accumulation of
intratumoral CD8þ T cells following anti–PD-1 ICB, leading to
enhanced tumor growth (44). Additional studies support the involve-
ment of tumor-draining LNs (tdLN) in response to anti–PD-1/PD-L1
ICB. In one study, Fransen and colleagues investigated CD8þ T-cell
responses inmice bearing syngeneic murine colon cancers (MC38 and
CT26) treated with anti–PD-1/PD-L1 ICB and found a substantial
increase in the frequencies of CD8þ T cells within tumor-draining

rather than nondraining LNs (45). Surgical removal of the tumor-
draining but not nondraining LNs compromised the efficacy of anti–
PD-1/PD-L1 ICB. Direct evidence of a requirement for anti–PD-1
action within tdLNs was provided by a study using the AC29
mesothelioma model that tdLNs contain a high abundance of
tumor-specific stem-like PD-1loCD8þ T cells (Fig. 3; ref. 46). Taking
advantage of the pleural cavity lymphatic drainage in the AC29model,
the authors used low dose intrapleural anti–PD-1 treatment to show
that PD-1/PD-L1 interactions within the LN are crucial for effective
mobilization of CD8þ T cells following anti–PD-1/PD-L1 ICB. Thus,
CD8þT-cell primingwithin the tdLNs is an essential component of the
response to ICB (Fig. 3).

Relating these findings to the discussion of heterogeneity within the
T-cell exhaustion lineage, Beltra and colleagues have shown distinct
tissue distribution profiles of the four exhaustion-lineage cell states
discussed above (Fig. 2; ref. 23). The least differentiated progenitor
1 population (SLAMF6þCD69þ) is quiescent and resident within the
splenic white pulp. In contrast, the anti–PD-1 responsive progenitor
2 (SLAMF6þCD69�) and intermediate (SLAMF6�CD69�) popula-
tions are associated with egress from lymphoid tissues and occupa-
tion of the blood compartment (23). Terminally exhausted cells
(SLAMF6�CD69þ) are associated with widespread tissue distribution,
not only in the lungs and liver, but also in highly vascularized splenic
red pulp after Clone 13 infection. Thus, exhaustion lineage cell
subpopulations that respond to anti–PD-1/PD-L1 ICB are predom-
inantly located within the blood and lymphoid tissue. However, it
should be noted that TCF-1þCD8þ progenitor exhausted cells are
observed within the TME. The frequency of these cells is a favorable
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tdLNs and the CXCR3–CXCL9 chemokine axis are keymediators of anti–PD-1/PD-L1 ICB activity. ICB enablesde novo priming of stem-like precursor exhausted CD8þ

T cells in the tdLN. Primed CXCR3þCD8þ T cells traffic to the tumor following the CXCL9 gradient established by tumor-resident macrophages and CD103þ DCs.
Within the tumor, stem-like precursors undergo further differentiation to a transient effector-like state before finally becoming terminally exhausted CD8þ T cells.
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prognostic indicator for response to anti–PD-1/PD-L1 ICB (48, 49),
highlighting the potential that these agents may act on progenitor-
exhausted cells within the TME.

Thus, recent evidence points toward tdLNs as the essential players
in response to ICB by enabling de novo priming of tumor-specific
stem-like CD8þ T-cell responses. This supports a new concept of ICB
not (only) acting locally within the TME but preferentially mobilizing
cells from niches outside tumors. It also poses an important question:
which mechanism(s) are involved in the trafficking of tdLN-primed
CD8þ T cells to the TME?

Trafficking andPositioningof Stem-like
CD8þ T Cells within the TME

Trafficking of CD8þ T cells within the lymphoid compartment and
to inflamed peripheral tissues is a complex, highly orchestrated process
enabled by sets of context-dependent chemokines and chemokine
receptors (50, 51). Several studies have identified a critical role for
CXCR3 in CD8þ T-cell trafficking to the TME and anti–PD-1/PD-L1
ICB efficacy (29, 51–55). For example, interactions between CXCR3
and CXCL9 are critical for the trafficking of adoptively transferred
CD8þ T cells into murine B16 melanoma by enabling intravascular
adhesion and extravasation (52). In this study, deletion of CXCR3 in
transferred CD8þ T cells was shown to impair accumulation
within the TME and prevent control of tumor growth (52). Spranger
and colleagues also identified a role for the CXCR3 axis in tumor
control (53). Immunization with a model antigen could induce
substantial growth inhibition only of inflamed and not noninflamed
antigen-expressing murine melanoma tumors (53). Investigation of
mechanisms of tumor rejection revealed that noninflamed tumors are
associated with defective migration of antigen-specific CD8þ T cells
and an inability of the infiltrate to effectively clear tumors. The authors
determined that the CXCR3 ligands, CXCL9 and CXCL10, are critical
mediators of intratumoral CD8þ T-cell trafficking and further showed
intratumoral Batf3-dependent DCs are a significant source of these
chemokines (Fig. 3; ref. 53).

Our group’s recent publication reported on underlyingmechanisms
of the response to anti–PD-L1 treatment using a predictive bilateral
tumor model coupled with single-cell RNA sequencing (scRNA-seq;
refs. 29, 56). This analysis showed that the baseline presence of an
F4/80þMHCIIþLy6Clo tumor-associated macrophage population
could predict response to anti–PD-L1 (avelumab). Phenotypic char-
acterization of this subset revealed an inflammatory IFNg gene
response signature characterized by abundant CXCL9 expression (56).
In addition, we observed that CXCL9 or CXCR3 blockade could
abrogate the efficacy of avelumab treatment. Thus, interactions
between CXCR3 and its ligands regulate the trafficking of CD8þ

T cells in response to anti–PD-1/PD-L1 ICB. This finding is supported
by a meta-analysis of clinical responses to anti–PD-1/PD-L1 ICB
showing that intratumoral CXCL9 expression is one of the few
universal predictors of response to therapy and correlates tightly with
Cd8a mRNA levels (57).

Whether the CXCR3–CXCR3 ligand axis solely is the sole chemo-
kine axis supporting intratumoral CD8þ T-cell trafficking in response
to anti–PD-1/PD-L1 ICB treatment is an open question. Using Cxcr3-
deficient mice, Chow and colleagues demonstrated that the CXCR3–
CXCL9 axis represents a limiting factor of anti–PD-1 efficacy in the
murineMC38model (54). In this study, mechanistic analyses revealed
that CXCR3-expressing CD8þ T cells (many of which possess a
progenitor exhausted phenotype) localize within CXCL9þ tumor

niches. Furthermore, CXCL9 was found to be frequently expressed
by CD103þDCs (Fig. 3), leading the authors to conclude that CXCL9-
mediated positioning of CXCR3þ stem-like CD8þ T cells within the
tumor microenvironment is required for optimal antitumor activity.

This hypothesis is consistent with observations in various human
tumors, such as kidney, prostate, and bladder cancer, where stem-like
CD8þ T cells preferentially reside in microniches rich in MHCIIþ

antigen-presenting cells (APC) (58). The intratumoral presence of
such niches strongly correlates with the response to anti–PD-1/PD-L1
ICB, and their absence is associated with disease progression. The
authors of this publication proposed that interactions with APCs
facilitate the differentiation of stem-like precursors and the acquisition
of effector-like functions (58). The functional relevance of this intra-
tumoral compartmentalization is still not fully clear. Although the lack
of longitudinal data in this study poses some interpretational restric-
tions that may be addressed in the future, these APC-rich microniches
appear to be important for providing as yet undefined cues required for
the survival and persistence of stem-like CD8þT cells within the TME.

In addition to the CXCR3–CXCL9 axis, CCL5–CCR5 interactions
seem to play an important role in the initial recruitment of CD8þ T
cells and strongly correlate with response to anti–PD-1/PD-L1
ICB (59). Through enabling initial infiltration of CCR5þCD8þ T cells,
CCL5-expressing tumor cells trigger a cascade of events ultimately
leading to the production of IFNg by tumor-reactive CD8þ T cells
upon their encounter with antigen within the TME. This initial surge
of IFNg further amplifies CXCL9 production and consequently
drives recruitment and intratumoral positioning of CXCR3þCD8þ

T cells (59).
It has been suggested that CXCR3 ligands may directly promote

CD8þ T-cell maturation toward an effector-like state (60). In support
of this hypothesis, a stimulatory effect of CXCL11 (the third known
CXCR3 ligand) on CXCR3þ stem-like CD8þ T cells has been reported
in muscle-invasive bladder cancer (55). In this study, in vitro exposure
of CXCR3-expressing stem-like CD8þT cells to CXCL11 was found to
induce effector-like properties and enhance migration in culture (55).
CXCR3 biology, therefore, seems to play amultifaceted role in shaping
the response to anti–PD-1/PD-L1 ICB.

As discussed in this review, there is substantial evidence supporting
a critical role for the CXCR3 axis in intratumoral trafficking of
anti–PD-1/PD-L1 ICB–induced stem-like cells and possibly their
persistence within the TME. However, the signals that shape the same
properties of otherCD8þT-cell differentiation states (e.g., effector-like
cells) are less well understood. Given the heterogeneity of the popula-
tions forming the intratumoral CD8þ T-cell pool and the complexity
of developmental connections between them, it is crucial to better
understand cues defining the basic biology of these different cell types.
A study by Di Pilato and colleagues represents one of the first
steps toward addressing this critical issue (61). Combining the
D4M.3A-OVA mouse melanoma model with genetic approaches and
multiphoton intravital imaging, the authors demonstrated that, similar
to stem-like CD8þ T cells, effector-like CD8þ T cells occupy distinct
niches within the TME. In contrast to their stem-like counterparts,
whose intratumoral positioning seems to be mainly controlled by the
CXCR3–CXCL9 axis, effector-like CD8þ T-cell accumulation within
perivascular niches of the tumor is driven by their expression of
CXCR6 and its interaction with CXCL16 expressed by a subset of
CCR7þDCs. This localized interaction of CXCR6þ effector-like CD8þ

T cells with CXCL16-expressing DCs supports their survival and
proliferation through receiving IL15 signals presented in trans by
the DCs.
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In aggregate, these data show that anti–PD-1/PD-L1 ICB elicits
stem-like CD8þ T-cell expansion and mobilization within the
tdLNs. It also emphasizes a nonredundant role of the CXCR3–
CXCL9/CXCL10 axis in the trafficking of stem-like cells into
CXCR3 ligand–expressing microniches within the TME. However,
the precise role of peripheral LN and intratumoral niches in
coordinating antitumor immunity remains to be determined. Do
CXCR3-expressing progenitor exhausted CD8þ T cells solely orig-
inate in or also persist within these microniches? Is the migration of
progenitor exhausted CD8þ T cells between peripheral and intra-
tumoral niches unidirectional? How do interactions between
CXCL9/CXCL10-expressing APCs and CXCR3þCD8þ T cells with-
in the TME shape the quality and persistence of the antitumor
immune response? Finally, do different CD8þ T-cell states (e.g.,
stem-like versus effector-like) occupy distinct microniches within
the TME specialized in supporting their individual developmental
and persistence requirements? Also, what is the role of complex
chemokine networks in orchestrating this compartmentalization?
These are just some of the critical knowledge gaps remaining to be
addressed to advance our understanding of the mechanism and site
of action of anti–PD-1/PD-L1 ICB.

Lessons Learned from the Clinic
Here, we have reviewed new findings derived from preclinical

models that have reshaped our understanding of anti–PD-1/PD-L1
ICB mechanisms of action. Understanding whether these findings are
recapitulated in human tumors has long been of interest. Single-cell
technologies pairing transcriptomics with TCR clonotype analysis
have enabled researchers to probe the heterogeneity and developmen-
tal connections between CD8þ TIL populations, assess how this
heterogeneity changes in response to anti–PD-1/PD-L1 ICB treat-
ment, and gain insights into the anatomical partitioning of the human
anti–PD-1–responsive CD8þ T-cell subsets.

Stem-like progenitor (TCF-7þ, TCF-1þ in a murine system) and
exhausted progeny (TCF-7�) CD8þ T cells have been observed in
multiple human tumor types, including melanoma, non–small cell
lung carcinoma (NSCLC), and kidney cancer (38, 41, 58). Using
high-dimensional single-cell analysis of CD8þ T cells derived from
treatment-naive NSCLC samples, Brummelman and colleagues iden-
tified a population of stem-like, cytolytic CXCR5þTim-3�CD8þ T
cells alongside both exhausted and activated T-cell subsets (62).
Similar to stem-like CXCR5þ cells observed in the Clone 13 infection
model (33), these cells exhibit enhanced homeostatic proliferation and
polyfunctionality compared with their terminally differentiated coun-
terparts, and their abundance negatively correlates with disease
progression (62).

Given the overall similarities between the differentiation hierarchy
of TILs in preclinical models and human tumors, it is essential to
understand whether similar CD8þ T-cell populations are involved in
the actual response to anti–PD-1/PD-L1 ICB treatment. In this respect,
it has been shown that tumor profiles associated with favorable
response to anti–PD-1/PD-L1 ICB inmultiple indications are enriched
for gene signatures associated with stem- or memory-like precursor
exhausted TILs (49, 58). Furthermore, in patients with melanoma, a
high abundance of stem-like progenitor exhausted CD8þ TILs is
associated with the efficacy of anti–PD-1 treatment (38). Specifically,
the frequency of these cells correlates with the duration of the response
in the responder patient population. Moreover, TCF-7þCD8þ T-cell
frequencies, rather than total CD8þ T cells, are associated with
progression-free and overall patient survival (38).

In another study, Sade-Feldman and colleagues profiled biopsies of
metastatic melanoma tumors from patients treated with anti–PD-1/
PD-L1 ICB (49). scRNA-seq phenotyping of CD8þ T cells identified
two major CD8þ T-cell clusters associated with response. The CD8_B
“bad” cluster possessed a terminal exhaustion transcriptional signa-
ture, whereas the CD8_G “good” cluster that correlated with a
favorable response had a transcriptional signature characterized by
the expression of the TCF-7 transcription factor associated with stem-
like CD8þ T-cell states. Here, the TCF-7þCD8þ T cells detected in
melanoma tumor samples were also predictive of a beneficial response
to anti–PD-1/PD-L1 ICB treatment (49). To evaluate the clonal
evolution of the CD8þ T-cell pool in response to treatment, the
authors performed TCR clonotyping of CD8þ T cells derived from
matched pre- and posttreatment samples. Identical TCR clonotypes
were detected in both memory-like and exhausted CD8þ T cells,
strongly suggesting a developmental connection and transition
between the two cell states. However, there was minimal overlap of
CD8þ T-cell TCRs between pre- and posttreatment samples, suggest-
ing that anti–PD-1/PD-L1 ICB–induced CD8þ T-cell clones did not
originate from the TMEbut rather from outside the tumor (e.g., tdLN).
Furthermore, the intratumoral stem-like CD8þ T-cell clonotype turn-
over observed in this study suggests that this population has a limited
capacity to persist in response to anti–PD-1/PD-L1 ICB (49). Similar
observations were reported in a different study evaluating the effect of
anti–PD-1 treatment in patients with basal or squamous cell carci-
noma (63). Combined transcriptional phenotyping and TCR clono-
typing of samples isolated pre– and post–anti–PD-1/PD-L1 ICB
allowed Yost and colleagues to follow treatment-induced numerical
and functional changes of T-cell clones (63). The study’s key finding
was that TCR clones present in the tumor before anti–PD-1/PD-L1
ICB treatment were not enriched in posttreatment samples. The
posttreatment expanded clones were not solely derived from preexist-
ing TCF-7þ TILs, but mostly from novel clonotypes originating
outside the TME. This phenomenon referred to as “clonal replace-
ment” has been attributed to the limited capacity of preexisting CD8þ

TILs to respond to anti–PD-1/PD-L1 ICB. In addition, a comparison
of TCR clonotypes derived from tumor tissue and blood revealed that a
substantial proportion of the new clones originated from the circu-
lation. Moreover, a substantial fraction of these clonotypes were found
even in the pretreatment blood samples (63).

The idea that anti–PD-1/PD-L1 ICB–induced T-cell clones orig-
inate from the periphery is further strengthened by observations
reported by Wu and colleagues (64). Paired scRNA-seq and TCR
clonotyping were used to assess the clonal properties of T cells
isolated from lung, endometrial, colorectal, and renal tumors;
healthy adjacent tissue; and the blood of patients treated with
anti–PD-L1. An expansion of effector-like CD8þ T-cell clones
associated with response to anti–PD-1/PD-L1 ICB treatment was
observed in both tumor and healthy adjacent tissue. The authors
confirmed that these expanded tumor- and healthy adjacent tissue–
associated clonotypes were present in the blood, further empha-
sizing the importance of the peripheral blood compartment for
anti–PD-1/PD-L1 ICB activity and efficacy. A similar approach was
used to profile the differentiation status and TCR clonality of CD8þ

T cells isolated from untreated tumors, healthy adjacent tissue, and
blood of a cohort of patients with NSCLC (65). In addition to tissue-
resident precursors (CD8-XCR1), the intratumoral memory-like
precursor CD8þ T-cell pool contained a sizeable population of
circulating precursors originating from the blood (CD8-GZMK/
CD8-KLF2), suggesting a dual origin of CD8þ TILs. Both precursor
states progressed through a common GZMH-expressing transitional
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state characterized by substantial clonal expansion before transitioning
into terminally differentiated cells (CD8-LAYN; ref. 65).

These findings thus offer a view in which anti–PD-1/PD-L1 ICB
activity critically depends on communication between the tumor,
blood, and lymphoid immune compartments. This concept suggests
that liquid biopsy samples (e.g., blood) can potentially enable the
identification of clinical biomarkers, facilitate early prediction of
anti–PD-1/PD-L1 ICB treatment response and improve stratification
of patient populations, all of which remain significant clinical chal-
lenges. The translational value ofmonitoring peripheral blood samples
to assess immunotherapy response has recently been shown (66, 67).
Two independent studies showed that anti–PD-1/PD-L1 ICB induced
immunomodulation of the CD8þ T-cell pool within the blood of
patients with responding, but not nonresponding, metastatic mela-
noma. The presence of expanded clones of effector-memory CD8þ

T cells 3 weeks after the treatment was identified as a robust prognostic
marker.

Final Remarks
The findings from clinical studies support the paradigm derived

from preclinical models. Anti–PD-1/PD-L1 ICB activity is not
restricted to the TME and instead depends upon the orchestration
of systemic and localized intratumoral immune responses. This
mechanistic understanding, which was derived from chronic viral
infection and tumor models, provides a new hypothesis-driven
framework for developing novel cancer immunotherapies. Howev-
er, essential questions remain to be addressed. Can a population of
progenitor exhausted CD8þ T cells persist long-term in response to
anti–PD-1/PD-L1 ICB? Given the treatment-induced turnover of
intratumoral TCF-7þ cells, it is important to understand whether
the same anti–PD-1/PD-L1 ICB–induced clonotypes persist

throughout therapy. Moreover, what additional factors and path-
ways govern the self-renewal of progenitor exhausted cells and their
differentiation into functional, antitumor effector cells? What fac-
tors expressed by tumors of anti–PD-1/PD-L1 ICB–nonresponsive
patients repress the differentiation of stem-like CD8þ T cells to
effector cells or accelerate their terminal exhaustion, and do these
provide therapeutic opportunities? Given the role of the tdLN in
progenitor exhausted CD8þ T-cell development, are tumor-targeted
treatment approaches warranted, and what opportunities exist for
DC agonist therapies?

The main challenge moving forward will be to convert this new
understanding of how PD-1/PD-L1 antagonists mediate their thera-
peutic effects to identify additional rate-limiting steps in the antitumor
immune response. Drugs designed to reinvigorate and support anti-
tumor immunity in anti–PD-1/PD-L1 ICB nonresponsive patients
hold great therapeutic potential.
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