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Abstract

Recent discoveries in automated planning are broadening the scope of planners, from toy problems to real

applications. However, applying automated planners to real-world problems is far from simple. On the

one hand, the definition of accurate action models for planning is still a bottleneck. On the other hand,

off-the-shelf planners fail to scale up and to provide good solutions in many domains. In these problematic

domains, planners can exploit domain-specific control knowledge to improve their performance in terms

of both speed and quality of the solutions. However, manual definition of control knowledge is quite

difficult. This paper reviews recent techniques in machine learning for the automatic definition of planning

knowledge. It has been organized according to the target of the learning process: automatic definition of

planning action models and automatic definition of planning control knowledge. In addition, the paper

reviews the advances in the related field of reinforcement learning.

1 Introduction

Automated Planning (AP) is the branch of Artificial Intelligence that studies the computational synthesis

of ordered sets of actions that perform a given task. AP appeared in the late ’50s as the result of studies

into state-space search, theorem proving and control theory to solve the practical needs of robotics

and automatic deduction. The STanford Institute Problem Solver STRIPS (Fikes and Nilsson, 1971),

developed to be the planning component for controlling the autonomous robot Shakey (Nilsson, 1984),

perfectly illustrates the interaction of these influences. From the days of Shakey to now, AP has produced

accepted standards for representing planning tasks and efficient algorithms for solving them (Ghallab

et al., 2004). In the last decade AP systems have been successfully applied to real world problems

such as planning space missions (Nayak et al., 1999), managing fire extinctions (Castillo et al., 2006)

or controlling underwater vehicles (Bellingham and Rajan, 2007).

Despite these successful examples, the application of AP systems to real world problems is still

complicated, mainly because of two knowledge definition problems:
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• Automated planners require an accurate description of the planning task. These descriptions include

a model of the actions that can be carried out in the environment, a specification of the state of the

environment and the goals to achieve. In the real world, the execution of an action may result in

numerous outcomes, the knowledge of the state of the environment may be partial and the goals may

not be completely defined. Generating exact definitions of the planning tasks in advance is unfeasible

for most real-world problems.

• Off-the-shelf planners often fail to scale-up or yield good quality solutions. Usually, the search for a

solution plan in AP is a PSpace-complete problem (Bylander, 1991, 1994). Current state-of-the-art

planners try to cope with this complexity through reachability analysis by (1) grounding actions and

(2) performing a search process guided by domain-independent heuristics. Nevertheless, when the

number of objects is large, the resulting ground search trees cannot be traversed in a reasonable time.

Moreover, where heuristics are poorly informed –like in the case of some domains with strong sub-

goals interactions– this kind of analysis is misleading. Domain-specific search control knowledge

has been shown to improve the scalability of planners in these situations (Bacchus and Kabanza,

2000; Nau et al., 2003). Defining search control knowledge is usually more difficult than defining

the planning task because it requires expertise, not only in the task to solve, but also in the planning

algorithm.

Since the beginning of research in AP, Machine Learning (ML) has been a useful tool to overcome

these two knowledge acquisition problems. A comprehensive survey of AP systems that benefit from ML

can be found at (Zimmerman and Kambhampati, 2003). At the present time, there is renewed interest in

using ML to improve planning. In 2005 the first International Competition on Knowledge Engineering

for Planning Systems (ICKEPS) was held and – in 2008– a track for learning-based planners was opened

within the International Planning Competition (IPC). Furthermore, workshops on planning and learning

have periodically taken place within the International Conference on Automated Planning and Scheduling

(ICAPS). Even if this review includes classic systems for planning and learning, mainly it focuses on

covering the last approaches on ML for AP.

The review is organized according to AP’s two knowledge acquisition problems: (1) learning planning

action models and (2) learning search control. Figure 1 illustrates these two targets of the ML process.

Traditionally, most planners separate the definition of the action models from the definition of search

control knowledge to allow the planner the use of different representations. There are cases, however,

where this division between models and control knowledge is unclear like, for example, macro actions

that can be placed in both categories. The paper also reviews the latest techniques in Reinforcement

Learning (RL) (Kaelbling et al., 1996; Sutton and Barto, 1998) which are very closely related to the ML

for AP task. In RL the agent interacts with its environment to automatically learn an action-value function

of the environment. This action-value function combines information from both the search control and

action model to solve a particular task.

For each of the reviewed techniques, the paper provides a unified study analyzing its scope, and

strengths and weaknesses, with respect to four common issues in the ML process: knowledge representa-

tion, extraction of the experience, learning algorithm and exploitation of learned knowledge. The paper

is structured as follows: the second section presents the two areas of the study, Automated planning and

Machine Learning; the third section reviews the diverse techniques for the automatic learning of planning

action models; the fourth section reviews the different approaches for automatically learning planning

search control knowledge; the fifth section describes the techniques for RL and the last section outlines

promising new avenues of research in learning for planning systems.

2 Background

This section provides an overview of the area under study, Automated Planning, and presents our criteria

for reviewing the planning and learning systems.
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Figure 1 Use of ML to improve the knowledge of the AP processes.

2.1 Automated Planning

AP aims to produce solvers that are effective when faced with different classes of problems. AP produces

solvers that exploit environment dynamics models to reason on different tasks in different environments.

An AP task is defined by two elements:

• The domain, that consists of the set of states of the environment S together with the set of actions A

that indicates the transitions between these states.

• The problem, that consists of the set of facts s0 ∈ S that indicates the initial state of the environment

and the set of facts G⊆ S that indicates the goals of the AP task.

A solution to an AP task is a sequence of actions a1, . . . , an. This sequence of actions corresponds to a

sequence of state transitions s0, . . . , sn such that ai is applicable in state si−1 and produces state si, sn is

a goal state; that is G⊆ sn. The cost of the solution is the sum of the action costs. A solution is considered

optimal when it minimizes the expression
∑n

i=1 cost(ai).

Specifying accurate action models to address AP tasks in the real world is a complex exercise. Even in

traditionally easy-to-code planning domains– like Blocksworld– it is hard to specify the actions’ potential

outcomes when the environment is non-deterministic. In extreme cases, like planning for the autonomous

control of a Mars Rover (Bresina et al., 2005) or an underwater vehicle (McGann et al., 2008), this

knowledge cannot be specified because it is as of yet unknown. In these situations, the success of the AP

systems fully depends on the skills of the experts who define the action model. With the aim of assisting

experts, the planning community is developing systems for the acquisition, validation and maintenance of

AP models. ML seems to be a useful tool for these systems to automate the extraction and organization of

knowledge from examples of plans, execution traces or user preferences.

When the AP task is accurately defined, it looks like it should be easy to tackle by searching for a path in

a state-transition graph, a well-studied problem. However, in AP this state-transition graph often becomes

so large that search is intractable. The complexity of the algorithms to solve this type of problems grows

with the number of states, which is exponential in the number of problem variables (number of objects

and predicates of the problem). Prior to the mid ’90s, planners were unable to synthesize plans with more

than ten actions in an acceptable amount of time.

In the late 90’s, a significant scale-up in planning took place due to the appearance of the reachability

planning graph (Blum and Furst, 1995). This discovery allowed for the development of powerful domain-

independent heuristics (Hoffmann and Nebel, 2001a; Bonet and Geffner, 2001) that were computable

in polynomial time. Recent discoveries– such as the automatic extraction of search landmarks (Porteous

and Sebastia, 2004) and the automatic construction of symbolic Pattern Data Bases (Edelkamp, 2002)–
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improve planners’ speed and quality performance. Planners using these advances can often synthesize one-

hundred action plans in seconds, yet scalability limitations are still present in AP and even well-studied

domains –like the Blocksworld– become challenging for planners when there is a relatively large number

of objects. On the one hand, current domain-independent heuristics are expensive to compute. This effect

is more evident in domains where heuristics are misleading. In these domains planners spend most of

their planning time computing useless node evaluations. On the other hand, given that these domain-

independent techniques are based on action grounding, the planners’ search trees become intractable when

the number of problem objects and/or action parameters reaches a certain size. These problems make

domain-independent planners’ application to various real problems difficult. Logistics applications need

to handle hundreds of objects as the same time as hundreds of vehicles and locations (Florez et al., 2010)

which makes computing evaluation functions in every search node unfeasible. In this case, ML has a role

to play in capturing useful control knowledge skipped by the domain-independent techniques.

2.2 Machine Learning

According to (Mitchell, 1997), there is a set of issues in common when using ML to improve an automatic

process. The review of the planning and learning systems completed in this paper is carried out in relation

to them:

1. Knowledge representation. First, the type of knowledge that the ML process will learn must be

defined. In this paper we consider two different targets of ML for AP, action models to feed planners

and search control to guide the planners’ search for solutions. Second, how to represent the learned

knowledge must be decided. In this case, two representation decisions must be made:

(a) Representation language. The kind of notation used to encode the target concept and the

experience. Because AP tasks are normally described in predicate logic this is the most

often used representation language for encoding AP concepts. That said, others languages like

description logic or temporal logic are also used, although to a lesser extent.

(b) Feature space. The set of features that the ML algorithm considers to learn the target concept. In

AP, these features are normally the domain predicates used to define the the AP task’s actions,

states and goals.

2. Extraction of experience. How learning examples are collected. In the case of AP, learning examples

can be autonomously collected by the planning system or provided by an external agent, such as a

human expert. Implementing a mechanism to autonomously collect learning examples is a complex

process. Using a planner to collect experience is an open issue mainly because guaranteeing an AP

problem’s solvability with a given domain model is just as hard as the original AP task. Random

explorations frequently under-sample AP tasks’ state and action spaces. AP actions typically present

preconditions that can only be satisfied by specific sequences of actions which have low probability

of being chosen by chance.

3. Learning algorithm. How to capture patterns from the collected experience. Different approaches can

extract these patterns. Inductive Learning builds patterns by generalizing from observed examples.

Analytical Learning uses prior knowledge and deductive reasoning to build patterns that explain

the information from the learning examples. Hybrid Inductive-Analytical Learning combines the

two previous learning techniques to obtain the benefits of both: a better accuracy in generalization

when prior knowledge is available and use of observed learning data to overcome the shortcomings

in the prior knowledge. When designing learning algorithms for AP inductive learning is the most

commonly used technique, but analytical and hybrid approaches have also used based on the domain

definition of the AP task to build explanations of the collected learning examples.

4. Exploitation of learned knowledge. How the automatic system benefits from the learned knowledge.

The decisions made on each one of the previous three issues will affect the learned knowledge. If

the learned knowledge is imperfect, it must be applied via a mechanism that guarantees a robust

exploitation. In the case of AP, the imperfect knowledge could be the result of several circumstances:

some representation choices may not be expressive enough to capture relevant knowledge for a given



A Review of Machine Learning for Automated Planning 5

domain; the strategy for collecting the learning experience may miss significant examples of the target

knowledge; or the learning algorithm may get stuck in local minima or not be able to capture patterns

of the target knowledge within reasonable time and memory requirements. In these situations, a direct

use of the learned knowledge may damage the planning process. Planning and learning systems need

to be equipped with mechanisms that allow them to plan as robustly as possible despite flaws in the

learned knowledge.

3 Learning Planning Action Models

AP algorithms reason about correct and complete action models that indicate the state-transitions of

the world. Building planning action models from scratch is difficult and time-consuming, even for AP

experts. An alternative approach is to use ML so people do not have to hand-code the action models.

This section reviews ML techniques for the automatic definition of action models for AP. The review

classifies the techniques by the stochasticity of the actions effects and by the observability of the state of

the environment.

1. Action effects. In many planning tasks deterministic world dynamics cannot be assumed. This is the

case with planning domains that include stochastic procedures such as the toggling of a coin or the

rolling of a dice, or non-deterministic outcomes, such as robot navigation in the real world.

2. State observability. In many planning tasks handling a complete and exact description of the state

of the environment is inconceivable. Parts of the current state may be confused or missing due to

sensors’ failures or to their inability to completely sense the world. For example, when controlling a

robot in the real world.

Accordingly, we defined four categories for AP modelling: deterministic actions in fully observable

environments; deterministic actions in partially observable environments; stochastic actions in fully

observable environments; and stochastic actions in partially observable environments. Despite the fact

that other classifications are possible– like for instance by grouping according to the the learning

target (preconditions, effects, conditions of effects, probabilities of outcomes, . . . )– we believe this

one is useful for planning purposes because each class corresponds to a different planning paradigm.

Figure 2 summarizes the classification of the planning action modelling systems by giving some example

implementations. This table does not intend to be an exhaustive enumeration so the systems in the table

are just a sample. The rest of the section describes the systems belonging to each of the four categories in

detail.

MODEL
FEATURES

IMPLEMENTATIONS
Strengths Weakness

Deterministic effects • Learning complexity is • Poor expressiveness LIVE (Shen and Simon, 1989),

Full state observability theoretically bounded EXPO (Gil, 1992),

• Efficient planning algorithms OBSERVER (Wang, 1994)

• Complete coverage of the

learning examples

Deterministic effects • Complete coverage of the • Poor expressiveness ARMS (Yang et al., 2007),

Partial state observability learning examples • Inefficient planning algorithms (Amir and Chang, 2008),

(Mourão et al., 2008),

LOCM (Cresswell et al., 2009)

Probabilistic effects • Rich expressiveness • Non-existent online learning (Oates and Cohen, 1996),

Full state observability • Efficient planning algorithms TRAIL (Benson, 1997),

LOPE (Garcı́a-Martı́nez and Borrajo, 2000),

(Pasula et al., 2007),

PELA (Jiménez et al., 2008)

Probabilistic effects • Rich Expressiveness • High planning and (Yoon and Kambhampati, 2007)

Partial state observability learning complexity

Figure 2 Implementations of systems for planning action modelling.

3.1 Learning Deterministic Models in Fully Observable Environments

This is the simplest scenario and corresponds to the classical planning task, where planning actions present

deterministic effects and observations of the states are correct and complete. To offer an example of the
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modeled actions, Figure 3.1 shows the application of the unstack(B,A) action from the Blocksworld

in a fully observable and deterministic environment. The Blocksworld is a classic domain in AP which

consists of a set of blocks, a table and a robot hand: the Blocks can be on top of other blocks or on the

table; a block that has nothing on it is clear; and the robot hand can hold one block or be empty. The

unstack(B,A) action makes the robot hand unstack block B from block A.

B

A

B

A

unstack(B,A)

State s_1State s_0

Figure 3 Example of application of the unstack action in a fully observable and deterministic Blocksworld.

3.1.1 The Learning Task

1. Knowledge representation. In terms of AP, the suitable languages for representing deterministic

actions are the languages defined for classical planning. The Planning Domain Definition Language

(PDDL) (Fox and Long, 2003; Thiébaux et al., 2005; Gerevini et al., 2009b) is the standard

representation language for classical planning. It was created as the planning input language for

the International Planning Competition (IPC1) to standardize the planning representation languages

and facilitating comparative analysis of diverse planning systems. Although several of the systems

reviewed in this paper use other representation languages, we have used PDDL to illustrate our

examples. A PDDL action a consists of a tuple <head(a),pre(a),eff(a)> where,

• head(a) is the head of action a containing the action name and the list of typed parameters,

• pre(a) is the set of action preconditions. This set represents the facts that needs to be true for the

application of action a and,

• eff(a) is the set of action effects. This set includes the facts that are no longer true after the

application of action a (known as del effects and represented by del(a)) and the facts made true

by the application of action a (known as add effects and represented by add(a)). In PDDL, the

del effects are preceded by the logical connective not.

Figure 4 shows the PDDL representation for action unstack from the Blocksworld as an example.

(:action unstack

:parameters (?top - block ?bottom - block)

:precondition (and (emptyhand) (clear ?top) (on top? ?bottom))

:effect (and (not (emptyhand)) (not (clear ?top)) (not (on (?top ?bottom))

(holding ?top) (clear ?bottom)))

Figure 4 PDDL representation for action unstack from the Blocksworld.

2. Learning examples. Learning examples consist of tuples < si−1, ai, si > where ai is the action

applied at state si−1, i.e., the pre-state and si is the state produced by applying the action, i.e., the

post-state.

3. Learning algorithm. When actions present deterministic effects and the environment states are fully

observable, the dynamics of a given action are captured from the lifted literals of the pre-state and

the post-state of action executions. Learning the action preconditions is accomplished by lifting the

literals from a set of pre-states. Learning the effects of a given action is completed by lifting the set

1http://www.icaps-conference.org/index.php/Main/Competitions
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of literals that is different in the pre-states and post-states of action executions. This set of literals

is called the delta-state and is formally defined as: ∆(si−1, si) = (si−1 \ si)
⋃

(si \ si−1). The first

term of the delta-state captures the del effects of action ai and the second term captures its add effects.

In both learning steps– learning the action preconditions and learning the action effects– the lifting

process substitutes each grounded object with a variable. The type for each variable is given by the

most specific type in the type hierarchy of the substituted object.

4. Exploitation of the learned knowledge. In this scenario, the learned models may present unnec-

essary preconditions or missing effects. These model flaws can be eliminated by observing more

executions of the action but collecting a good observation sample of planning actions is still an open

issue. Random applications of AP actions may leave actions unexplored. Normally AP actions present

preconditions that can only be satisfied by specific sequences of actions which have a low probability

of being chosen by chance. A planner may also fail to provide solutions with intermediate learned

models. Considering any literal of the pre-state of an action as a real precondition of that action leads

to very restrictive models that fail to solve problems known to be solvable. An alternative approach is

to rely on an external source of experience that collects these extra observations of actions, a teacher

for instance.

3.1.2 Implementations

The LIVE system (Shen and Simon, 1989) was an extension of the General Problem Solver (GPS)

framework (Ernst and Newell, 1969) with a learning component. LIVE alternated problem solving with

model learning to automatically define operators. The decision about when to alternate depended on

surprises, that is situations where an action effects violated its predicted model. EXPO (Gil, 1992)

generated plans with the PRODIGY system (Minton, 1988), monitored the plans execution, detected

differences in the predicted and the observed states and constructed a set of specific hypotheses to fix those

differences. Then the EXPO filtered the hypotheses heuristically. OBSERVER (Wang, 1994) learned

operators by monitoring expert agents and applying the version spaces algorithm (Mitchell, 1997) to the

observations. When the system already had an operator representation, the preconditions were updated by

removing facts that were not present in the new observation’s pre-state; the effects were augmented by

adding facts that were in the observation’s delta-state.

All of these early works were based on direct liftings of the observed states. They also benefit from

experience beyond simple interaction with the environment such as exploratory plans or external teachers,

but none provided a theoretical justification for this second source of knowledge. The work recently

reported in (Walsh and Littman, 2008) succeeds in bounding the number of interactions the learner must

complete to learn the preconditions and effects of a STRIPS action model. This work shows that learning

STRIPS operators from pure interaction with the environment, can require an exponential number of

samples, but that limiting the size of the precondition lists enable sample-efficient learning (polynomial in

the number of actions and predicates of the domain). The work also proves that efficient learning is also

possible without this limit if an agent has access to an external teacher that can provide solution traces on

demand.

In the review we focused on learning STRIPS-like action models but others systems have tried to learn

more expressive action models for deterministic planning in fully observable environments. Examples

would include the learning of conditional costs for AP actions (Jess Lanchas and Borrajo, 2007) or the

learning of conditional effects with quantifiers (Zhuo et al., 2008).

3.2 Learning Deterministic Models in Partially Observable Environments

In this scenario actions also present deterministic effects, but the state is not fully observable. As

a consequence, the current state is described by the set of possible states called belief state. This

scenario corresponds to the conformant planning task, when the current state is non observable, and

to the contingent planning task when the current state can be partially observed. As an example of the

actions modeled in this scenario, Figure 3.2 shows the application of the unstack(B,A) action in a

deterministic and non-observable Blocksworld. In the example, there are two blocks, A and B. The current
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state is uncertain and is described by a belief state b0 that represents the disjunction of five possible states.

The result of applying action unstack(B,A) is a belief state b1 which represents the disjunction of four

possible states. State 1 in b0 generates state 3 in b1, while the action applied to the rest of states in b0 has

no effect, so they are still probable in b1.

B

A

B

A

1 2

3

5

A

B

B

A

4 BA

Belief State b_0

B

A

B

A

1 2

3

5

A

B

B

A

4 BA

unstack(B,A)

Belief State b_1

Figure 5 Example of application of the unstack(B,A) action in a non-observable two-blocks Blocksworld.

3.2.1 The learning task

1. Knowledge representation. Because in this scenario actions are deterministic, a classical planning

representation language, such as PDDL, provides a suitable representation. Figure 4 shows the

PDDL representation for action unstack from the Blocksworld.

2. Learning examples. Learning examples consist of tuples < bi−1, ai, bi > where bi−1 is a belief state

corresponding to the partial observation of the pre-state, ai is the action applied at the pre-state and

bi is the belief state corresponding to the partial observation of the post-state.

3. Learning algorithm. In this scenario, lifting the pre-state and delta-state of observations does

not define the preconditions and effects of an action. Given that the states of the environment are

not completely known, a given observation of a pre-state cannot be associated with an action’s

preconditions. Likewise, changes of a given set of literals cannot be directly associated to the

application of a specific action. In this scenario two approaches can be used:

• Inference. Inference can be used to obtain action models that satisfy the collected learning

examples. This task is closely related to the Boolean satisfiability (SAT) problem which

determines if the variables of a given Boolean formula can be assigned in such a way as to

make the formula evaluate as true. The action modeling task in this scenario can be defined as

the satisfaction of a logic formula for every action in the domain. This formula is the disjunction

of the possible conjunctions of pre-states and post-states observed for the action. Figure 6 shows

an example of the formula for obtaining models for the action unstack(X,Y) that satisfy the

observation in Figure 3.2.

• Induction. One can search the space of possible action models to find the best fit for the observed

learning examples. This task is closely related to the Inductive Logic Programming (ILP) task

that searches the space of the Logic Programs2 to find the best fit for a set of observed facts.

Action modeling in this scenario can be defined as the induction of two logic programs for every

action in the domain. Figure 7 shows the two logic programs that model action unstack from

the Blocksworld.

The first logic program captures the preconditions of the action. The head of this one-clause

logic program consists of the action name and parameters, and the body is the subset of literals

from the observed pre-states that best fits the learning examples. This learning process can be

2Here, the concept of Logic program is used in a narrower sense generally applied, i.e., as a conjunction of disjunctions

of literals where each disjunction presents at most one positive literal. This type of disjunction is called a Horn clause.
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(or ;;; pre-state 1 post-state 1

;;; pre-state 1 post-state 2

(and (Unstack B A)

(DelClear B) (DelOn B A) (DelOntable A)

(AddClear A) (AddOn A B) (AddOntable B))

;;; pre-state 1 post-state 3

(and (Unstack B A)

(DelEmptyhand) (DelClear B) (DelOn B A)

(AddHolding B) (AddClear A))

...

;;; pre-state 5 post-state 5

(and (Unstack B A))

)

Figure 6 Example of a logic formulae for modeling action unstack from a two-blocks Blocksworld.

preconditions_unstack(TOP,BOTTOM):- object(TOP),object(BOTTOM),

emptyhand(), clear(TOP), on(TOP,BOTTOM).

effects_unstack(TOP,BOTTOM):- object(TOP),object(BOTTOM),

del_emptyhand(),del_clear(TOP), del_on(TOP,BOTTOM),

add_holding(TOP),add_clear(BOTTOM).

Figure 7 Representation of action unstack from the Blocksworld as two logic programs.

implemented as a heuristic search guided by the number of observed pre-states of the action

covered and not covered by the different potential programs. The second program captures the

effects of the actions. The head of this logic program is comprised of the action name and

parameters, and the body consists of the subsets of literals from the observed delta-states that

best fits the learning examples. This process can also be implemented as a heuristic search guided

in this case by the coverage of the observed delta-states.

4. Exploitation of the learned knowledge. An action model that is built satisfying/covering a given set

of examples does not guarantee that it will present the exact set of preconditions and effects. Like

in the previous scenario, the learned models may present unnecessary preconditions. In this scenario

the learned effects may also capture invalid changes in the state caused by the partial-observability of

the pre and post states. As a consequence, planning with this kind of models may fail to address AP

problems known to be solvable.

3.2.2 Implementations

The ARMS system (Yang et al., 2007) learns PDDL planning operators from examples consisting of

tuples < s0, sn, p >; where s0 is an initial state, sn is a goal state and p= (a1, a2, ..., an) is a plan

corresponding to a sequence of state transitions (s0, s1, ..., sn). ARMS proceeds in two phases. In the

first phase, ARMS extracts frequent action sets from plans that share a common set of parameters. ARMS

also finds some frequent literal-action pairs with the help of the initial state and the goal state that provide

an initial guess on the actions preconditions, and effects. In the second phase, ARMS uses the frequent

action sets and literal-action pairs to define a set of weighted constraints that must hold in order to make

the plans correct. Then, ARMS solves the resulting weighted MAX-SAT problem and produces action

models from the solution of the SAT problem. This process iterates until all actions are modelled. For

a complex planning domain that involves hundreds of literals and actions, the corresponding weighted

MAX-SAT representation is likely to be too large to be solved efficiently as the number of clauses can

reach up to tens of thousands. For that reason ARMS implements a hill-climbing method that models the
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actions approximately. Consequently, the ARMS output is a model which may be inconsistent with the

examples.

(Amir and Chang, 2008) introduced an algorithm that tractably generates all the STRIPS-like models

that could have lead to a set of observations. Given a formula representing the initial belief state, a

sequence of executed actions (a1, a2, ..., an) and the corresponding observed states (s1, ..., sn) (where

partial observations of states are given), it builds a complete explanation of observations by models of

actions through a Conjunctive Normal Form (CNF) formula. By linking the possible states of fluents to

the effect propositions in the action models, the complexity of the CNF encoding can be controlled to

find exact solutions efficiently in some circumstances. The learning algorithm updates the formula of

the belief state with every action and observation in the sequence. This update makes sure that the new

formula represents all the transition relations consistent with the actions and observations. The formula

returned at the end includes all consistent models, which can then be retrieved with additional processing.

Unlike the previous approaches, the one described in (Mourão et al., 2008) deals with both missing

and noisy predicates in the observations. For each action in a given domain, they use kernel perceptrons to

learn predictions of the domain properties that change because of the action execution. LOCM (Cresswell

et al., 2009) induces action schemas without being provided with any information about initial, goal or

intermediate state descriptions for the example action sequences. LOCM receives descriptions of plans

or plan fragments, uses them to create states machines for the different domain objects and extracts the

action schemas from these state machines.

3.3 Learning Stochastic Models in Fully Observable Environments

In this scenario the observations of the state of the environment are perfect, but actions present stochastic

effects. This scenario corresponds to the probabilistic planning task. Figure 3.3 shows an example of the

unstack(B,A) action being applied in a fully observable and stochastic version of the Blocksworld. In

the example, the action produces three different alternative outcomes with probabilities of 0.5, 0.3 and 0.2

respectively.

YX

State S_1

Y

Y

B

X

unstack(X,Y)

State S_i+1

prob=0.2

prob=0.3

prob=0.5

X

State S_i+1

X

State S_i+1

Figure 8 Example of application of the unstack(B,A) action in a fully observable and stochastic Blocksworld.
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3.3.1 The Learning Task

1. Knowledge representation. Languages for probabilistic planning support the representation of AP

models with stochastic state-transitions. The Probabilistic Planning Domain Definition Language

(PPDDL) (Younes et al., 2005) is the current standard representation language defined for the IPC’s

probabilistic planning track. PPDDL is essentially an extension of PDDL2.1 (Fox and Long, 2003)

that supports actions with probabilistic effects. The syntax for probabilistic effects in PPDDL is

formally defined as follows:

(probabilistic p1 o1 p2 o2 . . . pk ok)

where outcome oi of the action occurs with probability pi. It is required that 1≥ pi ≥ 0 and
∑k

i=1 pi = 1. Figure 9 shows the PPDDL representation for the action unstack from the prob-

abilistic version of the Blocksworld defined at IPC-2004. The probabilistic effects of this action

indicate that with probability 0.5 the robot hand will successfully unstack block ?top from block

?bottom, with probability 0.3 the block ?top will fall down on the table and that with probability

0.2 the blocks will not be moved.

(:action unstack

:parameters (?top - block ?bottom - block)

:precondition (and (emptyhand) (clear ?top) (on top? ?bottom))

:effect

(and

(probabilistic 0.5 (and (not (emptyhand)) (not (clear ?top))

(not (on ?top ?bottom))

(holding ?top) (clear ?bottom))

0.3 (and (not (on ?top ?bottom))

(on-table ?top) (clear ?bottom)))))

Figure 9 PPDDL representation for the action unstack from the Blocksworld.

2. Learning examples. Learning examples consist of tuples < si−1, ai, si > where ai is the action

applied at state si−1, the pre-state and si is the post-state. Given that action effects are stochastic,

pairs (pre-state,action) may have different associated post-states.

3. Learning algorithm. Because the environment is fully observable, action preconditions are captured

by lifting the pre-state of the learning examples. Nevertheless, learning stochastic action effects is

more complex because of the overlapping post-states; i.e., given an action transition defined by

the tuple (pre-state, action, post-state), several action effects could describe the transition. This

aspect of overlapping examples is also present in the induction of stochastic logic models such as

Stochastic Logic Programs (Muggleton, 1995; Cussens, 2001), Bayesian Logic Programs (Jaeger,

1997; Kersting and Raedt, 2001) or Markov Logic Networks (Richardson and Domingos, 2006).

These techniques share a two-steps strategy for implementing the model learning task:

(a) Structural Learning. At this step, ILP algorithms are used to induce first-order logic formulas

that generalize the relations from the ground facts of the learning examples.

(b) Parameter Estimation. This step estimates the probabilities associated with the induced logic

formulas. The output of the Structural Learning step is frequently a set of rules of the form

C → P where P is the prediction of the rule and C is the set of conditions under which

the prediction is true. In this case, the Parameter Estimation step consists of computing the

conditional probability prob(P |C). When the induced rules are disjunctive, this probability is

directly extracted from the frequency of the learning examples but when rules overlap, estimating

this conditional probability requires more complex approaches:

i. Bayesian Estimation (BE). This approach estimates the conditional probability following

the Bayes Theorem,

prob(P |C) = prob(C|P )
prob(P )

prob(C)
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ii. Maximum Likelihood Estimation (MLE). This approach assumes that the examples follow a

known probability distribution and iteratively tunes the distribution’s parameters to achieve

a good fit.

Accordingly, modelling an action’s stochastic effects can be defined as learning a Stochastic Logic

Program where each clause in the program represents one probabilistic effect of the action. The heads

of the clauses of the logic program consist of the action name and action parameters, and the bodies

consist of the subsets of literals from the observed delta-states that best fit the learning examples for

this effect. Figure 10 shows an example of stochastic logic program for the effects of action unstack

from the Blocksworld.

0.5:effects_unstack(TOP,BOTTOM):- object(TOP),object(BOTTOM),

del_emptyhand(),del_clear(TOP),del_on(TOP,BOTTOM),

add_holding(TOP),add_clear(BOTTOM).

0.3:effects_unstack(TOP,BOTTOM):- object(TOP),object(BOTTOM),

del_on(TOP,BOTTOM),

add_ontable(TOP),add_clear(BOTTOM).

0.2:effects_unstack(TOP,BOTTOM):- object(TOP),object(BOTTOM).

Figure 10 Representation of the effects of action unstack from the Blocksworld as a Stochastic Logic Program.

4. Exploitation of the learned knowledge. The on-line modelling of actions with stochastic effects is

an open issue. Actions may present outcomes that result in dead-end states which complicates the

environment’s exploration. It is also not enough to detect causal flaws in the learned model. It is

necessary to detect flaws in the probabilities associated with the models. There are no mechanisms to

refine stochastic actions when states that do not fit the model are observed.

3.3.2 Implementations

In (Oates and Cohen, 1996), the authors induced propositional rules corresponding to conditional

probabilistic effects of actions. Their approach explores a given AP domain by taking random actions

and observing their execution. For each execution, they register an observation in the form of oi =<

si, ai, si+1 >, where ai is the action executed in si, and si+1 is the resulting state of executing ai in si.

Then they induce the effects of a given action by performing a general-to-specific Best-First Search in the

space of the action’s possible conditional effects. For each action, this search is guided by the frequency

of observations covered by the action’s possible conditional effects and terminates when a user-specified

number of search nodes are explored.

The TRAIL system (Benson, 1997) learns relational models of probabilistic actions. TRAIL explores

a given AP domain as follows: first it tries to solve a problem with the current action model. When

this model is too bare to solve the problem, it asks an external expert a solution plan, it observes the

plan’s execution and it learns a new model from these observations. If the current action model makes

TRAIL generate a plan for the problem, TRAIL executes that plan and observes its execution to refine

the action model. TRAIL action models are an extended version of Horn clauses so TRAIL straight off

uses standard ILP tools for learning.

The LOPE system (Garcı́a-Martı́nez and Borrajo, 2000) learns planning operators with an associated

probability of success. At the beginning, the system has no knowledge. It perceives the initial state, and

selects a random action to execute in the environment. Then it loops by (1) executing an action, (2)

perceiving the resulting state and its utility, (3) learning a model from the perception and (4) planning

for further interaction with the environment (if the execution of the plan is completed, or the system has

observed a disparity between the predicted situation and the situation perceived). The LOPE’s planning

component does not explicitly receive a goal input given that LOPE creates its own goals from the highest

utility situations.
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In (Pasula et al., 2007), the authors learn probabilistic action models from externally provided observa-

tions which again consist of tuples oi =< si, ai, si+1 >. The induced action models are probabilistic

STRIPS operators extended in two ways: (1) they can refer to objects not mentioned in the action

parameters, and (2) for each action, they add a noise outcome that groups the set of possible outcomes

that are the least probable for the action. The action modelling algorithm has three learning layers:

1. Learning the action structure. At this layer a greedy search process is performed in the space of action

sets to select the action preconditions and outcomes that best fit the learning examples. An evaluation

function guides the search favoring rule sets that assign high likelihood to the learning examples and

penalizing model complexity (number of preconditions plus number of outcomes).

2. Learning the action outcomes. Given an action and a set of learning examples, greedy search is used

to decide the best set of outcomes and their corresponding parameters for the action. This learning is

performed every time a new rule is constructed in the previous layer.

3. Parameter estimation. Given an action, the learning examples are used to estimate a distribution

over action outcomes. This work estimates the outcomes parameters implementing a MLE with the

conditional gradient method. The MLE is performed for each set of outcomes considered in the

previous layer.

The PELA system (Jiménez et al., 2008) automatically upgrades a STRIPS action model with situation-

dependent probabilities learned from plan executions. These probabilities are captured using the TILDE

tool for the automatic induction of first order decision trees (Blockeel and De Raedt, 1998).

3.4 Learning Stochastic Models in Partially Observable Environments

In this scenario actions present stochastic effects and the observations of the world state may be incomplete

and/or incorrect. Action modelling in stochastic and partially observable environments has been poorly

studied and currently, there is no general strategy for addressing this modelling task. Preliminary

work (Yoon and Kambhampati, 2007) addresses this problem using Weighted Maximum Satisfiability

techniques for finding the action model that best explains the collected observations. Specifically, in

order to learn the preconditions of every action a, this approach enumerates all the possible axioms of

the form a(x, y) :−p(x, y), with all the available predicates and variable matchings. Then, it updates the

weights associated to the axioms according to a set of learning examples. Axioms corresponding to wrong

predicates or unnecessary predicates would get close to zero weight after enough learning examples, and

axioms corresponding to necessary predicates would get close to one. Likewise, for learning the effects of

every action a, this approach enumerates all the possible effects of the form a(x, y) :−e(x, y) and then

updates the corresponding associated weights in a similar way.

3.5 Discussion

While learning of propositional action models has been widely studied from a theoretical approach (via

the notion of sample complexity (Strehl and Littman, 2005)), results for learning AP action models are

largely empirical. Works on model learning for AP typically evaluate their correctness by computing the

learned model’s error divergence from a given reference model. When developing planning applications

for solving problems in the real-world however, reference models are nonexistent. Some systems exploit

other kinds of AP knowledge available. The ARMS system (Yang et al., 2007) exploits a collection of

plans to evaluate the learned model’s quality. However, as previously explained, there is no guarantee that

a model that satisfies a given collection of examples succeeds in addressing a given problem.

A different approach consists of learning the model in an incremental and online manner, similar to

Reinforcement Learning. This approach does not require previous knowledge about the planning task. In

this case, we need a mechanism that guarantees convergence to a valid model. AP systems can iteratively

detect and refine defective action models after an action execution. Defective models are detected though

their differences with the observed states. When a defective action model is observed, it is refined by

collecting more experience about the action. We can solve the action inconsistency and resume the action
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learning process. As previously explained, however, the autonomous collection of AP experience is still

an open problem.

When the planning system fails to detect a defective action model, a standard planning algorithm may

not be able to find a solution plan (though it exists). Kambhampati introduced the concept of model-lite

planning (Kambhampati, 2007). This new planning paradigm advocates the development of planning

techniques that do not only search for solution plans that perfectly satisfy the current action model

but search for the most plausible solution plan according to the current action model. The core idea

is viewing a planning problem as an MPE (most plausible explanation) problem, given an incomplete

domain definition and the evidence of initial state and goals, which enables one to use publicly available

approximate solvers that scale well, e.g., MAXWALKSAT.

4 Learning Planning Search Control Knowledge

Planners’ performance can be improved by exploiting knowledge about the structure of the AP tasks

that is not explicitly encoded in the domain model. This fact was evidenced at IPC-2002 where planners

exploiting domain-specific control knowledge performed orders of magnitude faster than the state-of-the-

art planners. Hand-coding search control knowledge is complex because it implies expertise in the AP

domain and in the planner’s search algorithm. This section reviews the different systems that benefit from

ML in defining control knowledge to improve the speed and/or the quality of the planning processes.

The review is organized around the target of the learning process. We review four different approaches

in learning search control knowledge for AP (macro-actions, generalized policies, generalized heuristic

functions and hierarchical decomposition methods). The table in Figure 11 shows systems that follow

each approach. This table is not exhaustive. The systems presented are just a representative sample of

existing implementations. The following subsections explain each of the four approaches in detail.

FEATURES
IMPLEMENTATIONS

MODEL Strengths Weaknesses

Macro-actions

• Robust to wrong learned • Utility problem REFLECT (Dawson and Silklossly, 1977),
knowledge MORRIS (Korf, 1985),
• Valid for different MacroFF (Botea et al., 2005a),
planners Marvin (Coles and Smith, 2007) ,

(Newton et al., 2007)

Generalized Policies

• Standard relational • Engineering effort to (Minton, 1988),
classification algorithms integrate with different PRIAR (Kambhampati and Hendler, 1992),

search algorithms and HAMLET (Borrajo and Veloso, 1997),
domain-independent (Khardon, 1999),
heuristics (Martin and Geffner, 2000),

DISTILL (Winner and Veloso, 2003),
OBTUSEWEDGE (Yoon et al., 2007),
CABALA (de la Rosa et al., 2007),
ROLLER (de la Rosa et al., 2008)

Generalized Heuristics

• Standard relational • Poor readability (Yoon et al., 2006),
regression algorithms (Xu et al., 2007)
• Easy integration with
different search algorithms
and heuristics

Decomposition Methods

• Very expressive • No completely CAMEL (Ilghami et al., 2002),
automatic learning HDL (Ilghami et al., 2006),

HTNMAKER (Hogg et al., 2008)

Figure 11 Overview of AP systems that benefit from ML for the extraction of domain-specific search control.

4.1 Macro-actions

Macro-actions were among the first attempts to speed-up planning processes. They are extra actions

resulting from assembling actions that are frequently used together. Macro-actions reduce the depth of

the planning algorithm’s search tree. Their benefit decreases with the number of new macro-actions as

they enlarge the search tree’s branching factor causing the utility problem. Addressing this trade-off is



A Review of Machine Learning for Automated Planning 15

the key issue at stake when attempting to make macro-actions work. Figure 12 shows an example of

the macro-action unstack-putdown for the Blocksworld domain. This macro-action is the result of

assembling actions unstack and putdown.

;;; Primitive actions

(:action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect (and (holding ?x)

(clear ?y)

(not (clear ?x))

(not (handempty))

(not (on ?x ?y))))

(:action putdown

:parameters (?x - block)

:precondition (holding ?x)

:effect (and (not (holding ?x))

(clear ?x)

(handempty)

(ontable ?x)))

;;; Macro-action

(:action unstack-putdown

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect (and (clear ?y)

(not (on ?x ?y))

(ontable ?x)))

Figure 12 Macro-action unstack-putdown for the Blocksworld domain.

4.1.1 Learning Macro-Actions

1. Knowledge representation. Macro-actions are represented as new actions of the action model so

they follow the predicate logic representation of AP actions. Actions ai and aj are assembled into a

macro-action ai,j in the following way:

• The parameters par(ai,j)⊆ (par(ai)
⋃

par(aj)).

• The preconditions pre(ai,j) = (pre(ai)
⋃

pre(aj)) \ add(ai).

• The positive effects add(ai,j) = (add(ai)
⋃

add(aj)) \ del(aj).

• The negative effects del(ai,j) = (del(ai)
⋃

del(aj)) \ add(aj).

2. Learning examples. Learning examples are solution plans p that consist of sequences of instantiated

actions p= (a1, a2, ..., an) that correspond to the sequences of state transitions (s0, s1, ..., sn) such

that s0 is the initial state of the problem, si results from executing action ai at state si−1 and sn is a

goal state, i.e., G⊆ sn, where G are the problem goals.

3. Learning algorithm. Algorithms for learning macro-actions extract action sub-sequences from the

solution plans and count their occurrences to capture the most useful ones. Typically, the process to

extract action sub-sequences defines two parameters:

• l, the length of the macro-actions. The minimum value for l is l = 2 because a macro-action

should have at least two actions. The maximum value for l is the length of the longest solution

plan in the learning examples. In practice this value has to be smaller to be useful.

• k, the number of actions that can be skipped from a solution plan. This parameter allows the

learning system to extract macro-actions that ignore, at most, k irrelevant intermediate actions

from a solution plan. In practice, small values for k reduce the number of macro-actions but k

values that are too small may skip useful macros-actions occurrences.

Regarding these parameters, the complexity of extracting macro-actions of length l from a plan with

n actions is
(

l+k

l

)

n. The first factor is the cost to enumerate macro-actions of length l within a l + k
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sized window. The second factor is the cost of sliding the window along the solution plan. A similar

approach can be used to extract macro-actions from partially-ordered plans (Botea et al., 2005b).

4. Exploitation of the learned knowledge. Macro-actions are usable straight away by any off-the-

shelf planner because they can be included in the action model as standard actions. The inclusion

of macro-actions can damage the time and quality performance of the original action model. This

happens when macro-actions produce a reduction in the depth of the search that does not payoff

the increase in the branching factor (the utility problem). Current systems for learning macro-actions

evaluate this problem experimentally. For example, they define a set of AP problems similar to the

target ones and if a learned macro-action improves the planner’s performance in these problems, then

it is considered a good candidate to populate the action model. This approach for dealing with the

utility problem was first introduced in systems that learn control rules (Minton, 1988).

4.1.2 The Implementations

Since the beginning of AP the use of macro-actions has been widely explored. The first macro-action

learning system was STRIPS (Fikes et al., 1972). It used previous solution plans as macro-actions

to solve subsequent problems as well as to monitor the execution of plans in the real world. Later,

MORRIS (Korf, 1985) extended this approach by adding filtering heuristics to prune the generated set of

macro-actions. This approach distinguished two types of macro-actions: S-macros that occur frequently

during search and T-macros, that occur less often, but model some weakness in the heuristic. The

REFLECT system (Dawson and Silklossly, 1977) took the alternative approach of generating macro-

actions based on domain pre-processing. All sound combinations of actions were considered to be macro-

actions and filtered through basic pruning rules. Due to the small size of the domains with which the

planner was reasoning, the remaining number of macro-actions was small enough to use in planning.

Macro-actions systems traditionally use an off-line approach to generate and filter macro-actions before

using them but a few systems have tried ML to filter macro actions during the search. In (McCluskey,

1987) the author used chunks and in (Garcı́a-Durán et al., 2006) they used control rules to decide when to

apply the macro-actions.

Recent works successfully integrate macros with state-of-the-art heuristic search planners. These works

include the IPC-2004 competitor MACROFF (Botea et al., 2005a, 2007). Here partially ordered macro-

actions are extracted by identifying statically connected abstract components and then, an off-line filtering

technique is used to prune the list of macro-actions. Marvin (Coles and Smith, 2007), also a participant

at IPC-2004, used action-sequence memorization techniques to generate macro-actions on-line that allow

the planner to escape from plateaus without any exploration. Wizard (Newton et al., 2007) used a genetic

algorithm to generate and filter a collection of macro-actions independent from the baseline planner.

Algorithms for n-grams analysis have also been recently applied to learning macro-actions for the heuristic

planner FF (Muise et al., 2009).

4.2 Generalized Policies

A generalized policy is a mapping of planning contexts (sometimes also called meta-states) into the

preferred actions to apply in the context. A planning context typically consists of the current state as well

as with the set of goals. An accurate generalized policy is able to solve any problem from a given domain

without any search having to be done, by repeatedly applying the preferred action for each planning

context. Figure 13 shows an example of a generalized policy in the form of a decision list (ordered set

of decision rules) for the Blocksworld domain. This generalized policy stacks block TOP on block

BOTTOM when TOP should be on BOTTOM, BOTTOM is clear and BOTTOM is already well placed 3. In all

other cases the policy unstacks all blocks and puts them down on the table so they can be placed in

their final position.

3The concept of well-placed should be given in the domain theory. A block is considered well-placed when it is on

the right block (or table) with respect to the goal, and all blocks beneath it are well-placed too.
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stack(Top,Bottom) :- state_holding(TOP), goal_on(TOP,BOTTOM), state_clear(BOTTOM),

wellplaced(BOTTOM).

putdown(BLOCK) :- state_holding(BLOCK).

unstack(TOP,BOTTOM) :- state_clear(TOP), state_armempty().

pickup(BLOCK) :- state_clear(BLOCK), state_armempty().

Figure 13 A generalized policy in the form of a decision list for the Blocksworld domain.

4.2.1 Learning Generalized Policies

• Knowledge representation. A key issue when representing planning contexts is selecting the feature

space. The feature space is the set of predicates considered for the learning process. This set must be

general enough to capture the domain’s relevant knowledge and specific enough to make the learning

tractable. In AP the feature space has usually consisted of predicates for describing the current state

and the goals of the planning task. The PRODIGY system enriched the feature space with extra

predicates, called metapredicates (Minton, 1988). Metapredicates capture useful knowledge about

the planning context, like the current applicable operators or the goals that still need to be achieved.

Recent works on learning generalized policies have extended the definition of metapredicates to

include concepts from heuristic planning, like metapredicates for capturing the actions of the relaxed

plan in the current state (Yoon et al., 2008) or for capturing the set of helpful actions in the current

state (de la Rosa et al., 2008).

There have been two main approaches for representing generalized policies. A generalized policy can

be represented as a set of rules that capture the preferred action to apply in a given planning context.

In this case, the generalized policy is formally defined as a tuple π =< L, R >, where

– L the set of literals used to describe the different planning contexts. It defines the feature space

used during learning.

– R is a set of rules, where the rule’s Head is the action to apply and the Body is the set of

predicates that describes the planning context under which the action should be applied.

A generalized policy can also be represented as a set of decision instances with a distance metric

to retrieve similar instances. This is the representation approach that CBR (Case-Based Reasoning)

planners follow. Even if this representation is able to capture more specific domain regularities, it has

the serious drawback of requiring an appropriate similarity metric. Utility is also a problem when

handling large collections of decision instances, because, as a collection gets larger, the time it takes

to search for similar instances also increases. This second representation for generalized policies is

formally defined as a tuple π =< L, I, D > where:

– L the set of literals used to describe the planning contexts. It defines the feature space.

– I is a set of tuples, i=< ci, ai >, where ci is an instantiated planning context and ai is the

instantiated action applied in ci.

– D is a distance metric that computes the distance between two different planning contexts. Given

a new planning context c, the policy decides the action ai to execute in c by computing the closest

tuple in I and returning its associated action ai, as shown in,

π(c) = argai
min

(<ci,ai>∈I)
D(c, ci)

Both approaches usually represent planning contexts in predicate logic because it is a natural

encoding for the AP tasks. Predicate logic provides mechanisms to define extra predicates that enrich

planning contexts. As an example of these extra predicates, Figure 14 shows the definition of the

wellplaced(Block) predicate for the Blocksworld (Khardon, 1999). This concept is not in the

Blocksworld domain’s original coding, but it is useful to define a compact generalized policy as is

shown in the example of Figure 13.
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ingoal(Block) :- goal_ontable(Block).

ingoal(Top) :- goal_on(Top,Bottom).

wellplaced(Block) :- state_ontable(Block), goal_ontable(Block).

wellplaced(Block) :- state_on(Block,Bottom), not(ingoal(Bottom)).

wellplaced(Block) :- state_on(Block,Bottom),goal_on(Block,Bottom),wellplaced(Bottom).

Figure 14 Representation of the wellplaced(Block) concept for the Blocksworld domain in predicate logic.

Learning these kinds of predicates in predicate logic is still an open issue so they have to be hand-

coded. Planning systems have used other representation languages that succeed in learning these

concepts. Languages for describing object classes have been shown to provide a useful bias for

learning these concepts. These languages include concept language (Martin and Geffner, 2000) and

taxonomic Syntax (Mcallester and Givan, 1989) which provide operators to define recursive concepts

over predicates, like the ∗ operator. In the Blocksworld domain, for example, the useful concept of

well-placed block can be defined in a very compact way using these languages (Figure 15).

(goal ontable= state ontable) : wellplaced

(∀goal on∗. (goal on= state on)) : wellplaced

Figure 15 Well-placed concept for the Blocksworld domain expressed in concept language.

Expressing planning knowledge in temporal logic has also been shown to be useful. This is the case

of TLPLAN (Bacchus and Kabanza, 2000). Unfortunately, learning planning knowledge in temporal

logic has not been resolved.

• Learning examples. Learning examples are extracted from solutions to training problems. The

learning examples consist of tuples < ci, ai+1 > where ci is a planning context and ai+1 is the action

applied at context ci.

• Learning algorithm. When the policy consists of a set of rules, the learning task is very much related

to the ILP task. Learning a generalized policy can be defined as the induction of a logic program for

every action in the domain. This logic program captures when to apply the action. The head of the

rules in this logic program consists of the action name and parameters, and the body is the subset

of literals from the planning context that best covers the learning examples. This learning task can

be implemented as a heuristic search guided by the coverage of learning examples. When the policy

consists of a set of relevant instances, the learning task stores and manages the set of instances. In

this case, learning a large number of instances can actually be counterproductive because it is hard to

store and manage them and because of the difficulty involved in determining which instance to use to

solve a particular problem. A solution to this problem is to post-process the stored instances to only

manage the most relevant ones. Examples are REPLICA (Garcı́a-Durán et al., ress) which extracts

a set of prototypes from the instances or DISTILL (Winner and Veloso, 2003) which builds a highly

compressed instances library by generalizing and merging solution plans.

• Exploitation of the learned knowledge. A generalized policy can be used to directly select which

action to apply for a given planning context. When a learned generalized policy is imperfect, however,

its application may fail to solve problems like in the case of the early systems in this category.

These systems learned control-rules to guide the exploration of planning search trees. A control-

rule is an IF-THEN rule that proposes node selection, pruning or ordering during tree exploration.

A set of control rules can be viewed as a partial generalized policy since they do not provide action

recommendation for all possible planning contexts. When a given control-rule recommendation was

imperfect, it often prevented the planner from finding a solution plan. To exploit generalized policies
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more robustly, recent works have exploited the learned policy as an evaluation function within search

algorithms like Beam-Search or Limited Discrepancy Search. These search algorithms allow planning

to combine the guidance provided by the learned knowledge with other sources of advice like domain-

independent heuristics.

4.2.2 Implementations

There are a group of systems that inductively learn control rules. Among them Inductive Learning

Programming (ILP) is the most popular learning technique. The GRASSHOPPER system (Leckie and

Zukerman, 1991) used FOIL (Quinlan and Cameron-Jones, 1995) to learn control rules that guide the

PRODIGY planner. There are also analytical systems: PRODIGY/EBL module (Minton, 1988) learned

search control rules for the PRODIGY planner from a few examples of right and wrong decisions.

STATIC (Etzioni, 1993) obtains control rules without solving any problems. It simply uses Explanation

Based Learning (EBL) to analyze the relations between actions preconditions and effects. With the aim

of overcoming the limitations of purely inductive and purely analytical approaches some researchers tried

to combine them: the pioneering systems based on this principle are LEX-2 (Mitchell et al., 1982) and

META-LEX (Keller, 1987). AXA-EBL (Cohen, 1990) combined EBL and induction. It first learns control

rules with EBG and then refines them with learning examples. DOLPHIN (Zelle and Mooney, 1993; Estlin

and Mooney, 1996) was an extension of AXA-EBL which used FOIL as the inductive learning module.

The HAMLET (Borrajo and Veloso, 1997) system combines deduction and induction incrementally. First it

learns control rules with EBL that usually are too specific or general and then uses induction to generalize

and specialize the rules. EVOCK (Aler et al., 2002) uses Genetic Programming to evolve the rules learned

by HAMLET and yield more effective search control.

The problem of learning generalized policies was first studied by Roni Khardon. Khardon’s

L2ACT (Khardon, 1999) induced generalized policies for both the Blocksworld and the Logistics domain

by extending the decision list learning algorithm (Rivest, 1987) to the relational setting. This first approach

presented two important weaknesses: (1) it relied on human-defined background knowledge that expressed

key features of the domain, e.g. the predicates above(block1,block2) or in place(block) for

the Blocksworld, and (2) the learned policies did not generalize well when the size of the problems

increases. Martin and Geffner solved these limitations in the Blocksworld domain by changing the

representation language of the generalized policies from predicate logic to concept language to learn

recursive concepts (Martin and Geffner, 2000).

Recently the scope of generalized policy learning has increased over a variety of domains making

this approach competitive with state-of-the-art planners. This achievement is due to two new ideas: (1)

the policy representation language is enriched with extra predicates that capture more effective domain-

specific knowledge; and (2) the learned policies are applied not greedily but within the framework of

heuristic search algorithms. A prominent example is the OBTUSEWEDGE system (Yoon et al., 2007),

the best learner of the IPC-2008 learning track. This system enriches the knowledge of the current state

with the relaxed planning graph and uses the learned policies to generate look-ahead states within a Best-

First Search. ROLLER (de la Rosa et al., 2008) defined the problem of learning generalized policies as

a two-step standard classification process. In the first step a classifier captures the preferred operator to

be applied in the different planning contexts. In the second one, another classifier captures the preferred

bindings for each operator in a given domain’s different planning contexts. These contexts are defined by

the set of helpful actions extracted from a given state’s relaxed planning graph, the goals still unachieved,

and the the planning task’s static predicates.

Systems also exist that represent generalized policies through collections of planning instances, as

CBR systems for AP. Instance-based AP systems are not usually competitive in a variety of domains

because they present the drawback of having to define an appropriate similarity metric that works well in

different kinds of domains. The PRIAR system (Kambhampati and Hendler, 1992) proposed integrating

the modification of plans with generative planning. PRODIGY/ANALOGY (Veloso and Carbonell, 1993)

introduced the application of derivational analogy to planning. It stored planning traces to avoid failure

paths in future problem solving episodes. To retrieve similar planning traces, PRODIGY/ANALOGY
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indexed them using the minimum preconditions to reach a set of goals. The cased-based planning system

PARIS (Bergmann and Wilke, 1996) proposed the introduction of abstraction techniques to store the cases

organized in a hierarchical memory. This technique improves the flexibility of the cases adaptation, thus

increasing the coverage of a single case. DISTILL (Winner and Veloso, 2003) incorporates example

plans into a structure called dsPlanner. DISTILL converts the plan into a parameterized if-statement

and searches through each of the if-statements already stored in the dsPlanner to merge them. If the

learned dsPlanner is accurate it can be used directly to solve any problem from the domain without

search. CABALA (de la Rosa et al., 2007) uses object centered solutions plans, called typed sequences,

for node ordering during the plan search in heuristic planning. Another instance-based learner, REPLICA,

implemented a Nearest Prototype Learning (Garcı́a-Durán et al., ress) using a relational distance inspired

by the metrics used in relational data-mining. OAKPlan (Serina, 2010) uses a compact graph structure

to encode planning problems. This structure provides a detailed description of the planning problem’s

topology and allows the learner to define an effective retrieval procedure based on kernel functions.

In (de la Rosa et al., 2009) a planning system was recently described that was able to benefit from

generalized policies represented in any of the two approaches (rules or instances). This system queries

the policies for fixing the flaws of relaxed plans, and then it uses the resulting relaxed plans as grounded

macro-actions in a Best-First Search.

4.3 Generalized Heuristic Functions

Heuristic functions are used in AP to focus the search of a solution plan on the search nodes that seem the

most promising. Heuristic functions for AP compute an estimate of the distance from a given search node

to a node in which goals are satisfied. Domain-independent heuristic functions for AP can be directly

derived from the cost of the solutions to a relaxed task. The most common relaxation of the AP task

consists of ignoring the delete effects of actions. Most of today’s heuristic planners rely on this idea

to implement their heuristics. Since this approach is domain-independent, it fails to capture planning

domains singularities. This section describes how to obtain AP heuristics that capture domain-specific

knowledge with ML. It focuses on heuristics for the most popular search approach in AP, the forward

state-space search.

4.3.1 Learning Generalized Heuristic Functions

• Knowledge representation. They are functions H(s;A;G) of a state s, the action model A and a

goals set G, that estimate the cost of achieving the goals G starting from s and using actions from

A. Predicate logic is a natural encoding for AP heuristic functions because they express knowledge

about the current state, goals and actions of the AP task. Representation languages, like taxonomic

Syntax, that focused on the properties of objects have also been used. Figure 16 shows an example

of a simple domain-specific heuristic for the Blocksworld. This heuristic function estimates a cost

value of 0, 1, 4 or 6 steps to achieve the goal on(A,B) with regard to different configurations of the

current state.

goal_on(A,B).

on(A,B)?

+ yes: [0]

+--no: on(C,A) AND on(D,B)?

+--yes: [6]

+--no: on(C,A) OR on(D,B)?

+--yes: [4]

+--no: [1]

Figure 16 Domain-specific heuristic for the Blocksworld.

• Learning examples. Learning examples consist of tuples < si, ci, gi > where si is the current state

and ci is the actual cost of achieving the goals gi from the state si.
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• Learning algorithm. The aim of the learning algorithm is generalizing the cost values captured

in the learning examples. Since the target concept to be generalized from the learning examples is

numeric, this learning task corresponds to a regression task. When learning examples are represented

in predicate logic, standard relational regression algorithms can be used, such as learning relational

regression trees (Blockeel et al., 1998).

• Exploitation of the learned knowledge. The main advantage of this approach is that the learned

knowledge can be directly combined with other standard sources of guidance for AP such as domain-

independent heuristics. The learned knowledge is difficult for humans to understand.

4.3.2 Implementations

In (Yoon et al., 2006), the authors build a generalized heuristic function through linear regression.

They learn domain-specific corrections ∆(s;A;G) =
∑

i wi ∗ fi(s;A;G) to the relaxed plan heuristic

RPH(s;A;G) introduced by the FF planner (Hoffmann and Nebel, 2001b). These corrections are

expressed as a weighted linear combination of features, where wi are the weights and fi represent the

different features of the planning context. The regression examples consist of observations of the true

distance to the goals from different states obtained with the FF planner. The resulting heuristic function,

H(s;A;G) =RPH(s;A;G) + ∆(s;A;G)

provides more accurate estimates that capture domain-specific regularities.

The previous approach ignores the actual performance of the heuristic when used in a search algorithm.

It may attempt to learn corrections for the heuristic even if it provides good guidance during search. In (Xu

et al., 2007), they present an alternative approach that only considers learning when the heuristic misleads

in a given search strategy. The heuristic learned by this approach,

H(s;A;G) =
∑

i

wi ∗ fi(s;A;G)

only attempts to discriminate between good and bad states well enough to find the goals within a Beam-

Search procedure, rather than attempting to model the distance to the goals precisely. This approach

implements the following weight learning strategy. For each state sj in the solution to a learning problem,

if sj is not contained in the search’s beamj , there is a search error. In this case, weights are updated like

the Perceptron’s weights, so that state sj will be preferred by the heuristic, remaining in the beamj in

future search episodes.

4.4 Hierarchical Decomposition Methods

An extended strategy for coping with problems complexity is to decompose problems into simpler

sub-problems. When an effective decomposition is found, the sum of the costs of addressing the sub-

problems is smaller than the cost of directly addressing the original problem. Hierarchical Task Networks

(HTN) is one of the best studied approaches for modelling AP task decomposition. The HTN approach

combines hierarchical domain-specific representations of the planning task and domain-independent

search strategies for problem solving.

The input to a HTN planner includes an action model that encodes a set of primitive actions similar to

the STRIPS actions used in classical planning and a task model. The task model defines a set of methods

which describes how tasks should be decomposed into subtasks in a particular domain. The job of the HTN

planner consists of exploiting the task model to decompose a given planning task into simpler subtasks

until a sequence of primitive actions is generated. Figure 17 shows the primitive action unstack and

the method for the task move-block from a HTN description of the Blocksworld domain. This method

moves a block to its final position by defining two subtasks: moving-x-from-y-to-z that unstacks

block x from y, in order to stack x on z, and moving-x-from-table-to-z that picks-up block x

from the table and stacks it on z. In both subtasks, the method checks that the block x can be directly

moved to its final position (primitive actions check, check2 and check3) and makes sure that x will not be

moved in the future.
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(:operator (!unstack ?top ?bottom)

;preconds

((clear ?top) (on ?top ?bottom))

;effects

((holding ?top) (clear ?bottom)))

(:method (move-block ?x ?z) ;head

method-for-moving-x-from-y-to-z

;preconds

(:first (on ?x ?y))

; Decomposition

((!unstack ?x ?y) (!stack ?x ?z)

(!assert ((dont-move ?x)))

(!remove ((stack-on-block ?x ?z)))

(check ?x) (check2 ?y) (check3 ?z))

method-for-moving-x-from-table-to-z

;preconds

nil

; Decomposition

((!pickup ?x) (!stack ?x ?z)

(!assert ((dont-move ?x)))

(!remove ((stack-on-block ?x ?z)))

(check ?x)))

Figure 17 Examples of operator and method for HTN planning in the Blocksworld domain.

Current HTN planners, such as SHOP2 (Nau et al., 2003), can outperform state-of-the-art domain-

independent planners and provide a natural modelling framework for many real-world applications like

fire extinction (Castillo et al., 2006), evacuation planning (Muñoz-Avila et al., 1999) or game playing (Nau

et al., 1998). Defining effective decomposition methods is still complex because these methods reflect deep

knowledge of the domain. The operator and method shown in Figure 17 belong to a HTN representation

of the block-stacking algorithm (Erol et al., 1992). Below we review some learning approaches to

automatically define decomposition methods within the HTN planning paradigm.

4.4.1 Learning Hierarchical Decomposition Methods

1. Knowledge representation. A HTN method is a procedure that describes how to decompose a non-

primitive task into primitive tasks or simpler non-primitive tasks. A method m is formally defined

by a triple m=<head, preconds, subtasks>, where head represents the name and parameters of the

task to decompose, preconds is a logical formula denoting the method preconditions, and subtasks is

a partially ordered sequence of subtasks. A method m is applicable to a state s and task t if head(m)

matches t and the preconds(m) are satisfied in s. The result of applying a method m to a state s and

task t is the sequence of subtasks subtasks(m).

2. Learning examples. Learning examples consist of a set of planning problems, that is a set of pairs

< s0, G > where s0 is an initial state and G is a set of goals, together with the corresponding solution

plans p= (a1, a2, . . . , an). These solution plans can be human provided or generated by a classical

planner.

3. Learning algorithm. The algorithms reviewed in Section 3 to learn the action model preconditions

can also be applied to learn the HTN method preconditions. A reduced version of the HTN method

decompositions can be induced by using hierarchical layers of macros. Decompositions induced

following this approach do not exploit the HTNs full expressive power that includes definitions

of alternative decompositions, recursive concepts or loops. At this point, there is no completely

automatic algorithm for learning subtask decompositions that benefits from HTNs full expressiveness.

Some algorithms need to start from decomposition methods partially specified by humans, others need

hierarchical plans (which implies previously specified methods) and some others need certain tasks

called annotated tasks specified that define the equivalence of the HTN tasks and the set of goals G

in a classical version of the AP problem.
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4. Exploitation of the learned knowledge. The generality level of the learned knowledge is the key

issue to make a given HTN description effective. Learning decomposition methods that are too

general may produce infinite recursion when problem solving, decreasing the advantages of HTN

planning over classical planning. On the other hand, learning too specific HTN methods is less likely

to be effective in decomposing new problems. Current methods to address this trade-off are based on

measuring the performance of the learned model against a set of test problems.

4.4.2 Implementations

CAMEL (Ilghami et al., 2002) learns the preconditions of HTN decomposition methods from observations

of plan traces, using the version space algorithm (Mitchell, 1997). CAMEL is designed for domains where

the planner receives multiple methods per task, but not their preconditions. The structure of the hierarchy

here is known in advance and the learning task tries to identify under which conditions the different

hierarchies are applicable. This approach requires many plan traces to completely converge (completely

determine the preconditions of all methods). CAMEL++ (Ilghami et al., 2005) enables the planner to start

planning before the method preconditions are fully learned. By doing so, the planner can start solving

planning problems with a smaller number of training examples. Both CAMEL and CAMEL++ require

each input plan trace needs to contain extra information so that the learner could acquire the models. At

each decomposition point in a plan trace, the learner needs to have all the applicable method instances,

not just the one that was actually used.

The HTN Domain Learning (HDL) algorithm (Ilghami et al., 2006) starts with no prior information

about the methods. It examines hierarchical plan traces produced by an expert problem-solver. For each

decomposition point in the traces, HDL checks to see if the responsible method is already present. If not,

HDL creates a new method and initializes a new version space to capture its preconditions. The method

that was actually used to decompose the corresponding task serves as a positive example and the methods

that matched that task but whose preconditions failed, serve as negative examples for the corresponding

version space.

HTN-Maker (Hogg et al., 2008) generates an HTN domain model from a STRIPS domain model, a

collection of plans p generated by a STRIPS planner, and a collection of annotated tasks. An annotated

task is a triple (n, Pre, Effects) where n is a task, Pre is a set of atoms known as the preconditions, and

Eff is a set of atoms known as the effects. HTN-Maker first generates the list of states S = (s0, . . . , sn)

by applying the actions in the plan p starting from the initial state s0. Then, it traverses these states, and

if there is an annotated task whose effects match the state si+n and whose preconditions match the state

si, it regresses the effects of the annotated task through (1) previously learned methods or (2) a primitive

task if there are no previously learned methods.

4.5 Learning Planning Search Control in Domains with Uncertainty

When planning in domains with uncertainty, the combinatorial explosion problem becomes even more

acute. Partial observability of the environment and non-deterministic outcomes of actions multiply the

number of states that can be reached, and increase the complexity of the search processes. Search control

knowledge can help reduce this complexity but as mentioned before, hand-coding this knowledge is

difficult and requires expertise on the domain and the planner. There is a review of techniques for Planning

Under Uncertainty (PUU) that improve their own scalability through ML. These techniques preserve the

representation formalisms and learning algorithms reviewed in the section but adapt the mechanisms to

generate the learning examples and apply the learned knowledge to the PUU framework:

• Macro-actions. In (Theocharous and Kaelbling, 2003), the authors solve large Partially Observable

Markov Decision Processes (POMDP) by using a dynamically-created finite-grid approximation of

the belief space and then applying dynamic programming to compute a value function at the grid

points. This work exploits macro-actions to visit a significantly smaller part of the belief space of the

POMDP than with simple primitive actions. Macro-actions also make the convergence of the dynamic

programming faster because the agent can look further into the future.
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• Generalized policies. Given a set of small probabilistic planning problems, the work presented

in (Yoon et al., 2002) uses the probabilistic planner PGRAPHPLAN to synthesize solution plans

p= (a1, a2, . . . , an) corresponding to a sequence of state transitions (s0, s1, ..., sn) such that si
results from executing action ai in the state si−1 and sn is a goal state. The execution of plans p

are simulated one action at a time. If the state resulting from simulating ai is different from si, then

a new plan is computed to attain the goals in the new state. This process is repeated until a goal

state is reached or a limit of simulations is exceeded. A generalized policy is then learned from the

pairs (state,action) traversed in the simulations. In many domains, solutions to small problems do not

capture the singularities of larger problems. As an alternative, in (Fern et al., 2006) the authors learn

the generalized policy from pairs (state, action) generated following the Approximate Policy Iteration

algorithm (Bertsekas and Tsitsiklis, 1996).

• Generalized evaluation functions. Given a set of small probabilistic planning problems, the approach

presented in (Gretton and Thiébaux, 2004) computes the optimal policies for the problems with

a MDP solver. Then, it uses first-order regression to generalize a first-order value function over

the values of optimal policies. In (Sanner and Boutilier, 2005, 2006) the authors solve First Order

MDPs (FOMDPs) by representing the value function linearly with respect to a set of first-order basis

functions and computing suitable weights by casting the corresponding optimization as a first-order

linear program.

• Decomposition methods. In (Hogg et al., 2009), the HTN-MAKER algorithm has been adapted to

non-deterministic planning domains, where actions may have multiple possible outcomes.

4.6 Discussion

IPC-2008 created a specific track for AP systems that benefit from learning search control. This

competition was the first forum to compare the performance of different planning and learning systems in

a common test-bench. Most of the participants based their proposals on heuristic planning and presented

relevant advances in the field like extensions to the planning context with information from the relaxed

planning graph or techniques to combine learned knowledge with other sources of guidance like domain-

independent heuristics. One of the most important conclusions drawn from the competition was that none

of the participant systems is successful in capturing useful knowledge in all the proposed domains. In

some domains, the representation language’s bias prevented the systems from learning this knowledge, in

others the cause was the learning examples’ poor quality or the learning algorithms’ limitations. It became

clear that the best approach for learning useful knowledge in a given domain need to be ascertain. This

task involves better understanding:

1. What the best representation for a given domain is. IPC-2008 showed that action policies are inaccu-

rate in domains like Sokoban and N-puzzle because they look over knowledge regarding the trajectory

on the way to the goals. Numeric functions, like the Manhattan distance that provides a lower-bound

for the solution’s length, produce useful search control for these domains. Further studies are needed

to establish theoretical considerations about the expressive power and/or limitations of the various

forms of learned knowledge. These studies should also cover other kinds of planning paradigms able

to exploit more expressive representations than off-the-shelf planners like planners using temporal

logic (Bacchus and Kabanza, 2000), or AP systems able to reason about loops (Srivastava et al.,

2008; Winner and Veloso, 2003; Shavlik, 1989; Larkin et al., 1986).

2. What the best learning examples for a given domain are. In most of the systems reviewed, the

learning examples are extracted from experience collected solving problems from a training set. These

examples can be collected in different ways to suit the learning task’s singularities:

(a) Quality. In order to learn search control knowledge that provides accurate guidance towards the

goals, learning examples should correspond to good quality solutions. Since optimal algorithms

for AP are expensive in terms of time, a more practical approach for generating good solutions

consists of using Branch and Bound strategies (de la Rosa et al., 2009).
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(b) Diversity. Some domains, like logistics, present many solutions for a given planning problem that

correspond to swaps in the order of certain actions. These solutions express different decisions

for the same planning context, which makes learning more complex. In order to avoid this effect,

learning can be completed from partially ordered plans (Veloso et al., 1990). Partially-ordered

plans contain the same set of actions as the totally-ordered plans, but partially-ordered plans only

include the necessary constraints on the action-ordering.

(c) Eagerness. Learning examples can correspond to every planning decisions (eager approach) or

just to decisions where the planner failed to make the desired choice (lazy approach), i.e., the

planner choice was not part of the solution or was not optimal. A lazy approach is planner-

dependent, but it generates more compact search control knowledge.

3. What the best learning algorithm for a given domain is. Different learning algorithms present different

biases that affect the learning process like where decision lists learning algorithms specify the

maximum number of literals per rule. Different learning algorithms can also present different memory

and learning time performance and, depending on the algorithm, the resulting model can present a

different readability and applicability. Lazy learning algorithms present low learning times but large

times when exploiting that learned knowledge. Recently, works on meta-learning (Brazdil et al., 2009)

try to compute estimates that characterize these features of the learning algorithms but they normally

focus on propositional versions of the ML algorithms.

4. When to exploit the learned knowledge. Most of the participants in the learning track of IPC-2008

suffered from performance problems caused by the use of imperfect learned knowledge. In practice,

there is no sign of a given piece of search control knowledge’s quality and the only possible evaluation

is to compare the performance of the planning system with and without the learned knowledge.

This evaluation by testing strategy is the underlying motivation of AP systems based on portfolio

of planners (Howe et al., 1999; Vrakas et al., 2005). These systems evaluate different planning

configurations in a set of training problems to obtain the planning setup that allows them to address

the target problems more robustly. This approach was also followed by the winner of the IPC-2008

learning track (Gerevini et al., 2009a).

5 Reinforcement Learning

RL agents interact with the environment to collect experience that– with the appropriate algorithms–

is processed to generate an optimal policy (Kaelbling et al., 1996; Sutton and Barto, 1998). Building

a RL agent involves similar decisions to the ones in learning for AP: the representation (how to

encode the agent’s environment and actions); the learning examples (the agent’s strategy for collecting

experience); the learning algorithm (what kind of algorithm performs the best for the specified task); and

the exploitation of the learned knowledge (how can the agent benefit from the obtained knowledge). Unlike

most of the learning for AP approaches, RL present tightly integrated solutions for knowledge acquisition

and knowledge exploitation. A key issue in these integrated solutions is determining when to try new

actions and when to use known ones. RL studies this issue as the exploration-exploitation dilemma, where

exploration is defined as trying new actions and exploitation is defined as applying actions that succeeded

in the past. In general terms, good answers to the exploration-exploitation dilemma consider the number

of trials allowed; the larger the number of trials is, the worse is to prematurely converge to known actions

because they may be suboptimal. For surveys on efficient exploration-exploitation strategies see (Wiering,

1999; Reynolds, 2002).

5.1 Model-Based and Model-Free RL

RL was primarily concerned with obtaining optimal policies when the model of the environment is

unknown but actually, there are two ways to proceed. Model-Based RL requires a environment’s model

consisting of a transition and a reward model. Model-Based RL typically relies on standard dynamic

programming algorithms (Bellman and Kalaba, 1965; Bertsekas, 1995) to find a value/heuristic function

that provides optimal policies. Learning in Model-Based RL is understood as in Real-Time Heuristic
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search (Korf, 1990; Bulitko and Lee, 2006; Hernández and Meseguer, 2007), i.e., as local updates of the

value/heuristic function with information obtained from simulation.

Model-Free RL does not require a model of the environment. Below, there are two different approaches

for the Model-Free RL task:

• Combining learning action models with Model-Based RL. This approach learns a transition model of

the environment and applies standard dynamic programming algorithms to find a good policy.

• Pure Model-free RL. In domains with large uncertainty learning to achieve goals is easier than

learning a model of the environment. Pure Model-free RL algorithms do not model the decision-

making as a function of the state, like value/heuristic functions, but with a function of pairs

< state, action > called action-value functions. The Q-function, which provides a measure of the

expected reward for taking action a at state s, is an example of an action-value function. Q-

learning (Watkins, 1989), a well-known Pure Model-free RL algorithm, updates the Q-function with

every observed tuple < s, a, s′, r > (s′ represents the new state and r represents the obtained reward).

Q-learning completes the update of the Q-function using the following formula,

Qt+1(s, a) :=Qt(s, a) + α(r(s, a) + γ max
a′

Q(s′, a′)−Qt(s, a))

where α is the learning rate that determines to what extent the newly acquired information overrides

the old information. When α= 0 the agent does not learn anything, while when α= 1 the agent only

considers the most recent information. γ is the discount factor which determines the importance of

future rewards. A factor of γ = 0 makes the agent greedy (the agent only considers current rewards),

while a factor approaching 1 makes the agent strive for a long-term high reward. Pure model-free RL

also includes Monte Carlo methods (Barto and Duff, 1994). Most of pure model-free RL methods

guarantee to find optimal policies and use very little computation time per observation. However,

they typically make inefficient use of the collected observations and require extensive experience to

achieve good performance.

5.2 Relational Reinforcement Learning

This section reviews Relational Reinforcement Learning (RRL) (Dzeroski et al., 2001; Otterlo, 2009)

given that RRL uses a knowledge representation similar to one used in learning for AP. The section

focuses on pure model-free RRL since techniques for learning relational action models were already

discussed in Section 3. Further explanations on model-based RRL can be found in (Boutilier et al., 2001;

Wang et al., 2007; Sanner and Kersting, 2010) also referenced as Relational, Symbolic or First Order

Dynamic Programming.

1. Knowledge representation. The learned knowledge is represented in the form of a First Order policy

π : S →A that maps relational states– coded in predicate logic– into the preferred action to apply next

for achieving a set of First Order goals. Unlike generalized policies for AP (Section 4), RRL policies

do not include information on different goals. RRL policies only capture how to solve a particular

task or a particular set of tasks, like the same task with different number of objects. RRL requires

consequently learning from scratch or at least, some kind of transfer learning (Taylor and Stone,

2007; Mehta et al., 2008) when the nature of goals change. Transfer learning is defined as exploiting

data from one or more source tasks to improve learning performance in a different target task.

A First Order policy can be implicitly represented as a First Order Q-function Q(< S, A >) =R that

maps pairs state-action S −A into their expected reward R. This representation is closely related to

the concept of heuristic function used in AP that maps states into an estimate of the cost to pay

(negative reward) for achieving the goals. In AP this cost estimate can be automatically extracted

from the problem representation by ignoring the delete effects of actions.

2. Learning examples. Learning examples consist of tuples < si, ai, si+1, ri > where ai is the action

applied at state si, si+1 is the resulting state and ri is the obtained reward. Learning examples in RRL

are typically generated from random exploration.
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3. Learning algorithm. There are different approaches for model-free RRL:

• Relational learning of the q-value function. This approach uses relational regression to generalize

the value function. Figure 18 shows a relational regression tree that captures the q-values

of action move(Block,Block) when solving the set of tasks on(Block,Block) in a three blocks

Blocksworld.

goal_on(A,B), move(D,E).

on(A,B)?

+--yes: [0]

+--no: clear(A)?

+--yes: clear(B)?

| +--yes:[1]

| +--no:[0.9]

+--no[0.81]

Figure 18 Relational regression tree for the goals on(X,Y) in a three blocks Blocksworkd.

• Relational learning of the optimal policy. An alternative approach is to directly learn the policy.

This approach requires relational classification instead of relational regression. The advantage

of this approach is that, usually, it is easier to understand policies than to understand value

functions for structured domains. Figure 19 shows a RRL policy that captures when the selection

of action move(Block,Block) is optimal for solving the set of tasks on(Block,Block) in a three

blocks Blocksworld domain.

goal_on(A,B),move(D,E).

above(D,A)?

+--yes: equal(E,B)?

| +--yes: nonoptimal

| +--no: optimal

+--no: above(D,B)?

+--yes: optimal

+--no: move(A,B)?

+--yes: optimal

+--no: nonoptimal

Figure 19 RRL policy for the goals on(X,Y) in a three blocks Blocksworkd.

5.3 Implementations

With regard to learning a relational Q-function, different relational regression algorithms have been tried:

• Relational regression trees (Dzeroski et al., 2001). For each pair (action, relational-goal), a regression

tree is built from a set of examples with the form (state,q-value). Leaf nodes of the tree represent

the predictions of the q-value. Test nodes of the tree represent the facts that have to hold for the

predictions to come true.

• Instance based algorithms with relational distance (Driessens and Ramon, 2003). This work imple-

ments a k-nearest neighbor prediction. The prediction computes a weighted average for the q-values

of the collected examples. Weights used for the prediction are inversely proportional to the distance

to the examples. The used distance copes with relational representations for states and actions.

• Relational Kernels methods (Gartner et al., 2003). These methods use the incrementally learnable

Gaussian processes for Bayesian-regression to build mappings of (state,action) pairs into q-values.

Graph kernels are used as the covariance function between state-action pairs to employ Gaussian

processes in the relational setting.
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With regard to directly learning a relational policy, (Dzeroski et al., 2001) uses relational decision trees

to determine which actions are optimal in the different environment’s states when achieving a particular

task.

5.4 Discussion

The aims of RL are closely related to the aims of learning for AP. However, RL typically presents two

kinds of shortcomings when addressing AP problems:

• Scalability. The space state of symbolic planning problems is normally huge. This space grows

exponentially with the number of objects and predicates in the problem. Many RL algorithms, like

Q-learning, require a table with one entry for each state in the state space limiting their applicability

to AP problems. A solution to this limitation is using relational models which adopt the same state

representation as symbolic planning, like done in RRL.

• Generalization. RL focuses learning on the achievement of particular goals. Each time goals change

RL agents need to learn from scratch, or a transfer learning process at least. This is not exactly

the case of RRL. Given that RRL represent goals using first order predicates, RRL agents can act in

tasks with additional objects without reformulating their learned policies, although additional training

may be needed to achieve optimal (or even acceptable) performance levels. Even more, in the case

of model-based RL, the agent learns a model of the environment and exploits it to learn policies

more efficiently. The learned model is typically used to generate advise on how to explore or to plan

trajectories so that the agent can obtain higher rewards. When model-based techniques are applied

to RRL (Croonenborghs et al., 2007b) they produce symbolic action models similar to the ones

learned in AP. In this case, the main difference comes from the fact that AP learns action models

in standard planning representation languages and that the problem solving is carried out by off-the-

shelf planners.

Despite the advances in RRL, applying RRL to planning problems is still an open issue. In complex

planning tasks like the Blocksworld ones, RRL agents spend long time exploring actions without learning

anything because no rewards (goal states) are encountered. By the time being the limitations of random

exploration in RRL are relieved by two approaches. The first one uses traces of human-defined reasonable

policies to provide the learning with some positive rewards (Driessens and Matwin, 2004). The second

one applies transfer learning to the relational setting (Croonenborghs et al., 2007a).

To sum up, RRL focuses on learning policies for particular goals, like on(X,Y) for the Blocksworld,

and fail to solve problems in which interacting goals have to be achieved, for instance building a tower

of specific blocks on(X,Y), on(Y,Z), on(Z,W). In this kind of problems, traditionally addressed in AP, the

achievement of a particular goal may undo previously satisfied goals. This kind of goals must be attained

in a specific order (as happens in the Sussman’s Anomaly). As far as we know, none of the reported RRL

approaches have mechanisms to automatically capture this knowledge about the interaction of goals.

6 Conclusions

This section summarizes the contents of the paper and discusses some issues identified in the review that

are still open.

6.1 Summary

Before the mid 90’s ML was used exhaustively in AP to learn search control knowledge that improved the

performance of planners. During this period planners implemented uninformed search algorithms, so ML

helped planners achieve better performance in many domains. In the late 90’s the planning community’s

interest in ML waned for two reasons. The appearance of powerful domain-independent heuristics boosted

the performance of planners. Suddenly, the baseline for evaluating the benefit of ML shifted dramatically.

That said, existing relational learning algorithms were inefficient and performed poorly in a diversity of

domains.



A Review of Machine Learning for Automated Planning 29

Today encouraged by the applications of AP to real-world problems and the maturity of relational

learning, there is a renewed interest in learning for planning. In 2005 the International Competition on

Knowledge Engineering for Planning Systems (ICKEPS) began and in 2008 a learning track was opened

at IPC. Workshops on planning and learning have taken place periodically at the International Conference

on Automated Planning and Scheduling. ML seems to be once again one of the solutions to the challenges

of AP.

In the paper we focused on two of AP’s challenges: defining effective AP action models and defining

search control knowledge to improve the planners performance. For the first challenge, we reviewed

systems that learned action models with diverse forms of preconditions and effects. These systems

generally present learning algorithms that are effective when the appropriate learning examples are

collected although it is still not clear how to automatically collect good sets of learning examples in

AP. When learning results in imperfect action models, there are few mechanisms for diagnosing the flaws

of the models or algorithms to robustly plan with them.

For the second challenge, we reviewed different forms of search control knowledge to improve off-the-

shelf planners. This kind of knowledge has been shown to boost the performance of planners in particular

domains. Learning effective search control knowledge over a collection of domains is still challenging

since different planning domains may present very different structures. We also reviewed learning search

control for HTN planners which is a more expressive form of control knowledge that uses a different

planning paradigm based on domain-specific problem decomposition. In this planning paradigm, search

control knowledge and action models are not separated in the domain theory’s definition.

The paper also reviewed techniques for RRL, a form of RL that, like AP, uses predicate logic to

represent states and actions. Though current RRL techniques can solve relational tasks, they are focused

on achieving a particular set of goals and present generalization limitations in comparison with learning

for AP techniques. Furthermore, they have problems collecting significant experience for complex tasks

like the ones traditionally addressed in AP, where achieving a particular goal may undo previously satisfied

goals.

6.2 Open Issues

Below, we provide with a list of what we consider to be open issues or future avenues in learning for

AP. We divide these issues based on the paper’s main four topics: knowledge representation, learning

examples, learning algorithms, and exploitation of the learned knowledge:

• Knowledge representation. Finding an effective knowledge representation for AP over a collection

of domains is still an open issue. If the chosen representation is not able to express key knowledge

in a given domain, the learning algorithms will not generate effective AP knowledge for this domain.

Examples of this key knowledge are the concepts of well-placed block in the Blocksworld domain or

the in-final-city concept in the Logistics domain (Khardon, 1999). Further studies need to induce what

the key knowledge for a given domain would be and what the suitable representation for expressing

it would be. In this regard, the work presented in (Yoon et al., 2008) used a set of testing problems

to evaluate the utility of the different features of the planning context when learning a generalized

policy. Another potentially relevant aspect is how the representation language affects the ability to

learn effective knowledge. In (Martin and Geffner, 2000; Cresswell et al., 2009) the authors showed

the impact of learning using object centered representations for AP but the use of new standard

representations such as SAS+ (Helmert, 2009) instead of PDDL has not yet been studied in detail.

More expressive representation formalisms like programs, temporal formulae or hierarchical repre-

sentations have been shown to describe abstract structures such as loops or hierarchies that represent

effective knowledge for many AP domains. Most of the methods for learning these representations

however need extra labelling such as annotations to mark abstract tasks, the beginning and end

of loops, end-conditions, etc. This kind of labelling cannot easily be obtained automatically from

observed executions. This knowledge cannot be directly used by off-the-shelf planners and requires
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“ad-hoc” planning systems able to exploit this kind of knowledge. Further studies in learning and in

compiling it for off-the-shelf planners are needed.

• Learning examples. Implementing mechanisms to autonomously collect learning examples for AP

is still an open issue. Random explorations typically undersample the AP state and action spaces.

AP actions present preconditions that are only satisfied by specific sequences of actions which have

a low probability of being chosen by chance. Learning examples can be extracted from solutions

to AP training problems. Traditionally, these training problems are obtained by random generators

with some parameters to tune the problems difficulty. This approach has two limitations. (1) It is not

trivial to guarantee AP problems’ solvability. Showing that from a given initial state, one can reach

the goals is as hard as solving the original AP task. (2) The AP problem generators’ parameters are

domain-specific. The number and type of the world objects are different for different AP domains

and tuning these parameters to generate good quality learning examples implies domain expertise.

In (Fern et al., 2004) Random Walks were introduced to not have to have domain expertise to

obtain good learning examples. Random Walks is an automatic and domain-independent strategy for

automatically generating problems of gradually increasing walk length. In domains where complexity

depends on the number of world objects, however, this approach is not enough. An alternative

approach consists of generating training problems using an active learning approach starting from

a previous state (Fuentetaja and Borrajo, 2006). In this case the learning process has the bias imposed

by the above mentioned problem, but it can generate a random exploration of problems of increasing

difficulty in domains where complexity depends on the number of world objects. This question is

still open given that when the domain is asymmetrical, the latter approach could generate unsolvable

problems. Further studies have to be undertaken to come up with more general solutions.

• Learning algorithms. The application and combination of new ML algorithms for AP is still an open

issue. ML is constantly producing new learning algorithms with potential applications for AP. In the

case of relational learning AP has only benefited from algorithms for classification and regression

but existing relational learning algorithms cover almost all machine learning tasks. Algorithms for

relational clustering or for inferring association rules (Raedt, 2008) have still not been explored in

AP. ML algorithms for propositional data can be adapted to the relational setting used in AP (Mourão

et al., 2010). Another example of applying new ML algorithms to AP is the use of kernel functions

to effectively match planning instances (Serina, 2010). Despite all this new ML technology, learning

algorithms present biases that affect the learning process. Research in ML for AP can take up new

research directions to study the combination of different learning algorithms to reduce the negative

effect of a given algorithm bias (Kittler, 1998).

• Exploitation of the learned knowledge. These open issues in learning for AP frequently result in

imperfect learned knowledge. As the IPC-2008 learning track showed, directly applying defective

learned knowledge may damage the AP process performance. The greedier the application of the

learned knowledge, the more sensitive the AP algorithms are to the flaws of the learned knowledge.

There is a recent line of work on the development of planning and learning systems that aims to build

mechanisms to guarantee robust planning even when harmful knowledge is learned. These kind of

systems do not only focus on the learning process but also on a robust application of the learned

knowledge. Integrating learned knowledge with domain-independent heuristics generated a planning

system that was competitive with the state-of-the-art planners in a large variety of domains (Yoon

et al., 2007, 2008). Another interesting line of research is into the development of mechanisms for

evaluating the quality of the learned domain control knowledge. Such mechanisms could be useful

for defining different exploitation strategies. The only evaluation mechanisms currently available

for the learned knowledge are empirical and consist of using the learned knowledge to solve a

set of training examples to estimate its performance. Apart from the competition, another way

of exploiting learned knowledge in AP is through interaction with the final user. Mixed initiative

planning systems (Ferguson et al., 1996; Bresina et al., 2005; Cortellessa and Cesta, 2006) propose

knowledge that can be verified and modified by the user before being applied.
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This review focused on learning two inputs of the AP process, the action model and knowledge for

search control. There is a full set of techniques that aim to capture information about the third input to the

AP process, the problem. Plan recognition techniques (Charniak and Goldman, 1993; Bui et al., 2002) try

to infer an agent’s goals and plans by observing the agent’s actions. The plan recognition task traditionally

assumes there is a library with the space of possible plans to be recognized but recent works do not require

the use of this library. These works (Ram’ırez and Geffner, 2009; Ramı́rez and Geffner, 2010) can also

compute the goals that account for the observed examples using slightly modified planning algorithms.

Further studies are needed to analyze the relationship of plan recognition techniques with the learning

techniques for AP reviewed in this paper.
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Wang, X. (1994). Learning planning operators by observation and practice. In International Conference

on AI Planning Systems, AIPS-94.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College, Oxford.

Wiering, M. (1999). Explorations in efficient reinforcement learning. PhD thesis, University of

Amsterdam IDSIA, The Netherlands.

Winner, E. and Veloso, M. (2003). DISTILL: Towards learning domain-specific planners by example. In

International Conference on Machine Learning, ICML’03.

Xu, Y., Fern, A., and Yoon, S. W. (2007). Discriminative learning of beam-search heuristics for planning.

In International Joint Conference on Artificial Intelligence.

Yang, Q., Wu, K., and Jiang, Y. (2007). Learning action models from plan traces using weighted max-sat.

Artificial Intelligence Journal, 171:107–143.

Yoon, S., Fern, A., and Givan, R. (2002). Inductive policy selection for first-order MDPs. In Conference

on Uncertainty in Artificial Intelligence, UAI02.

Yoon, S., Fern, A., and Givan, R. (2006). Learning heuristic functions from relaxed plans. In International

Conference on Automated Planning and Scheduling (ICAPS-2006).

Yoon, S., Fern, A., and Givan, R. (2007). Using learned policies in heuristic-search planning. In

International Joint Conference on Artificial Intelligence.

Yoon, S., Fern, A., and Givan, R. (2008). Learning control knowledge for forward search planning. J.

Mach. Learn. Res., 9:683–718.

Yoon, S. and Kambhampati, S. (2007). Towards model-lite planning: A proposal for learning and planning

with incomplete domain models. In ICAPS2007 Workshop on Artificial Intelligence Planning and

Learning.

Younes, H., Littman, M. L., Weissman, D., and Asmuth, J. (2005). The first probabilistic track of the

international planning competition. Journal of Artificial Intelligence Research, 24:851–887.

Zelle, J. and Mooney, R. (1993). Combining FOIL and EBG to speed-up logic programs. In International

Joint Conference on Artificial Intelligence. IJCAI-93.

Zhuo, H., Li, L., Yang, Q., and Bian, R. (2008). Learning action models with quantified conditional effects

for software requirement specification. In ICIC ’08: Proceedings of the 4th international conference

on Intelligent Computing, pages 874–881, Berlin, Heidelberg. Springer-Verlag.

Zimmerman, T. and Kambhampati, S. (2003). Learning-assisted automated planning: looking back, taking

stock, going forward. AI Magazine, 24:73 – 96.


