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This last book written (in part) by Tarski is typical of his life work, 
in that it contributes both to our understanding of what mathematics is, 
as well as to technical foundational research. Very briefly, the following 
is done. A simple equational language J?* is introduced, and it is shown 
that set theory (for example, ZFC) can be translated into equations of 
Jî?x which have no variables, so that sentences derivable in set theory are 
translated into equations derivable by equational rules of inference from 
the translates of the set-theoretical axioms. Even more briefly, one may say 
that it is shown that, in principle, mathematics can be developed in the 
very simple framework of equations and substitution of equals for equals, 
rather than the customary basis in set theory formalized in first-order logic. 
At the very least, the main result must be considered as an impressive tour 
de force. It will probably influence the attitude of many mathematicians 
concerning the nature of their discipline. Just like the authors, this reviewer 
will not venture into a serious philisophical discussion of the meaning of 
the result. 

For the exposition of the mathematics involved, very little in the way of 
prerequisites is needed—which is not to say that the proofs are easy. For a 
reader who just wants to get an idea of what is going on, without investing 
a lot of time in checking the proofs, the proofs can be skipped without 
losing the drift of the ideas. A more committed reader will find the book 
a rich source of ideas and problems in various foundational directions. 

I found the book difficult to read. I think the reason is that formalisms 
are emphasized over algebraic aspects of the work. In view of the philo
sophical purpose of the book, this is natural; and it will probably make the 
book attractive to many people, especially to proof-theorists, and math
ematically oriented philosophers. A model-theorist or algebraic logician 
might prefer to read the last chapter—applications to algebra—first. 

The main ideas and results are due to Tarski, and come from the period 
1940-1945. In the course of writing the book with Tarski, Givant made 
many independent contributions to the theory. Maddux and McNulty also 
contributed results or proofs to this final result of the development, and 
very recently Andréka and Németi solved several problems which arose 
during the preparation. (Since the publication, they solved the problem 
stated before 4.8(xvi), p. 144, positively.) 

The following summary of the book, partly in different terminology 
from the authors', is intended as further material to help the reader decide 
whether to look at the book, and also to aid those who wish to study it 
carefully. One should also mention at the outset the useful section inter
dependence chart and indices. 
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CHAPTER 1. This gives a standard formulation 3 of first-order logic, 
with one major and one minor difference. The major difference is that 
exactly one nonlogical constant is admitted—a binary relation symbol E. 
The minor difference is that equality is denoted by the peculiar symbol 1. 

CHAPTER 2. A definitional expansion 3f+ of 3? of an unusual sort is 
described. One defines relation symbols by recursion, in terms of new 
symbols +," , 0 , and ~, as follows. E and 1 are relation symbols, and if 
A and B are relation symbols, then so are A + B, A~, A 0 B9 and A^\ all 
of them are binary relation symbols. (These compound expressions are, of 
course, not atomic relation symbols in the usual sense, but they function 
like relation symbols in usual developments of logic.) Then in addition to 
the usual atomic formulas one has an atomic formula A — B for all relation 
symbols A,B, where = is a new symbol; these new atomic formulas are 
called equations. Models of 3*+ are the same as those of 3. Denotation 
for relation symbols is defined as follows. Given an ^-structure (A,E), 
the denotation den(E) of E is E\ den(l) is {(a,a): a e A}; and 

den(^ + B) = den(A) U den(5), 
den(A-) = (A x A)\den(A), 

den(^ 0 B) = {(a, b) : 3c[(a, c) e den(A) and (c, b) e den(fi)]}, 
d e n ^ O = {(a, b) : (6, a) e den(A)}. 

In addition to the usual logical axioms one has the following: 

Vx, y[x(A + B)y <r+ (xAy V xBy)], 
VJC, y[xA~y *-* -*(xAy)], 

Vx, y[x(A 0 B)y <-• 3z(xAz A zBy)], 
\/x, y[xA^y ^ y Ax], 

A = B <-• Vx, y(xAy <-> xBy). 

Since 3+ is equivalent to 3* but is easier to work with, it is emphasized 
in the rest of this review. 

CHAPTER 3. Here one considers the fragment 3?x of 3 which syntac
tically consists just of the equations A — B in that language. Models of 
3fx are the same as those for 3* and 3*+. For axioms one takes the equa
tions formulated in 3?+ corresponding to a standard set of equations for 
relation algebras (in Tarski's sense), and one allows the usual simple kind 
of inference with equations alone—substitution of equals for equals. Note 
that no variables appear in the equations. It is shown that not as much can 
be expressed in 3* as in 3""\ For example, for the following sentence <f> 
of oS*+ there is no equation A = B of 3*+ which has the same models as 

Vx, y, z3u[-*(xlu) A-i(ylw) A-i(zlw)]. 

(This is an old result of Korselt, but Tarski and Givant extend it consid
erably, showing that for any reasonable way of expanding the primitive 
notions, nonequivalence in means of expression still holds.) It is still an 
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open question whether there is a reasonable proof theory for an extension 
of oS^x equivalent to the appropriate extension of -S*+. 

Next, it is shown that J ? x is equivalent to the weakenings «S3 and -2^+ 

of J? and J ? + obtained by using only the first three variables in them. 
Less formally, the equational calculus above is equivalent to the fragment 
of first-order logic in which only three variables are used. 

The final section of the chapter contains a brief discussion of what is 
expressible in «S3, and extension of notions to similar languages «5 ,̂ n > 3. 

CHAPTER 4. With relation symbols, A, B in Jî?+ one associates an equa
tion QAB : 

{[{A- 0 A) + (IT 0 B)]- + i) • (A- ©10 = 1. 

In a model, QAB expresses that A and B are functions, and for any x and 
y there is a z such that Az = x and Bz = y; that is, 4̂ and i? are pair
ing functions (called conjugated quasiprojections in the book). Deferring 
until later conditions under which QAB is derivable, the authors derive 
many consequences from the hypothesis QAB in the proof-theory of -2*x 

mentioned in Chapter 3. Then the following basic results are shown. 
(1) For every sentence X of J<?+ there is an equation Y of <5?x such 

that QAB H+ X ~ 7 . 
(2) For every collection Y of equations of <5?x and every equation X 

of ^ x we have ¥ u {QAB} ^ X iff ^¥u {QAB} ^X X. 
These results say that, under the hypothesis QAB, the systems <3f+ and 

-5s7 x are equivalent after all, even though they are not equivalent in general. 
Now the authors turn to the vital question concerning conditions under 

which QAB is derivable. In fact, a set T of sentences of *Sf+ is called a Q-
system provided that there exist relation symbols A, B such that T h QAB-
With the help of the translation used in proving (1) and (2), they show 
that if T is a g-system, then the translated set Tx of equations in J ? x is a 
ö-system. This shows the method for constructing equational ô-systems. 

The culminating point of this chapter, and indeed of the whole book, is 
then the application of this procedure to set theory. Let P be the pairing 
axiom 

\/x, y3zVu(uEz <-> u\x V u\y). 

If T is a set of sentences of S*+ such that P e F (for example, if T is ZF 
or ZFC), then F is a ö-system; for example, one can define A and B as 
follows: 

D = E~ 0 [E~ • (E— 0 i)], F = E~ 0 E~, 

A = D • (D- e i), B = F'{F~ + (A® i)). 

(Here X 0 Y abbreviates (X~ 0 Y~)~.) Similar but more complicated 
considerations apply to systems of set theory admitting proper classes, or 
individuals (Urelemente). The methods do not seem to apply to the well-
known systems of Mostowski and of Ackermann. 

The final portion of the chapter is concerned with showing that Q-
systems can be formalized in three-variable logic. 
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CHAPTER 5. This is concerned with (relatively minor) improvements 
of the preceeding results: more elegant translation functions for proving 
(1) and (2) above; reducing the number of primitive notions of «S57*, in 
particular eliminating 1 or =; and applications to undecidable subsystems 
of sentential logic. 

CHAPTER 6. This chapter is concerned with applications of the main 
results to the foundations of set theory. There is a general result as to 
the finite axiomatizability of predicative set theories with power classes 
(thus including the well-known Bernays-Gödel system as a special case). 
The same kind of theorem holds for the less well-known predicative set 
theories without proper classes. 

CHAPTER 7. First of all, extensions of the main results to an arbitrary 
finite number n of binary relation constants, rather than just one, E, are 
discussed, ô-systems in this setting still give rise to equivalent x- and +-
notions, as in Chapter 4. More is true: under some mild restrictions on 
the new g-system, an equivalent system can be constructed in the original 
language £?*. 

The results extend in a modified form to every first-order language. This 
naturally leads to a discussion of languages in general with finitely many 
variables. 

True number theory, Peano arithmetic, and real arithmetic all prove to 
be g-systems, and therefore have equivalent formulations in <S?X. 

CHAPTER 8. Many of the main results in the book can be given a purely 
algebraic formulation, and that is done in this chapter. Thus a Q-relation 
algebra is defined to be a relation algebra having two pairing elements a, b, 
i.e., elements satisfying 

{[(a- 0 a) + (b~ 0 b)]~ + i)) • (cr 0 b) = 1. 

The basic results (1), (2) in Chapter 4 now have the following algebraic 
formulation: Every g-relation algebra is representable. 

Another major application of the results of the book to algebra concerns 
decision problems: certain equational theories are shown to be undecid
able, or essentially undecidable. 

The chapter closes with some interesting historical remarks about these 
results. 

J. DONALD MONK 

UNIVERSITY OF COLORADO 
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