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Abstract 

Long-term electric power system planning models are frequently used to provide policy support in the 

context of the ongoing transition towards a low-carbon electric power system. In a liberalized market, this 

transition relies on generation company investment decisions. These decisions are shaped by both 

economic and behavioral factors. Agent-based modeling allows the incorporation of both factors in the 

description of the investment decision making process. Nevertheless, there are several challenges 

associated with the design of agent-based models such as the definition of the model structure and its 

lack of transparency. In this study, we aim to increase the transparency of investment decision making 

algorithms by shedding light on how implicit assumptions of the price projection methods used in these 

algorithms impact model results. To achieve this goal, we developed a core long-term agent-based model 

to assess different investment decision making algorithms from the literature and we introduced a novel 

price projection method based on optimization modeling. Our results show that investment decisions vary 

enormously depending on the assumptions and parameters used in investment decision making 

algorithms. We also found that our proposed price projection method is robust to parametric deviations. 

Thus, the proposed investment decision making algorithm enables agent-based modelers to mitigate the 

potential impacts of hidden implicit assumptions. 
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Nomenclature 

j Type of technologies 

y Year 

d Day 

h Hour 

Δt Time step (typically one hour) (h) 

r Interest rate 𝑓𝑗,𝑦 Fixed cost of technology type j in year y (€/MW/a) 𝐺𝑗,𝑦 The installed capacity of technology type j in year y (MW) 𝑊𝑑 The weight of representative day d 𝛾𝑗,ℎ The capacity factor of technology type j in hour h 𝑣𝑗,𝑦,𝑑,ℎ The variable cost of technology type j in year y on representative day d at 

hour h (€/MWh) 𝑔𝑗,𝑦,𝑑,ℎ 
The actual power output of technology type j in year y on representative day 

d at hour h (MW) 𝑝𝑦,𝑑,ℎ The market price in year y on representative day d at hour h (€/MWh) 𝑙𝑙𝑦,𝑑,ℎ Load loss in year y on representative day d at hour h (MWh) 

VoLL Value of lost load (€/MWh) 𝑓𝑗𝐶𝐴𝑃𝐸𝑋 The annual investment cost of technology type j (€/MW/a) 𝑃𝑗 The principal of technology type j (€/MW) 𝑓𝑗,𝑦𝑂&𝑀 
The fixed operational & maintenance cost of technology type j in year y 

(€/MW/a) 𝑣𝑗,𝑦,𝑑,ℎ𝑂&𝑀  
Variable operational & cost of technology type j in year y on representative 

day d at hour h (€/MWh) 𝑣𝑗,𝑦,𝑑,ℎ𝑓𝑢𝑒𝑙
 

Fuel price of technology type j in year y on representative day d at hour h 

(€/MWh) 𝜇𝑗  The energy conversion efficiency of technology type j 𝐿𝑦,𝑑,ℎ The load in year y on representative day d at hour h (MWh) 𝑖𝑛𝑣𝑗,𝑦 The investment in technology type j in year y (MW) 𝑑𝑒𝑐𝑗,𝑦 The decommissioning in technology type j in year y (MW) 𝑛𝑗 The lifetime of technology type j 

  

1. Introduction 
In a liberalized electricity market, the ongoing energy system transition towards a low-carbon electric 

power system is highly dependent on investment decisions. Many studies have shown that investors’ 
decisions are not only driven by economic factors [1], [2] . Actors’ behaviors, values, and strategies as well 

as policies, regulations, and markets also shape the electric power system transition [3], [4]. Empirical 

studies based on interviews with over a hundred industry experts have revealed that investors’ renewable 
energy technical know-how and a priori beliefs on the technical effectiveness play much more important 
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roles than technical information in investment decision making [5], [6]. Other empirical studies highlighted 

the importance of technology preferences, prior investments, and financial status to explain differences 

in investments. Bergek et al. presented empirical evidence showing that renewable energy investments 

are made by a heterogeneous group of investors and their investments vary among investor types [7]. 

Accounting for these above-mentioned factors calls for modeling techniques capable of representing 

investors and their decision-making process explicitly. 

Agent-based modeling allows the incorporation of both economic and non-economic factors in the 

description of the investment decision making process [8], [9]. Nevertheless, despite numerous benefits, 

there are several challenges associated with the design of agent-based models such as the definition of 

the model structure and its lack of transparency. In this study, we aim to increase the transparency of 

investment decision making algorithms by shedding light on how implicit assumptions of the price 

projection methods used in these algorithms impact model results.  

An investment decision making algorithm in a long-term agent-based model typically consists of three 

steps. First, projections are made regarding the short-run profits/rents (i.e., the revenues subtracted by 

the operational expenditures) that can be obtained for potential investments. Second, these projections 

are used to evaluate the profitability of potential investments. The profitability is typically expressed by 

calculating common metrics, such as the net present value (NPV) or the internal rate of return (IRR). In a 

third and final step, the most profitable investment, if any, is selected. This process is typically repeated 

until none of the agents is willing to invest anymore. The main challenge that these models face resides 

in the first step, i.e., designing a suitable method that allows the agents to make projections of future 

revenue/price streams. Whereas existing agent-based models are aligned on the metrics and criteria used 

for making an investment decision (e.g., a non-negative NPV or a minimum IRR), the methods used in 

different existing long-term agent-based models to project future prices or revenue streams vary strongly 

(see Section 3.2 for a detailed description).  

Therefore, this study aims to analyze different price projection methods adopted in existing long-term 

agent-based electric power system simulation models. Furthermore, a price projection method based on 

optimization modeling is proposed and evaluated against existing price projection methods on a level 

playing field – a core long-term agent-based simulation model. This paper contributes to the literature in 

the following ways: 

i. The price projection methods in existing long-term agent-based electric power system simulation 

models are reviewed and compared.  

ii. The impacts of the methods used to project future prices/revenue streams on the outcome of long-

term agent-based models are assessed. Specific attention is given to both the influence of (agent-level) 

price projection methods on the (system-level) simulation results and the ability of price projection 

methods to take specific scenario-related information into account.  

iii. A price projection method based on optimization modeling is proposed. The proposed novel method 

provides a theoretical benchmark for further extension of the long-term agent-based model and allows 

combining the transparency of optimization models with the flexibility of agent-based models to 

consider behavioral aspects. 

 

The remainder of this paper is organized as follows. Section 2 reviews the development and application 

of agent-based modeling in the context of electric power systems, specific attention is paid to long-term 
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agent-based models. Section 3 introduces the methods used to carry out the analysis. This section starts 

with introducing the core long-term agent-based model, followed by detailed descriptions of existing and 

our proposed price projection methods. Next, Section 4 presents the key data and assumptions adopted 

in the proof-of-concept case study. Section 5 discusses the results generated by applying different price 

projection methods. Finally, the conclusions are drawn in Section 6. 

 

2. Literature survey of agent-based models 

Over the past decades, agent-based modeling has been used to answer multiple types of research 

questions in the context of electric power systems. Overall, two sets of agent-based models can be 

identified: short-term agent-based models and long-term agent-based models. These two types of agent-

based models are often used for different purposes and the focus of this paper is on long-term agent-

based models. A classification of agent-based models and their applications/capabilities are summarized 

in Table. 1. 

 

Table 1. Summary of agent-based models used in the context of electric power systems. 

Classification Key agent decision Key modeling purposes Example(s) 

Short-term 

agent-based 

models 

Bidding strategies 

Market efficiency w.r.t. market designs. [10]–[12] 

Influence of market power exercise. [13], [14] 

Bidding strategies and their resulting impact 

considering technical constraints, cross border 

trading and demand response. 

[12], [13], 

[15]–[17] 

Long-term 

agent-based 

models 

Investment 

decision making 

Policy evaluation (e.g. renewable subsidies) [18], [19] 

Energy system transition w.r.t. market designs [20]–[23] 

The influence of agents’ bounded rational 
behaviors in the long-run 

[24], [25] 

 

Short-term agent-based models are mainly used to study the bidding game in a market under different 

market designs and the resulting market efficiency or exercise of market power. A comprehensive review 

of short-term agent-based models can be found in [26], [27]. Hereunder, some of the key studies on short-

term agent-based models will be briefly reviewed. The earliest applications of agent-based modeling in 

electricity markets date back to the late 1990s where there was a global trend of liberalizing electricity 

markets. Agent-based modeling was identified as a proper method to study the market effectiveness 

under different market designs, as it allowed relaxing assumptions such as stable market equilibria and 

price-taking agents. The earliest studies evaluated the market design in two dimensions: market clearing 

frequency and pricing mechanisms [10], [11]. These earlier models are relatively abstract and built upon 

assumptions such as profit-maximizing agents, inelastic demand, and congestion-free systems. Later, 

other researchers contributed to the community by extending the abstract model in different directions 

to answer research questions related to market outcomes under the influences of grid constraints [12], 

[15], unit commitment constraints [16], cross border trading [13] and demand response [17].  

Unlike short-term agent-based models that focus on the outcome of spot markets, long-term agent-based 

models are developed to study the electric power system transition with a time scale varying from years 
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to decades. These studies are usually performed to assess the influence of specific factors such as 

renewable energy support design [18], CO2 market design [28], capacity remuneration mechanisms [20]–
[22], and technological preferences [24] on the evolution of the system. 

In the past decades, a limited number of agent-based modeling frameworks have incorporated 

investment decision making at the agent level, for instance PowerACE [29], [30], AMIRIS [31], EMCAS [32], 

[33] and EMLab [23], [34], [35]. PowerACE is an agent-based modeling framework developed to analyze 

the impact of different market designs (e.g. energy-only market, capacity remuneration mechanisms) and 

policy measures on investment in renewable energy sources and their contribution to the security of 

supply on national and European level [30]. The model aims at coupling different markets (spot market, 

forward market, CO2 market and reserve market) and has been utilized to address various research 

questions such as the influence of renewables on spot market prices [36], the economic performance of 

CO2 market design [37] and the impact of a soft loan on renewable generation expansion [19]. AMIRIS 

(Agent-based Model for the Integration of Renewables Into the Power System) is a policy design tool used 

to foster the integration of renewable energy sources into the electricity market. The model is designed 

to study different renewable energy trading schemes, with specific attention paid to evaluating the 

effectiveness of a direct marketing policy1 against the inefficient (yet effective) feed-in-tariff subsidies. To 

compare the policy effectiveness, the power producer agents are provided with five different business 

models and the outcomes can be compared [31]. EMCAS (Electricity Market Complex Adaptive Systems) 

was originally designed without investment decision making module but rather aims to simulate agents’ 
behavior in the spot market. The original EMCAS consists of generation company agents, transmission 

system operator agents, consumer agents and regulator agents. The learning capabilities of agents are 

provided by genetic algorithms2. With the help of these different types of agents, the model is capable of 

studying various market organizations such as locational marginal pricing [38], congestions charges [39], 

bilateral contracts [40] and ancillary service markets [33]. Later, the EMCAS framework has been extended 

to be capable of studying long-term generation expansion [32]. EMLab (Energy Modeling Laboratory) is a 

long-term agent-based modeling framework designed to assess the effect of different policy instruments 

and market designs. These effects are reflected in the form of the aggregation of generation companies’ 
investment decisions. Hence, the main agents in the model are the electricity generation companies and 

these agents interact mainly in electricity and CO2 markets [34], [35]. As a long-term agent-based electric 

power system model with a minimal time step of one year, EMLab is suitable for capturing factors that 

influence the system evolution in a time span of years (or even decades) such as capacity mechanisms [22] 

and emission trading [28]. In [23], the author validated the EMLab model using sensitivity analyses from 

multiple aspects: theoretical and empirical. From the theoretical viewpoint, the dynamic behavior of the 

model and trend of producer profits (as the installed capacity approaches the load peak) are tested. 

Empirically, the model has been validated by comparing the model output to historical prices. 

 
1 The details of the direct marketing scheme can be found in [50]. Overall, this direct marketing strategy grant 

freedom to wind turbine operators to be able to have a monthly choice to switch between trading in wholesale 

market and receiving a fixed feed-in tariff. 
2 Genetic algorithms are a set of machine learning algorithms which are used to search for the optimal solution of a 

problem. The term “genetic” refers to the evolutionary searching manner which imitates the evolution processes in 
nature: selection, crossover and mutation. We refer interested readers to [51] for a comprehensive explanation of 

genetic algorithms. 
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3. Methods 

To effectively assess the influence of price projection methods on the simulation results, a core long-term 

agent-based modeling framework is developed and different price projection methods are deployed in its 

investment decision making algorithm, while keeping all other modeling settings constant. The core 

agent-based modeling framework is further stripped of distinctive features such as behavioral aspects. 

That is, in this analysis, we assume all agents to be fully rational, forward-looking price takers. Moreover, 

we assume that exogenous inputs such as fuel prices and technological costs remain constant. Using this 

set of assumptions allows obtaining a well-defined benchmark, i.e., the long-run equilibrium serves as a 

reference solution. More specifically, under this set of assumptions, the agent-based model should 

converge to the long-run equilibrium3. The number of converging milestone years required to converge 

varies from case to case, in general, it takes around 4 milestone years. This is mainly due to that, after the 

3rd milestone year, all initial capacity mixes are fully decommissioned. Deviations from this long-run 

equilibrium can then be interpreted as impacts of the price projection method used. Note that the aim of 

using the long-run equilibrium as a reference is to assess possible impacts of price projection methods. 

The agent-based model was implemented in Julia programming language4. 

In the rest of this section, the formulation of the core long-term agent-based model and the different 

price projection methods analyzed in this study are described in detailed. The description of the core long-

term agent-based model follows the ODD (Overview, Design concepts and Details) protocol as proposed 

by Grimm et al. [41]. 

 

3.1 Core agent-based simulation model formulation 

3.1.1 Overview 

3.1.1.1 Purpose 

The purpose of the core long-term agent-based model is to analyze different investment decision making 

algorithms. This is achieved by deploying different price projection methods in its investment decision 

making algorithm, while keeping all other modeling settings constant. 

 

3.1.1.2 Entities, state variables and scales 

Three types of agents (entities) are considered in the core long-term agent-based model: generation 

companies, the market operator and consumers. The main characteristic of a generation company agent 

is its technology portfolio. The state variable of a market operator is the market electricity price. 

Consumers are characterized by their load profiles.  

As a long-term model, the simulation covers several decades while the time resolution is one hour. Thus, 

two key concepts are introduced to couple the long-term planning (with a time span of decades) with the 

short-term operation (with hourly resolution): representative days and milestone years. Fig. 1 shows an 

exemplary scheme of representative days and milestone years. Intuitively, representative days seek to 

reduce the actual days in a year by finding a certain number of days and their corresponding weights that 

 
3 Note that depending on the price projection method used, the equilibrium computed in the agent-based model 

does not necessarily converge to a single value but rather revolves dynamically around the equilibrium. In such a 

case, the average of the dynamic equilibrium is considered as the equilibrium reached by an agent-based model. 
4 The agent-based model is accessible via: https://github.com/zhenmin1993/ELDEST-ABM 

https://github.com/zhenmin1993/ELDEST-ABM
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minimize the deviation from the full hourly profiles. These profiles include load and intermittent sources 

such as wind and solar PV. The method of determining representative days are based on [42], in which 

the boundary days (i.e. peak and minimum load days) are appropriately considered. The resulting reduced 

load duration curve in contrast with the original load duration curve is shown in Appendix I. 

Without loss of generality, the introduction of milestone years (MYs) is equivalent to the assumption that 

the system capacity mix will remain unchanged within a certain period of time, i.e., new investments or 

decommissioning can only happen in certain milestone years. Moreover, new investments are considered 

to be immediately available from the corresponding milestone year. 

 
Fig. 1. An example of the temporal representation via representative days [43]. 

 

3.1.1.3 Process overview and scheduling 

As indicated by the rectangles in Fig. 2, four main processes are executed in our core agent-based model: 

bidding in the spot market, determination of the market price, decommissioning of generators and 

investment in new capacity. The narrative of the core agent-based model is as follows. The bidding process 

in the spot market is carried out by the energy producers and all generators are assumed to bid their 

marginal costs5. Then, the market operator determines the market price by maximizing social welfare. 

When a milestone year is reached, generation companies first decommission generation units that have 

reached their lifetimes, followed by an investment process where generation companies make investment 

decisions sequentially. The investment process is further divided into investment rounds. During each 

round, each generation company is allowed to invest only once and in one generation unit. The size of a 

generation unit is fixed and set in a manner that all agents have approximately equal chances of being the 

first investor in the corresponding investment process, hence the influence of the first-mover advantage 

can be mitigated. The investment process is terminated when none of the generation companies has 

invested in the last round, i.e. no generation companies is still willing to invest anymore. It is assumed 

that preceding generation companies’ investment decisions are known by the subsequent generation 
companies.  

 
5 Depending on the purpose of the research, this can easily be changed if desirable. 
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Fig. 2. Flowchart of the core long-term agent-based model. 

During the investment decision making process, the profitability of all types of technologies are 

determined by calculating their NPVs.  

3.1.2 Design concepts 

• Basic principle: the principle applied in the model is the rational choice theory. This theory is used to 

describe decision making on both spot market bidding and new capacity investments. 

• Emergence: An important emergent phenomenon in this study is the resulting capacity mix. Other 

emergent phenomena include the day-ahead market prices and the annual loss of load hours. 

• Adaptation/Prediction: generation companies adapt their investment strategies based on future day-

ahead market price projections. Evaluating the generation of these projections is one of the key 

contributions of this study. 

• Objective: the objective of the generation companies is to optimize their generation portfolio to 

maximize profit by investing in new power plants. 

• Learning: in this core long-term agent-based model, the learning capability has been stripped to 

simplify the analyses. 

• Sensing: agents are assumed to know without uncertainty the preceding generation companies’ 
investment decisions. 

• Interaction: generation companies interact with each other indirectly through the price signals in the 

day-ahead market. That is, each newly installed power plant will lower the market price, therefore 

squeeze the profit margin of new investment. 

• Stochasticity: the order of how generation companies carry out the investment is random. 

• Observation: the key observation in this study is the system capacity mix, which reflects the impacts 

of agent-level investment decision making algorithms on system level. Agent level observations such 
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as generation portfolios are out of the scope of this study because the generation companies are 

assumed to be homogeneous. 

 

3.1.3 Details 

3.1.3.1 Initialization 

• Initialization of existing capacity mix 

The model is initialized with a uniformly distributed existing capacity mix in the system, i.e. different 

types of technologies occupy the same amount of market share. Note that this initialization aims to 

deviate from the long-run equilibrium solution to ensure that reaching this equilibrium is not a result 

of the initial capacity mix.  

• Initialization of generation company agents 

The model is initialized with 5 generation company agents and the existing capacity mix is assigned to 

these generation companies randomly. In this study, the initialization of generation companies will 

not change the results and conclusions as they are homogeneous.  

 

3.1.3.2 Input data 

In this study, the Belgian electric power system load data6 (with hourly resolution) of the year 2015 is used. 

A Value of Lost Load (VoLL) of 3000 €/MWh and an interest rate of 5% are also used. To simplify the 

analyses, this study only considers highly stylized dispatchable technologies, namely base-load, mid-load 

and peak-load technologies. These technologies resemble respectively nuclear, coal and gas power plants 

whose techno-economic characteristics are based on the collected data in [44]. The techno-economic 

characteristics of these technologies are shown in Table 2. 

 

Table 2. Techno-economic characteristics for the considered technologies. 

Technology Size of one 

unit (MW) 

Lifetime 

(year) 

VOM 

(€/MWh) 
Fuel price 

(€/MWh) 
Efficiency FOM 

(€/kW/a) 
Capital cost 

(€/kW) 
Base-load 100 20 5 3 0.4 80 3000 

Mid-load 100 20 4 15 0.48 40 1200 

Peak-load 100 20 4 25 0.6 17 800 

 

3.1.3.3 Submodels 

The algorithm that describes the investment in new power plants consists of three steps. This investment 

decision making algorithm is followed by every single generation company. First, market conditions 

regarding the future electric power system are derived by taking capacity mix evolution, fuel prices and 

load data into consideration. Second, the future market condition is used to project future market prices. 

Different price projection methods are elaborated in Section 3.2. Third, the profitability of each candidate 

power plant is assessed by calculating its NPV. Finally, the power plant that renders the highest NPV is 

selected. The NPV calculation takes into account the expected revenue, the expected cost, and the 

 
6  The data is publicly accessible on the website of ELIA (Belgian transmission system operator). Link: 

http://www.elia.be/en/grid-data/data-download. 

http://www.elia.be/en/grid-data/data-download
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discount factor (representing the minimal expected rate of return). The formula to calculate NPV is shown 

in Eq. (1): 𝑁𝑃𝑉𝑗 =  ∑ ( 1(1+𝑟)𝑦  ((−𝑓𝑗,𝑦 ∙ 𝐺𝑗,𝑦) + (∑ ∑ 𝑊𝑦,𝑑 ∙ 𝛾𝑗,𝑦,𝑑,ℎ ∙ 𝑔𝑗,𝑦,𝑑,ℎℎ𝑑 ∙ (𝑝𝑦,𝑑,ℎ − 𝑣𝑗,𝑦,𝑑,ℎ)))) 𝑦               (1) 

 

where r denotes the annual interest rate and 𝛾𝑗,𝑦,𝑑,ℎ represent the capacity factors.  

The fixed cost term 𝑓𝑗,𝑦, being independent of the actual electricity generation 𝑔𝑗,𝑦,𝑑,ℎ, is the sum of the 

annualized investment cost 𝑓𝑗𝐶𝐴𝑃𝐸𝑋  and the fixed operation and maintenance (FOM) cost of the 

corresponding technology 𝑓𝑗𝑂&𝑀 . Mathematically, the fixed costs of each installed generation unit 

calculated as in Eq. (2): 𝑓𝑗,𝑦 = 𝑓𝑗𝑂&𝑀 + 𝑓𝑗𝐶𝐴𝑃𝐸𝑋, ∀𝑗 ∈ 𝐽, ∀𝑦 ∈ 𝑌                                                                (2) 

 

where the investment cost is calculated with Eq. (3):  𝑓𝑗𝐶𝐴𝑃𝐸𝑋 = 𝑃𝑗 ∙ 𝑟∙(1+𝑟)𝑛𝑗(1+𝑟)𝑛𝑗−1 , ∀𝑗 ∈ 𝐽                                                                      (3) 

 

The variable cost term 𝑣𝑗,𝑦,𝑑,ℎ, calculated via Eq. (4), is dependent on the actual electricity generation and 

consist of fuel costs (plus emission costs and taxes) 𝑣𝑗,𝑦,𝑑,ℎ𝑓𝑢𝑒𝑙 𝜇𝑗⁄   and variable operations and maintenance 

costs (VOM) 𝑣𝑗,𝑦,𝑑,ℎ𝑂&𝑀 .  

𝑣𝑗,𝑦,𝑑,ℎ = 𝑣𝑗,𝑦,𝑑,ℎ𝑂&𝑀 + 𝑣𝑗,𝑦,𝑑,ℎ𝑓𝑢𝑒𝑙𝜇𝑗 , ∀𝑗 ∈ 𝐽, ∀𝑦 ∈ 𝑌, ∀𝑑 ∈ 𝐷, ∀ℎ ∈ 𝐻                             (4) 

 

 The key assumptions that underpin the model structure are listed below7: 

• The load data is assumed to remain unchanged and repeated every year. For each hour, the load is 

assumed to be inelastic. 

• The techno-economic characteristics for all technologies are assumed to be constant over the whole 

simulation period.   

• The selection and corresponding weights of the representative days are assumed to remain 

unchanged in the future. 

• Generation company agents’ investment decisions are not subject to budget constraints. 
 

Note that these assumptions are deployed in this theoretical study that mainly focuses on methodological 

analyses, and they are essential to enhance the transparency of the analyses. If the model is to be used 

for a case-specific analysis, these assumptions can be relaxed. 

3.2 The architecture of different price projection methods 

 
7  Note that these assumptions are only essential for this specific theoretical study. One can change these 

assumptions accordingly if the model is used for case-specific analyses. 
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In existing long-term agent-based modeling frameworks, two different types of price projection methods 

can be identified: exogenous price projection methods and endogenous price projection methods. Each 

type can be further differentiated by the form of essential information provided as input to the 

corresponding method. Table 3 presents an overview of price projection methods adopted in existing 

long-term agent-based modeling frameworks.  

Table 3. Summary of price projection methods in existing long-term agent-based modeling frameworks. 

Classification Short description of the price projection methods Example(s) 

Exogenous 

Exo. 1 
Price projection based on the information provided by 

market participants. 
[31] 

Exo. 2 
Virtual market clearing with exogenous capacity mix 

projections with existing reports as input. 
[29], [45] 

Endogenous 

Endo. 1 Virtual market clearing assuming zero future investments. [24], [35] 

Endo. 2 

Virtual market clearing based on an endogenously 

established capacity mix projection. The uncertainties of 

competitors’ future investments are exogenous and 
represented via a scenario tree. 

[32] 

 

One can distinguish from Table 3 that both types of existing price projection methods rely on a so-called 

virtual market clearing simulation module. This module determines projections of future electricity prices 

and operating hours for different investment options by combining the projections of the future capacity 

mix with fuel prices, demand and technological information. Although the virtual market clearing modules 

are formulated (and named) differently in these referenced frameworks, they can all be interpreted as a 

merit-order based, supply-demand matching market clearing algorithm. 

We build a generalized merit-order based virtual market clearing simulation module, which is shown in 

Fig. 3. In the virtual market clearing simulation process, the market is cleared each time step based on the 

capacity mix projection over a look-ahead horizon. This look-ahead horizon parameter determines how 

far in the future an agent can have access to information when an investment object is evaluated. This 

parameter has been named as “reference year time horizon” and “forecast period” in [35] and [32], 

respectively.  

Given the similarities of how future information is processed, important differences exist in terms of how 

future capacity mixes are projected. In the following, existing price projection methods will be described 

in detail, with special attention paid to capacity mix projection composition. A novel (endogenous) price 

projection method is also introduced. 
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Fig. 3. Virtual market clearing simulation. 

3.2.1 Exogenous price projection methods 

Exogenous price projection methods rely on information about the future system from sources that are 

independent of the model itself. This information usually appears in one of two forms: future electricity 

prices or the evolution of the future capacity mix. 

Projections of future electricity price information can be obtained in various ways. As an example, future 

electricity prices can be obtained by extrapolating past electricity prices using pattern recognition 

methods, as in [46]. A future capacity mix is typically drawn from third-party reports or research findings. 

With this information, the agents can run a virtual market clearing simulation module to retrieve expected 

future revenues and infra-marginal rents.  

Concerning the price projection methods in existing agent-based modeling frameworks, the Exo. 1 price 

projection method retrieves future price information directly from interviews of market participants. The 

Exo. 2 electricity price projection method divides future electricity prices into two intervals: the first five 

years and the further future. During the first five years, it is assumed that the electricity price is the same 

as the spot market price in the current year. In the further future, the electricity price is calculated based 

on the capacity mix projection in a published report.  

Despite the relatively straightforward implementation process, there are clear limitations of exogenous 

price projection methods. First, the modeling results are fully driven by the exogenously determined 

capacity mix/price projections. That is, the projections (and hence the decisions) of an agent are always 

in line with the exogenous input, regardless of the actual investment decisions made earlier by other 

agents. Therefore, the decisions taken by the agents during the simulation do not impact the decisions 

taken by other agents. In reality, however, there are strong interlinkages. For instance, the market value 
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of wind generations tends to decrease significantly with the total installed wind power capacity. Second, 

relying on exogenous capacity mix/price projections data results in loss of flexibility in establishing case-

specific scenarios. That is, one is restricted to using data from existing reports/surveys. In addition, the 

lack of interaction among agents results in loss of flexibility in terms of capturing some factors such as 

social influence8 and endogenous risk perceptions. 

3.2.2 Endogenous price projection methods 

As the name implies, in endogenous price projection methods, the agents endogenously project future 

prices (and corresponding revenues and infra-marginal rents) during the simulation, i.e. the user does not 

need to supply (all) direct information regarding future electricity prices or the future capacity mix 

evolution.  

Examples of agent-based modeling frameworks that have adopted endogenous price projection methods 

include for instance [24], [32], [35]. In these references, the price projection method generally consists of 

two steps. In the first step, projections are made regarding the future capacity mix. In the second step, 

the capacity mix projections are used as an input in the virtual market clearing simulation module.  

The Endo. 1 price projection method is shown in Fig. 4a. Here, agents project the capacity mix in a given 

future year by starting from the existing capacity mix and adding the already announced or built new 

capacities (i.e., the investment decisions made by other agents during the course of the simulation) and 

subtracting the capacities reaching life expectancies before that given year. Although this approach seems 

reasonable at first sight, in this method the agents implicitly assume that, when projecting the prices in a 

given future year, no new investment decisions will happen between the current model year and a given 

future year. Given that these future investments make up a bigger share of the capacity mix as one looks 

further into the future (as a result of decommissioning of existing plants), this method has its limitations 

for projecting revenue streams further into the future. For this reason, this method henceforth will be 

referred to as “myopic agents”. The term “myopic” refers to an agent being short-sighted in terms of the 

information being considered regarding future market conditions. For this method, the choice of the look-

ahead horizon could substantially influence the resulting macro-system-level capacity mix evolution. As 

will be shown in Section 5.1, the assumption that the agents do not anticipate investments made in future 

years makes the simulation results sensitive to different look-ahead horizons. In addition, this method 

does not allow anticipating expected changes in the capacity mix, such as the possible expectation of 

increasing penetration of renewable energy sources in the future electricity system. 

Fig. 4b represents the Endo. 2 price projection method. In addition to the information already considered 

by the “myopic agents” method, the Endo. 2 price projection method considers projections for future 

investments of competitors. Similar to the “myopic agents” method, the resulting projections of the future 

capacity mix are then used as inputs in the virtual market clearing simulation module to project future 

electricity prices. For investment decision making, the model presented in [32] includes uncertainties 

regarding the load growth, hydropower conditions, and the investments made by competitors in future 

years. The uncertainties are represented via a scenario tree, as visualized in Fig. 5. As shown on the right-

hand side of Fig. 5, for each agent9, the uncertainty regarding competitors’ capacity expansion decisions 
 

8 In [52], social influence is defined as “change in a person's cognition, attitude, or behavior, which has its origin in 

another person or group.” 
9 As this specific study is based on a highly stylized system and mainly focuses on simulation results on system level, 

it is assumed that agents are homogeneous. Hence, using one scenario tree for each agent is equivalent to using one 
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is composed of two layers: the total capacity installed and the distribution of this capacity among different 

technology types. In the first layer, 3 branches varying in the total capacity installed by competitors are 

considered, and probabilities are assigned to each of these branches. In the second layer, each branch is 

further split into 3 sub-branches varying in the distribution of the total installed capacity among different 

technology types. It is important to note that, although the agents make endogenous projections of the 

future capacity mix, the projections in this method are strongly determined by exogenous inputs (i.e., the 

amount and distribution of capacity investments by competitors in each scenario, and the probabilities 

assigned to the different scenarios). Therefore, this method will be referred to as the “exogenous 

scenarios for future investments” method in the remainder of this text.  

Similar to the exogenous price projection methods, this method has certain clear limitations. The primary 

limitation is the availability of parameters for the scenario tree, which results in loss of flexibility in 

establishing case-specific scenarios. Alternatively, one can carefully calibrate the scenario tree with the 

help of historical system capacity mix development. This type of calibration can influence the simulation 

results by presuming that the future capacity mix evolves in a similar manner to the past, which has been 

proved to be inappropriate because of various factors such as the emergence of new technologies and 

new entrepreneurial competitors [47]. Moreover, as the total capacity parameter determines the residual 

space for the corresponding agent (to invest in), the new investments in a milestone year are 

approximately the sum of all agents’ residual space. This interplay between the parameter total capacity 

and the total number of agents further reduces the transparency of the agent-based model: even small 

deviations on exogenous inputs to agents’ investment decision making can be amplified by the magnitude 

of the total number of agents and might strongly shape the core macro-system-level results of the model. 

A sensitivity analysis of the parameters of the scenario tree is carried out in Section 4.2. 

 

a. “Myopic agents” price projection method. 

 

b. “Exogenous scenarios for future investments” price projection method. 

 

common scenario tree for all agents. Nevertheless, the model is designed to allow agents to have diversified scenario 

tree if desired. 
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     Fig. 4. Schematic of endogenous price projection methods used in [35] (a) and [32] (b). 

 

Fig. 5. Scenario tree deployed to represent the competitors’ expansion [32]. 

3.2.3 Novel optimization-based price projection method 

As presented in Fig. 6, in the novel optimization-based price projection method, the agents make price 

projections by solving a generation expansion planning problem (i.e., a traditional long-term electric 

power system optimization model). The interpretation of this method is that each agent assumes that the 

system capacity mix will evolve in a cost-minimizing manner when making long-term price projections10. 

For this reason, this method henceforth will be referred to as the “cost-minimizing future investments” 

method. The information regarding the current capacity mix, already announced investments and future 

decommissioning plans/expectations is used as input to the generation expansion planning problem. The 

output information from this generation expansion planning problem is twofold: shadow price and 

capacity mix projections. A similar method has been adopted in [48], where the authors present a price 

projection method assuming that the capacity mix will reach the optimal portfolio by the end of the look-

ahead horizon. The price projection method interpolate prices between a myopic short-term market 

equilibrium and a long-term greenfield equilibrium, the price information  between the short-term and 

the long-term equilibrium is approximated using an exponential function. One of the fundamental 

improvements of the (optimization-based) price projection method proposed in this study is that the price 

information is based on the capacity mix evolution instead of a function-based approximation, which 

requires additional calibrations. 

Depending on the problem at hand, one could either use the shadow prices directly or could derive price 

forecasts starting from the capacity mix projections. Deriving price forecasts via the capacity mix 

projections allows considering for instance strategic behavior, negotiations for long-term bilateral 

contracts and/or allows increasing the level of granularities by considering different weather years or 

outage distributions via Monte-Carlo simulations. This provides modelers with the flexibility to capture 

behavioral (or other) aspects in the context of the ongoing electric power system transition. Fig. 7 

illustrates how strategic bidding behavior could be captured in the price forecasts. Note that taking 

 
10 This assumption is equivalent to the assumption that agents assume perfect competition (i.e., all agents are price-

takers have perfect information, and barriers to entry and exit are small.) 
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strategic behavior (e.g. market power) into consideration will potentially result in a different capacity mix 

projection. Hence, the “generation expansion planning” does not necessarily have to be a cost-

minimization optimization problem. One of the alternatives is to use MPEC (mathematical programming 

with equilibrium constraints) for capacity mix projection as presented in [49], though implementing an 

MPEC is beyond the scope of this paper. In the bidding game model, each agent could, for instance, use a 

reinforcement learning algorithm to derive its optimal bidding strategy. Via the learning algorithm, agents 

will learn whether they can manipulate prices. This method has been proven effective in [14] to forecast 

market prices in the context of the New Zealand electricity market. A global overview of the long-term 

agent-based model with the proposed investment decision making framework and the novel price 

projection method is shown in Appendix II.  

It is important to recall that the goal of the novel price projection method is to enable the agents to base 

their investment decisions on price projections that are (i) theoretically unbiased, (ii) transparent, (iii) and 

can be flexibly generated for a range of possible scenarios (e.g., differing in assumptions regarding 

evolutions of fuel cost, technological improvements, and policies). Although out of the scope of this paper, 

it is also important to note that the framework is sufficiently flexible to allow considering specific features 

typical for an agent-based model, such as the modeling of behavioral aspects.  

 

 

Fig. 6. Schematic of the novel proposed price projection method of each agent. 
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Fig. 7. An exemplary illustration of price projection taking strategic behavior into consideration. 

The mathematical formulation of the generation expansion planning problem used for price projection or 

capacity mix projection or both is as follows. Since the optimization model will be dispatched frequently 

in the course of the simulation, the optimization model has been formulated in a simple manner to reduce 

the computational cost. 

3.2.3.1 Objective function 

The objective function (Eq. (5)) aims to minimize the total system cost: 

min𝐺𝑗,𝑦  ∑ ∑ ((𝑓𝑗,𝑦 ∙ 𝐺𝑗,𝑦) + (∑ ∑ 𝑊𝑑 ∙ 𝑣𝑗,𝑦,𝑑,ℎ ∙ 𝑔𝑗,𝑦,𝑑,ℎ ∙ Δtℎ𝑑 ))𝑗𝑦 + (𝑉𝑜𝐿𝐿 ∙ ∑ ∑(𝑊𝑑 ∙ ∑ 𝑙𝑙𝑦,𝑑,ℎ)ℎ𝑑𝑦 ) 

               (5)             

The two parts in the objective function represent the cost of electricity generation and the cost of load 

loss, respectively. The cost of electricity generation consists of fixed costs (see Eq. (2)) and variable costs 

(see Eq. (4)).  The cost of load loss is the weighted sum of load loss over the entire optimization horizon 

multiplied by a fixed value of lost load value (𝑉𝑜𝐿𝐿). 

3.2.3.2 Constraints 

• Energy balance constraint: for each time step t, the summation of generators’ gross output and load 
loss equals the total demand. ∑ (𝑔𝑗,𝑦,𝑑,ℎ ∙ Δt) + 𝑙𝑙𝑦,𝑑,ℎ𝐽𝑗=1 = 𝐿𝑦,𝑑,ℎ , ∀𝑗 ∈ 𝐽, ∀𝑦 ∈ 𝑌, ∀𝑑 ∈ 𝐷, ∀ℎ ∈ 𝐻                    (6) 

• Installed capacity constraint: for each year, the capacity mix is updated by adding new investment(s) 

and subtracting decommissioning. 𝐺𝑗,𝑦 = 𝐺𝑗,𝑦−1 + 𝑖𝑛𝑣𝑗,𝑦−1 − 𝑑𝑒𝑐𝑗,𝑦−1, ∀𝑗 ∈ 𝐽, ∀𝑦 ∈ 𝑌                                       (7) 

• Decommissioning constraint: the decommissioning of technology type j in year y is the investment in 

technology type j in year y-nj, where nj is the lifetime of the technology. 𝑑𝑒𝑐𝑗,𝑦 = 𝑖𝑛𝑣𝑗,𝑦−𝑛𝑗 , ∀𝑗 ∈ 𝐽, ∀𝑦 ∈ 𝑌                                                           (8) 
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• Generation limits: the actual power output of each type of technology is non-negative and should not 

exceed the installed capacity of the corresponding technology. 0 ≤ 𝑔𝑗,𝑦,𝑑,ℎ ≤ 𝐺𝑗,𝑦, ∀𝑗 ∈ 𝐽, ∀𝑦 ∈ 𝑌, ∀𝑑 ∈ 𝐷, ∀ℎ ∈ 𝐻                                      (9) 

 

4. Case study set up 

 

4.1 Key assumptions and settings of the core long-term agent-based model 

Recall that this study aims to effectively assess different price projection methods. Under the assumption 

of perfect information and fully rational agents as well as deterministic circumstances, a well-calibrated 

agent-based model would be expected to reach (or at least approximate very well) the long-run 

equilibrium. With the goal of benchmarking the solution against the long-run equilibrium solution, it is 

further assumed, in addition to the assumptions adopted in Section 3.1.3.3, that all agents are fully 

rational, forward-looking and act as price takers. As shown in Fig. 7, this assumption can be relaxed by 

running the virtual market clearing simulation with strategic agents. 

 

4.2 Configuration of the “exogenous scenarios for future investments” price projection method 

As discussed in Section 3.2.2, it is challenging to assign appropriate values (both technology distributions 

and total capacities) for the scenarios representing the future investments that will be made by 

competitors. To study the influence of these expectations, a sensitivity analysis is performed in which the 

exogenous projected investments of competitors are varied both in terms of the total capacity that is 

expected to be added by competitors in future years as well as in terms of the distribution of technologies 

in which competitors are expected to invest. In terms of total capacity added, we consider competitors 

invest up to 85%, 90% and 95% of the load peak11. In terms of the technology distribution, three different 

cases are considered. This leads to a total of 9 possible cases for the future investments projected to be 

made by competitors. The parametric combinations and the corresponding tags of these 9 cases are 

presented in Table 4. 

Table 4.  Parameters considered for the expansion scenario tree. 

                                                 Distribution (Base/Mid/Peak) 

Competitors’ total expansion 0.2/0.5/0.3 0.3/0.2/0.5 0.5/0.3/0.2 

0.95 (a) (b) (c) 

0.9 (d) (e) (f) 

0.85 (g) (h) (i) 

 

5. Results and discussion  

 
11 In [32], this parameter is 95% and a sensitivity analysis is performed by reducing this parameter to 90%. However, 

an agent-level annual investment cap restricts the development of the system capacity. Hence, to dissect the 

influence of this parameter, we remove the agent-level investment cap and further reduce this parameter to 85%. 

If this parameter is 100%, resulting system capacity mix will be empty because all agents are expecting other agents 

to completely fulfil the demand. 
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In this section, the simulation results of a long-term agent-based model with different price projection 

methods are compared. Specifically, the following price projection methods are considered: 

i. The “myopic agents” method (as presented in Section 3.2.2). 

ii. The “exogenous scenarios for future investments” method (as presented in Section 3.2.2). 

iii. The “cost-minimizing future investments” method (as presented in Section 3.2.3). 

The potential impacts of these price projection methods on micro-agent-level investment decision making 

algorithms are reflected at the macro-system-level capacity mix. Hence, a sensitivity analysis is performed 

to the corresponding key parameters of different price projection methods. As highlighted in Section 3, 

different price projection methods have their respective key parameters:  

i. The look-ahead horizon in the “myopic agents” method and the “cost-minimizing future investments” 
method12  

ii. The  values assigned to the scenario tree in the “exogenous scenarios for future investments” method13 

Fig. 8 provides an overview of the capacity mix resulting from different price projection methods and their 

corresponding sensitivities. The benchmark solution, as discussed in Section 3, for all simulations is the 

long-run equilibrium, which is computed by a generation expansion planning model that takes the same 

input data as the agent-based model.  

The simulation results of the core agent-based model with the three price projection methods 

incorporated are the averaged value of the oscillations. As can be observed, the “myopic agents” and 
“exogenous scenarios as future investments” price projection methods are highly impacted by their 
corresponding key parameters. This is reflected by the substantially varied macro-system-level capacity 

mix. The proposed “cost-minimizing future investments” price projection method, on the other hand, is 

shown to systematically approximate the long-run equilibrium. The following sections provide a detailed 

analysis of each of the sensitivities considered. 

 

 
12 Scenario tree is not part of the “cost-minimizing future investments” method, while this method still preserves the 

parameter look-ahead horizon. 
13 Note that the look-ahead horizon, yet uncritical, also exists in the “exogenous scenarios for future investments” 
method. Further note that, as discussed in Section 3.2.2, although the impact of the competitors’ total expansion 
parameter is amplified by the total number of agents and we keep the total number of agents constant in this study, 

similar studies can be carried out by keeping the competitors’ total expansion constant and varying the total number 
of agents. Nevertheless, the total number of agents, in specific case studies, should be determined by the system 

one considers. 
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Fig. 8. Overview of the impact of key parameters of different price projection methods on the resulting 

system capacity. The considered price projection methods are described in Section 3.2. The cases 

considered for the “exogenous scenarios for future investments” method are presented in Table 4. 

5.1 Sensitivity analysis on the look-ahead horizon 

The look-ahead horizon is a key micro-agent-level parameter in investment decision making algorithms 

since it determines the future information that is taken into account in agents’ investment decision 

making. A perfectly rational and forward-looking agent would base its investment decision on 

revenue/rent projections within the entire lifetime of the considered investment. Nevertheless, as 

outlined in Section 1, heterogeneous agents can have particular perceptions of the information and they 

can be myopic (i.e., have a limited foresight). The look-ahead horizon can be adjusted to represent 

possible short-sightedness of agents. Adjustments of the look-ahead horizon thus reflect a way of 

modeling a behavioral aspect. Note that in this work, we aim to establish a robust and theoretically 

unbiased core long-term agent-based model. Hence, we neglect behavioral aspects. Note also that the 

current modeling setting has constant fuel prices, technological costs as well as a fixed load profile (i.e., 

the load profile remains constant over different years in the simulation). In this setting, an agent-based 

model should in principle be able to approximate the long-run equilibrium on the macro-system-level 

regardless of the micro-level assumptions on the agents’ look-ahead horizon. Therefore, under the current 

case study, we consider the robustness of the system capacity mix to changes in the look-ahead horizon 

as an important indicator of investment decision robustness. As discussed in Section 3.2.2, the look-ahead 

horizon is particularly important for the “myopic agents” price projection method, as the share of future 
investments in the future capacity mix grows when looking further into the future. 

As shown in Fig. 8, the simulation results are highly sensitive to different look-ahead horizons when using 

the “myopic agents” price projection method. More specifically, the overinvestment grows larger as the 

look-ahead horizon becomes longer. Peak-load technology accounts for most of the overinvestment. The 

simulation results of the agent-based model with the “cost-minimizing future investments” price 

projection method are more robust under different look-ahead horizons and systematically approximate 

the equilibrium solution very well. This indicates that the core long-term agent-based model, with 
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investment decision making algorithm integrated, can serve as an ideal theoretical benchmark for further 

extension of the model. 

The results in Fig. 8 also show that using the “myopic agents” price projection method with a 5-year look-

ahead horizon can approximate the long-run equilibrium. The reason is that using a 5-year look-ahead 

horizon means that the agents base their investment decisions only on the system status in the first 

milestone year, thus the observed scarcity is the recent decommissioning and no future information is 

considered. In a perfectly competitive market, the profit-maximizing agents will make investment 

decisions that fill the gap in a system cost-minimizing manner.   

To shed light on why the model is sensitive to the parameter look-ahead horizon, we take the case where 

agents are assumed to have the longest look-ahead horizon (20 years or the lifetime of the technologies) 

as an example. Recall that every fifth year is a milestone year, meaning 20 years comprise 4 milestone 

years. With different price projection methods, the capacity mix projections of the first agent that is 

making an investment decision in the first investment round during a typical milestone year are plotted 

in Fig. 9.  

When agents make investment decisions assuming that no new investments will happen, as shown in 

Fig. 9a, the first agent in the first investment round will sense zero announced investment (as there is no 

preceding investment in this milestone year). In combination with the fact that all existing capacities will 

be decommissioned after three milestone years (or after 15 years), as the youngest existing capacities are 

the investments placed in the previous milestone year, being 5 years ago. This leads to a huge projected 

lack of capacity in the fourth milestone year, even though over-capacities already exist in the first 

milestone year. In the virtual market clearing, this lack of capacity is translated into electricity price 

projections corresponding to the price cap for the entire year, which is obviously not realistic. The 

projected high prices towards the end of the look-ahead period incentivize investments until the point 

that the future supply gap is almost filled. In addition, expecting supply gaps and corresponding high 

electricity prices only in the last 5 years means the considered investment option tends to be dispatched 

mainly in this period. Given this low number of projected operating hours, the technology with the lowest 

fixed cost is favored, which explains why peak load technology accounts for most of the overinvestment.  

A number of measures can be taken to avoid or mitigate this overinvestment problem. For instance, one 

could force the agents to be myopic (which is used in [35] and [24]) or impose an agent-level annual 

investment cap (which is used in [32]). One could also consider adjusting the projected electricity prices, 

for instance by reducing the high prices observed towards the end of the look-ahead horizon. However, 

requiring agents to behave myopically to forcibly correct unintended simulation results reduces the 

applicability of the model (that is, only myopic investment behavior can be considered). Moreover, 

although introducing corrective actions such as investment caps or price adjustments does allow 

considering longer look-ahead horizons, it leads to secondary problems (what is a reasonable investment 

limit? What would be appropriate electricity prices at the end of the look-ahead horizon?) and 

assumptions that both might require further rectification and reduce transparency.  

Fig. 9b illustrates the capacity mix foreseen by agents with the “cost-minimizing future investments” price 
projection method. In such a case, the agents have the abilities to both establish expectations on future 

investments and keep these expectations according to the intrinsic characteristic of the system. 

Furthermore, the look-ahead horizon is no longer affecting the investment decisions as the investment is 
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no longer incentivized by the unrealistic high electricity prices that arise only in the last milestone year, 

but rather by the homogeneously distributed electricity prices over the entire look-ahead horizon. 

 

a. “Myopic agents”. 

 

b. “Cost-minimizing future investments”. 

Fig. 9. Capacity mix projections of the first agent that is making an investment decision in the first 

investment round during a typical milestone year. 

5.2 Sensitivity analysis on the values assigned to the scenario tree in the “exogenous 

scenarios for future investments” price projection method 

On micro-agent-level, the expectations of agents about competitors’ expansion plan directly affect their 
investment decisions by altering the projections of future electricity prices. These affected investment 

decisions will ultimately be reflected on the macro-system-level in the form of capacity mix variations. 

Fig. 10 shows the resulting system capacity mixes for different cases of the competitors’ expansion 
projections (see Section 4.2 for a detailed description of these cases). The resulting macro-system-level 

capacity mix for each case is shown in Fig. 10 and summarized in Table 5.  
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Fig. 10. System capacity mix with different competitors’ expansion projections. 

 

Table 5. Amount of different technologies in the capacity mixes (unit: MW). 

 Group 1 Group 2  Group 3  

Technology (a) (b) (c) (d) (e) (f) (g) (h) (i) 

Base-load 7473 7307 6493 8000 7967 8000 7933 7933 7933 

Mid-load 207 1967 607 3280 3747 2947 3847 3953 3787 

Peak-Load 4320 2727 4900 10720 10287 11053 18220 18113 18280 

Total 12000 12001 12000 22000 22001 22000 30000 29999 30000 

 

Overall, one can observe that the simulation results vary largely depending on the exogenous inputs used. 

First, by comparing the system capacity mix for different expectations regarding the total capacity 

projected to be added by competitors in the future (comparing the different capacity mix groups in Fig. 10), 

one can observe that decreasing the expectation on competitors’ total expansion (from 95% to 90% and 

85%) leads to a substantial increase in the total system capacity and vice versa. On the one hand, low 

expectations on competitors’ total expansion lead to unrealistic high prices in the future and these high 

electricity prices trigger investments until the future supply gaps are filled. On the other hand, high 

expectations on competitors’ total expansion squeeze the investments of all agents and lead to 

underinvestment, i.e., all of the agents lack of an investment incentive because they overestimated 

competitors’ future investments. 

Second, by comparing the different projections of the technology distribution of the future investments 

by competitors (comparing the capacity mixes within each group in Fig. 10), it can be seen that the 

assumed technology distribution can result in a considerable change in the system capacity mix. More 

specifically, the more a certain type of technology is expected to be invested in by competitors, the less 

the agents will invest in this technology, and vice versa. Consider the Group 1 of Fig. 10 as an example. As 

the expected proportion of future investments in peak-load technology increases from 20% to 30 % and 

50%, the proportion of peak-load technology in the simulation results decreases from 40.8% to 36% and 

22.7%, respectively. A similar trend also holds for investments in base-load technologies. For mid-load 
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technologies, it is more complicated as the economic potential for investments in mid-load technologies 

is also strongly impacted by the projected investments in base-load and peak-load technologies.  

Additionally, one can also find that as the projected total capacity installed by competitors in future years 

decreases (inter-Group), the technology distribution of the projected investments by competitors (intra-

Group) has a smaller impact on the resulting system capacity mix. This is primarily because the influence 

of these expectations tends to be weaker as the expected investments become less. At the same time, as 

the projected competitors’ investment becomes less (inter-Group), the driving factor switches from 

technology distribution to the total capacity added. And as a result, the macro-system-level capacity mixes 

tend to resemble each other. In fact, in the extreme condition (with the total expansion expectation 

reduced to zero), these capacity mixes converge to those of the “myopic agents” method. 

Moreover, although different capacity distribution parameters change the capacity mix, the total amount 

of capacity remains constant within one total expansion level setting. That is, the total amount of installed 

capacity is completely driven by the setting of the expected total amount of competitors’ expansion, 

instead of the intrinsic characteristics of the model.  

 

5.3 Implications and limitations 

The analysis above suggests that the assumptions adopted by investment decision algorithms (on agent 

level) can highly impact the simulation results on system level. Specifically, the system capacity mix is 

highly sensitive to the parameter look-ahead horizon when the “myopic agents” price projection method 
is used. This is due to that this method implicitly assumes no new investment will happen in the future 

and therefore a supply gap will arise, which triggers new investment in the agents’ located milestone year 
(i.e. milestone year 1) to compensate for the unrealistic under-capacity in the further future. Examination 

on “exogenous scenarios for future investments” price projection method shows that, the values assigned 
to the scenario tree regarding competitors’ investments (on agent level) is dominating the simulation 

results on the system level. Overall, the two layers on the scenarios tree govern different aspects of the 

simulation results: the total amount of installed capacity is driven by the expectation on competitors’ total 
investment, and the share of different types of technologies are mainly influenced by the second layer of 

the scenario tree (i.e. how competitors’ new investments are distributed among candidate technologies). 

As we have shown, our proposed “cost-minimizing future investments” price projection method requires 

less exogenous parameters (i.e. scenario tree) and is more robust to the parameter look-ahead horizon. 

The newly proposed price projection and the analysis performed in this study, however, do have several 

limitations. From a methodological viewpoint, using the resulting output from a generation expansion 

planning problem to guide investment decision making implicitly assumes that the agents are expecting 

the capacity mix to evolve in a cost-minimizing manner. The electricity market, in reality, is more 

complicated. For example, strategic investment behavior or market imperfections can result in deviations 

from the perfect market outcome. One of the alternatives is to consider the MPEC (mathematical 

programming with equilibrium constraints) formulation of a generation expansion planning problem, 

which allows the inclusion of strategic investment behaviors, as presented in [49]. Moreover, note that 

the analysis is performed in a highly stylized electric power system where the agents are stripped of 

distinctive features such as behavioral factors. In reality, there exist many behavioral factors that influence 

investment decision making. Accounting for these factors can deviate the results from the perfect market 
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outcomes and can mitigate the impact of the existing price projection methods’ underlying assumptions 
on model outcomes. For instance, employing risk-averse agents can reduce the sensitivity of the 

parameter look-ahead horizon because the unrealistic profit in the distant future is subject to a very high 

discount rate. Hence, the existing price projection methods, if adequately parameterized, can also 

approximate  empirical results. 

 

6. Conclusion 
This paper reviewed different investment decision making algorithms adopted in long-term agent-based 

electric power system simulation models. Furthermore, this paper compared three endogenous 

investment decision making algorithms by benchmarking against the long-run equilibrium. More 

specifically, sensitivity analyses on the assumptions adopted by the two existing investment algorithms 

have been carried out and compared with a novel investment decision making algorithm.  

Simulation results show that, in an isolated electricity market with highly stylized modeling settings, the 

investment decisions made by existing investment algorithms are highly sensitive to assumptions 

regarding certain parameters of the investment decision making algorithms. Due to the difficulties to 

properly calibrate these values, the credibility and transparency of simulation results can be influenced 

by the selection of key parameters. Therefore, it is of great importance for modelers to be well aware of 

the influences imposed by these assumptions and key parameters.  

Further analysis has shown that the core agent-based model – with the proposed micro-agent-level “cost-

minimizing future investments” price projection method adopted – is robust and  more transparent in the 

theoretical modeling settings used in this study. This core agent-based model, with the proposed price 

projection method integrated, enables agent-based modelers to mitigate the potential impacts of implicit 

assumptions (related to modeling specific behavioral aspects) and the influence of control variables (e.g., 

policy instruments), thereby paving the road towards transparent, unbiased, and robust long-term agent-

based electric power system simulation models. 

In light of the results we have presented, future work will focus on developing more elaborated 

investment decision making algorithms. It is of particular interest to consider risk-averse investment 

decision making under uncertainty and market imperfections. The uncertainties include but are not 

limited to load growth uncertainties, fuel price uncertainties, and policy uncertainties. The model will then 

be able to map from these uncertainties to price projection uncertainties, which calls for a stochastic 

generation expansion planning problem to generate a price projection distribution. Furthermore, future 

work will incorporate renewable energy sources into the modeling framework. To do so, both the NPV 

calculation and the price projection method have to be improved. On the one hand, regarding the NPV 

calculation, revenues from renewable support schemes should be further considered in addition to the 

fixed costs, variable costs and day-ahead market revenues On the other hand, the optimization problem 

will have to consider endogenously the impact of renewable support schemes. For instance, an 

investment subsidy can be modelled as a linear fixed revenue at each year for each type of renewable 

technology, this can be a one-off payment or payments that spread over several years, whereas a market-

based support scheme (e.g. green certificates market), requires additional constraints to couple with the 

day-ahead market in a two-stage optimization problem. These future improvements to the agent-based 

modeling framework will be tested in a specific case study. An interesting case study, where the impact 
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of the incorporation of renewable energy sources, agents’ decision-making under uncertainty, and market 

imperfections on models results could be demonstrated, it is the analysis of the Belgian nuclear phase-

out.  
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Appendix I. Reduced load duration curve in contrast with the original load duration curve. 

 

Fig. A1. Reduced load duration curve in contrast with the original load duration curve 
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Appendix II. Flow diagram of the agent-based model 

 

Fig. A2. Overview of the agent-based model with the novel price projection method embedded into 

investment processes. 
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Appendix III. The pathway to equilibrium (of the cases shown in Fig. 8) 

 

(a) The pathway to the equilibrium of the simulation results with “myopic agent” price projection 
method, the parameter look-ahead horizon is 5 years. 

                       

(b) The pathway to the equilibrium of the simulation results with “myopic agent” price projection 
method, the parameter look-ahead horizon is 10 years. 
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(c) The pathway to the equilibrium of the simulation results with “myopic agent” price projection 

method, the parameter look-ahead horizon is 15 years. 

 
(d) The pathway to the equilibrium of the simulation results with “myopic agent” price projection 

method, the parameter look-ahead horizon is 20 years. 
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(e) The pathway to the equilibrium of the simulation results with “exogenous scenarios for future 

investments” price projection method, the values of the scenario tree is Case (a) as shown in 

Table 4. 

 
(f) The pathway to the equilibrium of the simulation results with “exogenous scenarios for future 

investments” price projection method, the values of the scenario tree is Case (e) as shown in 

Table 4. 
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(g) The pathway to the equilibrium of the simulation results with “exogenous scenarios for future 

investments” price projection method, the values of the scenario tree is Case (i) as shown in 

Table 4. 

 
(h) The pathway to the equilibrium of the simulation results with “cost-minimizing future investments” 

price projection method, the parameter look-ahead horizon is 5 years. 
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(i) The pathway to the equilibrium of the simulation results with “cost-minimizing future investments” 

price projection method, the parameter look-ahead horizon is 10 years. 

 
(j) The pathway to the equilibrium of the simulation results with “cost-minimizing future investments” 

price projection method, the parameter look-ahead horizon is 15 years. 
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(k) The pathway to the equilibrium of the simulation results with “cost-minimizing future investments” 

price projection method, the parameter look-ahead horizon is 20 years. 

Fig. A3. The pathway to equilibrium (of the cases shown in Fig. 8). 
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