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Abstract: As the prevalence of antimicrobial resistance genes is increasing in microbes, we are facing
the return of the pre-antibiotic era. Consecutively, the number of studies concerning antibiotic resis-
tance and its spread in the environment is rapidly growing. Next generation sequencing technologies
are widespread used in many areas of biological research and antibiotic resistance is no exception. For
the rapid annotation of whole genome sequencing and metagenomic results considering antibiotic
resistance, several tools and data resources were developed. These databases, however, can differ fun-
damentally in the number and type of genes and resistance determinants they comprise. Furthermore,
the annotation structure and metadata stored in these resources can also contribute to their differences.
Several previous reviews were published on the tools and databases of resistance gene annotation;
however, to our knowledge, no previous review focused solely and in depth on the differences in the
databases. In this review, we compare the most well-known and widely used antibiotic resistance
gene databases based on their structure and content. We believe that this knowledge is fundamental
for selecting the most appropriate database for a research question and for the development of new
tools and resources of resistance gene annotation.

Keywords: antimicrobial resistance genes; antimicrobial resistance gene database; annotation of
antimicrobial resistance genes

1. Introduction

Antimicrobial resistance (AMR) means an emerging threat on humanity. Based on a
2017 report, it is estimated that ~ 700,000 deaths can be attributed to AMR worldwide [1].
As stated by a CDC study, approximately 35,000 people die in the United States yearly due
to antibiotic resistance [2]. A recent study, however, draws a more drastic picture. Based
on data from 2019, approximately 1.27 million deaths can be directly attributed to AMR
worldwide [3]. However, it is expected that the impact of AMR will further increase and
claim approximately 10 million lives yearly by 2050 [1]. The emergence of resistant mi-
crobes will not only cause untreatable primer infections, but the safe performance of routine
medical procedures (such as surgeries or chemotherapy treatment of oncological patients)
will become impossible due to the inability of a successful antibiotic prophylaxis [1,2,4].
Even though one usually associates AMR with hospitals and the misuse/overuse of an-
tibiotics by medical professionals, the influence of agriculture and the environment is no
less important [1,2,4–6]. Therefore, to tackle this global challenge the investigation of the
spread of AMR between different environments is required.

The genetic background of antibiotic resistance can be categorized into two main mech-
anisms. On one hand, AMR can arise through genetic mutations (e.g., modification of the
antibiotic target site, overexpression of efflux pumps or the antibiotic target molecule etc.),
under the selective pressure of antibiotics, or by the acquisition of specific genes conferring
resistance (e.g., genes coding enzymes that degrade the antibiotic compounds or open
alternative metabolic pathways for evading the effects of the antibiotic) through horizontal
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gene transfer (HGT) [7,8]. It is believed that the majority of antimicrobial resistance genes
(ARG) transmitted between bacteria is not the novel product of widespread antibiotic usage
by humans, but has evolved previously for a variety of functions and has been enriched
with the extensive usage of antibiotics since the mid 20th century [9–11]. As environmental
microbes have a significant role in the spread of resistance genes, the global surveillance
of ARGs in various environments is critical for understanding and combating AMR [6,11].
As bacterial AMR is currently the most important form of resistance in microbes, we will
refer it to when we mention AMR throughout this review.With next-generation genome
sequencing (NGS) technologies become widespread in recent years, they are commonly
used in AMR surveillance studies either in clinical settings [12,13], or in the agriculture
and food industry [14–17] and the environment [12,18,19]. In line with the importance of
genomic surveillance of AMR, several annotation tools and databases have been developed
for the analysis of ARG content of bacterial genomes or NGS metagenomic samples [20–35].
Table 1 presents some information on the most well-known AMR databases.

Table 1. Well-known ARG databases. The table contains the most well-known general ARG
databases with additional information (the year of the last update of the database (Last Modi-
fied), link address, where the database can be accessed (URL) and the publications associated with
the database (References).

Database Last Modified URL References

ARDB Archived, last update 2009 https://ardb.cbcb.umd.edu/
(accessed on: 15 February 2022). [20]

ARG-ANNOT Archived, last update: 2018 not available. [22]

ARGminer * 2019 https://bench.cs.vt.edu/argminer/#/home
(accessed on: 15 February 2022). [32]

CARD * 2021 https://card.mcmaster.ca/
(accessed on: 15 February 2022). [21,36,37]

FARME 2019
http://staff.washington.edu/jwallace/

farme/index.html
(accessed on: 15 February 2022).

[29]

MEGAres * 2019 https://megares.meglab.org/
(accessed on: 15 February 2022). [27,38]

Mustard 2018
http:

//mgps.eu/Mustard/index.php?id=accueil
(accessed on: 15 February 2022).

[31]

NDARO * 2021 https://www.ncbi.nlm.nih.gov/pathogens/
refgene/ (accessed on: 15 February 2022). [34,39]

PATRIC 2017 https://patricbrc.org/
(accessed on: 15 February 2022). [35,40,41]

ResFams 2015 http://www.dantaslab.org/resfams
(accessed on: 15 February 2022). [24]

ResFinder/PointFinder * 2021
https:

//cge.cbs.dtu.dk/services/ResFinder/
(accessed on: 15 February 2022).

[30,33,42]

SARG * 2019 https://smile.hku.hk/SARGs#
(accessed on: 15 February 2022). [26,43]

* Considered in this review.

ARG databases can be divided into two major types [44], some of them contain species
specific information (e.g., the MUBI database containing mutations conferring resistance
in Mycobacterium tuberculosis [45]), while others focus on ARGs from all sources (e.g.,
the CARD database [21]). However, ARG databases can differ not only in the covered
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species, but on the type of AMR mechanism as well. Some database specialize only on
acquired resistance genes, while others contain only mutations (e.g., the ResFinder [42]
database focuses on acquired resistance genes, while the PointFinder [30] database from
the same research group covers only AMR associated mutations). Unsurprisingly, however,
there are databases with information on both AMR mechanisms (e.g., the CARD [21] or
NDARO [34] databases).

The number of tools and databases focusing on AMR has rapidly grown in recent years,
and many review articles were published trying to summarize the information on these
resources. However, they put more emphasis on the different tools designed for ARG anno-
tation rather than the databases supplying the information for these tasks [18,44,46–48].

As the performance of each tool heavily relies on the underlying database [36], it is
important to understand the advantages and limitations of all databases available for the
research community. By understanding it, researchers can select the best database for their
purpose. Furthermore, this knowledge can be important for choosing the best resource
for developing new annotation tools as well. The many available resources of ARGs are
not only a blessing, but are a curse as well, as researchers need up-to-date and thorough
understanding on them to select the most appropriate one for the task at hand. This can
be rather cumbersome as each database differs in structure and logic, especially in the
way they store the annotation and metadata associated with ARG sequences. Our main
goal is to help such decision making by presenting the comparison of the resources from
several aspects. In this review, we compare the most important ARG resources available
today. Firstly, we review the structure of each database and then we directly compare
them by their content. We present this comparison from the acquired and mutation based
resistance mechanisms separately as databases can significantly differ in these regards.
Researchers might prefer one mechanism of AMR more in their study, for example, in a
study investigating environmental ARGs with potential mobilization properties, acquired
resistance genes might be the primary focus, whereas mutations can be more important in
a clinical context [49].

2. Comparison of the Structure of Databases
2.1. Databases Reviewed in this Article

From the databases summarized in Table 1, ARDB, ARG-ANNOT and ResFams are
not covered by this review as they are not actively updated (they haven’t been updated
since 2008, 2018 and 2015, respectively). Furthermore, Mustard is also not reviewed here
as it was constructed for a study of the gut resistome profiling of humans and wasn’t
dedicated as a comprehensive resource of ARGs [31]. FARME and PATRIC database are
not covered here as well. FARME is based on several metagenomic studies, which were
characterized based on their predicted ARG content and AMR phenotype; however, those
genes were not extensively validated and might contain false positives [29,48]. PATRIC
is constructed for collecting genome sequence data and associated metadata of pathogen
microorganisms [35], and necessarily relies on a specialized annotation system for the
curation of the data. The ARG annotation pipeline employed by PATRIC is based on
the NDARO and CARD databases as well as data from scientific literature, which was
reannotated by experts [41]; however, this is not available on their FTP site. Therefore,
the following six databases are covered in detail only in this review: ARGminer, CARD,
MEGARes, NDARO, ResFinder and SARG.

2.2. ARGminer

ARGminer is an ensemble database assembled from several independent ARG re-
sources. It is based on the CARD [21], ARDB [20], DeepARG [50], MEGARes [27], Res-
Finder [42], and SARG [26] databases [32]. Only the acquired resistance genes were
collected from these resources. After the acquisition of the sequences from these databases,
they have clustered them to remove duplicates and annotated them by the best match
from each of the above data resources. After the assignment of UniProt and GeneOntology
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metadata to the sequences, they guessed the best nomenclature of each gene name by a
machine learning model. However, as several differences can be found between databases,
they also utilize a crowdsourcing model to refine annotations (with a trust-validation filter
to prevent misuse).

Furthermore, they have collected mobility and pathogen predictions by fitting the
sequences to the ACLAME [51] and PATRIC [40] databases, respectively.

The database is periodically updated with the method described above and published
after the verification of ARGminer evaluators. The date of the latest update of the database,
at the time of writing of this review, is April 2019.

2.3. CARD

The Comprehensive Antibiotic Resistance Database (CARD) is a hand-curated resource
that is developed to cover the entire spectrum of ARGs [21]. Every ARG is included in the
database based on three criteria. All ARG sequences must be available in the GenBank
repository and increase the Minimal Inhibitory Concentration (MIC) in an experimental
validation setting which needs to be published in a peer-reviewed journal. Only a handful
of historical β-lactam antibiotics are an exception from the above as they do not have an
associated, peer-reviewed publication [37]. The CARD database is built around an ontology-
driven framework, where the resistance determinants and their associated metadata is
recorded in the Antibiotic Resistance Ontology (ARO) network and even the sequences
and the threshold used for their detection is stored in a specialized ontology (Model
Ontology, MO) [36]. CARD contains resistance genes and resistance mutations as well,
which are organized in a species-specific manner. Furthermore, as CARD uses a strict
curation procedure for incorporating genes, to increase sensitivity, they have developed a
special database (the CARD Resistomes & Variants module) that contains in silico validated
ARGs based on the genes stored in CARD [37]. The database is regularly updated based
on reviewing the scientific literature by expert curators, whose work is augmented by
a machine learning algorithm (CARD*Shark) that sorts scientific publications based on
reference for the process. The current version of CARD was updated in October 2021. It
is important to note that CARD is freely accessible for academic researchers only, and
commercial parties’ use is only permitted with a written license.

2.4. MEGARes

MEGARes are also an assembly of multiple resources in a way that is designed specifi-
cally for annotating metagenomic data [27]. The first version of the database was based on
ResFinder [42], ARG-ANNOT [22], CARD [21] and the Lahey Clinic β-lactamase database
curated by NCBI. During the update of the database to MEGARes 2.0 [38], further sequences
were collected from the newer versions of CARD [36] and ResFinder [42] and the NCBI Bac-
terial Antimicrobial Resistance Reference Database [39]. Furthermore, MEGARes 2.0 also
incorporates biocide- and metal resistance genes derived from the BacMet database [52].
After they have removed the duplicates from the sequences collected from these resources,
the genes were reannotated which revealed several overlapping genes between the ARG
databases and BacMet. As the purpose of the database is to form a basis of the ARG
annotation of metagenomic reads that can be used to read abundance based analysis, the
annotations are stored in the form of an acyclic graph which avoids that one read or contig
is assigned to multiple nodes [27]. The database contains antibiotic resistance genes and
mutations as well; however, the mutations are not ordered to microbial species due to
the nature of the annotation graph. The current version of the database at the time of the
writing of this review was last updated in October 2019.

2.5. NDARO

The National Database of Antibiotic Resistant Organisms (NDARO) is a compre-
hensive database dedicated to antibiotic resistance in the curation of NCBI [34]. The
resistance genes are stored in The Reference Gene Catalog, of which, the predecessor
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was the Bacterial Antimicrobial Resistance Reference Gene Database, with the RefSeq
PRJNA313047 BioProject (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047) (ac-
cessed on: 15 February 2022) storing the reference sequences [39]. This database was
constructed from the ResFinder [42], CARD [36], RAC [53] and INTEGRALL [54] databases
with extensive curation of the associated scientific literature. Since the expansion of the
database in 2021, AMR mutations, general stress response genes and virulence genes
are also curated within NDARO for the clinically important pathogens [34]. NDARO is
updated regularly; the latest database version was released in December 2021.

2.6. ResFinder/PointFinder

ResFinder [42] and PointFinder [30] are dedicated tools for acquired resistance genes
and resistance mutations, respectively. These were separate AMR data resources; how-
ever, since ResFinder 4.0, they are developed under the same project [33]. ResFinder was
originally developed on the basis of the Lahey Clinic β-lactamase database, ARDB [20],
and an extensive literature review. To develop a more comprehensive resource of AMR
determinants, the developers of ResFinder constructed a database dedicated to muta-
tions conferring resistance only, named PointFinder. During the concatenation of the two
databases under the ResFinder 4.0 project, not only was an extensive expert curation ap-
plied to the data, but phenotype prediction tables were also constructed to help researchers
connect genotype information with potential phenotypic traits. With regular updates,
the latest version of ResFinder and PointFinder was released in September and February
2021, respectively.

2.7. SARG

The Structured ARG reference database (SARG) is a hierarchically constructed database [26]
based on the CARD [21] and ARDB [20] data resources. They only retained the acquired
resistance genes from these databases, and after duplicate removal, they have ordered the
genes to a two-level hierarchical architecture. The highest level of this hierarchy is the
type of the resistance indicating the antibiotic that the genes confer resistance to, while
the lower level is the class of the genes. In 2018, the developers of SARG expanded the
database by ARG homologs found by aligning the NCBI nt database to SARG [43]. They
are regularly updating the database in a similar manner, with the latest aired in January
2022. However, they have not introduced any new ARGs since the 2019 version. SARG,
similarly to CARD, is only accessible freely for academic purposes, and a written permit is
necessary for commercial use.

3. Comparison of the Database Contents
3.1. Number of Sequences and ARGs in the Databases

To compare the ARG content of the different databases, we first matched the number of
sequences stored in them and the associated count of unique genes (Figure 1). Figure 1 only
shows resistance genes and biocide resistance genes (to maintain comparability between
databases), and virulence or metal resistance genes were omitted. The number of unique
resistance genes was counted based on the names associated with the particular sequence
(i.e., if only the gene family name was given for multiple variants, then only the gene
family name was included in the gene count, but if variants had unique names, they
were counted separately). In the case of the ARGminer, we have found several different
nomenclature forms of the same ARGs, which is not surprising as one of the main goals of
the database was to collect and standardize this information with the aid of crowdsourcing.
However, as we did not intend to make such standardization through this review, it might
be possible that the same gene was counted multiple times in the case of the ARGminer in
Figure 1. We tried to reduce the risk of this bias by converting gene names to lowercase
when comparing them, as usually the ARG name nomenclature differences concerned only
the casing of the letters. Furthermore, we have found 13, 9 and 3 duplicate sequences in
the NDARO, ResFinder and MEGARes databases, respectively (the number of sequences
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in Figure 1 is corrected for the presence of duplicates). The presence of duplicate genes
and corresponding sequences in the database might cause overestimation of those genes
if the user does not pay enough attention while reviewing the results. In Figure 1, a clear
difference can be observed between CARD and the rest of the databases in the relationship
between the number of unique sequences and corresponding genes. One might expect
that with keeping one reference sequence for each gene, CARD is prone to producing
false negatives in homology searches; however, this is overcome in CARD with the use of
individual detection threshold for genes stored in the Model Ontology [36].
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Figure 1. ARG and sequence content of the databases. Only antibiotic and biocide resistance genes
were considered for the plot. For each database on the x axis, the number of unique sequences and the
corresponding number of unique genes were determined. The y axis represents the number of genes
and sequences. Red bars show the gene number while blue bars represent the number of sequences
stored in each database.

3.2. Gene Count of Antibiotic Classes in Each Database

Figure 2 shows the differences in the number of antibiotic resistance genes (without
those conferring resistance through mutations) associated with the antibiotic classes stored
in the respective database for CARD and ResFinder. We have selected these two due to the
extensive differences in the depth of the antibiotic classification. For the rest of the databases
(MEGARes, NDARO and SARG), the same figures can be found in the Supplementary File
S1. In the case of the ARGminer, we could not construct such figure as notable differences
were found in some cases between the antibiotic classifications of different records for the
same genes. In either of the above figures, the respective classification scheme of each
database was used. As one would expect, aminoglycoside and β-lactam antibiotics are
the most popular categories in either of the databases. However, there is a significant
difference in the classification depth of β-lactams between the CARD and other resources.
In CARD, separate β-lactam groups have their respective categories (such as penems,
penams, carbapenems, cephalosporins etc.), while others label them only as β-lactams.
Furthermore, the presence of several collective categories in the MEGARes database is
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notable (e.g., multi-drug resistance or drug and biocide resistance, etc.). The reason for the
presence of such categories is due to the acyclic form of the MEGARes annotation graph,
which does not allow the same gene to link to multiple groups. These figures clearly show
that the most comprehensive antibiotic classification of the genes can be expected in the
case of the CARD database; however, the differences also emphasize that expert knowledge
is important for understanding the results of ARG annotation and one cannot expect to
rely entirely on the output of a database.
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Figure 2. Number of unique genes for each antibiotic class stored in CARD and ResFinder. Bars
represent the number of genes in each unique antibiotic or biocide categories, where colors are
associated with the specific antibiotics themselves. As one gene can confer resistance to multiple
antibiotics, it is possible that the same gene is counted for two or more antibiotics. The plots show the
data for CARD (A) and ResFinder (B), respectively.
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3.3. Microbial Genus with Corresponding AMR Mutations in the Databases

Next, we compared the number of genes conferring resistance through mutations for
microbial species in each database (Figure 3). Among the databases covered in depth in
this review, only CARD, MEGARes, NDARO and PointFinder (element of ResFinder 4.0)
comprise such information. Although MEGARes also has information on mutations causing
resistance, connecting them to species is not applicable in this case due to the nature of
the annotation architecture. In comparing the microbes for which data is stored in each
database, we had to find a taxonomical level that can achieve a standardized comparison
between all databases. We decided to count genes in the genus level. We had to diverge
from this principle only in one case, where the arbitrary group propionibacteria had to be
used instead of the corresponding genus. For simplicity, despite this exception, we further
refer to the groups of microbes used for the classification in Figure 3 as genus.
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Figure 3. Number of genes conferring resistance through mutations for each microbial genus in
CARD, NDARO and MEGARes databases. Genes conferring resistance through mutations was
calculated at the genus level for each microbe stored in each database. Only one group could not be
summarized at the genus level (propionibacteria). Microbial genus is on the x axis and the number of
genes associated with each group in the database is represented by the y axis. Rows show the data
separately for each database. Columns are colored by the microbial genus.

It is upfront in Figure 3 that CARD contains mutations for the highest number of genus
(37 genuses) between the three databases, and it even has 19 non-species-classified genes as
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well. In contrast, NDARO store genes for 11 genus while PointFinder stores only for 10. Not
every genus considered by the databases belongs to bacteria. CARD stores two genes for
Chlamydomonas algae and two for the archaea genus Halobacterium, while PointFinder has
six genes for Plasmodium protozoa. Those genus considered by the NDARO and PointFinder
databases are primarily human pathogens, especially those among the critically important
bacteria for human health, determined by the WHO in 2017 [55–57] (ESKAPE pathogens:
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species). Furthermore, NDARO has 11 genes
enrolled to the Salmonella genus, one of the most important foodborne pathogens and
often associated with resistance conferring mutations [58]. PointFinder has a significant
collection of Mycobacterium genes (36 genes), which is even more notable in CARD with
63 genes associated with this genus. Pathogens from the Mycobacterium genus, especially
M. tuberculosis is one of the most important among disease causing bacteria that develops
resistance through mutations. Furthermore, as it needs long incubation times for culturing,
whole-genome sequencing based approaches are accountable alternatives [59].

CARD database extremely differs from the other data resources reviewed here, due to
the high number of microbial genus it collects data for and the number of genes it stores
considering AMR mutations. These properties make it especially suitable for AMR mutation
screening in a wide variety of study settings; this is even in the case of environmental AMR
surveillance as it stores mutations for typical environmental genus such as Thermus or
Halobacterium. A notable number of genes is stored in the database for the Mycolicibacterium
genus (4 genes), which is in the forefront as a potential bacterium for degrading plastic
pollutants [60].

4. Conclusions

Previously, several ARG database were constructed to form the bases of ARG anno-
tation of whole-genome sequencing and metagenomic samples. With the advent of NGS,
their significance is even more profound, and they became an important augmentation of
previous phenotypic screening based studies. We compared the accessible and regularly
updated ARG databases in this review, which have new versions released lately. The
main focus in this review was on the architecture and content of the different databases, in
contrast with previous studies mainly focusing on the tools used for annotation. However,
understanding how databases are constructed and the differences between them is crucial
for every researcher in the field of AMR, so they can use the most powerful tool for their
research question. Based on the differences outlined in this review, it seems that CARD
and NDARO are prominent among the databases. NDARO contains the most acquired
resistance genes; however, CARD comprises of a similarly high number of genes, making
both of them a suitable tool for ARG annotation. In the case of mutations conferring
resistance, however, CARD dominates other tools. We advise that in cases where mutations
or both type of resistance is considered, CARD should be the number one data resource.
Otherwise, choosing NDARO can be a similar or somewhat preferable choice over CARD
considering its higher acquired resistance gene content. However, usually one is interested
in resistance genes and mutations as well and only in special cases considers acquired
resistance only (e.g., when one is interested in environmental resistance determinants
possible for transmission to pathogenic bacteria). Furthermore, one should also consider
the annotation tool when selecting the most appropriate database. CARD has an advantage
in this regard, as its annotation tool (RGI) is accessible through a web interface or can be
downloaded as command line software to a computing cluster as well. In contrast, NCBI’s
AMRFinderPlus is exclusively accessible as a local tool for linux-based operating systems
only, thus requiring specialized bioinformatic skills to operate it. However, not only tech-
nical aspects can lead the decision for selecting the most appropriate tool for a study. For
example, deep learning approaches are usually considered to be superior in detecting novel
resistance gene variants [50], but they rely on the database they were built on (e.g., the latest
version of DeepARG was built on the ARGminer database). Although there are annotation
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tools applicable with any user-defined database [23,28]. The comparison of such tools,
however, is beyond the scope of this review. In conclusion, CARD might be the first choice
database in most cases, but the best option can differ based on research questions.

Furthermore, the differences in antibiotic classification of the databases emphasize the
importance of expert knowledge for interpreting the results. Moreover, as some databases
are accessible for non-academic parties only with a written permit, it is important for one
to be familiar with the terms of using these resources.

5. Future Perspective

We believe that during the evaluation of the performance of different ARG annotation
tools, differences in the underlying database should also be considered. Moreover, as major
differences can be observed in ARG nomenclature between databases, a standardization
procedure would be advantageous for enabling direct comparisons between results gener-
ated from different resources. However, such standardization is not only advantageous
for the comparability of ARG data resources. One solution for the issue was proposed by
ARGminer in the form of crowdsourcing [32] which could standardize the nomenclature
within one framework. However, for a unified conclusion, a development of ground rules
would be necessary, as was proposed for other issues of ARG nomenclature [61,62].
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