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Abstract

Background: When developing a prediction model for survival data it is essential to validate its performance in

external validation settings using appropriate performance measures. Although a number of such measures have

been proposed, there is only limited guidance regarding their use in the context of model validation. This paper

reviewed and evaluated a wide range of performance measures to provide some guidelines for their use in practice.

Methods: An extensive simulation study based on two clinical datasets was conducted to investigate the

performance of the measures in external validation settings. Measures were selected from categories that

assess the overall performance, discrimination and calibration of a survival prediction model. Some of these

have been modified to allow their use with validation data, and a case study is provided to describe how

these measures can be estimated in practice. The measures were evaluated with respect to their robustness

to censoring and ease of interpretation. All measures are implemented, or are straightforward to implement,

in statistical software.

Results: Most of the performance measures were reasonably robust to moderate levels of censoring. One

exception was Harrell’s concordance measure which tended to increase as censoring increased.

Conclusions: We recommend that Uno’s concordance measure is used to quantify concordance when there are

moderate levels of censoring. Alternatively, Gönen and Heller’s measure could be considered, especially if censoring

is very high, but we suggest that the prediction model is re-calibrated first. We also recommend that Royston’s D is

routinely reported to assess discrimination since it has an appealing interpretation. The calibration slope is useful for

both internal and external validation settings and recommended to report routinely. Our recommendation would be

to use any of the predictive accuracy measures and provide the corresponding predictive accuracy curves. In addition,

we recommend to investigate the characteristics of the validation data such as the level of censoring and the

distribution of the prognostic index derived in the validation setting before choosing the performance measures.
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Background

Prediction models are often used in the field of health-

care to estimate the risk of developing a particular health

outcome. These prediction models have an important

role in guiding the clinical management of patients and

monitoring the performance of health institutions [1, 2].

For example, models have been developed to predict the

risk of in-hospital mortality following heart valve surgery

and to predict the risk of developing cardiovascular

disease within the next 10 years [3, 4]. Given their

important role in health research, it is essential that the

performance of a prediction model is evaluated in data

not used for model development, using appropriate stat-

istical methods [5, 6]. This model evaluation process is

generally termed ‘model validation’ [7, 8]. The general

idea of validating a prediction model is to establish that

it performs well for new patients. Different types of valid-

ation process have been discussed in the literature [5–8].
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The most commonly used processes include (i) splitting a

single dataset (randomly or based on time) into two parts,

one of which is used to develop the model and the other

used for validation, (internal or temporal validation) and

(ii) validating the model using a new dataset collected

from a relevant patient population in different centres

(external validation). Of the two approaches, external

validation investigates whether a prediction model is

transportable (or generalisable) to new patients.

When validating a prediction model, the predictive

performance of the model is commonly addressed by

quantifying: (i) the ‘distance’ between the observed and

predicted outcomes (overall performance); (ii) the ability

of the model to distinguish between low and high risk

patients (discrimination); (iii) the agreement between the

observed and predicted outcomes (calibration) [8].

Performance measures based on these concepts are well

established for risk models for binary outcomes [1, 9, 10],

but that is not the case for risk models for survival out-

comes (survival prediction models) where censoring

complicates the validation process [6].

Several performance measures have been suggested for

use with survival prediction models. However, a few of

these are not appropriate for use with validation data

without modification. Also, some require specification of

a clinically appropriate time-point or region to match

the aims of the validation study. Some of these perform-

ance measures have been reviewed previously [11–17],

although only two of the reviews were in the context of

model validation. These were Hielscher et al. who

reviewed ‘overall performance’ measures, and Schmid and

Potapov who reviewed discrimination measures [12, 16].

Consequently, it is still unclear which performance mea-

sures should be routinely used in practice when validating

survival prediction models using external data.

A good performance measure should be unbiased in

the presence of censoring in the validation data. If this

were not the case, the level of censoring would affect the

evaluation of model performance and a high level of

censoring might lead to an over-optimistic verdict

regarding the performance of the prediction model. In

addition, a good measure should be straightforward to

interpret and, ideally, should be easy to implement or

available in widely used software.

The aim of this paper is to review all types of performance

measures (overall performance, discrimination and

calibration) in the context of model validation and to

evaluate their performance in simulation datasets with

different levels of censoring and case-mix. Where

necessary, measures have been modified to allow their

use with validation data and a case study is provided

to describe how these measures can be estimated in

practice. Recommendations are then made regarding

the use of these measures in model validation.

Methods

Data

Two datasets, which have previously been used to

develop clinical prediction models, were used as the

basis of the simulation study. They differ with respect to

event rates, level of censoring, types of predictors and

amount of prognostic information.

Breast cancer data

This dataset contains information on 686 patients diag-

nosed with primary node positive breast cancer from the

German Breast Cancer Study [18]. The outcome of

interest is recurrence-free survival time and the dataset

contains 299 (44%) events. The median follow-up time is

3 years. The predictors are age, number of positive

lymph nodes, progesterone receptor concentration,

tumour grade (1–3), and hormone therapy (yes/no).

These data have been analysed previously by Sauerbrei

and Royston and their Model III was used as the basis

for simulation [19]. That is, the continuous predictors

were all transformed using fractional polynomials (FPs)

and tumour grade was dichotomised (1/2–3). Number of

positive lymph nodes and progesterone receptor concen-

tration were each modelled using one FP term whereas

age was modelled using two FP terms.

Hypertrophic cardiomyopathy data

This dataset contains information on a retrospective

cohort of 1504 patients with hypertrophic cardiomyop-

athy (HCM) from a single UK cardiac centre [20]. The

outcome of interest is sudden cardiac death or an

equivalent event, i.e., a composite outcome and the dataset

contains just 84 (6%) events. The median follow-up

time is over 6 years. The predictors of interest are

age, maximal wall thickness, left atrial diameter, left

ventricular outflow gradient, family history of sudden

cardiac death (yes/no), non-sustained ventricular

tachycardia and unexplained syncope (yes/no). The

prediction model produced by O’Mahony et al. was

used as the basis for simulation [20]. In particular,

maximal wall thickness was modelled using linear and

quadratic terms.

Prediction models for survival outcomes

Prediction models for survival outcomes are com-

monly developed using the Cox proportional hazards

model and hence this model was used in the simula-

tions [5, 21]. The Cox model

h tjxð Þ ¼ h0 tð Þ exp ηð Þ

models the hazard h(t|x) at time t as a product of a

nonparametric baseline hazard h0(t) and the exponential

of the prognostic index η = β1x1 +… + βpxp = β
T
x. The
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latter is a linear combination of p predictor values with

regression coefficients β1, …, βp providing weights. The

predictive form of this model can be written in terms of

the survival function as

S tjxð Þ ¼ S0 tð Þ exp ηð Þ

where S(t|x) is the probability of surviving beyond time t

given predictors x, and S0(t) is the baseline survivall

function at time t, where S0(t) = exp[−∫0
th0(u)du]. To

make predictions at a specific time-point τ, one requires

estimates β̂ and Ŝ0 τð Þ.

Performance measures for survival prediction models

Measures were selected for investigation on the basis of

their performance in previous reviews [11–16], their

ease of interpretation, and their availability, or ease of

implementation, in statistical software. The selected

performance measures are now described in the context

of model validation. All measures were implemented in

Stata using either built-in or user-written routines [22].

Measures of overall performance

Six measures of ‘overall performance’ were selected, of

which four are based on predictive accuracy and two on

explained variation [14]. These ‘R2-type’ measures typic-

ally take values between 0 and 1, though negative values

may be possible in validation data if the prediction

model is out-performed by the null model that has no

predictors. This issue is discussed later.

The measures based on predictive accuracy were Graf

et al’s R2 measure and its integrated counterpart [23],

Schemper and Henderson’s R2 measure [24], and a

modified version of the latter based on Schmid et al.

[25]. The measures based on explained variation were

Kent and O’Quigley’s R2
PM [26], and Royston and

Sauerbrei’s R2 version of their separation statistic D

[27]. Nagelkerke’s R2 measure was not considered due

to its known poor performance in the presence of

censoring [26, 28].

Graf et al’s R2BS and R2IBS
The R2

BS measure proposed by Graf et al. is based on

quantifying prediction error at a time-point τ using a

quadratic loss function [21]. Specifically, RBS
2 (τ) = 1 −

BS(τ|X)/BS(τ) where

BS τjXð Þ ¼

Z

X

E I T > τð Þ− S ̂ τjXð Þ
� �2

� �

dFX Xð Þ

is the prediction error at time τ for the prediction model

and I(T > τ) is the individual survival status at this time-

point. Similarly, BS(τ) is the prediction error for the null

model at the same time-point, and is based on the sur-

vival function Ŝ τð Þ from the null model. The integrated

version, RIBS
2 (τ), is defined in a similar way to RBS

2 (τ) but

involves integrating both BS(t|x) and BS(t) over the

range [0, τ].

The calculation of prediction errors for both of these

models in validation data requires estimates of the corre-

sponding baseline survival functions. This, however, is

rarely provided by model developers [6]. One solution

might be to estimate these survival functions by re-

fitting the Cox model with the PI as the sole predictor in

the validation data. This is the approach that we took

when calculating R2
BS and R2

IBS, and the R2
SH and R2

S mea-

sures described below.

Schemper and Henderson’s R2SH and Schmid et al’s R2S
The R2 measure proposed by Schemper and Henderson

(denoted here by R2
SH) is similar to Graf et al’s R2

IBS but

is based on an absolute loss function [24]. This loss

function was chosen to reduce the impact of poorly pre-

dicted survival probabilities, which are likely to occur in

the right tail of the survival distribution. Specifically,

RSH
2 (τ) = 1 −D(τ|x)/D(τ), where

D τjxð Þ ¼ 2

Z τ

0

E S tjXð Þ 1−S tjXð Þð Þ½ �f tð ÞdtW τð Þ

is the prediction error at time τ for the prediction model

and W(τ) = 1/∫0
τf(t)dt is a weight function to compensate

for the measure being defined only on (0, τ). Similarly,

D(τ) is the prediction error for the null model.

Schmid et al. prove that Schemper and Henderson’s

estimator of D(τ|x) and D(τ) is not robust to model mis-

specification and suggest an improved estimator [25].

We estimated a summary measure, denoted by R2
S, based

on this estimator.

Kent and O’Quigley’s R2PM
Kent and O’Quiqley’s proposed their R2

PM measure for

the Cox model based on the definition of R2 for linear

regression [26]. That is,

R2
PM ¼

Var ηð Þ

Var ηð Þ þ σ2�

seeks to quantify the proportion of variation in the out-

come explained by the predictors in the prediction

model, where σϵ
2 ≅ π2/6 is the variance of the error term

in an equivalent Weibuill model [13].

This measure does not use the observed survival times

directly in its calculation and instead relies on the pre-

diction model being correctly specified. As a result, R2
PM

could be misleading if an apparent strong relationship

between the outcomes and predictors in development

data is not reproduced in validation data. To overcome

this deficiency, we suggest re-calibrating the prediction

model to the validation dataset before calculation of
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R2
PM. This procedure will tend to reduce the value of

R2
PM and is described later.

Royston and Sauerbrei’s R2D
Royston and Sauerbrei’s R2

D is similar to R2
PM but is based

on the authors’ own D statistic, a measure of prognostic

separation described later. That is,

R2
D ¼ D2=κ2

D2=κ2þσ2�
,

where κ ¼
ffiffiffiffiffiffiffiffi

8=π
p

[27]. The ratio D2/κ2 is an estimator of

Var(η), provided that η is Normally distributed.

Measures of discrimination

Four measures of discrimination were selected, of which

three are based on concordance and one on prognostic

separation. Discrimination measures assess how well a

model can distinguish between low- and high- risk

patients, and concordance measures in particular quan-

tify the rank correlation between the predicted risk and

the observed survival times. Concordance measures usu-

ally take values between 0.5 and 1, where a value of 0.5

indicates no discrimination and a value of 1 indicates

perfect discrimination. The selected concordance mea-

sures were those of Harrell [29], Uno et al. [30], and

Gönen and Heller [31], and the selected prognostic separ-

ation measure was Royston and Sauerbrei’s D statistic [27].

Harrell’s CH
The concordance probability is the probability that of a

randomly selected pair of patients (i,j), the patient with

the shorter survival time has the higher predicted risk.

Formally,

C ¼ P ηi > ηjjT i < T j

� �

where ηi and ηj are the prognostic indices for patients i

and j, and Ti and Tj are the corresponding survival

times. Harrell’s estimator CH considers all usable pairs of

patients for which shorter time corresponds to an event

and estimates CH as the proportion of these pairs for

which the patient with the shorter survival time has the

higher predicted risk [31]. A modified version of this

estimator, CH(τ), restricts the calculation to include just

those patient pairs where Ti < τ and may provide more

stable estimates [29, 30]. This truncated version may also

be preferred if one were primarily interested in the

discrimination of a prediction model over a specified

period, for example within 5 years [20].

Uno et al’s CU
In the presence of censoring CH and CH(τ) are biased,

even under independent censoring, as they ignore patient

pairs where the shorter observed time is censored [15, 32].

Due to this deficiency, Uno et al. [30] proposed a modified

estimator CU(τ) that uses weightings based on the prob-

ability of being censored. Furthermore, like CH(τ), the cal-

culation may also be restricted to include just those

patient pairs where Ti < τ. Uno et al. found that their esti-

mator was reasonably robust to the choice of τ, but noted

that the standard error of the estimate could be quite large

if τ were chosen such that there was little follow-up or few

events beyond this time point [29].

Gonen and Heller’s CGH
Gönen and Heller proposed an alternative estimator

CGH based on a reversed definition of concordance [30],

K ¼ P T i < T jjηi > ηj

� �

;

which is the probability that of a randomly selected pair of

patients (i, j), the patient with the higher predicted risk has

the shorter survival time. To avoid bias caused by

censoring, their estimator is a function of the model

parameters and the predictor distribution and assumes

that the proportional hazards assumption holds.

As with R2
PM, CGH does not use the observed event

and censoring times in its calculation and relies on the

prediction model being correctly specified [15]. There-

fore, we suggest re-calibrating the prediction model to

the validation dataset before calculating CGH.

Royston and Sauerbrei’s D

The D statistic is a discrimination measure that quantifies

the observed separation between subjects with low and

high predicted risk [27]. Specifically, D estimates κσ,

where σ is the standard deviation of the prognostic

index and κ ¼
ffiffiffiffiffiffiffiffi

8=π
p

. The scale factor κ enables D to

be interpreted as the log hazard ratio that compares

two equal-sized risk groups defined by dichotomising

the distribution of the patient prognostic indices at

the median value.

Measures of calibration

One calibration measure was selected, the commonly

used calibration slope proposed by van Houwelingen

[33], which is based on the analogous measure for binary

outcomes [34, 35].

Calibration slope

The calibration slope is simply the slope of the regres-

sion of the observed survival outcomes on the predicted

prognostic index [33]. It is estimated by fitting a Cox

model to new survival outcomes with the predicted

prognostic index, η ̂, as the sole predictor in the model
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h tjxð Þ ¼ h0 tð Þ exp α1 η ̂ð Þ:

Values of α ̂1 close to 1 suggest that the prediction

model is well calibrated. Moderate departures from 1

indicate that some form of model re-calibration may be

necessary. In particular, α ̂1≪1 suggests over-fitting in the

original data with predictions that may be too low for

low risk patients or too high for high risk patients.

A brief summary of the performance measures is given

in Table 1.

Results

Case study to illustrate the performance measures

A case study is now presented using the breast cancer

data in order to describe how the performance measures

may be evaluated in a validation setting. The dataset was

split randomly into two parts with two thirds of the data

used for model development and one third used for

model validation. A Cox model was fitted to the devel-

opment data using the same predictors as in Sauerbrei

and Royston’s Model III [19] and the predicted prognos-

tic index was calculated for all patients in the validation

data using the estimated regression coefficients β ̂ . The

values of all performance measures are shown in Table 2

with 95% confidence intervals estimated using the boot-

strap techniques based on 200 bootstrap samples. For

those measures that require specification of a time-point

τ, 3 years was deemed to be clinically appropriate. This

was also the median follow-up time.

The estimated prediction errors used to estimate R2BS and

R2
IBS are shown in Fig. 1a. The errors for the prediction and

null models are similar for the first 12 months after which

the superiority of the prediction model is evident. The cor-

responding prediction errors used to estimate R2
SH appear

similar in shape although the magnitude of the errors are

larger due to the use of an absolute loss function (Fig. 1b).

The prediction errors used to estimate R2
S are almost indis-

tinguishable from those used to estimate R2SH (results not

shown). R2
IBS, R

2
SH and R2

S were estimated after averaging

the prediction errors over the first 3 years. As expected R2
SH

and R2
S are very similar, and both are slightly larger than

R2
IBS. R

2
BS was estimated using just the prediction errors at

3 years in Fig. 1a. Its value is larger than that of R2
IBS as the

separation between the prediction errors is close to its max-

imum at this time-point.

To estimate R2
PM in the valids first re-calibrated for rea-

sons explained earlier. That is, the Cox model h tj η ̂ð Þ ¼ h0
tð Þ exp α η̂ð Þ was fitted to the validation data, where η ̂

is the predicted prognostic index calculated using the

regression coefficients estimated in the development

data. R2
PM was then estimated using α ̂

2
Var η ̂ð Þ rather

than Var η ̂ð Þ . No such re-calibration is required to

estimate R2
D since, unlike R2

PM, it uses the observed

survival outcomes in the validation data. The values

of R2
PM and R2

D are very similar and noticeably larger

than the measures based on predictive accuracy

(Table 2). We note that a naïve calculation (without

re-calibration) of R2
PM would have produced a much

larger value of 0.292, which would have provided an

over-optimistic quantification of the model’s predictive

performance.

The concordance measures CH and CU were estimated

using all usable pairs in which shorter time corresponds

to an event, and CGH was estimated after re-calibrating

the prediction model to the validation data as described

above. The values of these 3 measures are all reasonably

similar and would lead to similar conclusions in practice

(Table 2). A naïve estimation of CGH (without re-

calibration) would have produced a much larger value of

0.696. Restricting the estimation of CH and CU by

censoring survival times in the validation data at 3 years

produces slightly higher values for both measures,

suggesting that the risk model has slightly better

discrimination when considering survival over just the

first 3 years. The D statistic suggests that the prediction

model provides a reasonably high amount of prognostic

separation (Table 2). Specifically, if one were to form

two risk groups of equal size in the validation data, then

the corresponding hazard ratio would be exp(0.998) = 2.71.

The calibration slope estimate of 0.76 (equal to the α ̂ esti-

mated during the re-calibration process above) suggests

that the prediction model has been slightly over-fitted. We

note that, in practice, one can detect and adjust for model

over-fitting during model development.

The selected measures all provide useful information.

R2
IBS, R

2
SH, and R2

S, provide a summary measure quantify-

ing the improvement in predictive accuracy offered by

the prediction model over the null model. The R2
BS

measure is more appropriate if one is interested in

predictive accuracy at a specific time-point, which is

sometimes the case in practice. The prediction error

curves provide additional insight into the performance

of the prediction model at different time-points. R2
PM

and R2
D, which both quantify explained variation,

produced very similar values though calculation of R2
PM

required a re-calibration of the prediction model. The

concordance measures CH, CU and CGH produced

similar estimates, though calculation of CGH required

the prediction model to be re-calibrated. Additionally, if

required, the calculation of CH and CU can be restricted

which may be appropriate if one wishes to quantify the

discrimination of a prediction model before a specified

time-point. Finally, the D statistic produces an intuitive

quantification of prognostic separation and the calibra-

tion slope provides a succinct indication of whether the

prediction model is over-fitted or not.
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Evaluation of the performance measures using simulation

Following the case study, a simulation study was per-

formed to investigate how robust the measures are with

respect to both censoring and the characteristics of the

validation data. The simulation design is now described.

Simulation scenarios

The simulation study is based on the breast cancer and

HCM datasets described earlier. For both datasets, de-

velopment and validation datasets were generated by

simulating new outcomes based on a true model and

combining these with the original predictor values.

Models were fitted in the development data and the

performance measures estimated in the validation data.

Measures which require a choice of time-point τ (including

CH and CU) used 3 years for the breast cancer data and

5 years for the HCM data. These values were chosen as

they are close to the respective median follow-up times in

the original datasets and are conventional choices for sur-

vival data. In practice, the choice of time-point would be

clinically motivated and based on the underlying research

question.

The performance measures were investigated over a

range of scenarios to mimic real situations. For all simu-

lations, validation data were constructed to have one of

three different risk profiles (denoted low, medium, and

Table 1 Summary of the performance measures

Types of
Measures

Measures Characteristics Range and Interpretation Software

Overall Performance R2BS Assesses relative gain in predictive
accuracy quantified using at a specific
time point based on squared error
loss function.

Range: 0 to 1
Interpretation: % gain in predictive
accuracy at a single time point
relative to the null model.

Available in SAS and R
and easy to implement
in other software

R2IBS Same approach as R2BS but provides
a summary over a range of time period.

Range: same as R2BS Interpretation:
% gain in predictive accuracy over
a range of time period relative to
the null model.

Available in SAS and R and
easy to implement in other
software

R2SH Assesses relative gain in predictive
accuracy quantified based on absolute
error loss function. It is not robust to
model mis-specification.

Same as R2IBS Available in SAS and R and
easy to implement in other
software

R2S Modified version of R2SH which is
robust to model mis-specification.

Same as R2IBS Available in SAS and R
and easy to implement
other software

R2PM Measures the variation in the outcome
explained by the covariates in the model.
Assume that the model is correctly
specified. Requires re-calibration in
the validation data.

Range: 0 to 1
Interpretation: % of explained
variation by the model.

Easy to implement in
any software

R2D Measures the relative gain in prognostic
separation quantified by the D statistic.
Assume that the PI is normally distributed.

Range: 0 to 1
Interpretation: % of prognostic
separation explained by the model.

Available in Stata and
easy to implement in
other software

Discrimination CH Rank order statistic based on usable
pairs in which shorter time corresponds
to an event.

Range: 0.5 to 1
Interpretation: probability of correct
ordering for a randomly selected
pair of subjects.

Available in R and Stata
and easy to implement
in software

CU Rank order statistic based on usable pairs.
Inverse probability weighting is used to
compensate for censoring.

Same as CH. Available in R and easy
to implement in other
software

CGH Rank order statistic based on all patient
pairs. Assumes that Cox PH model is
correctly specified.Requires re-calibration
in the validation data.

Same as CH. Available in R and Stata and
easy to implement in other
software

D Quantifies the observed separation
between low and high risk groups.
Assumes that PI is normally
distributed.

Range: 0 to ∞

Interpretation: log hazard ratio between
two equal sized prognostic groups
fromed by dichotomising the PI
at its median..

Available in Stata and easy
to implement in other
software

Calibration Cal Slope Regression slope of the PI and assesses
the agreement between the observed
and predicted survival..

Range: −∞ to ∞

Interpretation: a value of 1 suggests
perfect calibration and a value much
lower than 1 suggest overfitting.

Easy to implement in
any software
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high). The use of different risk profiles reflect the fact

that, in practice, the characteristics of the patients in the

development and validation data may differ [36]. In par-

ticular, the event rate for patients in the validation data

may be higher or lower than that for patients in the de-

velopment data due to differences in case-mix.

Four levels of random censoring were considered for

the validation datasets (0, 20, 50, and 80%) which

combined with the risk profiles, results in a total of 12

validation scenarios for each clinical dataset. The devel-

opment datasets were generated with no censoring.

5,000 pairs of development and validation datasets were

generated for each scenario.

Generating new survival and censoring times

Survival times were generated using the Weibull distri-

bution as below

ts ¼
− log uð Þ

exp ηð Þ

� �1
γ

where η and γ are the observed regression prognostic

indices and shape parameter respectively (both used

here as the proxy of the true values) and u is a uniformly

distributed random variable on (0, 1). For the breast can-

cer data, the prognostic indices and shape parameter

were obtained by fitting a Weibull proportional hazards

model using the same predictors as in Sauerbrei and

Royston’s Model III [19]. For the HCM data, the prog-

nostic indices were based on the regression coefficients

estimated by O’Mahony et al. [20] and just the shape

parameter was estimated using a Weibull model with

the prognostic index specified as an offset.

To introduce random censoring, additional Weibull dis-

tributed censoring times were simulated using tc = (−log(u)/

λ)1/γ where different choices of the scalar λ were used to

give different proportions of censoring. A subject was con-

sidered to be censored if their censoring time was shorter

than their survival time.

Generating validation data with different risk profiles

The three different risk profiles were created in the

validation data, by first splitting the patients into tertile

risk groups based on their true prognostic index η. It is

assumed that the first tertile group consists of low-risk

patients, the second medium risk, and the third high-

Table 2 Values of the performance measures estimated in the

breast cancer validation data

Measure Value (95% CI)

R2IBS(3) 0.107 (0.036 to 0.178)

R2SH (3) 0.130 (0.089 to 0.171)

R2S (3) 0.128 (0.090 to 0.167)

R2BS(3) 0.141 (0.033 to 0.250)

R2PM 0.194 (0.094 to 0.294)

R2D 0.192 (0.093 to 0.291)

CH 0.674 (0.622 to 0.726)

CU 0.666 (0.610 to 0.722)

CGH 0.659 (0.616 to 0.701)

CH(3) 0.685 (0.633 to 0.737)

CU(3) 0.676 (0.619 to 0.734)

D 0.998 (0.672 to 1.323)

Cal. Slope 0.764 (0.531 to 0.996)

Fig. 1 Prediction errors over time for the breast cancer risk model for: a) prediction error (based on a quadratic loss function) for calculating R2IBS
and R2BS; b) prediction error (based on an absolute loss function) for calculating R2SH
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risk patients. The three risk profiles for the validation

data were created in the following way:

a) low risk profile: 80% of the patients were sampled

(without replacement) from the low-risk group, 50%

from the medium-risk group, and 20% from the

high-risk group;

b) medium risk profile: 50% of the patients were

sampled from the low-risk group, 50% from the

medium-risk group, and 50% from the high-risk

group;

c) high risk profile: 20% of the patients were sampled

from the low-risk group, 50% from the medium-risk

group, and 80% from the high-risk group.

This sampling procedure was performed before gener-

ating each validation dataset and resulted in validation

datasets that were half the size of the original datasets.

In contrast, no sampling of patients was performed

when generating the development datasets; all patients

were used.

The prognostic indices were approximately normally

distributed for all risk profiles and for both datasets.

There was slight skewness, particularly in the low and

medium risk profile datasets. For example, the (average)

skewness in the HCM datasets was 0.8 (low risk profile),

0.4 (medium) and 0.1 (high). There was a similar trend

in the breast cancer datasets, although the values were

lower. The variance was largest for the medium profile

datasets which was to be expected considering the sam-

pling scheme. This suggests that the medium profile

datasets contained more prognostic information than

the low and high profile datasets. Finally, there was

more prognostic information in the breast cancer data,

as evidenced by the wider range of the corresponding

prognostic indices.

Simulation results

Table 3 shows the mean values of the overall performance

measures over 5000 simulations for the breast cancer data,

for the four levels of censoring and three risk profiles. The

three summary measures based on predictive accuracy

(R2
IBS, R

2
SH and R2

S) produced very similar values and were

all unaffected by censoring. The values of these measures

were highest for the medium risk profile simulations,

where the patient characteristics were essentially the same

in the development and validation samples, and lowest for

the low risk profile simulations. Variability increased with

increasing censoring, as expected, and was highest for

R2
IBS. This can clearly be seen in Fig. 2 which shows the

distribution of the values of the performance measures

over the 5000 simulations (a few negative values were

deleted to aid clarity). R2
BS, evaluated at 3 years, was also

unaffected by censoring and achieved higher values in the

medium risk profile simulations. R2
BS also produced some

negative values (4%) when censoring was 80%. The two

measures based on explained variation (R2
PM and R2

D)

produced similar values that were twice as large as the

values obtained for R2
IBS, R

2
SH and R2

S. R
2
PM was unaffected

by censoring but R2
D increased slightly as censoring

increased. The relationships between the various overall

performance measures are shown in Fig. 3 for the medium

risk profile scenario. In particular, there was excellent

agreement between the R2
SH and R2

S measures which

weakened as censoring increased (ρ = 0.54 for 80%

censoring). Also, there was good agreement between R2
PM

and R2
D which seemed little affected by censoring (ρ = 0.95).

Very similar relationships were seen for the low and high

risk scenarios (results not shown).

Table 4 shows the mean values of the discrimination

and calibration measures for the breast cancer data. The

Harrell and Uno c-indices were estimated twice, first

using all usable patient pairs (CH and CU) and second by

restricting the calculations by censoring times greater

than 3 years (CH(3) and CU(3)). For 0% censoring, the

CH and CGH mean values were very similar, and the CH

and CU estimates were identical by definition. CH tended

to increase as censoring increased, whereas CU and

particularly CGH were little affected. CGH was the least

variable of these three estimates. The variability in CH

and CU was similar except for 80% censoring where the

variability in CU was far larger (Fig. 4). The increased

variability was probably due to large values of the

weights caused by the high degree of censoring. The

mean value of CH(3) (and CU(3)) was slightly larger than

that for CH which suggests that the models were better

able to discriminate within the first 3 years compared to

across the whole follow-up period. Both CH(3) and

CU(3) were relatively stable with respect to censoring,

and the variability of both measures was similar. The

calibration slope and particular the D statistic showed a

slight tendency to increase with censoring. The relation-

ships between the discrimination measures are shown in

Fig. 5 for the medium risk profile scenario. In particu-

larly, there was reasonable agreement between the

concordance measures and D. The strong relationship

between CH and CH(3) for 80% censoring is explained by

the fact that there were few observed failure times above

3 years with this level of censoring. Very similar relation-

ships were seen for the low and high risk breast cancer

scenarios (results not shown).

The results for the overall performance measures for

the HCM data can be seen in Table 5 and Fig. 6. The

mean values were all lower than the corresponding

values for the breast cancer data. In particular, the

predictive accuracy values were considerably lower due

to the relatively low number of events (5%) that

occurred before 5 years. In addition there were many
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negative R2
IBS and R2

BS values (11 and 9% respectively).

R2
D was affected by censoring in the low and medium

risk profile simulations which may be explained by

skewness in the prognostic index [6]. For example, the

prognostic index was most skewed in the low risk profile

HCM simulations, which is where greatest effect of

censoring was observed. The relationships between the

overall performance measures were similar, and often

slightly stronger, than those seen in the breast cancer

simulations (results not shown).

The results for the discrimination and calibration mea-

sures for the HCM data can be seen in Table 6 and Fig. 7.

As with the overall performance measures, the discrim-

ination values were all lower than the corresponding

values for the breast cancer data. CH was again badly

affected by censoring. In addition, D, like R2
D, was also

affected by censoring in the low and medium risk profile

simulations. Also notable is the increased variability of

the CH(5) and CU(5) measures compared to their unre-

stricted counterparts. This again is due to the relatively

Table 3 Mean (SD) of the overall performance measures for the breast cancer data over 5000 simulations

Profile Censoring R2IBS(3) R2SH(3) R2S(3) R2BS(3) R2PM R2D

Low 0% 0.099 (0.032) 0.100 (0.018) 0.101 (0.018) 0.128 (0.037) 0.232 (0.034) 0.225 (0.034)

Low 20% 0.098 (0.033) 0.100 (0.019) 0.101 (0.019) 0.128 (0.038) 0.232 (0.038) 0.228 (0.038)

Low 50% 0.099 (0.034) 0.101 (0.019) 0.101 (0.019) 0.129 (0.040) 0.234 (0.045) 0.238 (0.048)

Low 80% 0.098 (0.041) 0.100 (0.024) 0.099 (0.023) 0.127 (0.060) 0.235 (0.065) 0.255 (0.075)

Medium 0% 0.131 (0.032) 0.133 (0.018) 0.135 (0.018) 0.176 (0.039) 0.279 (0.035) 0.277 (0.036)

Medium 20% 0.133 (0.032) 0.135 (0.018) 0.135 (0.018) 0.177 (0.040) 0.280 (0.038) 0.280 (0.038)

Medium 50% 0.131 (0.034) 0.135 (0.019) 0.134 (0.019) 0.176 (0.045) 0.279 (0.046) 0.283 (0.047)

Medium 80% 0.130 (0.045) 0.133 (0.025) 0.131 (0.025) 0.176 (0.082) 0.281 (0.068) 0.292 (0.071)

High 0% 0.121 (0.028) 0.123 (0.015) 0.125 (0.015) 0.165 (0.035) 0.247 (0.035) 0.243 (0.034)

High 20% 0.121 (0.028) 0.124 (0.016) 0.124 (0.016) 0.165 (0.038) 0.247 (0.038) 0.242 (0.037)

High 50% 0.121 (0.031) 0.125 (0.016) 0.124 (0.017) 0.164 (0.046) 0.247 (0.047) 0.243 (0.046)

High 80% 0.120 (0.048) 0.121 (0.022) 0.120 (0.026) 0.168 (0.114) 0.250 (0.070) 0.252 (0.071)

Fig. 2 Box plots showing the distribution of the overall performance measures for 3 risk profiles (low, medium and high) and 4 levels of

censoring (0, 20, 50 and 80%) for the breast cancer data over 5000 simulations
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low number of events that occurred before 5 years

and the consequent low number of patient pairs used

to estimate both measures. Again, the relationships

between the discrimination measures were similar to

those seen in the breast cancer simulations (results

not shown). In particular, there was excellent agree-

ment between CGH and D (ρ = 0.99).

Discussion

The aim of this research was to review some of the

promising performance measures for evaluating predic-

tion models for survival outcomes, modify them if

necessary for use with external validation data, and

perform a simulation study based on two clinical datasets

in order to make practical recommendations.

Measures based on predictive accuracy quantify the

predictive ability of the prediction model, relative to a

null model with no predictors, on a percentage scale and

can be readily communicated to health researchers. The

measures investigated in this study (R2
IBS, R

2
BS, R

2
SH and

R2
S) may be estimated for any survival prediction model

provided that both the prognostic index and baseline

survival function are available, although R2
SH also implicitly

assumes that the model is correctly specified [12]. If the

baseline survival function is not available, which is usually

the case in practice [6], then one approach might be to

Fig. 3 Scatter plot showing the relationships between the overall performance measures for the breast cancer data with the medium risk

profile over 5000 simulations

Table 4 Mean (SD) of the discrimination and calibration measures for the breast cancer data over 5000 simulations

Profile Censoring CH CU(τmax) CGH CH(3) CU(3) D Cal. Slope

Low 0% 0.667 (0.015) 0.667 (0.015) 0.667 (0.012) 0.684 (0.028) 0.684 (0.028) 1.103 (0.107) 0.981 (0.108)

Low 20% 0.670 (0.018) 0.667 (0.016) 0.667 (0.014) 0.684 (0.029) 0.684 (0.029) 1.111 (0.121) 0.982 (0.116)

Low 50% 0.679 (0.023) 0.668 (0.022) 0.668 (0.017) 0.687 (0.030) 0.685 (0.029) 1.144 (0.152) 0.987 (0.136)

Low 80% 0.689 (0.039) 0.673 (0.060) 0.667 (0.024) 0.690 (0.040) 0.684 (0.040) 1.197 (0.243) 0.989 (0.190)

Medium 0% 0.690 (0.015) 0.690 (0.015) 0.689 (0.013) 0.704 (0.023) 0.704 (0.023) 1.269 (0.113) 0.979 (0.101)

Medium 20% 0.694 (0.017) 0.690 (0.015) 0.690 (0.014) 0.705 (0.024) 0.704 (0.024) 1.278 (0.123) 0.984 (0.107)

Medium 50% 0.701 (0.022) 0.690 (0.021) 0.689 (0.017) 0.706 (0.026) 0.704 (0.026) 1.288 (0.152) 0.980 (0.126)

Medium 80% 0.711 (0.037) 0.698 (0.056) 0.689 (0.024) 0.711 (0.037) 0.704 (0.037) 1.316 (0.231) 0.986 (0.177)

High 0% 0.677 (0.015) 0.677 (0.015) 0.676 (0.013) 0.684 (0.021) 0.684 (0.021) 1.158 (0.108) 0.977 (0.108)

High 20% 0.679 (0.017) 0.677 (0.016) 0.676 (0.014) 0.684 (0.022) 0.683 (0.021) 1.155 (0.118) 0.979 (0.116)

High 50% 0.684 (0.023) 0.677 (0.021) 0.676 (0.018) 0.686 (0.025) 0.683 (0.024) 1.158 (0.148) 0.980 (0.139)

High 80% 0.692 (0.038) 0.683 (0.058) 0.676 (0.026) 0.692 (0.038) 0.685 (0.042) 1.187 (0.230) 0.987 (0.198)
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Fig. 4 Box plots showing the distribution of the concordance measures for 3 risk profiles (low, medium and high) and 4 levels of censoring

(0, 20, 50 and 80%) for the breast cancer data over 5000 simulations

Fig. 5 Scatter plot showing the relationships between the discrimination measures for the breast cancer data with the medium risk

profile over 5000 simulations
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estimate it using the validation data. This is a pragmatic

choice as the baseline survival function is rarely presented

in practice by model developers. An alternative, arguably

better, approach would be to estimate the baseline survival

function for the prediction model (with covariates), but

not the null model, using the development data. This

alternative approach was investigated in the case study

and produced very similar results (not shown). A negli-

gible difference in the baseline survival function is also

reported in [6] when it was estimated using development

and validation data separately. Similarly, for predic-

tions from a null model, which are required for these

measures, we suggest using the Kaplan-Meier estimate

from the validation data.

Again for these measures, a choice of time-point is

also required since the summary measures (R2
IBS, R2

SH

and R2
S) are estimated over a specified range and R2

BS is

estimated at a specified time-point. In practice, the

choice of time-point will be guided by the clinical

research question and the length of follow-up. For

Table 5 Mean (SD) of the overall performance measures for the HCM data over 5000 simulations

Profile Censoring R2IBS(5) R2SH (5) R2S (5) R2BS(5) R2PM R2D

Low 0% 0.013 (0.015) 0.013 (0.006) 0.014 (0.006) 0.020 (0.019) 0.173 (0.021) 0.166 (0.021)

Low 20% 0.013 (0.014) 0.013 (0.006) 0.013 (0.006) 0.020 (0.019) 0.173 (0.022) 0.173 (0.023)

Low 50% 0.014 (0.015) 0.013 (0.006) 0.013 (0.006) 0.020 (0.019) 0.174 (0.026) 0.184 (0.029)

Low 80% 0.014 (0.015) 0.014 (0.007) 0.014 (0.006) 0.020 (0.020) 0.174 (0.037) 0.201 (0.047)

Medium 0% 0.018 (0.014) 0.018 (0.006) 0.019 (0.006) 0.027 (0.019) 0.221 (0.022) 0.221 (0.023)

Medium 20% 0.018 (0.014) 0.018 (0.006) 0.019 (0.006) 0.027 (0.018) 0.221 (0.023) 0.226 (0.024)

Medium 50% 0.018 (0.014) 0.018 (0.006) 0.019 (0.006) 0.027 (0.019) 0.221 (0.028) 0.233 (0.031)

Medium 80% 0.018 (0.015) 0.018 (0.008) 0.019 (0.007) 0.027 (0.019) 0.222 (0.038) 0.241 (0.042)

High 0% 0.018 (0.013) 0.018 (0.005) 0.018 (0.005) 0.026 (0.017) 0.199 (0.022) 0.200 (0.022)

High 20% 0.018 (0.013) 0.018 (0.005) 0.018 (0.005) 0.027 (0.017) 0.199 (0.023) 0.201 (0.023)

High 50% 0.018 (0.013) 0.018 (0.006) 0.018 (0.005) 0.026 (0.017) 0.200 (0.028) 0.203 (0.029)

High 80% 0.018 (0.013) 0.018 (0.007) 0.018 (0.006) 0.026 (0.017) 0.201 (0.040) 0.206 (0.041)

Fig. 6 Box plots showing the distribution of the overall performance measures for 3 risk profiles (low, medium and high) and 4 levels of

censoring (0, 20, 50and 80%) for the HCM data over 5000 simulations
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example, it is common for risk to be estimated at 5 years

[4, 20]. The four predictive accuracy measures studied

were not affected by censoring in the simulation study.

In addition, the three summary measures (R2
IBS, R

2
SH and

R2
S) produced very similar values on average. However,

the variability of R2
IBS was much greater than R2

SH and R2
S

which suggests that use of the latter two measures might

be preferred in practice if a summary measure is

required. Hielscher et al. compared two of these mea-

sures, R2
IBS and R2

SH, and had similar findings [12].

The measures based on explained variation (R2
PM and

R2
D) may be estimated for any proportional hazards

model provided that the prognostic index is available,

although we suggest that the prediction model is

re-calibrated to the validation data before calculation of

R2
PM to ensure that the survival times in the validation

data are used in its calculation. Both measures provided

very similar values in our simulations. R2
PM was robust

to censoring, but R2
D tended to increase with censoring if

the prognostic index was skewed.

Table 6 Mean (SD) of the discrimination and calibration measures for the HCM data over 5000 simulations

Profile Censoring CH CU(τmax) CGH CH(5) Cu(5) D Cal. Slope

Low 0% 0.645 (0.011) 0.645 (0.011) 0.645 (0.009) 0.675 (0.061) 0.675 (0.061) 0.911 (0.070) 0.983 (0.082)

Low 20% 0.649 (0.012) 0.645 (0.011) 0.645 (0.009) 0.676 (0.061) 0.676 (0.061) 0.934 (0.075) 0.986 (0.086)

Low 50% 0.656 (0.016) 0.645 (0.014) 0.645 (0.011) 0.676 (0.062) 0.676 (0.062) 0.971 (0.095) 0.989 (0.098)

Low 80% 0.666 (0.026) 0.649 (0.039) 0.645 (0.016) 0.676 (0.063) 0.676 (0.063) 1.025 (0.151) 0.988 (0.136)

Medium 0% 0.670 (0.010) 0.670 (0.010) 0.670 (0.009) 0.694 (0.049) 0.694 (0.049) 1.090 (0.072) 0.985 (0.075)

Medium 20% 0.674 (0.012) 0.670 (0.011) 0.670 (0.009) 0.695 (0.048) 0.695 (0.048) 1.105 (0.077) 0.986 (0.079)

Medium 50% 0.680 (0.015) 0.670 (0.013) 0.670 (0.011) 0.694 (0.049) 0.694 (0.049) 1.127 (0.097) 0.985 (0.091)

Medium 80% 0.688 (0.022) 0.675 (0.033) 0.670 (0.015) 0.695 (0.050) 0.695 (0.050) 1.153 (0.134) 0.989 (0.115)

High 0% 0.661 (0.011) 0.661 (0.011) 0.661 (0.009) 0.676 (0.043) 0.676 (0.043) 1.022 (0.070) 0.982 (0.079)

High 20% 0.663 (0.011) 0.661 (0.011) 0.661 (0.010) 0.677 (0.043) 0.677 (0.043) 1.025 (0.075) 0.983 (0.083)

High 50% 0.667 (0.015) 0.661 (0.013) 0.661 (0.011) 0.676 (0.043) 0.676 (0.043) 1.032 (0.092) 0.984 (0.097)

High 80% 0.672 (0.023) 0.664 (0.034) 0.661 (0.016) 0.676 (0.044) 0.676 (0.044) 1.042 (0.133) 0.987 (0.132)

Fig. 7 Box plots showing the distribution of the concordance measures for 3 risk profiles (low, medium and high) and 4 levels of censoring (0, 20, 50

and 80%) for the HCM data over 5000 simulations
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Concordance measures are routinely used in practice

since the concept of correctly ranking patient pairs can

be readily communicated to health researchers [5]. CH

and CU can be estimated for any survival prediction

model that is able to rank patients. In addition, the

calculation of CU may also be restricted to a specified

range of time, which may be useful to match with

clinical aims or to compare concordance across different

datasets. The calculation of CH may also be restricted

though it is not clear how often this is done in practice

[37]. CGH has a similar interpretation to the other

concordance measures but requires that the model is

correctly specified. As with R2
PM, we suggest that the

prediction model is re-calibrated to the validation data

before calculation of CGH to ensure that the survival

times in the validation data are used. Harrell’s CH, in its

unrestricted form, is probably the most used concord-

ance measure in practice [5]. However, it was affected by

censoring, which is a finding noted by others [16].

Specifically, CH tended to increase for moderate to high

levels of censoring, which is not an uncommon scenario

with medical data, and is therefore likely to give an over-

optimistic view of a prediction model’s discriminatory

ability. Therefore, it cannot be recommended in such

scenarios. In contrast, both CU and CGH were reasonably

stable in the presence of censoring. CGH was the less

variable of the two measures as a consequence of it

being model-based [16]. The restricted versions of CH

and CU were little affected by censoring but care needs

to be taken when selecting the time-point to ensure that

the time period contains a reasonable number of events.

The remaining discrimination measure D has an

appealing interpretation as it can be communicated

as a (log) relative risk between low and high risk

groups of patients. It requires that the proportional

hazards assumption holds and that the prognostic

index is normally distributed. As with R2
D it may be

affected by censoring if the prognostic index is

skewed [27]. The sole calibration measure under

investigation, the calibration slope, was robust to

censoring. It assumes that the proportional hazards

assumption holds although more general approaches

are described by van Houwelingen [33, 38].

Conclusions

Harrell’s CH is routinely reported to assess discrimination

when survival prediction models are validated [5]. However,

based on our simulation results, we recommend that CU is

used instead to quantify concordance when there are

moderate levels of censoring. Alternatively, CGH could be

considered, especially if censoring is very high, but we

suggest that the prediction model is re-calibrated first. The

restricted version of CH may also be used provided that the

time-point is chosen carefully. We also recommend that D

is routinely reported to assess discrimination since it has an

appealing interpretation, although the distribution of the

prognostic index would need to be checked for

normality. ‘Overall performance’ measures are perhaps

under used in practice. Our recommendation would

be to use any of the predictive accuracy measures

and provide the corresponding predictive accuracy

curves. In particular, R2
SH and R2

S have relatively low

variability. The calibration slope is a useful measure

of calibration and recommended to report routinely.

In addition, one could investigate calibration graphically,

for example by comparing observed and predicted survival

curves for groups of patients [6]. Finally, we also recom-

mend to investigate the characteristics of the validation

data such as the level of censoring and the distribution of

the prognostic index derived in the validation setting

before choosing the performance measures.
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